

## SPATIO-TEMPORAL GRAPH UNLEARNING

## Anonymous authors

Paper under double-blind review

## ABSTRACT

Spatio-temporal graphs are widely used in modeling complex dynamic processes such as traffic forecasting, molecular dynamics, and healthcare monitoring. Recently, stringent privacy regulations such as GDPR and CCPA have introduced significant new challenges for existing spatio-temporal graph models, requiring complete unlearning of unauthorized data. Since each node in a spatio-temporal graph diffuses information globally across both spatial and temporal dimensions, existing unlearning methods primarily designed for static graphs and localized data removal cannot efficiently erase a single node without incurring costs nearly equivalent to full model retraining. Therefore, an effective approach for complete spatio-temporal graph unlearning is a pressing need. To address this, we propose CallosumNet, a divide-and-conquer spatio-temporal graph unlearning framework inspired by the corpus callosum structure that facilitates communication between the brain’s two hemispheres. CallosumNet incorporates two novel techniques: (1) Enhanced Subgraph Construction (ESC), which adaptively constructs multiple localized subgraphs based on several factors, including biologically-inspired virtual ganglia; and (2) Global Ganglion Bridging (GGB), which reconstructs global spatio-temporal dependencies from these localized subgraphs, effectively restoring the full graph representation. Empirical results on four diverse real-world datasets show that CallosumNet achieves complete unlearning with only 1% - 2% relative MAE loss compared to the gold model, significantly outperforming state-of-the-art baselines. Ablation studies verify the effectiveness of both proposed techniques.

## 1 INTRODUCTION

Recent advanced spatio-temporal graph models effectively capture complex dynamic processes, such as urban traffic flows, molecular interactions, and healthcare monitoring, by harnessing both spatial adjacency and temporal continuity. However, the broad deployment of these powerful models increasingly faces stringent privacy regulations, such as the General Data Protection Regulation (GDPR)European Union (2016) and the California Consumer Privacy Act (CCPA)California State Legislature (2018), which necessitate the complete removal or *unlearning* of sensitive user data upon request. As a result, ensuring compliance with these privacy requirements often requires retraining the entire spatio-temporal graph model to preserve privacy for individual nodes, a process that, while essential, introduces additional computational demands.

**Motivating scenario.** Taking a mobile–location service (e.g., Google Maps) as an example, Figure 1(a) shows smartphones (nodes) forming a richly coupled spatio-temporal graph stream of time-stamped GPS signals. Suppose a subset of users revokes consent for their location data, necessitating the deletion of these devices and all incident edges, as shown in Figure 1(b). Simply dropping the raw records (Figure 1(c)) does not fully satisfy the deletion requirement, as it fails to eliminate the latent influence of the revoked users. Conversely, retraining the entire model from scratch after purging those records (Figure 1(d)) erases the influence but fragments long-range spatial and temporal paths, severely degrading accuracy and interpretability for the remaining users, with a prohibitively high retraining cost.

In such scenarios, it is desirable to have an unlearning method capable of undoing the impact of individual graph nodes both spatially and temporally. However, existing unlearning pipelines fail when applied to spatio-temporal (ST) graphs. In static graphs, removing a vertex typically only perturbs a small neighborhood, meaning partition-retrain or lightweight fine-tuning is often sufficient.

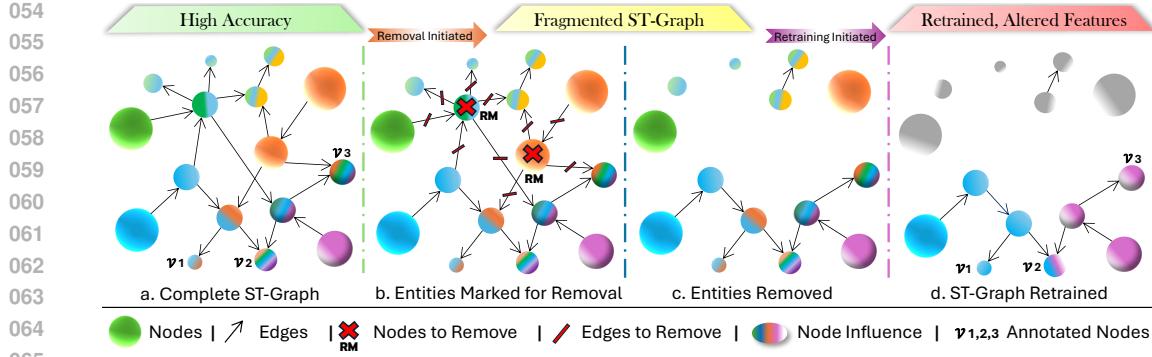


Figure 1: Unlearning on a spatio-temporal graph. (a) A fully connected ST-Graph yields high accuracy; node size encodes impact, color encodes evolving features, and arrows denote spatio-temporal edges. (b) Red marks indicate users who revoke data-use consent; their nodes and incident edges must be erased. (c) Deleting raw records satisfies compliance yet leaves residual influence (faded arrows) inside the model. (d) Retraining after deletion purges influence but fragments the graph and distorts remaining node features ( $v_1, v_2, v_3$ ), harming accuracy.

In contrast, ST graphs are fundamentally different: messages propagate across both space and time, meaning a single node can influence the entire history of the graph. This presents a key challenge: achieving 100% unlearning requires computation nearly equivalent to retraining the model from scratch. Classic data-sharding methods, while useful, risk severing critical spatial or temporal connections, thereby damaging the global spatio-temporal dependencies. Additionally, some methods aim to reduce node influence, yet fail to meet the requirement of 100% unlearning. Consequently, the problem remains unsolved.

In this study, inspired by the structure of the corpus callosum (see Figure 2), we propose CallosumNet. The corpus callosum, connecting the left and right hemispheres of the brain, allows each hemisphere to focus on its respective tasks while sharing information and collaborating. Similarly, CallosumNet applies a divide-and-conquer approach: it builds locally enhanced subgraphs and compensates for the global context through a lightweight meta-graph integration layer to support unlearning in spatio-temporal prediction tasks.

**Challenge 1: How can CallosumNet apply a divide-and-conquer approach without breaking spatio-temporal dependencies, which would lead to a degradation of the model’s spatio-temporal prediction capability?**

**Solution 1:** Straightforward cuts can break high-order dependencies, thereby eroding predictive quality. Two novel techniques introduced by CallosumNet are **Enhanced Subgraph Construction (ESC)** and **Global Ganglion Bridging (GGB)**. ESC focuses on constructing well-defined local sub-graph models that enhance the ability to capture regional spatio-temporal attributes, while GGB, building on ESC, establishes a lightweight global integration slot (a meta-graph layer) that fuses information across sub-graphs.

**Challenge 2: How does CallosumNet ensure 100% unlearning?**

**Solution 2:** In Step 1, CallosumNet constructs multiple enhanced spatio-temporal sub-graphs, each of which is closed, with node influence restricted to the respective sub-graph, preventing any spillover effects to other sub-graphs. In Step 2, the weights of all sub-graphs are frozen and remain unaffected. The **Global Ganglion Bridging**, containing global information, rapidly resets and clears after each unlearning process, ensuring that 100% unlearning is achieved.

**Contributions.** We reveal the limitations of current unlearning approaches in ST graphs and propose a divide-and-conquer solution: carving the ST-graph into coherence-preserving local sub-graphs and recovering global context via a lightweight integration layer. CallosumNet implements this approach, combining ESC for local sub-graph construction and GGB for global integration. Across four real-world benchmarks, CallosumNet achieves 100% exact unlearning with only 1%–2% relative MAE loss compared to the gold model.

108

## 2 RELATED WORK

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

**Unlearning Methods.** Most existing methods target static graphs. **SISA** Bourtoule et al. (2021) randomly shards the training set and trains each shard in isolation; when naively applied to graphs—especially spatio-temporal ones—such random sharding severs structural and temporal links, so temporal coherence cannot be preserved. **STEPs** Guo et al. (2025) follows the same idea but, for ST graphs, simply strings together broken mini-graphs (or orphan nodes) without reconstructing the lost links, leaving temporal paths fragmented. **GraphEraser** Chen et al. (2022) adopts property-aware sharding to preserve graph structure and retrains only the affected sub-GNNs, but it is evaluated solely on static snapshots and cannot address global spatio-temporal entanglement. **GraphRevoker** Zhang et al. (2025) improves shard-level retraining with property-aware splits and contrastive aggregation, but it too is validated only on static graphs and therefore leaves cross-time dependencies unresolved.

