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Figure 1: Motivation of our method. (a) Most existing open-vocabulary detectors rely on a precise and compact vocabulary
for accurate prediction. (b) Their performance becomes less reliable as the input vocabulary expands. (c) The impact of the
vocabulary size on detection performance. The proposed LOVD method outperforms existing open-vocabulary detectors on
COCO dataset with large vocabularies.

ABSTRACT
Existing open-vocabulary object detectors require an accurate and
compact vocabulary pre-defined during inference. Their perfor-
mance is largely degraded in real scenarios where the underlying
vocabulary may be indeterminate and often exponentially large. To
have a more comprehensive understanding of this phenomenon,
we propose a new setting called Large-and-Open Vocabulary object
Detection, which simulates real scenarios by testing detectors with
large vocabularies containing thousands of unseen categories. The
vast unseen categories inevitably lead to an increase in category
distractors, severely impeding the recognition process and lead-
ing to unsatisfactory detection results. To address this challenge,
We propose a Large and Open Vocabulary Detector (LOVD) with
two core components, termed the Image-to-Region Filtering (IRF)
module and Cross-View Verification (CV2) scheme. To relieve the
category distractors of the given large vocabularies, IRF performs
image-level recognition to build a compact vocabulary relevant
to the image scene out of the large input vocabulary, followed by
region-level classification upon the compact vocabulary. CV2 fur-
ther enhances the IRF by conducting image-to-region filtering in
both global and local views and produces the final detection cate-
gories through a two-branch voting mechanism. Compared to the
prior works, our LOVD is more scalable and robust to large input
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vocabularies, and can be seamlessly integrated with predominant
detection methods to improve their open-vocabulary performance.
Source code will be made publicly available.

CCS CONCEPTS
• Computing methodologies→ Object detection.

KEYWORDS
Large-and-Open Vocabulary, Object Detection

1 INTRODUCTION
Open-vocabulary object detection [49] advances conventional de-
tectors with the capability to recognize and localize novel object cat-
egories that are unseen during training. Prevalent open-vocabulary
detectors are often backend by Vision-Language (VL) models [33]
pre-trained on large-scale unlabeled image-text pairs. They mostly
consist of the category-agnostic detection followed by the open-
vocabulary classification, where the latter amounts to a cross-modal
matching between visual and textual features in the aligned fea-
ture space. Though promising progress has been achieved, existing
methods entail a precise and compact input vocabulary as a prereq-
uisite for inference, where the object categories in the vocabulary
are deliberately selected based on their relevance to the test scenar-
ios (See Figure 1(a)). However, such a setting may be infeasible in
real-world applications especially when the prior information of
the test scenarios is absent.

To bridge the above gap, one straightforward idea is constructing
a scenario-independent vocabulary during inference by exponen-
tially enlarging the vocabulary size to cover all potential object
categories that commonly appear across a wide scenarios. However,
empirical evaluations in most existing studies are conducted with
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limited input vocabulary sizes (e.g., 17 categories in COCO [28] and
337 categories in LIVS [13]). It is not clear whether state-of-the-art
open-vocabulary detectors can still maintain their performance
given exponentially enlarged vocabularies as input.

In this paper, we put the above issue under the lens by introduc-
ing a new object detection task called large-and-open vocabulary
detection. To simulate real-world scenarios, we extend the input vo-
cabulary from dozens or hundreds to around two thousands during
inference, encompassing frequently encountered object categories,
while the training setup remains consistent with the conventional
open-vocabulary detection (See Figure 1(b)). Our experiments ob-
serve a substantial decline in detection accuracy of existing meth-
ods [10, 27, 45] as the size of the category vocabulary increases
(See Figure 1(c) as an example). This outcome aligns with expecta-
tions as the detection accuracy primarily hinges on visual-textural
feature matching, and more categories in input vocabularies will
inevitably lead to an increase in distractors, thereby escalating the
complexity of feature matching and classification. The above draw-
backs are suffered by most existing methods, which severely limits
their application scenarios.

To remedy the above drawbacks, we present the Large-and-Open
Vocabulary Detector (LOVD), a new detection paradigm which is
more scalable and robust to large input vocabularies, and can be
seamlessly integrated with predominant detection methods to im-
prove their open-vocabulary performance. One of our key contribu-
tions is the Image-to-Region Filtering (IRF) module. To alleviate the
impact of category interference in large vocabularies, IRF performs
image-level recognition first to build a more compact vocabulary
out of the large one by filtering out a significant amount of distract-
ing categories and identifying those highly relevant to the input
scene. A more fine-grained region-level classification is then ap-
plied to each object proposal based on the compact vocabulary. By
adopting the above coarse-to-fine philosophy, IRF can effectively
tackle the challenge brought by large vocabularies and yields more
accurate detection performance in an efficient manner. In addition,
since the vision encoders of most VL models are pre-trained on the
image level, directly transferring them to region-level classification
may encounter significant generalization issues. In comparison,
IRF combining both image and region-level recognition provides
an alternative solution to ensure better generalization ability of
pre-trained VL models.

