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ABSTRACT

In natural language processing and vision, pretraining is utilized to learn effective
representations. Unfortunately, the success of pretraining does not easily carry
over to time series due to potential mismatch between sources and target. Actually,
common belief is that multi-dataset pretraining does not work for time series! Au
contraire, we introduce a new self-supervised contrastive pretraining approach to
learn one encoding from many unlabeled and diverse time series datasets, so that
the single learned representation can then be reused in several target domains for,
say, classification. Specifically, we propose the XD-MixUp interpolation method
and the Soft Interpolation Contextual Contrasting (SICC) loss. Empirically, this
outperforms both supervised training and other self-supervised pretraining methods
when finetuning on low-data regimes. This disproves the common belief: We can
actually learn from multiple time series datasets, even from 75 at once.

1 INTRODUCTION

The recent success of large language models (Devlin et al., 2019; Brown et al., 2020) as well as
diffusion models (Rombach et al., 2022) has shown that leveraging vast amounts of text and image
data can dramatically improve the performance of deep learning models. This has led to impressive
advancements in several application areas, such as translation, interactive chat assistants, and text-
conditioned image generation. Apparently, there is still a need for a methodology to apply the same
principles to the time domain, as significant amounts of unlabeled time domain data are available,
yet they are seldom used for training models for different tasks. Most classification systems on
time series are supervised and therefore still rely on expensive and complete labels per dataset (Shi
et al., 2021; Nie et al., 2023; Zeng et al., 2023). Overcoming this is crucial in contemporary real-
world situations, such as healthcare, where labeled data is not the only limitation. Additionally,
there is often a scarcity of sufficient data points, for instance, due to privacy constraints. However,
this clashes with the requirements of current deep learning models, which require large single-
source datasets (Iwana & Uchida, 2021). Fortunately, there exist multiple small datasets which, in
combination, can be leveraged even if they are unlabeled. For instance, the UCR/UEA Time Series
Classification Archive (Dau et al., 2019) contains 57% of datasets with 300 or fewer training samples,
which are usually not enough to be applicable to the tasks. Additionally, there are datasets with only
unlabeled data, such as the M4 Competition (Makridakis et al., 2018) or recordings of meteorological,
financial, industrial, traffic, and other signals. Combining them is a new perspective on this collection
of valuable data.

We address these challenges by utilizing transfer learning, and specifically, by training a representation
on unlabeled source datasets (Eldele et al., 2021). As shown in Figure 1, the learned features are then
used as a starting point for finetuning on a target dataset with typically much fewer labeled instances.
Although multiple works have shown the feasibility of pretraining on time series (Ma et al., 2023),
the success of pretraining does not easily carry over to the time series modality due to a potential
mismatch between sources and target. In the image domain, we can leverage pretrained weights from
models trained on a general dataset, even in largely different domains. However, for time series, the
source and target domain currently need to be quite similar and follow the same underlying temporal
dynamics (Zhang et al., 2022). Thus, a general representation taking advantage of a diverse collection
of source datasets can prove very beneficial for use in several target domains.
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Figure 1: The core idea of our method XIT is to learn a single encoder from multiple datasets. The
resulting representation can then be used to train classifiers on datasets seen during the pretraining
phase and to be transferred to entirely new ones.

Contributions To this end, we make several important contributions: (1) We show how up to
75 unlabeled time series datasets can be combined effectively into a single pretraining collection.
(2) We propose a novel interpolation method Cross-Dataset MixUp (XD-MixUp) based on (Zhang
et al., 2018) that induces a shared latent representation for multiple datasets. (3) We propose the Soft
Interpolation Contextual Contrasting (SICC) loss function, which is incorporated into the Time Series
Temporal and Contextual Contrasting (TS-TCC) (Eldele et al., 2021) framework using XD-MixUp.
Overall, we call our new architecture XIT1 (XD-MixUp + SICC + Temporal Contrasting). (4) We
demonstrate good transfer classification performance on multiple small labeled target datasets without
requiring extensive retraining for each. In particular, we outperform supervised training and other
self-supervised pretraining methods.

Structure of the Paper We start with explaining our proposed XIT method, including introducing
the XD-MixUp and the SICC loss, before moving on to the empirical demonstration of its efficacy.
Before concluding, we present the related works.