128

129

130

131

132

133

134

135

136

137

138

139

Several other methods might appear applicable but fail to fully delete a node’s spatio-temporal footprint. Federated learning McMahan et al. (2017) retains raw data locally; however, once integrated, individual gradients are inseparable from global parameters, making precise unlearning impossible. Differential privacy based GNNs Sun and Song (2024) inject calibrated noise into node messages or adjacency structures, reducing identifiable influence but incapable of eradicating multi-hop spatio-temporal propagation. Encrypted inference approaches like Ran et al. (2022) protect inference queries through homomorphic encryption yet provide no mechanism for retroactively removing encoded influence from trained models. Certifiable unlearning frameworks Chien et al. (2022) guarantee closeness between fine-tuned and retrained models, typically assuming IID data without inherent graph structures—assumptions clearly violated in spatio-temporal contexts. These approaches either proactively isolate data before training or obfuscate its impact, but none provide true retroactive removal of a node’s comprehensive dynamic influence.

140

141

Unlike the above, Our **CallosumNet** adaptively reconstructs local ST sub-graphs, achieving complete unlearning with minimal accuracy loss.

142

143

144

## 3 CALLOSUMNET

145

146

147

We propose **CallosumNet**, a divide-and-conquer framework for spatio-temporal graph unlearning that preserves global dependencies while ensuring privacy compliance (e.g., GDPR). CallosumNet consists of two core components: *Enhanced Subgraph Construction (ESC)* for graph decomposition, and *Global Ganglion Bridging (GGB)* to restore global coherence post-unlearning.

151

152

153

154

155

156

157

158

159

160

161

CallosumNet follows a four-step pipeline: **1. Divide (ESC).** Enhanced Sub-graph Construction slices the original ST-graph into  $M$  locally coherent sub-graphs along a correlation-driven backbone and patches every cut with virtual ganglion edges so that high-order spatial-temporal paths are preserved. **2. Link (GGB).** Global Ganglion Bridging then assembles the sub-graphs into a lightweight meta-graph: it promotes the top- $K$  key nodes, the interface boundary nodes, and the newly created ganglion nodes to meta-graph vertices and sparsely wires them together. **3. Encode & Fuse.** Each sub-graph is trained independently (and can be frozen afterwards). Their embeddings are routed through a cross-fusion Transformer that sits on the meta-graph layer and outputs the final prediction. **4. Unlearn on demand.** When a deletion request arrives, only the sub-graphs that contain the target nodes/edges are re-trained; the meta-graph parameters are fine-tuned, while untouched sub-graphs remain frozen. Because every stage touches at most  $O(N/M)$  real nodes or  $O(M \log M)$  meta-edges, the overall procedure runs in sub-linear time with respect to the original graph size  $N$ .

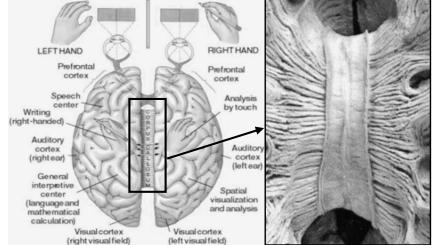


Figure 2: The corpus callosum. A bridge of  $\sim 2 \times 10^8$  axons connecting the two cerebral hemispheres. Although comprising only about 1% of each hemisphere’s  $\sim 20$  billion cortical neurons, it provides ample bandwidth to synchronise bilateral neural activity.

162 3.1 NOTATION AND TASK DEFINITION  
163164 We model a spatio-temporal graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$  with  $|\mathcal{V}| = N$  nodes, static adjacency matrix  
165  $\mathbf{A} \in \{0, 1\}^{N \times N}$ , and node features  $\mathbf{X} \in \mathbb{R}^{T \times N \times F}$ , where  $T$  is the history length and  $F$  the feature  
166 dimension. A trained ST-GNN realizes  $f : \mathbb{R}^{T \times N \times F} \rightarrow \mathbb{R}^{N \times P}$ .167 A deletion request  $\mathcal{U} = (\mathcal{U}_N, \mathcal{U}_E)$  specifies nodes  $\mathcal{U}_N \subseteq \mathcal{V}$  and edges  $\mathcal{U}_E \subseteq \mathcal{E}$  whose historical  
168 influence must be removed. We require the following unlearning objectives:  
169

170 
$$\|f_{\text{after}} - f_{\text{retrain}}\|_2 \leq \varepsilon, \quad I(\hat{y}; \mathcal{U}) \leq \delta \quad (3.1)$$

171 where  $f_{\text{after}}$  is the model after unlearning, and  $f_{\text{retrain}}$  is the model retrained from scratch.  
172173 Table 1: Frequently used notation.  
174

| Symbol                 | Description                          | Symbol                     | Description                       |
|------------------------|--------------------------------------|----------------------------|-----------------------------------|
| $N, T, F$              | # nodes, history length, feature dim | $M$                        | # ESC sub-graphs                  |
| $P$                    | prediction horizon / output steps    | $W$                        | time window for correlation       |
| $\mathbf{A}_i$         | adjacency of $i$ -th sub-graph       | $\mathbf{A}_{\text{meta}}$ | meta-graph adjacency (GGB)        |
| $\Delta_{\text{cut}}$  | correlation loss of cut edges        | $H, L, D_g$                | heads / layers / ganglion width   |
| $\gamma$               | balance term in ESC objective        | $\alpha$                   | fusion weight (token vs ganglion) |
| $\lambda_1, \lambda_2$ | $L_1/L_2$ regularizers in GGB        | $\varepsilon, \delta$      | accuracy / privacy tolerances     |

182 3.2 ENHANCED SUBGRAPH CONSTRUCTION (ESC)  
183184 ESC decomposes a pruned spatio-temporal graph  $\mathcal{G}' = (\mathcal{V}', \mathcal{E}', \mathbf{X}')$  into  $M$  localized subgraphs while  
185 maintaining global dependencies through virtual ganglion edges. The process begins by computing,  
186 for each directed edge  $(u, v) \in \mathcal{E}'$ , a  $W$ -step temporal correlation  
187

188 
$$\rho(u, v) = \frac{1}{W} \sum_{t=1}^W \text{corr}(X'_{t,u}, X'_{t+1,v}), \quad (3.2)$$
  
189

190 and extracting a backbone path  $\mathcal{D} = \arg \max_{\mathcal{P}} \sum_{(u,v) \in \mathcal{P}} \rho(u, v)$ . Nodes are assigned to subgraphs  
191 according to their backbone index:  
192

193 
$$\mathcal{V}_i = \{ v \in \mathcal{D} \mid \lfloor (i-1) \frac{N'}{M} \rfloor \leq \text{idx}(v) < \lfloor i \frac{N'}{M} \rfloor \}, \quad (3.3)$$
  
194

195 where  $N' = |\mathcal{V}'|$ . Edges internal to  $\mathcal{V}_i$  form  $\mathbf{A}_i$ ; the remainder are the cut set  $\mathcal{E}_{\text{cut}}$ . Isolated vertices  
196 are re-connected to their two nearest neighbours on  $\mathcal{D}$ , and for every  $(u, v) \in \mathcal{E}_{\text{cut}}$  we insert a virtual  
197 ganglion edge to preserve high-order dependencies.  
198199 The number of partitions is chosen by  
200

201 
$$M^* = \arg \min_M \left[ \Delta_{\text{cut}} + \gamma \log M \right], \quad \Delta_{\text{cut}} = \sum_{(u,v) \in \mathcal{E}_{\text{cut}}} \rho(u, v), \quad (3.4)$$
  