Most existing open-vocabulary detectors perform visual-textual
feature matching in a global manner, i.e., each object region is repre-
sented by a global feature vector, which offers greater flexibility but
may ignore detailed visual cues. In contrast, local approaches have
also been explored recently in image recognition [50], which align
textual features with individual local image patches. While local
matching excels at capturing granular details, it might not fully
grasp the holistic context of the image. To harness the strengths of
both global and local approaches, we propose the Cross-View Veri-
fication (CV2) scheme to further enhance our IRF module, which
performs image-to-region filtering in both global and local views,
fostering an elegant cross-view interaction. Their predicted results
are selected through a multi-branch voting mechanism to produce
the final detection categories.

In summary, the contribution of this paper is threefold.

• We introduce the concept of large-and-open vocabulary
detection, a problem that holds significant relevance to real-
world scenarios yet remains largely unexplored within the
community.

• Wepropose LOVD, a new open-vocabulary detectionmethod,
which can perform image-to-region filtering with cross-
view verification, yielding more accurate detection results,
especially with large vocabularies.

• We conduct extensive experimental evaluations across mul-
tiple datasets, which have justified the effectiveness of our
method.

With its superior performance and adaptability, LOVD is well-
positioned to meet the demands of real-world detection tasks,
paving the way for more intelligent and versatile vision under-
standing. Source code and pre-trained models will be released.

2 RELATEDWORK
2.1 Open Vocabulary Detection
The open vocabulary detection approach, pioneered by OVR-CNN,
uses captioning data to associate novel semantic categories with
visual regions [49]. Capitalizing on the success of pre-trained VLMs,
which merge extensive image and language vocabularies, subse-
quent research has harnessed these models for OVD enhance-
ments [20, 24–26, 33]. The first to implement CLIP in this domain,
ViLD introduced a method for instance-level visual-to-visual knowl-
edge distillation [12]. Following this, the DETR-style OV-DETR
model utilized VLMs to create adaptive queries [48]. Later models,
including CORA [45], incorporated region prompting [46] and an-
chor pre-matching to expedite training and better align disparate
image data scales. Further strategies [5, 10, 22, 27, 31, 32, 37, 40, 42,
44, 51–53] to address data imbalances and feature misalignments
have involved the use of more balanced datasets, pseudo labels, and
expansive region-text pre-training. SIC-CADS [8] exploits global
knowledge derived from CLIP to substantially refine existing OVD
models. Our innovation, LOVD, specifically targets the refinement
of image-to-region filtering to effectively manage the complexities
of extensive vocabularies.

2.2 Vision-Language Models
Vision-Language Models (VLMs) have seen transformative devel-
opments with the advent of models like CLIP [33], Align [20], and
COCA [47], which harness contrastive learning to analyze expan-
sive image-text datasets. These models are renowned for their abil-
ity to offer an in-depth, nuanced understanding of images within
a comprehensive contextual framework, significantly surpassing
traditional image analysis methods. VLMs play a critical role in
diverse applications, from enhancing sophisticated image retrieval
systems [1–3, 18, 21, 30] to developing innovative human-computer
interaction techniques [34, 36, 39, 41, 43]. Innovations continuewith
models [4, 9, 11], which extend the capabilities of VLMs in syn-
thesizing and interpreting text-image content. Additionally, these
advancements facilitate the integration of VLMs into dynamic en-
vironments where adaptive learning and context-aware processing
are crucial.
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Figure 2: Overview of our approach LOVD. It includes a category-agnostic localization module, an Image-to-Region Filtering
(IRF) module, and a Multi-branch Voting module. The process begins with feature map extraction from an input image by a
pre-trained visual encoder. Potential objects are localized by a region proposal network and their features are extracted via
RoIAlign. The IRF module employs a Cross-View Verification (CV2) scheme for object recognition against a comprehensive
vocabulary, and the Multi-branch Voting module determines the final class label.

2.3 Open Vocabulary Recognition
Open Vocabulary Recognition, also known as zero-shot multi-label
recognition, is a task where the objective is to categorize multi-
ple tags relevant to an image. Although vision-language models
(VLMs) are adept at recognizing a broad range of open-set cate-
gories in single-label scenarios [6], their effectiveness diminishes
in complex multi-label environments due to inadequate modal-
ity interactions. In contrast, models like RAM [50], Tag2Text [19],
DualCoop [38], and others [15–17] have shown significant advance-
ments in managing tasks with extensive vocabularies by leveraging
large-scale image-tag data for training VLMs. These models exhibit
robust zero-shot learning capacities, particularly excelling in de-
tailed region-specific semantics rather than just focusing on global
image attributes.