2 MULTI-DATASET PRETRAINING WITH XIT

In this section, we present our pretraining method XIT, where the overall goal is to learn a D-
dimensional latent representation zi ∈ RD of some time series xi ∈ RT of length T . For clarity,
we focus on univariate time series while the method can be readily extended to multivariate tasks.
We train the parameters θ of an encoder Fθ(·) to compress xi into a more abstract representation
zi = Fθ(xi). That representation can subsequently be used for downstream tasks, such as supervised
training of a classifier. Note that in the pretraining phase, the encoder F is trained in a self-supervised
fashion without access to any labels. We base our method on the work of Eldele et al. (2021) and
adapt their method TS-TCC to enable the training on multiple datasets. Similar to their work, we use
a simple 1D convolutional model with three layers as the encoder F . As shown in Figure 2, we merge
a pair of time series through interpolation and then derive two augmented variants to calculate two
distinct pretraining losses, namely the Temporal Contrastive (TC) and Soft Interpolation Contextual
Contrastive (SICC) loss. Eventually, they are combined into a single training objective LTotal and are
optimized jointly, yielding us the XIT architecture. The entire procedure is listed in the Appendix at
Algorithm 1.

2.1 XD-MIXUP AND DATA AUGMENTATION

We now construct a pretraining task to train the joint encoder F . Given two different time series xi

and xj , we first generate a pointwise interpolated variant x̃ ∈ RT by

x̃i = λixi + (1− λi)xj , λi ∼ Beta(α, α). (1)

Here, α > 0 is the shape parameter of the symmetric Beta distribution. Since λi ∈ [0, 1], x̃i is a
convex combination of xi and xj . This is inspired by the label smoothing method MixUp (Zhang
et al., 2022), which is known to improve robustness to outliers, training stability, and calibration (Thu-
lasidasan et al., 2019) in the image domain and has already been applied to time series by Wickstrøm
et al. (2022). Besides the usual benefits of data augmentation, we use it to generate data points

1pronounced «exit»
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Figure 2: Our proposed XIT architecture. From two time series of a mini-batch, we generate a
randomly interpolated variant that gets augmented twice and projected several times along with the
original time series. Eventually, we compute two losses to define the overall pretraining objective.

between the different clusters of time series induced by training on multiple datasets, typically each
consisting of one or many sub-clusters. This is especially relevant since the eventual downstream
task might consist of some time series not seen in the pre-training phase and, therefore, might lie
outside of the clusters.

A mini-batch consists of randomly sampled time series from each of the included datasets. We
select the pairs for interpolation from a single mini-batch on the fly while optimizing. Since a
batch of size B does not contain duplicate time series, we can build distinct pairs by interpolating
between consecutive pairs of time series, like (x1,x2) , (x2,x3) , . . . , (xB ,x1) with independently
sampled λi. We are then left with a batch of B interpolated time series x̃i, where i ∈ {1, . . . , B},
in addition to the original time series. We deliberately do not consider all possible combinations
within a mini-batch to not dramatically increase the batch size, which would incur high computational
costs in the pretraining loss computations. Following TS-TCC, we then apply a strong and a weak
augmentation to the time series x̃i to obtain x̃i,s and x̃i,w.

2.2 PRETRAINING LOSS

The strongly and weakly augmented samples are then used to compute the loss LTotal, which consists
of a weighted combination of the temporal contrastive loss LTC and the soft interpolation contextual
contrastive loss LSICC:

LTotal = βLTC + (1− β)LSICC. (2)

The weight β ∈ [0, 1] is determined by hyperparameter search. The TC loss guarantees that a time
series representation captures its unique, relevant features and differentiates from others. The SICC
loss in combination with MixUp ensures meaningful connections between the various datasets seen
during pretraining by enforcing a well-structured latent space between them.

As shown in Figure 2, the next step after XD-MixUp is to encode each time series x̃i,s into a sequence
of K embedding vectors

(
z1
i,s, . . . ,z

K
i,s

)
= zi,s = F(xi,s,θ) using the convolutional encoder F ,

where zk
i,s ∈ RZ . The time series x̃i,w and the original xi are encoded into z̃i,w and zi, respectively.

We then use a shared summarization model S(·) to condense the first K − 1 embedding vectors
z1:(K−1) into a single context c ∈ RC , for all time series individually. Working with these summary
contexts instead of with the individual embedding vectors greatly simplifies the computation of the
pretraining losses and makes it more efficient. In addition, it promotes learning more high-level
features that can compress all embedding vectors into smaller representations (Eldele et al., 2021).
We will now provide an in-depth explanation of both TC and SICC loss.