202

203 with  $\gamma$  balancing correlation loss against model parallelism.  
204205 **Theoretical analysis.** The following statements hold for any  $\lambda_1, \lambda_2 \geq 0$ ; formal proofs are deferred  
206 to Appendix A.1.  
207208 **Theorem ESC 1.** Minimising  $\Delta_{\text{cut}}$  under equal-size constraints is NP-hard, yet the greedy backbone  
209 yields a  $(1 - \frac{1}{e})$  approximation.  
210211 **Theorem ESC 2.** ESC runs in  $O(T|\mathcal{E}'| + N'^2/M)$  time and stores  $O(N'^2/M)$  edges, which is  
212 sub-linear in  $N'$  when  $M = \Theta(\sqrt{N'})$ . Moreover it retains at least  $\text{Info}_{\text{intra}} \geq (1 - \frac{\Delta_{\text{cut}}}{\text{TotalCorr}})$  of the total temporal correlation.  
213214 3.3 GLOBAL GANGLION BRIDGING (GGB)  
215216 GGB reconstructs global spatio-temporal dependencies by stitching the  $M$  sub-graphs into a  
217 lightweight meta-graph  $\mathcal{M} = (\mathcal{V}_{\text{meta}}, \mathcal{E}_{\text{meta}})$  with adjacency matrix  $\mathbf{A}_{\text{meta}}$ . It integrates three types  
218

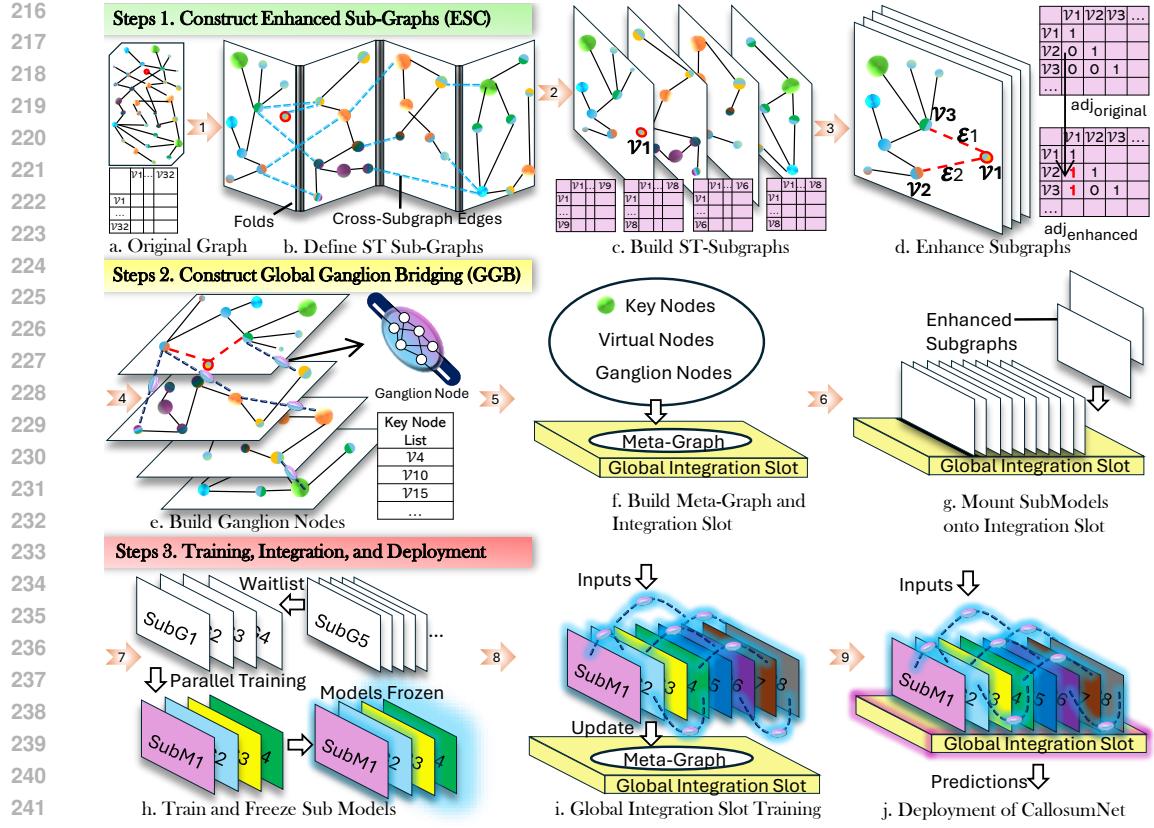


Figure 3: CallosomNet system construction. The original graph (a) is transformed into multiple enhanced local subgraphs (d) through ESC, and then the Global Ganglion Bridging (GGB) method adds ganglion nodes and identifies key nodes to construct the meta-graph. All the enhanced local subgraphs are trained into enhanced sub-models, with their weights frozen. These sub-models, along with the ganglion nodes and the global integration slot, are combined to form CallosomNet. After a small amount of training data updates the parameters, the entire CallosomNet can operate normally with prediction accuracy within 1%-2% of the original ST-Graph.

of vertices: (i) *key nodes* (top- $K$  PageRank per sub-graph,  $K = \lceil \log |\mathcal{V}_i| \rceil$ ), (ii) *boundary nodes* incident to cut edges, and (iii) *ganglion nodes*, each parameterised by a two-layer MLP with ReLU. PageRank is preferred to degree centrality because it better captures global node importance.

The meta-graph edges are defined as

$$\mathcal{E}_{\text{meta}} = \mathcal{E}_{\text{agg}} \cup \{(u, g), (g, v) \mid g \in \mathcal{V}_{\text{ganglion}}, u, v \in \mathcal{V}_{\text{key}} \cup \mathcal{V}_{\text{boundary}}\} \cup \mathcal{E}_{\text{key}}, \quad (3.5)$$

and are sparsified until  $|\mathcal{E}_{\text{meta}}| \approx O(M \log M)$  (App. A.2).

Each sub-graph is encoded by a frozen STGCN  $h_v = \text{STGCN}(X'[:, v, :], \mathbf{A}_i)$  optimised via

$$\mathcal{L}_{\text{sub}} = \sum_{v \in \mathcal{V}_i \setminus \mathcal{U}} \|y_v - \text{pred}_{S_i}(v)\|_2^2 + \lambda_{\text{reg}} \|\theta_i\|_2^2, \quad (3.6)$$

thereby isolating  $\mathcal{U}$ . Token-level outputs and ganglion embeddings are fused through a cross-attention Transformer:

$$h^{\text{final}} = \alpha h^{\text{tok}} + (1 - \alpha) h^{\text{gang}}, \quad \hat{y}_v = \text{Transformer}(\{h'_u, h_g\}, \mathbf{A}_{\text{meta}}), \quad (3.7)$$

where  $\alpha$  is a learnable scalar initialised to 0.5 and clipped to  $[0, 1]$ . The overall loss is

$$\mathcal{L}_{\text{ggb}} = \sum_v \|y_v - \hat{y}_v\|_2^2 + \lambda_1 \|\mathbf{A}_{\text{meta}}\|_1 + \lambda_2 \sum_g \|h_g\|_2^2, \text{ with } \lambda_1, \lambda_2 \geq 0 \quad (3.8)$$

**Theoretical guarantees.** All proofs are deferred to Appendix A.2.

**Theorem GGB 1 (Prediction error bound).** For a graph  $\mathcal{G}'$  partitioned into  $M$  sub-graphs,

$$\left\| \hat{y}_{\text{full}} - \hat{y}_{\text{GGB}} \right\|_2 \leq \epsilon \frac{\Delta_{\text{cut}} \sqrt{M}}{H L D_g} \quad (3.9)$$

which stays below 0.05 whenever  $M \leq 16$  and  $N' \leq 10^4$ .

**Theorem GGB 2 (Unlearning stability).** After erasing an arbitrary set  $\mathcal{U}$ ,

$$\mathbb{E}[\|\hat{y}_v - \hat{y}_v^{\text{unlearn}}\|_2^2 \mid v \notin \mathcal{U}] \leq \frac{\Delta_{\text{cut}}|\mathcal{U}|}{(|\mathcal{V}'| - |\mathcal{U}|)HLD_a} \quad (3.10)$$

and the Transformer fine-tune converges to an  $\varepsilon$ -accurate solution with  $\varepsilon = \frac{G^2}{2m\sqrt{\overline{p}}}$ .