3 METHOD
3.1 Task definition

Open-Vocabulary Detection. In open-vocabulary detection, a
detector is trained using bounding box annotations and class labels
of base categories 𝑉𝐵 . During inference, given a pre-defined set
of novel categories 𝑉𝑁 , where 𝑉𝑁 ∩𝑉𝐵 = ∅, the detector aims to
detect all objects belonging to an open vocabulary 𝑉𝑂 = 𝑉𝐵 ∪𝑉𝑁
containing both base and novel categories. To this end, existing
open-vocabulary detectors often operate in a two-stage manner, i.e.,
a category-agnostic localization step (e.g., using Region Proposal
Network [35]) followed by an open-vocabulary classifier. The text
embeddings of category names extracted by a pre-trained VLM can

be employed as the classification weights, and the open-vocabulary
classification is then equivalent to visual-textural feature matching.
Compared to its closed-set counterparts, open-vocabulary detection
is able to recognize unseen categories in a zero-shot manner, which
significantly benefits a wider range of application.

Large-and-Open Vocabulary Detection. Though open vocabu-
lary detection has largely advanced the field, existing studies [8, 44,
45, 53] are mostly conducted under an ideal setting, where the input
vocabulary during inference is precise and meticulously crafted
according to the input scenarios. This may be significantly diverged
from real applications, as the prior information of testing scenarios
can be insufficient to construct a compact and curated vocabulary.
To circumvent this issue, a simple workaround is to extend the
input vocabulary to include as many potential categories as possi-
ble. Therefore, it is natural and important to investigate the task of
large-and-open vocabulary detection. Specifically, its training set-
ting is the same as conventional open-vocabulary detection. During
inference, the input vocabulary becomes exponentially larger and
uncrafted, containing thousands of commonly encountered object
categories, most of which do exist in the input image. Section 4.2
presents the detailed procedure on how to build such a large infer-
ence vocabulary for existing detection datasets. Large-and-open
vocabulary detection has the potential to bridge the gap between
real-world requirements and conventional evaluation settings, and
is able to more comprehensively investigate open vocabulary de-
tectors.

3
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3.2 Method Overview
In this section, we present the details of our proposed Large-and-
Open Vocabulary Detector (LOVD) model. As shown in Figure 2,
it mainly consists of a category-agnostic localization module, a
Image-to-Region Filtering (IRF) module, and a two-branch voting
module. Given an input image, we first extract the feature map
using the visual encoder of a pre-trained VLM. All potential objects
are localized using an off-the-shelf region proposal network [35],
and their features are extracted with RoIAlign [14] from the image
feature map. The IRF module then performs recognition for each
object proposal based on the input vocabulary via a Cross-View
Verification (CV2) scheme. The final class label is determined by
the two-branch voting module. In the following, we will elaborate
on the implementation of each module.

3.3 Image-to-Region Filtering
As the input vocabulary becomes exponentially larger, the category
interference issue arises as a unique challenge of large-and-open
vocabulary detection. Since object recognition needs to consider
significantly more candidate categories with most of them acting
as noisy distractors, the open-vocabulary recognition results will
become less reliable. To mitigate this issue, we borrow a coarse-to-
fine philosophy and propose the Image-to-Region Filtering (IRF)
module, which divides the open-vocabulary object recognition into
two steps: image-level selection and region-level recognition. These
two steps essentially involve two open-vocabulary classifiers with
different purposes. Among them, image-level selection performs a
one-pass recognition for the entire input image and aims to identify
all existing object categories in the image. These potentially existing
categories will be selected from the input large vocabulary (𝑉𝐿)
to constitute a pruned and more compact vocabulary (𝑉𝐶 ) with
a significantly reduced size. In the region-level recognition step,
another classifier will take the new vocabulary as input to perform
classification for each object proposals.

Although conceptually simple, the IRF module significantly ben-
efits large-and-open vocabulary detection from the following two
aspects. Firstly, previous study [45] shows that it is non-trivial
to transfer an image-level pre-traiend VLM to region-level classi-
fication. The IRF module with an image-level selection step can
naturally alleviate the above generalization gap and effectively
prune the input large vocabularies, ensuring more accurate final
classification results. Secondly, the enlarged vocabulary size will
linearly improve computational burden. Taking the cosine simi-
larity computation between 𝑁 categories and 𝐾 object proposals
as an example, the original compute count is 𝑁 × 𝐾 . Thanks to
the two-step coarse-to-fine pipeline, the cosine similarity for all
the 𝑁 categories are only computed against the input image for
one time in IRF, and the overall compute count becomes 𝑁 +𝑀𝐾 ,
where 𝑀 ≪ 𝑁 denotes the size of the pruned vocabulary. In our
experiments with 𝑁 = 2000, 𝐾 = 1000, and𝑀 = 15, IRF effectively
reduces 99.15% of the overall computational complexity.