2.2.1 TEMPORAL CONTRASTING

The TC loss (Eldele et al., 2021) is computed by solving a cross-forecasting task. The context
derived from the weakly augmented embedding c̃w is used to predict the last embedding vector z̃K

s
of the strong embedding, and vice versa. This is done using a jointly learned similarity measure

3



Under review as a conference paper at ICLR 2024

g
(
c̃, z̃K

)
= exp

(
c̃TWz̃K

)
. Here, W ∈ RC×Z is a matrix that aligns the dimensions of the two

vectors. The task is to maximize the similarity to the differently augmented time series embedding of
the same time series while minimizing the similarity to the other embeddings from the mini-batch.
This favors representations that are invariant to the augmentations being applied. Overall, we compute
the loss as follows:

Ls
TC = − 1

B

B∑
i=1

log

(
g
(
c̃i,w, z̃

K
i,s

)∑B
j=1 g

(
c̃i,w, z̃K

j,s

)) Lw
TC = − 1

B

B∑
i=1

log

(
g
(
c̃i,s, z̃

K
i,w

)∑B
j=1 g

(
c̃i,s, z̃K

j,w

))
We then average them to obtain LTC = 1

2 (L
s
TC + Lw

TC). The parts Ls
TC and Lw

TC are called normalized
temperature-scaled cross-entropy loss (NT-Xent) (Chen et al., 2020). That loss is also called InfoNCE
(from Noise Contrastive Estimation) since van den Oord et al. (2018) have shown that it optimizes a
lower bound on the mutual information I(c̃; z̃) between the context vectors c̃ and their corresponding
embeddings z̃. Larger batch sizes B yield tighter bounds.

2.2.2 SOFT INTERPOLATION CONTEXTUAL CONTRASTING

Our novel SICC loss aligns the information in the augmented time series context vector to the
non-augmented contexts. This enforces the encoder F to be invariant to the selected augmentations,
thereby capturing higher-level concepts. We want the context to contain the information of the source
time series pair (xi,xj) used to form the interpolated time series x̃i depending on the interpolation
coefficient λi. Namely, if λ ≈ 0 then (x̃i,xi) should be a positive pair and (x̃i,xj) a negative pair.
If λ ≈ 1, then the positive/negative relations switch. We, therefore, extend the normal notion of
hard positive-negative examples to a soft variant that treats pairing within the interpolated time series
group proportional to λ and still considers the rest of the mini-batch to be hard negative samples. Our
approach thereby differs from the loss of Sohn (2016) and Chen et al. (2020) used in TS-TCC, where
the contextual alignment is solely performed between the two augmented time series.

To enforce the entire embeddings z to be aligned, we directly use the contexts c that we computed with
the summarization model S . Since we want the information content of a positive pair to match but do
not require the concrete representation to be exactly the same, we further project the contexts c using a
two-layer learned MLP, obtaining κ = h(c) = Linear(ReLU(BatchNorm1D(Linear(c)))). Here,
Linear(ξ) = Wξ + b such that the resulting vector has half the dimension of the input vector, i.e.,
that κ ∈ RC/4.

Let (κi,l,κi,s,κi,r) with i ∈ {1, . . . , B} be the mini-batch of B triples consisting of either the
strongly or weakly augmented time series projection κs

i or κw
i along with the projection of the left

κi,l and right time series κi,r that were interpolated between with λi to form the augmented one in
eq. (1). We arrange these into two sets of vectors of length 3B:

Bs = (κ1,l, . . . , κB,l, κ1,s, . . . , κB,s, κ1,r, . . . , κB,r) ,

Bw = (κ1,l, . . . , κB,l, κ1,w, . . . , κB,w, κ1,r, . . . , κB,r) .

The loss function is then computed as the average LSICC = 1
2 (LSICC(B

s) + LSICC(B
w)), where the

individual parts are defined as:

LSICC(B) =
1

B

B∑
i=1

[
ℓ(B, i, B + i, 1− λi) + ℓ(B, B + i, i, 1− λi)+ (3)

ℓ(B, B + i, 2B + i, λi) + ℓ(B, 2B + i, B + i, λi)
]

ℓ(B, i, j, µ) = − log

(
exp(µ sim(Bi,Bj)/τ)∑3B

k=1 1k ̸=i exp(sim(Bi,Bk)/τ)

)
(4)