**Theorem GGB 3 (Model complexity).** GGB contributes  $\mathcal{O}(M \log M D_g^2)$  additional parameters on top of the  $\mathcal{O}(Nd^2/M)$  parameters of the sub-graphs, and its per-batch FLOPs are  $\mathcal{O}(BT [|\mathcal{E}|/M + M \log M] d)$ . With  $M = \sqrt{N}$  this yields a sub-linear ( $\approx 1/\sqrt{N}$ ) speed-up compared to a full-graph ST-GNN.

Hence, GGB attains near-full-graph accuracy while keeping both memory and runtime sub-linear in the original graph size.

### 3.4 UNLEARNING PROCESS

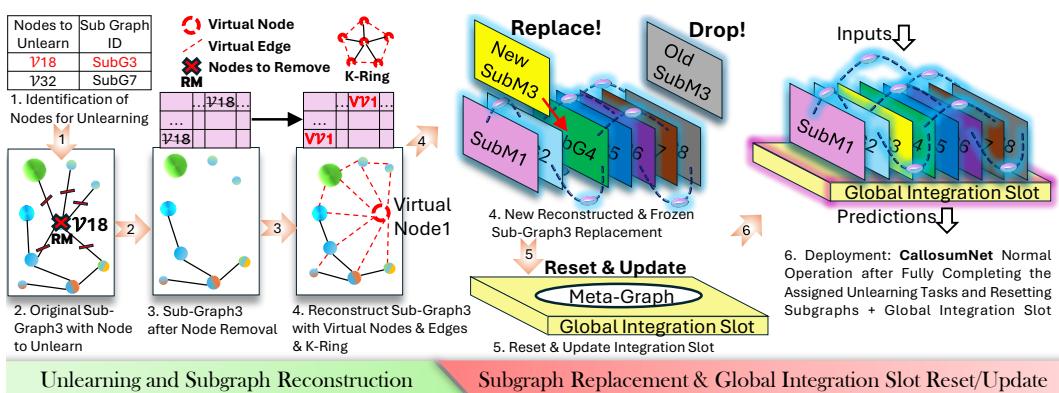


Figure 4: CallosumNet unlearning process

Upon constructing CallosumNet and acquiring the Unlearning task, CallosumNet first locates the target subgraphs using the Unlearn List. The target is then completely removed from these subgraphs, including the edges and topological structure. Since the training of other subgraphs is not affected by the target that needs to be Unlearned, and all subgraphs have their weights frozen after training, there is no need to reset the other subgraphs. Subsequently, the ESC function enhances the internal connectivity of the fragmented subgraphs through virtual nodes/edges and K-Ring. The rebuilt subgraphs are trained using their corresponding node data, after which the weights are frozen. The obsolete subgraph models are replaced by the updated ones. At this stage, Ganglion Nodes and Global Integration still retain the influence of the Unlearned target, necessitating a reset of the structure and parameters of both components, followed by an update. As a result, after the rapid updates of the subgraphs, Ganglion Nodes, and Global Integration, CallosumNet can continue to operate in compliance with privacy requirements.

**System-level guarantees.** CallosumNet achieves *exact* compliance with the unlearning criterion. Let  $f_{\text{full}}$  be the original model and  $f_{\text{retrain}}$  the model retrained from scratch after deleting the request set  $\mathcal{U}$ . CallosumNet retrains only the affected sub-graphs  $S_i^{\mathcal{U}}$  while keeping all other sub-graphs  $S_j$  frozen; the Global Ganglion Bridging (GGB) layer then recomputes the final output as a linear combination

324 of the updated and frozen embeddings. Because  $\mathcal{U}$ ’s influence is confined to  $S_i^{\mathcal{U}}$ , its contribution to  
 325 the linear combination is exactly zero after the update. Consequently,  
 326

$$327 \quad f_{\text{Callosum}}^{\mathcal{U}} - f_{\text{retrain}} = 0, \quad I(\hat{y}; \mathcal{U}) = 0 \quad (3.11)$$

328 which certifies 100% adherence to the GDPR “right to erasure”.  
 329

## 330 4 EXPERIMENTS

333 To systematically evaluate CallosumNet, we address the following research questions(RQs), using the  
 334 gold model as the unlearning benchmark (i.e., models retrained from scratch on the relevant dataset  
 335 subset, ensuring zero residual influence from removed data):

336 **RQ1. Accuracy Parity:** Does CallosumNet achieve performance comparable to the gold model for  
 337 0% unlearning (Scratch with 100% data), with minimal initial overhead?

338 **RQ2. Resilience after Erasure:** After unlearning (e.g., 10% removal), does CallosumNet approach  
 339 or exceed the gold model for that rate (Scratch with 90% data), outperforming baselines in accuracy  
 340 and efficiency?

341 **RQ3. Component and Efficiency Analysis:** Which components drive CallosumNet’s effectiveness,  
 342 and does it offer sub-linear scalability over full retraining?

### 344 4.1 EXPERIMENTAL SETUP

346 **Datasets:** To evaluate the scalability of our method, we selected spatio-temporal graph data spanning  
 347 a range of sizes, with up to 3220 nodes. These datasets include: RWWGuo and Wang (2024), a  
 348 23-node network representing water depth in a sewage system; PeMS08He (2025), a 170-node traffic  
 349 flow network in California; Global WeatherNOAA Physical Sciences Laboratory (2025), a 1,000-node  
 350 global daily temperature network; and Human Mobility FlowKang et al. (2020), a 3,220-node mobility  
 351 network capturing daily population movement. The datasets consist of time series ranging from 3,000  
 352 to 18,000 time steps, making them large-scale. We split the data temporally into training (70%),  
 353 validation (15%), and test (15%) sets. **Baselines and Models:** We compare our approach against  
 354 several state of the art baselines: Scratch full graph training with no unlearning, SISA Bourtoule  
 355 et al. (2021), STEPs Guo et al. (2025), GraphEraser Chen et al. (2022), and GraphRevoker Zhang  
 356 et al. (2025) on four spatio-temporal graph models: STGCN, STSAGE, STGAT, and STGATv2. And  
 357 we fix the number of subgraphs M to 4. **Metrics:** We record evaluation metrics including MAE,  
 358 MSE, RMSE, Trend F1, and  $R^2$ , MAE are reported in the Results section on the original scale,  
 359 with mean and standard deviation. Runtime, memory, and CPU costs are also measured. **Fair and**

360 **Robust Setup:** To ensure fair comparisons, model parameters are set to achieve an  $R^2$  greater than  
 361 0.9 on RWW, PeMS08 and Human Mobility Flow (except for the Weather dataset, which has a  $R^2$   
 362 of 0.67 due to inherent predictability challenges). To avoid overfitting due to smaller subgraph data  
 363 sizes and reduced complexity, as well as noise from relative model capacity variations, we adapt  
 364 the number of hidden features in subgraphs based on the unlearning proportion. This ensures that,  
 365 without unlearning, the models reach the same  $R^2$  level as when using the full graph. In practice,  
 366 the proportion of unlearning required is often very small, typically involving just one or a few nodes  
 367 that must be unlearned and the entire graph retrained to maintain privacy compliance, rather than  
 368 accumulating many unlearning requests before performing an update. To ensure the experiment is  
 369 representative, we selected a large unlearning proportion of 10%, defining the “subset of nodes” as  
 370 10% of all nodes chosen randomly, with 5 fixed random seeds to ensure reproducibility.