3.4 Cross-View Verification
Though with different purposes, the core components of the two
steps in IRF module are both open-vocabulary classifiers. There-
fore, how to design these classifiers are critical. As explained in

Section 1, existing methods are restricted to either global or lo-
cal representations, and may fail to capture detailed visual cues
or lack a holistic understanding of the input scenes. We believe
these two kinds of methods may largely cooperates with each other.
To this end, we design two open-vocabulary classifiers, namely, a
matching-based and a query-based method. The matching-based
classifier represents the input visual content from a global view,
while the query-based method focus on local visual cues.

A Cross-View Verification (CV2) scheme is further developed,
which integrates the above two classifiers into the IRF module
in a cooperative manner to further enhance the open-vocabulary
recognition performance for large input vocabularies. As shown
in Figure 3, both the image-level selection and region-level recog-
nition step contain a matching-based and a query-based classifier
in parallel. In image-level selection, the two classifiers will pro-
duce two pruned vocabularies, which will then be respectively
received by a different classifier in the region-level recognition
step. More specifically, the vocabulary generated by the matching-
based (query-based) classifier in the image-level selection step will
serve as input to the query-based (matching-based) classifier in the
region-level recognition step. Finally, the IRF module will produce
two separate classification results, which have been crossly verified
by the two classifiers from both global and local views in different
orders. As a consequence, we are able to achieve a better synergy
between these two kinds of classifiers, giving rise to more reliable
classification results.

Matching-based Classifier. Similar to prior methods [45], the
matching-based classifier performs open-vocabulary recognition
by matching the similarity of the visual input (i.e., either the input
image or each object proposal) and the category names in the input
vocabulary. It employs the pre-trained CLIP model [33] to extract
visual and textual features, where the visual input is projected into
a global feature vector 𝑓 and the vocabulary is mapped into the
textual feature set {𝑡𝑐 }𝑁𝑐=1, where 𝑐 denotes the index category
names in the vocabulary. Since the extracted visual-textual features
have been aligned in a joint space, the classification results for the
current visual input can be directly determined according to its
cosine similarity score to each category name as follows:

𝑚𝑐 =
exp (cos (𝑓 , 𝑡𝑐 ))∑

𝑐′∈𝑉𝑂 exp (cos (𝑓 , 𝑡𝑐′ ))
. (1)

Query-based Classifier. To preserve fine-grained visual cues,
the query-based classifier divides the visual input into 𝐻 ×𝑊
patches. A vision Transformer encoder is employed to convert
the input patches into visual feature 𝐹 ∈ R𝐻𝑊 ×𝑑 , with 𝑑 indicat-
ing the feature dimension. Meanwhile, the category names in the
vocabulary are also encoded into textual features {𝑡𝑐 }𝑁𝑐=1 using
pre-trained VLM. A lightweight Transformer decoder is further
adopted, which takes the textual features as queries and performs
cross-attention between textual and visual features to generate a
set of textual embeddings {𝑒𝑐 }𝑁𝑐=1. Finally, each textual embedding
is passed through a linear layer followed by a Sigmoid activation
to predict the probability score 𝑞𝑐 for the corresponding category.
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3.5 Training and Inference
Training. We adopt an off-the-shelf category-agnostic detector

for object localization. The visual and textual encoders are pre-
trained through contrastive learning following [33]. The matching-
based classifier is based on these two encoders and does not require
any further fine-tuning on object detection data. The query-based
classifier is trained on both image-level and region-level classifica-
tion. For image-level training, we follow [50] to collect image-level
pseudo labels. For region-level training, groundtruth bounding box
annotations are directly used as training labels. Training is con-
ducted by optimizing the following binary cross-entropy loss:

Lcost (𝑦, 𝑞) = − 1
𝑁

∑︁
𝑐∈𝑉𝐵

[𝑦𝑐 · log(𝑞𝑐 ) + (1 − 𝑦𝑐 ) · log(1 − 𝑞𝑐 )] , (2)

where 𝑞𝑐 denotes probability score of the 𝑐-th category predicted
by the query-based classifier, and the groundtruth label 𝑦𝑐 = 1
indicates that the 𝑐-th category exists in the input image and 𝑦𝑐 = 0
otherwise. Since the IRF module with the CV2 scheme is compatible
with most predominant open-vocabulary detectors, it can be easily
applied to and significantly benefits existing methods as shown in
our experiments.