Here, sim(x,x′) = xTx′

∥x∥2∥x′∥2
denotes the cosine similarity, 1 is an indicator variable that is 1 if

k ̸= i and 0 otherwise, and τ is the temperature parameter. In Equation (1), λi scaled the distance of
x̃i to xi and 1− λ the distance to the other time series, xj . Since we now want to scale similarities
proportionally, we have to reverse the roles of λ and 1− λ. In eq. (4), since we minimize the negative
of the fraction, we optimize for maximizing the numerator (i.e., the similarity of the positive pair
(i, j)) and minimizing the denominator (i.e., the similarity of all other negative pairs (i, k)). The
computation of ℓ can be numerically stabilized using the log-sum-exp trick.
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We have now defined the three core components of our approach and how they connect. First, we
interpolate between datasets with XD-MixUp, to then apply the TC and SICC losses. Together, they
form the complete XIT pretraining procedure, whose efficacy we can now asses in the next section.

3 EXPERIMENTS

After having laid out the motivation and formal foundation of XIT, we will answer these key research
questions with our experiments: (Q1) Do multiple datasets help to learn a more general representation
that is easier to transfer to seen and unseen datasets? (Q2) Is an encoder pretrained in a self-supervised
fashion more helpful than directly learning a classifier, especially in low-data scenarios? (Q3) Which
key components of our proposed XIT procedure cause the improvements that we observe? (Q4) How
discriminative are the learned representations regarding inter- and intra-dataset structures? The
remainder of this section will provide an overview of our experimental setup, with further details
provided in Appendix A.2. Subsequently, we will present the results and discoveries.

Datasets We compare our method with the baselines on five diverse univariate classification
datasets inspired by the TF-C N-to-one setting (Zhang et al., 2022, Appendix K) whose setup we
follow. The Appendix gives an overview of the datasets and their characteristics in Table 4. We
also evaluate on the large UCR Time Series Classification repository. (1) Sleep-EDF (sometimes
called Sleep-EEG) (Kemp et al., 2000) obtained from the PhysioNet repository (Goldberger et al.,
2000) is a dataset of polysomnographic recordings of whole-night sleep cycles in European Data
Format (EDF). We followed the common practice of using the Fpz-Cz channel of the EEG signal to
classify the five sleep stages. (2) The FD-A dataset (Lessmeier et al., 2016) consists of measurements
in a real-world industrial setting. The measured current of an electric motor is used to distinguish
three conditions of an attached ball bearing. (3) In the HAR dataset (Anguita et al., 2013), the wrist
movements of 30 subjects are recorded while they perform activities of daily living. We use the
acceleration along the x-axis of the nine available sensors to identify one of six activities. (4) The
ECG dataset (Clifford et al., 2017) stems from the 2017 PhysioNet Challenge (Goldberger et al.,
2000) and contains single-lead ECG recordings with four different types of cardiac arrhythmias
lasting from 9 to 60 seconds, split into 5-second windows. (5) Epilepsy (Andrzejak et al., 2001)
contains single-channel EEG measurements, with the binary classification task of determining if the
patient has a seizure. (6) Finally, the UCR Time Series Classification repository (Dau et al., 2019)
contains 128 datasets of a wide range of domains, time series lengths, sample counts, and numbers of
classes. We used all datasets of up to 600 time steps, resulting in 100 datasets as shown in Table 5 in
the Appendix. We did not include longer ones to limit the discrepancy with shorter datasets, which
would contain increasingly more padding.

Data preparation and augmentation For a level comparison, we ensure that all time series
datasets are equal in length. For Epilepsy, we dropped the second half of the series, while for all
other datasets, we front-padded with zeros to obtain a total of 1,500 time steps in each series. We
use the same augmentations as in the supplementary TS-TCC implementation: magnitude scaling as
weak augmentation and permutation-and-jitter as strong augmentation, with the same parameters as
TS-TCC wherever available for the datasets.

Baselines In total we compare XIT against multiple baselines to evaluate its effectiveness. To this
end, we employed the following five self-supervised pretraining methods: (1) TS-TCC (Eldele et al.,
2021), which uses temporal and contextual contrasting between weakly and strongly augmented time
series to learn an embedding. (2) TF-C (Zhang et al., 2022), which learns and aligns a time and fre-
quency domain encoding into a joint representation, again with contrastive methods. (3) TS2Vec (Yue
et al., 2022), which performs masking and contrasting hierarchically. (4) TNC (Tonekaboni et al.,
2020) aligns neighboring windows with their respective latent representation. (5) T-Loss (Franceschi
et al., 2019) utilizes time-based negative sampling in conjunction with a triplet loss to learn an encod-
ing. Additionally, the supervised model performs no pretraining, i.e., it uses a randomly initialized
encoder that is then used for finetuning.