### 371 4.2 RESULTS

372 As shown in Table 2, at a 0% unlearning rate (indicating framework validation without actual un-  
 373 learning), CallosumNet consistently achieves performance closely matching the gold model (Scratch  
 374 with 100% data) across various datasets and models, affirmatively answering RQ1. In comparison,  
 375 GraphEraser and GraphRevoker—originally developed for recommender systems—exhibit notably  
 376 poor performance on spatiotemporal graph unlearning tasks. The STEPs method, employing simple  
 377 uniform partitioning and weighted averaging without enhanced subgraph construction, only yields  
 378 adequate results on the G-Weather dataset. SISA, which relies on extensive overlapping partitions

378 and averaged predictions, provides suboptimal accuracy but consistently outperforms other baseline  
 379 methods.  
 380

381 When the unlearning rate increases to 10% (see Table 3), simulating extensive concurrent unlearning  
 382 requests, all evaluated methods exhibit elevated MAE. However, CallosumNet remarkably maintains  
 383 high accuracy, often surpassing the gold model (Scratch with 90% data) scenario, positively addressing  
 384 RQ2. For instance, on PeMS08 using STGCN, CallosumNet achieves an MAE of  $29.950 \pm 0.105$ ,  
 385 outperforming the gold model (Scratch with 90% data,  $30.810 \pm 0.147$ ), while methods such as STEPs  
 386 and GraphRevoker suffer significant accuracy degradation. The superior performance of CallosumNet  
 387 is primarily attributed to its Enhanced Subgraph Construction (ESC), which effectively restores graph  
 388 connectivity through strategic deployment of virtual nodes, virtual edges, and the K-Ring technique.  
 389 By maintaining crucial inter-node influences and avoiding fragmentation, CallosumNet ensures robust  
 390 predictions even in the presence of extensive unlearning operations.  
 391

392 **Table 2: Prediction Performance of Different Methods Before Unlearning (0% Unlearning).**

| 393 Dataset  | 394 Model    | 395 <b>Gold Model</b><br>(Scratch with 100% data) | 396 <b>Baseline Methods</b> |                          |                         |                          | 397 <b>CallosumNet</b>                   |
|--------------|--------------|---------------------------------------------------|-----------------------------|--------------------------|-------------------------|--------------------------|------------------------------------------|
|              |              |                                                   | 398 <b>SISA</b>             | 399 <b>STEPS</b>         | 400 <b>GraphEraser</b>  | 401 <b>GraphRevoker</b>  |                                          |
| 394 RWW      | 395 STGCN    | 396 $0.020 \pm 0.001$                             | 397 $0.035 \pm 0.007$       | 398 $0.082 \pm 0.003$    | 399 $0.179 \pm 0.060$   | 400 $0.177 \pm 0.000$    | 397 <b>0.020 <math>\pm 0.001</math></b>  |
|              | 395 ST-GAT   | 396 $0.022 \pm 0.002$                             | 397 $0.035 \pm 0.013$       | 398 $0.075 \pm 0.004$    | 399 $0.179 \pm 0.059$   | 400 $0.177 \pm 0.001$    | 397 <b>0.022 <math>\pm 0.002</math></b>  |
|              | 395 ST-GATV2 | 396 $0.022 \pm 0.002$                             | 397 $0.036 \pm 0.008$       | 398 $0.085 \pm 0.008$    | 399 $0.179 \pm 0.059$   | 400 $0.177 \pm 0.001$    | 397 <b>0.022 <math>\pm 0.002</math></b>  |
|              | 395 ST-SAGE  | 396 $0.022 \pm 0.003$                             | 397 $0.036 \pm 0.010$       | 398 $0.081 \pm 0.008$    | 399 $0.179 \pm 0.059$   | 400 $0.178 \pm 0.000$    | 397 <b>0.022 <math>\pm 0.002</math></b>  |
| 394 PEMS08   | 395 STGCN    | 396 $28.751 \pm 0.117$                            | 397 $34.271 \pm 0.527$      | 398 $82.404 \pm 9.043$   | 399 $58.994 \pm 1.663$  | 400 $88.685 \pm 5.865$   | 397 <b>28.921 <math>\pm 0.124</math></b> |
|              | 395 ST-GAT   | 396 $28.733 \pm 0.095$                            | 397 $34.404 \pm 0.297$      | 398 $82.244 \pm 7.516$   | 399 $58.248 \pm 1.175$  | 400 $90.995 \pm 4.683$   | 397 <b>29.474 <math>\pm 0.365</math></b> |
|              | 395 ST-GATV2 | 396 $28.802 \pm 0.023$                            | 397 $34.601 \pm 1.342$      | 398 $80.876 \pm 10.800$  | 399 $57.938 \pm 3.973$  | 400 $87.081 \pm 7.951$   | 397 <b>28.982 <math>\pm 0.200</math></b> |
|              | 395 ST-SAGE  | 396 $29.120 \pm 0.178$                            | 397 $34.133 \pm 0.622$      | 398 $82.128 \pm 9.982$   | 399 $64.277 \pm 2.043$  | 400 $98.164 \pm 0.878$   | 397 <b>29.261 <math>\pm 0.310</math></b> |
| 400 WEATHER  | 401 STGCN    | 402 $3.597 \pm 0.014$                             | 403 $3.913 \pm 0.008$       | 404 $5.449 \pm 0.029$    | 405 $5.398 \pm 0.214$   | 406 $5.870 \pm 0.300$    | 401 <b>3.673 <math>\pm 0.009</math></b>  |
|              | 401 ST-GAT   | 402 $3.560 \pm 0.035$                             | 403 $3.902 \pm 0.008$       | 404 $5.691 \pm 0.089$    | 405 $4.938 \pm 0.382$   | 406 $5.852 \pm 0.398$    | 401 <b>3.700 <math>\pm 0.070</math></b>  |
|              | 401 ST-GATV2 | 402 $3.561 \pm 0.021$                             | 403 $3.918 \pm 0.007$       | 404 $5.557 \pm 0.048$    | 405 $4.865 \pm 0.232$   | 406 $6.083 \pm 0.618$    | 401 <b>3.763 <math>\pm 0.021</math></b>  |
|              | 401 ST-SAGE  | 402 $3.572 \pm 0.011$                             | 403 $3.928 \pm 0.011$       | 404 $5.460 \pm 0.071$    | 405 $5.874 \pm 0.098$   | 406 $6.034 \pm 0.148$    | 401 <b>3.759 <math>\pm 0.015</math></b>  |
| 402 MOBILITY | 403 STGCN    | 404 $38.102 \pm 500$                              | 405 $48.183 \pm 1.268$      | 406 $96.095 \pm 13.820$  | 407 $65.172 \pm 19.092$ | 408 $129.602 \pm 20.108$ | 403 <b>40.061 <math>\pm 5.238</math></b> |
|              | 403 ST-GAT   | 404 $36.938 \pm 402$                              | 405 $47.557 \pm 1.330$      | 406 $95.649 \pm 10.803$  | 407 $61.125 \pm 11.715$ | 408 $139.513 \pm 14.559$ | 403 <b>38.590 <math>\pm 5.318</math></b> |
|              | 403 ST-GATV2 | 404 $37.346 \pm 544$                              | 405 $47.034 \pm 1.148$      | 406 $100.220 \pm 11.833$ | 407 $77.432 \pm 18.665$ | 408 $136.966 \pm 11.282$ | 403 <b>42.007 <math>\pm 5.620</math></b> |
|              | 403 ST-SAGE  | 404 $39.068 \pm 777$                              | 405 $50.204 \pm 1.451$      | 406 $86.902 \pm 10.102$  | 407 $61.016 \pm 9.939$  | 408 $125.962 \pm 15.331$ | 403 <b>41.711 <math>\pm 5.229</math></b> |