Inference. For each input image, the matching-based and query-
based classifier in the image-level selection step will first produce
the refined vocabulary 𝑉𝑀 and 𝑉𝑄 , which contain the top 𝐾 cat-
egories with the highest scores predicted by the two classifiers,
respectively. In the region-level recognition step, for each object
proposal, the two classifiers will separately predict a probability
score for each of the categories in the refined vocabularies. To ob-
tain the final classification results, we design a two-branch voting
mechanism as follows.

𝑝𝑐 =


𝑚𝑐 × 𝑞𝑐 , if 𝑐 ∈ 𝑉𝑀 ∩𝑉𝑄 ,
(𝑚𝑐 )𝛼 , if 𝑐 ∈ 𝑉𝑄 and 𝑐 ∉ 𝑉𝑀 ,
(𝑞𝑐 )𝛽 , if 𝑐 ∈ 𝑉𝑀 and 𝑐 ∉ 𝑉𝑄 ,
0, otherwise,

(3)

where𝑚𝑐 and 𝑞𝑐 are probability scores for the 𝑐-th category pre-
dicted by the matching-based and query-based classifiers, respec-
tively. The hyperparameters 𝛼 and 𝛽 are used to balance the confi-
dence of the two classifiers. The final classification result is deter-
mined as the object category with the highest class score 𝑝𝑐 .

4 EXPERIMENTS
In this section, we extensively evaluate the proposed LOVDmethod
across various open-vocabulary and large-and-open vocabulary de-
tection tasks. Details about the datasets and evaluation metrics are
presented in Section 4.1, and the specific implementation nuances
of our LOVD are outlined in Section 4.2. We perform comparisons
with leading methods in Section 4.3, highlighting the superior capa-
bilities of our approach. Further, we conduct the ablation study to
investigate the IRF module, the CV2 scheme, and hyperparameters
in Sections 4.4.

4.1 Datasets & Evaluation Metrics
We conduct experiments on the two popular benchmark datasets,
including COCO [28] dataset and LVIS [13] dataset. To verify the
robustness of the compared detectors, both the open-vocabulary
and large-and-open vocabulary settings are adopted for the two
datasets. More detailed explanations are as follows.

Open-vocabulary Setting. Following the conventional setting
[3], the vocabulary of COCO dataset is partitioned into 48 base
categories for training, and 17 novel categories only for testing
the open-vocabulary ability of models. Similarly, the LVIS dataset
includes 1,203 categories, classified as frequent, common, and rare
categories based on their occurrence. Following prior methods [12],
the frequent and common categories are used for training, and the
rest 337 rare categories are adopted as novel categories for testing.

Large-and-Open Vocabulary Setting. The only difference be-
tween the open-vocabulary setting and large-and-open vocabu-
lary setting lies in the input vocabulary during inference. For both
COCO and LVIS datasets, we augment the size of their original
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Method Pre-train Model Params(M) LOV OV DR (%)
Novel Base All Novel Novel

Region CLIP [52] CLIP (RN50) 160 15.1 43.4 36.0 31.4 44.3
Region CLIP [52] CLIP (RN50x4) 285 16.7 38.2 32.6 39.3 42.5
OV-DETR [48] CLIP (RN50x4) 421 20.9 48.3 28.1 29.4 71.1
PB-OVD [10] CLIP (ViT-B/32) 189 19.9 41.3 35.7 30.8 64.6
VLDet [27] CLIP (RN50) 141 24.7 46.5 40.8 32.0 77.2
VLDet [27] + LOVD CLIP (RN50) 155 29.4(+4.7) 49.0(+2.5) 43.9(+3.1) 34.8(+2.8) 91.2(+14.0)
BARON [44] CLIP (RN50) 201 31.7 54.8 48.8 34.7 91.3
BARON [44] + LOVD CLIP (RN50) 215 33.8(+2.1) 56.2(+1.4) 50.2(+1.4) 36.2(+1.5) 93.4(+2.1)
Detic [53] CLIP (RN50) 81 25.4 49.4 36.8 27.8 91.4
Detic [53] + SIC-CADS CLIP (RN50) 157 29.3 (+3.9) 51.4 (+2.0) 39.7 (+2.9) 31.0 (+3.2) 94.5 (+3.1)
Detic [53] + LOVD CLIP (RN50) 95 32.3 (+6.9) 49.6 (+0.2) 39.8 (+3.0) 32.8 (+5.0) 98.5 (+7.1)
CORA [45] CLIP (RN50) 114 27.6 25.4 26.0 35.1 78.6
CORA [45] + LOVD CLIP (RN50) 128 36.4 (+8.8) 32.7 (+7.3) 33.7 (+7.7) 38.9(+3.8) 93.6(+15.0)
CORA [45] CLIP (RN50x4) 190 32.1 31.7 31.8 41.7 77.0
CORA [45] + LOVD CLIP (RN50x4) 204 40.3 (+8.2) 37.9 (+6.2) 38.5 (+6.7) 43.3 (+1.6) 93.1 (+16.1)