Evaluation We evaluate the classification mainly with AUROC and macro-averaged F1 scores
since the accuracy metric is unreliable in the face of uneven class distributions. We still provide it for
future reference. We also employed statistical ranking tests and diagrams to evaluate the significance
of the observed critical difference (CD) in classifier performance (Dau et al., 2019).
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Table 1: The results of pretraining on an increasing number of pretraining datasets «PT» and
individually finetuning on all five targets for our model and the baselines. Finteuning was limited to
2.5% of the data. The first row shows the supervised baseline. The values indicate the mean AUROC
score in percent and its standard deviation over five random seeds. Bold denotes the best overall, and
underlined is the best within each number of pretraining datasets. Higher is better.

PT Model Sleep-EDF FD-A HAR ECG Epilepsy

Superv. 76.47 ±2.4 86.39 ±2.1 85.80 ±0.6 46.34 ±0.5 98.19 ±0.3

1
XIT 85.57 ±0.9 96.52 ±0.5 89.78 ±0.7 41.44 ±0.8 97.45 ±0.7
TS-TCC 87.55 ±0.6 66.64 ±2.7 52.92 ±8.2 40.67 ±0.6 93.03 ±8.3
TF-C 73.22 ±2.5 93.19 ±2.8 83.01 ±0.5 39.37 ±1.7 47.64 ±24.2

2
XIT 86.17 ±1.0 95.85 ±0.5 88.50 ±1.0 44.22 ±0.4 97.69 ±0.6
TS-TCC 87.72 ±0.6 36.99 ±2.3 52.50 ±11.9 41.25 ±1.3 95.28 ±2.3
TF-C 67.13 ±6.1 88.80 ±2.9 84.44 ±1.5 38.54 ±1.2 52.27 ±16.0

3
XIT 85.74 ±1.0 95.75 ±0.3 88.54 ±0.6 46.43 ±0.9 97.87 ±0.5
TS-TCC 86.38 ±1.2 31.76 ±3.7 71.53 ±8.2 41.69 ±0.7 90.20 ±6.3
TF-C 72.92 ±3.8 88.74 ±1.2 82.43 ±3.2 41.35 ±1.5 64.19 ±15.0

4
XIT 84.39 ±0.4 95.79 ±0.7 88.11 ±0.3 47.30 ±1.1 97.50 ±0.3
TS-TCC 82.52 ±1.4 61.22 ±1.2 81.32 ±0.5 42.31 ±1.0 96.57 ±0.7
TF-C 63.37 ±3.4 81.59 ±1.8 82.72 ±0.8 44.89 ±2.0 66.93 ±23.4

1234

3.3600TF-C
3.3600TS-TCC 2.0400Supervised

1.2400XIT

Figure 3: CD diagram for the many2many scenario (see Table 1) when pretraining on four datasets
and five seeds. The classifiers were ranked by AUROC score, with higher average ranks being
further to the right. A connecting line indicates that there is no significant difference in performance
according to the Friedman test with α = 0.01.

3.1 SELF-SUPERVISED PRETRAINING ON MULTIPLE DATASETS: (Q1) & (Q2)

To determine whether we can learn a single encoder on multiple datasets, we first reproduce the
experimental many2many setup of TF-C. Hereby, we pretrain on the first 1, 2, 3, and 4 datasets of
Sleep-EDF, FD-A, HAR, and ECG and finetune on those and additionally on Epilepsy for a more
complete overview. The results for finetuning on 2.5% of the datasets are shown in Table 1. Due
to space constraints, it only includes AUROC scores, with Accuracy and Macro F1 scores deferred
to Tables 7 and 8 in the Appendix. The results for scaling to larger fractions of the finetuning
datasets (5%, 10%, 50%, and 100%) can be found in Appendix A.3. This experiment illustrates
that TF-C exhibits unstable training, leading to unpredictable performance with each new dataset.
In contrast, XIT demonstrates robustness, with minimal decreases and often significant increases
across all cases. TS-TCC performs adequately with five datasets but lacks robustness, exhibiting
similar instability to TF-C when more data is leveraged. Notably, in datasets like ECG, consistent
increases are observed across all models, yet XIT benefits the most. For Epilepsy, supervised is the
most effective approach, although XIT is nearly as accurate, coming to within 0.5 percentage points
of the supervised approach. We further apply CD tests and determine that the effect is significant
with high confidence, as demonstrated in Figure 3. These experiments show that—in contrast to
the findings of Zhang et al. (2022)—pretraining on more than one dataset is indeed feasible and
beneficial when compared to supervised.