405 **Table 3: Prediction Performance of Different Methods After Unlearning (10% Unlearning).**

| 406 Dataset  | 407 Model    | 408 <b>Gold Model</b><br>(Scratch with 90% data) | 409 <b>Baseline Methods</b> |                          |                         |                          | 410 <b>CallosumNet</b>                   |
|--------------|--------------|--------------------------------------------------|-----------------------------|--------------------------|-------------------------|--------------------------|------------------------------------------|
|              |              |                                                  | 411 <b>SISA</b>             | 412 <b>STEPS</b>         | 413 <b>GraphEraser</b>  | 414 <b>GraphRevoker</b>  |                                          |
| 409 RWW      | 410 STGCN    | 411 $0.023 \pm 0.001$                            | 412 $0.036 \pm 0.007$       | 413 $0.095 \pm 0.022$    | 414 $0.188 \pm 0.067$   | 415 $0.178 \pm 0.006$    | 409 <b>0.023 <math>\pm 0.002</math></b>  |
|              | 410 ST-GAT   | 411 $0.023 \pm 0.001$                            | 412 $0.038 \pm 0.006$       | 413 $0.097 \pm 0.025$    | 414 $0.188 \pm 0.080$   | 415 $0.178 \pm 0.005$    | 409 <b>0.021 <math>\pm 0.003</math></b>  |
|              | 410 ST-GATV2 | 411 $0.024 \pm 0.002$                            | 412 $0.035 \pm 0.003$       | 413 $0.090 \pm 0.023$    | 414 $0.188 \pm 0.081$   | 415 $0.177 \pm 0.005$    | 409 <b>0.022 <math>\pm 0.003</math></b>  |
|              | 410 ST-SAGE  | 411 $0.023 \pm 0.002$                            | 412 $0.037 \pm 0.011$       | 413 $0.092 \pm 0.023$    | 414 $0.188 \pm 0.085$   | 415 $0.178 \pm 0.005$    | 409 <b>0.024 <math>\pm 0.003</math></b>  |
| 412 PEMS08   | 413 STGCN    | 414 $30.810 \pm 0.147$                           | 415 $34.332 \pm 0.515$      | 416 $99.807 \pm 12.190$  | 417 $61.315 \pm 4.643$  | 418 $97.568 \pm 3.789$   | 413 <b>29.950 <math>\pm 0.105</math></b> |
|              | 413 ST-GAT   | 414 $30.145 \pm 0.080$                           | 415 $34.592 \pm 0.594$      | 416 $92.950 \pm 15.728$  | 417 $60.680 \pm 3.484$  | 418 $91.816 \pm 5.783$   | 413 <b>30.422 <math>\pm 0.160</math></b> |
|              | 413 ST-GATV2 | 414 $30.054 \pm 0.143$                           | 415 $33.724 \pm 0.271$      | 416 $91.348 \pm 17.671$  | 417 $59.433 \pm 1.374$  | 418 $91.973 \pm 8.148$   | 413 <b>31.480 <math>\pm 0.089</math></b> |
|              | 413 ST-SAGE  | 414 $30.304 \pm 0.327$                           | 415 $35.259 \pm 0.517$      | 416 $94.038 \pm 13.147$  | 417 $59.925 \pm 1.202$  | 418 $96.225 \pm 1.806$   | 413 <b>30.668 <math>\pm 0.187</math></b> |
| 415 WEATHER  | 416 STGCN    | 417 $3.581 \pm 0.020$                            | 418 $3.956 \pm 0.011$       | 419 $5.480 \pm 0.061$    | 420 $5.816 \pm 0.089$   | 421 $5.989 \pm 0.380$    | 416 <b>3.771 <math>\pm 0.015</math></b>  |
|              | 416 ST-GAT   | 417 $3.590 \pm 0.002$                            | 418 $3.919 \pm 0.009$       | 419 $5.475 \pm 0.114$    | 420 $5.153 \pm 0.491$   | 421 $5.944 \pm 0.365$    | 416 <b>3.753 <math>\pm 0.031</math></b>  |
|              | 416 ST-GATV2 | 417 $3.569 \pm 0.009$                            | 418 $3.975 \pm 0.010$       | 419 $5.766 \pm 0.027$    | 420 $5.016 \pm 0.632$   | 421 $5.545 \pm 0.653$    | 416 <b>3.761 <math>\pm 0.034</math></b>  |
|              | 416 ST-SAGE  | 417 $3.584 \pm 0.005$                            | 418 $3.996 \pm 0.020$       | 419 $5.520 \pm 0.166$    | 420 $5.399 \pm 0.264$   | 421 $6.312 \pm 0.499$    | 416 <b>3.774 <math>\pm 0.035</math></b>  |
| 417 MOBILITY | 418 STGCN    | 419 $38.602 \pm 758$                             | 420 $48.938 \pm 1.039$      | 421 $100.059 \pm 16.828$ | 422 $73.745 \pm 17.019$ | 423 $131.529 \pm 14.613$ | 418 <b>41.961 <math>\pm 6.323</math></b> |
|              | 418 ST-GAT   | 419 $37.815 \pm 806$                             | 420 $47.807 \pm 1.297$      | 421 $102.763 \pm 13.037$ | 422 $65.775 \pm 14.700$ | 423 $124.914 \pm 15.670$ | 418 <b>44.873 <math>\pm 4.720</math></b> |
|              | 418 ST-GATV2 | 419 $37.472 \pm 741$                             | 420 $49.129 \pm 1.285$      | 421 $94.374 \pm 12.208$  | 422 $76.865 \pm 16.989$ | 423 $128.456 \pm 18.644$ | 418 <b>45.265 <math>\pm 5.818</math></b> |
|              | 418 ST-SAGE  | 419 $39.066 \pm 596$                             | 420 $50.254 \pm 1.770$      | 421 $89.163 \pm 10.121$  | 422 $60.593 \pm 10.043$ | 423 $122.181 \pm 15.292$ | 418 <b>42.756 <math>\pm 5.379</math></b> |

### 421 4.3 ABLATION STUDY

422 We conducted ablation studies to evaluate the impacts of CallosumNet’s key components—Enhanced  
 423 Subgraph Construction (ESC), Global Ganglion Bridging (GGB), and regularization—using PeMS08  
 424 with the STGCN model. Results summarized in Table 4 highlight that removing ESC notably de-  
 425 graded performance (approximately 10 MAE increase), confirming ESC’s crucial role in maintaining  
 426 subgraph integrity. Among GGB components, eliminating Global Integration drastically reduced  
 427 accuracy (around 39 MAE increase), whereas removing Ganglion Nodes led to moderate deterioration  
 428 (about 5 MAE increase). This indicates Global Integration’s critical function and Ganglion Nodes’  
 429 supplementary benefit.  
 430

431 At an unlearning rate of 10%, CallosumNet (MAE = 29.950) outperformed the gold model (Scratch  
 432 with 90% data, MAE = 30.810), demonstrating the framework’s effectiveness in restoring fragmented

graph structures via ESC. Regularization parameters also significantly influenced results, suggesting potential for further tuning. Overall, ESC and Global Integration are identified as CallosumNet's most impactful components, especially under high unlearning demands.

Table 4: Ablation study on STGCN, PeMS08 with 5 deletion sets set by 5 seeds. MAE are reported.

| Configuration                                                                         | MAE                   | Impact Explanation                                              |
|---------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------|
| *The Original Full-Graph (gold model, Scratch with 100% data) ( $r = 0\%$ Unlearning) | <b>28.751 ± 0.117</b> | Best accuracy, The Original ST-Graph Model.                     |
| <b>Ablation Study of CallosumNet with <math>r = 0\%</math> Unlearning Rate</b>        |                       |                                                                 |
| *Default CallosumNet with regularization ( $\lambda_1 = 0.01, \lambda_2 = 0.001$ )    | <b>28.921 ± 0.124</b> | Near full-graph accuracy, efficient.                            |
| Default CallosumNet w/o GGB & ESC                                                     | 97.387 ± 7.918        | Random partitioning and averaging result in poor performance.   |
| Default CallosumNet w/o GGB,[Global Integration, Ganglion Nodes]                      | 81.493 ± 2.771        | Enhancing subgraphs alone is insufficient.                      |
| Default CallosumNet w/o GGB,[Global Integration]                                      | 67.734 ± 1.362        | Without Global Integration, CallosumNet fails to function.      |
| Default CallosumNet w/o GGB,[Ganglion Nodes]                                          | 33.039 ± 0.216        | Ganglion Nodes provide some enhancement.                        |
| Default CallosumNet w/o ESC,[Virtual Edges, K-Ring]                                   | 39.448 ± 0.130        | ESC's Virtual Edges and K-Ring strengthen subgraphs.            |
| CallosumNet w/o regularization                                                        | 30.012 ± 0.121        | Regularization has a positive effect.                           |
| CallosumNet with regularization ( $\lambda_1 = 0.1, \lambda_2 = 0.01$ )               | 28.850 ± 0.173        | Tuning regularization further improves performance.             |
| *The Unlearned Graph (gold model, Scratch with 90% data) ( $r = 10\%$ Unlearning)     | <b>30.810 ± 0.147</b> | Unlearning nodes leads to fragmented graphs and lower accuracy. |
| <b>Ablation Study of CallosumNet with <math>r = 10\%</math> Unlearning Rate</b>       |                       |                                                                 |
| *Default CallosumNet with regularization ( $\lambda_1 = 0.01, \lambda_2 = 0.001$ )    | <b>29.950 ± 0.105</b> | Fixed the fragmented graph, exceeding the gold model.           |
| Default CallosumNet w/o GGB & ESC                                                     | 97.138 ± 9.644        | Random partitioning and averaging result in poor performance.   |
| Default CallosumNet w/o GGB,[Global Integration, Ganglion Nodes]                      | 85.493 ± 4.671        | Enhancing subgraphs alone is insufficient.                      |
| Default CallosumNet w/o GGB,[Global Integration]                                      | 70.390 ± 3.568        | Without Global Integration, CallosumNet fails to function.      |
| Default CallosumNet w/o GGB,[Ganglion Nodes]                                          | 34.591 ± 0.339        | Ganglion Nodes provide some enhancement.                        |
| Default CallosumNet w/o ESC,[Virtual Edges, K-Ring]                                   | 41.991 ± 0.345        | ESC's Virtual Edges and K-Ring strengthen subgraphs.            |
| CallosumNet w/o regularization                                                        | 30.012 ± 0.112        | Regularization has a positive effect.                           |
| CallosumNet with regularization ( $\lambda_1 = 0.1, \lambda_2 = 0.01$ )               | 29.531 ± 0.163        | Tuning regularization further improves performance.             |