Table 1: Main results on the COCO dataset. We report AP50 as the evaluation metric. “LOV" and “OV" denote the large-and-open
vocabulary and open-vocabulary settings, respectively.

vocabulary up to a total of 2,000 categories. The newly introduced
categories pose more challenges for object recognition compared
to the open-vocabulary setting.

Evaluation Metrics. Following the prior methods [45, 53], we
utilize the 𝐴𝑃50 of bounding boxes as the evaluation metric for the
COCO dataset. This metric calculates the average precision at an
intersection over union (IoU) threshold of 50% for each category
and then computes the overall average across all categories. In
the open-vocabulary setting, we specifically compute the 𝐴𝑃50 for
the novel categories. In the open-and-large vocabulary setting, we
assess the performance across novel, base, and all categories.

For the LVIS dataset, we compute the𝑚𝐴𝑃 of masks averaged
on IoUs from 0.5 to 0.95. Similar to the COCO dataset, we compute
the𝑚𝐴𝑃 for the novel categories for the open-vocabulary setting,
while perform evaluation for rare (novel), common, and frequent
categories in the open-and-large vocabulary setting.

In addition, We are also interested in comparing the performance
degradation on the novel categories of detectors from open vocab-
ulary to large-and-open vocabulary settings. Therefore, a relative
metric named the Decay Ratio (DR) is computed as follows:

𝐷𝑅 =
LOV-APnovel
OV-APnovel

× 100%, (4)

where LOV-APnovel and LOV-APnovel denote the AP value for novel
categories under the open-vocabulary and large-and-open vocabu-
lary settings, respectively.

Cross-dataset Evaluation . Following previous work [10, 27,
40, 49], we train our LOVD on the training set of COCO and conduct
zero-shot transfer experiment on PASCAL VOC [7] to evaluate the
generalization ability of the proposed method, using AP50 as the
metric.

4.2 Implementation Details
Building Large Vocabulary. The number of object categories

in both COCO and LVIS is limited for large-and-open vocabulary
evaluation. To augment the existing vocabulary for these datasets,
we apply two principled criteria: (1) The newly added categories
must not overlap or be synonymous with any categories of vocabu-
lary in the validation set. (2) They should be absent from all images
in the validation set. Our selection starts by gathering more than
10,000 common categories from databases like OpenImages [23] and
ImageNet-21K [6] as the initial list. Then, we utilize the multi-modal
large language model [29] to eliminate categories from the initial
list that already exist in the validation set, and employ CILP [33] to
filter out the semantically redundant categories. Finally, we elabo-
rately refine the categories manually to build the large vocabulary
with 2,000 categories in total. For more details, refer to the supple-
mentary materials.

Training Setups. We train the Query-based classifier on COCO
with the supervision of pseudo tag labels generated by [50] with the
binary cross entropy loss. To avoid label leakage, tags associated
with the 17 novel categories are excluded from the pseudo-labels
during training. Similarly, the training protocol on the LVIS dataset
follows this principle that excludes categories related to rare cat-
egories. We train the query-based classifier on an NVIDIA Tesla
A100 using PyTorch, employing the AdamW optimizer with an
initial learning rate of 2 × 10−5. The batch size is set to 4, and the
training process runs for a total of 10 epochs. Based on the observa-
tions in our ablation studies (as shown in n Section 4.4), the value
of hyperparameters 𝛼 and 𝛽 in (3) are set to 1.0 and 4.0, respectively.
The number of selected categories 𝐾 in image-level selection step
is set to 15. We keep the above setting consistent for both COCO
and LVIS datasets.
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Method Pre-train Model Params(M) LOV OV DR (%)
Novel Common Frequent Novel Novel

VLDET [27] CLIP(RN50) 184 20.3 29.1 33.6 21.7 93.5
VLDET [27] + LOVD CLIP(RN50) 198 22.7(+2.4) 30.0 (+0.9) 33.4(-0.2) 23.7(+2.0) 95.8(+1.7)
Detic [53] CLIP(RN50) 81 23.8 32.0 35.3 24.9 95.5
Detic [53] + SIC-CADS [8] CLIP(RN50) 157 25.1(+1.3) 32.5(+0.5) 35.3(+0.0) 26.2(+1.3) 95.8(+0.3)
Detic [53] + LOVD CLIP(RN50) 95 26.6(+2.8) 32.6(+0.6) 35.5(+0.2) 27.3(+2.4) 97.4(+1.9)

Table 2: Main results on the LVIS dataset. We report mAP as the evaluation metric. “LOV" and “OV" denote the large-and-open
vocabulary and open-vocabulary settings, respectively.