#### 4.4 EFFICIENCY AND CAPACITY

CallosumNet decomposes a monolithic ST-GNN into multiple lightweight sub-models connected via a meta-graph, enabling efficient unlearning without full retraining. We evaluated its scalability and efficiency using a large-scale human mobility dataset. Table 5 shows significant improvements: training the monolithic model required 12,640 seconds per iteration, while CallosumNet reduced individual sub-model convergence times dramatically (e.g., 1,421 seconds for  $M=16$ ). Although the global aggregation stage (Stage-2) duration slightly increased with more subgraphs, the total unlearning time dropped significantly from 12,640 seconds to just 3,731 seconds when  $M=16$ . These results demonstrate CallosumNet's substantial efficiency advantage, especially beneficial for frequent unlearning tasks.

Table 5: Efficiency–Capacity Trade-off on the Human Mobility Flow Dataset

| Method                | SubG Params (M) | Global Params (M) | Stage-1 (sec) | Stage-2 (sec) | Unlearn (sec) | MAE / $R^2$    |
|-----------------------|-----------------|-------------------|---------------|---------------|---------------|----------------|
| Scratch-100%, $M = 1$ | 0.92x1          | -                 | 12 640        | -             | 12 640        | 37 270 / 0.907 |
| CallosumNet, $M = 4$  | 0.052x4         | 0.32              | 3 640x4       | 1,855         | 5 495         | 36 833 / 0.908 |
| CallosumNet, $M = 8$  | 0.033x8         | 0.32              | 2 219x8       | 2,037         | 4 256         | 38 580 / 0.907 |
| CallosumNet, $M = 12$ | 0.023x12        | 0.32              | 1 568x12      | 2,177         | 3 745         | 38 048 / 0.906 |
| CallosumNet, $M = 16$ | 0.020x16        | 0.32              | 1 421x16      | 2,210         | 3 631         | 38 580 / 0.908 |

## 5 CONCLUSION

With increasing emphasis on privacy compliance, achieving a 100% unlearning capability in spatio-temporal graph models has progressively become a fundamental operational requirement. Currently, most model trainers still rely on fully retraining their models when authorization to use certain training data is withdrawn. In this study, we introduced CallosumNet, a divide-and-conquer framework explicitly designed for spatio-temporal graph unlearning, which achieves complete (100%) target unlearning while maintaining accuracy very close to the gold model (Scratch with 100% data, less than 2% MAE degradation). CallosumNet stands out as the first practically viable method in this field, offering significant insights for unlearning tasks in real-time predictive models that extensively utilize personal data, such as mobile device locations. Consequently, CallosumNet exhibits substantial optimization potential, there remains significant room for performance improvement, holds promise for establishing a new paradigm in privacy-compliant artificial intelligence modeling, contributing to more sustainable and energy-efficient model training methodologies.

486 **Reproducibility Statement:** CallosumNet is fully reproducible. Its complete code is included in the  
 487 supplementary materials of this review submission, containing all code, a README, and an example  
 488 dataset PeMS08. Additionally, all other datasets used in the experiments are publicly downloadable.  
 489 When this paper is published, the authors will upload the code of CallosumNet to public websites  
 490 such as GitHub, for everyone to download as a baseline for comparison or to modify and improve,  
 491 etc.

492 **Ethics:** CallosumNet’s focus on complete unlearning aligns with privacy and data protection principles.  
 493 However, its implementation requires careful handling of personal data, and further research is  
 494 needed to assess the broader societal impacts of unlearning technologies.

## 496 REFERENCES

498 Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,  
 499 Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE symposium  
 500 on security and privacy (SP)*, pages 141–159. IEEE, 2021.

501 California State Legislature. California consumer privacy act (CCPA) of 2018, as amended by  
 502 the california privacy rights act (CPRA). <https://oag.ca.gov/privacy/ccpa>, 2018.  
 503 Updated March 13, 2024. Accessed May 14, 2025.

504 Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. Graph  
 505 unlearning. In *Proceedings of the 2022 ACM SIGSAC conference on computer and communications  
 506 security*, pages 499–513, 2022.

508 Eli Chien, Chao Pan, and Olgica Milenkovic. Efficient model updates for approximate unlearning of  
 509 graph-structured data. In *The Eleventh International Conference on Learning Representations*,  
 510 2022.

511 European Union. General data protection regulation (GDPR): Regulation (eu) 2016/679. <https://gdpr-info.eu/>, 2016. Accessed May 14, 2025.

514 Qiming Guo and Wenlu Wang. Hydronet: A spatio-temporal graph neural network for modeling hy-  
 515 draulic dependencies in urban wastewater systems. In *Proceedings of the 32nd ACM International  
 516 Conference on Advances in Geographic Information Systems*, pages 717–718, 2024.

517 Qiming Guo, Chen Pan, Hua Zhang, and Wenlu Wang. Efficient unlearning for spatio-temporal  
 518 graph (student abstract). *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(28):  
 519 29382–29384, Apr. 2025. doi: 10.1609/aaai.v39i28.35259. URL <https://ojs.aaai.org/index.php/AAAI/article/view/35259>.

521 Hengyuan He. California traffic network datasets: Metr-la, pems-bay, pems04 and pems08 for traffic  
 522 speed and flow analysis, 2025. URL <https://dx.doi.org/10.21227/j49q-ch56>.

524 Yuhao Kang, Song Gao, Yunlei Liang, Mingxiao Li, and Jake Kruse. Multiscale dynamic human  
 525 mobility flow dataset in the u.s. during the covid-19 epidemic. *Scientific Data*, pages 1–13, 2020.

526 H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.  
 527 Communication-efficient learning of deep networks from decentralized data. *Proceedings of  
 528 the 20th International Conference on Artificial Intelligence and Statistics*, 2017. URL <https://proceedings.mlr.press/v54/mcmahan17a.html>.

530 NOAA Physical Sciences Laboratory. Cpc global temperature and precipitation datasets, 2025. URL  
 531 [https://downloads.psl.noaa.gov/Datasets/cpc\\_global\\_temp/Summary](https://downloads.psl.noaa.gov/Datasets/cpc_global_temp/Summary),  
 532 [https://downloads.psl.noaa.gov/Datasets/cpc\\_global\\_precip](https://downloads.psl.noaa.gov/Datasets/cpc_global_precip). Accessed:  
 533 2025-05-15.

534 Ran Ran, Wei Wang, Quan Gang, Jieming Yin, Nuo Xu, and Wujie Wen. Cryptogen: Fast and  
 535 scalable homomorphically encrypted graph convolutional network inference. *Advances in Neural  
 536 information processing systems*, 35:37676–37689, 2022.