4.3 Overall Comparison
Since the main contribution of our LOVD is the IRF module with the
CV2 scheme, the other modules are compatible with most existing
detectors. Therefore, to evaluate the effectiveness and adaptability
of our LOVD, we integrate it with different prior open-vocabualry
detectors that employ different network architectures and learning
principles. These include prompt learning (CORA [45]), weakly
supervision (Detic [53]), and region-text alignment (BARON [44],
VLDet [27]). We present the comparative results of the original
open-vocabulary models and their LOVD-enhanced counterparts
(denoted with the postfix “+LOVD" in Table 1-3).

Results on COCO. Table 1 reports the quantitative results of
the compared methods and the integration of LOVD with these
models on the COCO benchmark dataset. All the state-of-the-art
open-vocabulary models, including those trained with extensive
vocabularies of 21K categories from ImageNet-21K [6] such as De-
tic [53] and Baron [44], show a significant decrease in performance
under the large-and-open vocabulary setting. In contrast, integrated
with the proposed LOVD, it consistently and significantly enhances
the performance of all representative models in identifying novel
categories across all the inference settings. Specifically, for the open-
vocabulary setting, it shows that the integration of LOVD achieves
an improvement of 5.0 in terms of 𝐴𝑃50 for the Detic method [53].
For the large-and-open vocabulary setting, the performance im-
provement is more significant for the novel categories. It achieves a
maximum improvement of 8.8 in terms of 𝐴𝑃50 compared with the
original methods, and establishes a new SOTA performance when
incorporated into CORA. Moreover, LOVD exhibits great robust-
ness towards large vocabulary in terms of decay ratio. With the
assistance of LOVD, all representative methods achieve substantial
improvements, with the smallest observed decline in performance
being only 1.5%. These above results show that our proposed LOVD
can effectively mitigate the category interference issue for the open-
and-large vocabulary task.

Results on LVIS. LOVD demonstrates a similar superiority on
the LVIS benchmarks, as detailed in Table 2. It shows that when ex-
panding the categories of the input vocabulary, the existing leading
methods VLDET [27] and Detic [53] exhibit a notable decline in
performance under the large-and-open vocabulary setting. Never-
theless, the proposed LOVD consistently improves the performance
of the two methods for all the evaluations. Specifically, it enhances

Method OV LOV DR (%)

PB-OVD [10] 42.7 59.2 72.1
VLDet [27] 47.1 61.7 76.4
CORA [45] 51.9 65.9 78.8
CORA [45] + LOVD 54.3 (+2.4) 66.6(+0.7) 81.5(+2.7)

Table 3: Zero-shot transfer results on the Pascal VOC. We
report AP50 as the evaluation metric.

the𝑚𝐴𝑃 scores for the novel categories by more than 2.0 across
these base models.

Cross-dataset Generalization . In the cross-dataset generaliza-
tion experiment, we further conduct evaluation on the Pascal VOC
dataset for the models trained on the COCO dataset. As shown in
Table 3, integrated with our LOVD, it significantly improves the
AP50 scores by 2.4 and 0.7 in both open-vocabulary and large-and-
open vocabulary settings for the CORA method, and also improves
the DR scores by 2.7. These results illustrate our remarkable en-
hancement in generalization ability across different datasets.

4.4 Ablation Study
We perform ablation studies to evaluate the key components of the
proposed method. All the evaluations are conducted on the COCO
dataset. “LOV-APnovel" in Table 4-6 denotes the AP50 score for the
novel categories under the large-and-open vocabulary setting.

Image-to-Region Filtering. We evaluate the performance of
various IRF variants on top of the baseline method CORA [45] to
showcase the significance of our IRF, as shown in Table 4. In the
large vocabulary setting, the method proposed by SIC-CADS [8],
which multiplies region-level and image-level scores, demonstrates
inferior performance compared to the method of filtering before
classification. Our IRF module, integrating image-level selection
with region-level classification, achieved the highest performance.
Table 4 also shows the results of varying values of 𝑘 in Top-k
operation of image-level recognition. We observe that in the scenes
of the COCO dataset, typically 10-20 object categories appear, so
select 𝑘 from the range of 10-20. When using a smaller 𝑘 , too many
ground truth categories are filtered out. However, if a large 𝑘 is used,
too many interfering categories are fed into the region classifier,
resulting in a significant impact from the large vocabulary. Since
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Method LOV-APnovel
Baseline 27.6
Baseline + Image-level Score Multiplication 33.9
Baseline + Image-level Selection 35.0

Baseline + Top-10 Selection 32.5
Baseline + Top-15 Selection 35.0
Baseline + Top-20 Selection 34.3

Table 4: Ablation studies on the IRF module.

Method LOV-APnovel
Matching-based Classifier (region-level) 27.6
w/ Query-based Classifier (image-level) 35.0
Query-based Classifier (region-level) 12.4
w/ Matching-based Classifier (image-level) 13.0
Adding 35.3
Two-branch Voting 36.4

Matching-based Classifier 10.2
Query-based Classifier 14.4
Combination with Voting 10.7

Table 5: Results of different variants of CV2.

𝑘 = 15 achieves a good trade-off between ground truth categories
and interfering categories and obtains the best AP.

Cross-view Verification . As shown in Table 5, Different vari-
ants of CV2 can be employed in our LOVD approach. We evaluate
the performance of CV2 variants on top of the baseline module the
region-level Matching-based Classifier to showcase the significance
of our CV2. By integrating a image-level Query-based Classifier,
we establish the first branch, which notably increases AP from 27.6
to 35.0. Similarly, we evaluated a Region-level Query-based Classi-
fier as the baseline, and by adding an image-level Matching-based
Classifier, we formed the second branch, increasing AP from 12.4 to
13.0. However, these approaches result in diminished performance,
indicating that the individual branches alone do not yield optimal
results. Merely combining the results from both branches yields an
AP of only 35.3, indicating that the branches alone do not provide
optimal outcomes. It is the combination of Two-branch Voting that
achieves superior performance, with an AP of 36.4, underscoring
the importance of synergistic integration. Furthermore, we eval-
uate configurations that omit the cross-view combination, which
leads to a marked decrease in performance. This decline is attrib-
uted to error accumulation among identical models, resulting in
compounded inaccuracies. These findings suggest that simply amal-
gamating modules without the strategic integration provided by
CV2 does not effectively leverage their complementary capabilities
and may even be counterproductive.

Ablation of Hyperparameter. Table 6 presents the impact of
adjusting the values of 𝛼 and 𝛽 in Equation 3. These parameters act
as penalty coefficients for the scores of categories that one branch

𝜶 𝜷 LOV-APnovel
0.5 2.0 29.9
1.0 2.0 31.8
2.0 2.0 28.4
1.0 2.0 31.8
1.0 4.0 36.4
1.0 8.0 36.2

Table 6: Ablation studies on hyperparameter 𝛼 and 𝛽 on
COCO benchmark.

considers present while another branch deems absent. The higher
the coefficients, the greater the penalty applied to the scores. If the
coefficients are set too high, the scores of the correct categories
may become excessively low. Conversely, if the coefficients are too
low, the scores for incorrect categories might be too high. Optimal
values of 𝛼 and 𝛽 effectively reduce the likelihood of false negatives
and false positives. We adopt the best-performing hyperparameters
𝛼=1.0 and 𝛽=4.0 from the COCO experiments. Although the ablation
studies are conducted on the COCO dataset, given the similar scale
of scores between COCO and LVIS datasets, we apply 𝛼=1.2 and
𝛽=4.0 as the hyperparameters for the LVIS dataset.

Scale of Vocabulary. We investigate the effect of introducing a
variable size of large vocabulary on model performance, as depicted
in Figure 1(c) (See the supplementary materials for more details).
When a modest number of 500 extra categories are introduced,
OV models experience a notable decrease in accuracy. As we in-
crementally increase the count of extra categories from 0 to 2000,
the performance of OVD methods consistently worsens, while our
LOVD remains largely unaffected. This evidence indicates that our
approach possesses a superior adaptability in facing real-world
scenarios, demonstrating resilience against the influx of distracting
categories.

5 CONCLUSION
In this paper, we introduce a novel task of large-and-open vocabu-
lary detection, crucial for enhancing the real-world applicability
of open-vocabulary object detection systems. To effectively man-
age the challenges posed by vast input vocabularies, we propose a
new open-vocabulary detection method LOVD. By incorporating
the Image-to-Region Filtering (IRF) module and the Cross-View
Verification (CV2) scheme, LOVD significantly improves detection
accuracy and robustness against the interference of large vocabu-
laries. Our extensive experiments on various datasets underscore
LOVD’s distinct advantage over existing approaches, showcasing its
enhanced scalability and robustness in handling large vocabularies.

In the future, we will further expand the scale of the vocabulary
to better simulate real scenarios under the large-and-open vocab-
ulary detection setting. In addition, we will also experiment with
more advanced VLM and network architectures to improve the
performance and adaptation our of method.
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