538 Yifan Sun and Meng Song. Differentially private graph convolutional networks with privacy amplifi-  
 539 cation. In *23rd IEEE International Conference on Trust, Security and Privacy in Computing and  
 Communications*. IEEE, 2024.

540 Chulhee Yun, Sashank Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar.  
541 Are transformers universal approximators of sequence-to-sequence functions? *International*  
542 *Conference on Learning Representations*, 2020. URL <https://openreview.net/pdf?id=ByxZX0KtDr>.  
543

544 He Zhang, Bang Wu, Xiangwen Yang, Xingliang Yuan, Xiaoning Liu, and Xun Yi. Dynamic  
545 graph unlearning: A general and efficient post-processing method via gradient transformation. In  
546 *Proceedings of the ACM on Web Conference 2025*, pages 931–944, 2025.  
547

548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593

---

594 **A PROOFS AND IMPLEMENTATION DETAILS**  
595

596 **A.1 PROOFS FOR ENHANCED SUBGRAPH CONSTRUCTION (ESC)**  
597

598 Section 3.2 ensures  $\alpha_i \geq 1$  for all subgraphs  $S_i$ . Virtual ganglion edges connect each isolated node  
599 to neighbors with  $A'[u, v] > 0$ . Since  $\mathcal{G}'$  is connected, such neighbors exist, ensuring  $\deg(v) \geq 1$ .  
600 Additionally, ESC preserves local patterns, with the bound  $\text{Info}_{\text{intra}} \geq (1 - \frac{\Delta_{\text{cut}}}{\text{TotalCorr}}) \text{TotalCorr}$   
601 following from the fact that  $\mathcal{E}' = \bigcup_i \mathcal{E}_i \cup \mathcal{E}_{\text{cut}}$ , where  $\mathcal{E}'$  denotes the edges of the pruned graph. Thus,  
602  $\text{Info}_{\text{intra}} = \text{TotalCorr} - \Delta_{\text{cut}}$ , with  $\text{TotalCorr} = \sum_{(u,v) \in \mathcal{E}'} \text{corr}(X'_{t,u}, X'_{t,v})$ . For graphs with high  
603 temporal correlation, if  $M < \sqrt{|\mathcal{V}'|}$ , where  $M$  is the number of subgraphs,  $\Delta_{\text{cut}} \geq \frac{c}{M} \text{diam}(\mathcal{G}')$ ,  
604 where  $c$  is a correlation factor. Cross-temporal edges dominate in such graphs, and with  $M < \sqrt{|\mathcal{V}'|}$ ,  
605 each subgraph has  $\sim |\mathcal{V}'|/M > \sqrt{|\mathcal{V}'|}$  nodes, cutting a fraction of cross-temporal edges proportional  
606 to the graph's diameter.  
607

608 **A.2 PROOFS FOR GLOBAL GANGLION BRIDGING (GGB)**  
609

610 Theorem 3.2 states that the error is bounded as  $\frac{\Delta_{\text{cut}} \cdot \sqrt{M}}{H \cdot L \cdot D_g}$ . This follows from the Transformer's  
611 universal approximation, where for  $M \leq 16$ ,  $H, L, D_g \geq 2 \log M$  (where  $H$  is the number of  
612 heads,  $L$  the number of layers, and  $D_g$  the ganglion MLP dimension), the error is  $\leq 0.05$  for typical  
613 spatio-temporal graphs. Using Yun et al. (2020), the Transformer's approximation error decreases  
614 exponentially with depth and width, requiring  $H, L, D_g \geq 2 \log M$  for  $\epsilon \leq 0.01$  in spatio-temporal  
615 graphs with  $N' \leq 10^4$  (constant derived from ReLU width constraints).  
616

617 **A.3 PROOFS FOR UNLEARNING AND EFFICIENCY**  
618

619 The bound  $\varepsilon = \lambda_1 \cdot \|\mathbf{A}_{\text{meta}}\|_1 + \lambda_2 \cdot \sum_g \|h_g\|_2^2$  follows from Pinsker's inequality, bounding the  
620 information flow through  $\mathbf{A}_{\text{meta}}$  (controlled by  $\lambda_1$ ) and ganglion embeddings (controlled by  $\lambda_2$ ).  
621 Unlearning removes  $\mathcal{U}$ , affecting predictions via  $\Delta_{\text{cut}}$ , with the Transformer mitigating this impact,  
622 resulting in an error proportional to the fraction of removed nodes and inversely proportional to  
623 model capacity. Assuming  $\mathcal{L}_{\text{ggb}}$  is  $L$ -Lipschitz with bounded gradients, Adam with learning rate  
624  $\eta$  and  $T$  epochs yields  $\mathbb{E}[\mathcal{L}_{\text{ggb}}^{(T)} - \mathcal{L}_{\text{ggb}}^*] \leq \frac{G^2}{2\eta\sqrt{T}}$ , ensuring  $\varepsilon$ -closeness for small  $\eta$  and sufficient  $T$ .  
625 For each subgraph, the STGCN parameters are  $O(d^2|\mathcal{V}_i|)$  with  $|\mathcal{V}_i| \approx N/M$ , yielding  $O(Nd^2/M)$   
626 for  $M$  subgraphs. The meta-Transformer has  $O(M \log M D_g^2)$  parameters, where  $D_g = \Theta(\log M)$ .  
627 With  $M = \sqrt{N}$ , the total is  $O(\sqrt{N}d^2)$ . Per-batch FLOPs are  $O(BT(|\mathcal{E}|/M + M \log M)d)$ , as each  
628 subgraph processes  $|\mathcal{E}|/M$  edges, and the meta-Transformer processes  $M \log M$  edges.  
629

630 **Algorithm 1** CallosumNet Unlearning  
631

---

632 1: **Input:** Graph  $\mathcal{G}'$ , unlearning set  $\mathcal{U}$ , subgraphs  $\{S_i\}_{i=1}^M$ .  
633 2: Partition  $\mathcal{G}'$  into  $\{S_i\}$  using ESC (3.4).  
634 3: Train and freeze each  $S_i$  using Equation 3.6.  
635 4: Build meta-graph  $\mathcal{M}$  via Equation 3.5.  
636 5: Initialize ganglion MLPs and train Transformer with Equation 3.7.  
637 6: **if** Unlearn  $\mathcal{U} = \{\mathcal{U}_N, \mathcal{U}_E\}$  **then**  
638 7: Locate  $\mathcal{U}_N, \mathcal{U}_E$  in subgraphs and  $\mathbf{A}_{\text{meta}}$ .  
639 8: Zero rows/columns for  $\mathcal{U}_N$  and edges for  $\mathcal{U}_E$ .  
640 9: Add virtual ganglion edges to maintain  $\alpha_i \geq 1$ .  
641 10: Update key and boundary nodes, reconstruct  $\mathcal{E}_{\text{meta}}$ .  
642 11: Reinitialize ganglion MLPs.  
643 12: Retrain Transformer (1–3 epochs, stop if loss < 0.01).  
644 13: **if**  $|\mathcal{V}_i| < 3$  for any  $i$  **then**  
645 14: Merge subgraph  $i$  with neighbor.  
646 15: **end if**  
647 16: **end if**  
17: **Output:**  $\hat{y}_v$ .

---

648  
649

## A.4 STEPS4 UNLEARNING DETAIL

650  
651  
652  
653  
654  
655  
656

The computational complexity for the graph edits is  $O(|\mathcal{U}| + |\mathcal{V}_i|)$ , where  $|\mathcal{U}|$  is the number of nodes and edges to be unlearned, and  $|\mathcal{V}_i|$  is the number of nodes in each subgraph. The retraining process has a cost of  $O(BT|\mathcal{E}_{\text{meta}}|HLD_g)$ , where  $B$  is the batch size,  $T$  is the time window,  $|\mathcal{E}_{\text{meta}}|$  is the number of edges in the meta-graph, and  $H, L, D_g$  are the number of heads, layers, and ganglion MLP dimension of the Transformer, respectively. This approach significantly reduces the cost per unlearning task compared to full retraining, even when dealing with batch requests involving multiple nodes (Appendix A.3).

657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701