To investigate whether scaling to much larger numbers of datasets can again increase the finetuning
performance, we continue to apply the methodology to large portions of the UCR repository. Here, 100
datasets have a fixed sequence length of up to 600. We pretrained on up to 75 different datasets, where
we subsequently finetuned both on all 100 datasets (Figure 4a) and 25 of the held-out ones (Figure 4b).
We sample each domain with the same frequency (see Table 5 in the Appendix). Within each domain,
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(a) Finetuning on the 100 UCR datasets.
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(b) Finetuning on a hold-out set of 25 datasets each.

Figure 4: This box plot shows the transfer surplus over supervised training measured in Macro F1
score difference after pretraining XIT on increasingly large subsets of the UCR repository with three
folds each. Higher is better.

we sampled time series data points for training according to the size of the dataset. We create three
folds of each dataset selection, where we each perform the pretraining and finetuning steps with
independently initialized models. We first observe that in Figure 4a, increasing the number of datasets
in the pretraining phase increases the benefit of pretraining over supervised training since the Macro
F1 transfer becomes increasingly positive. The effect is even more pronounced when only transferring
to entirely unseen datasets, where the increased diversity aids in learning more general representations.
In the case of pretraining on 75 datasets, XIT outperforms direct supervised training in 64.7% of
all datasets, while in the hold-out evaluation, this is still true for an impressive 62.5% datasets. In
conclusion, XIT effectively learns time series representations from multiple, diverse datasets.

To further position XIT among existing approaches, we compare it to five baselines. We evaluate
on challenging 25 UCR datasets not seen during pretraining on the other 75 ones. Table 2 shows
the competitive and state-of-the-art performance of XIT. For ease of comparison, we follow Demšar
(2006) and append ranks for each method. In general, we outperform the purely constrastive methods.
Even when compared to the mixed reconstructive-contrastive method TS2Vec, we outperform it
overall.

3.2 ABLATION STUDIES: (Q3)

We conduct a series of ablation experiments to determine if the observed effects were due to the key
components of XIT. We pretrained on the same three folds of 75 UCR datasets and finetuned on all
100 datasets. We ablated by systematically omitting our method’s three key components XD-MixUp,
TC loss, and SICC loss. Note that SICC is inherently linked to the presence of XD-Mixup, so SICC
in isolation is not feasible. Similarly, only XD-MixUp without a loss is not a valid training procedure.
The results are presented in Table 3. Our method XIT is superior to any ablated models when looking
at the ranks for accuracy, AUROC, and Macro F1 scores. In particular, the high AUROC score means
we have a high overall probability of correctly classifying classes, whereas the high Macro F1 score
shows we can also correctly classify underrepresented classes. Therefore, we conclude that all three
building blocks of our combined pretraining procedure XIT are relevant for the performance increases
observed in the previous section.

3.3 INSPECTING THE LEARNED REPRESENTATIONS: (Q4)

To gain insight into the effects of our proposed method, we examined the structure of multiple
embedded time series datasets. When embedded with a newly initialized encoder, we achieve a
Davies-Bouldin Index (DBI) (Davies & Bouldin, 1979) of 7.63. After pretraining on 75 datasets, this
score improved to 7.32. This relatively small decrease suggests that our method does not need to
drastically alter the overall structure, but rather rearranges the intra-dataset structure. This effect can
be seen qualitatively in the appendix in Figure 6, which shows a projection of the latent representation
learned by XIT of multiple unseen datasets. We observe a major structuring effect without any
finetuning or the introduction of any labels. This demonstrates that in the majority of cases, the
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Table 2: This table shows the classification performance of XIT in comparison to baselines when
pretrained on 75 datasets of the UCR repository. The shown Macro F1 scores were computed on three
independent seeds and 25 datasets not seen during pretraining (similar to the hold-out in Figure 4b).

Target Dataset XIT TS-TCC TF-C TS2Vec TNC T-Loss

ArrowHead 50.5±9.2 47.5±2.1 36.9±11.9 57.4±0.4 36.6±8.1 29.5±2.2
BeetleFly 77.6±6.4 66.5±11.0 46.3±7.6 68.0±5.9 67.2±14.5 61.7±6.9
BirdChicken 66.6±12.6 63.0±5.8 56.4±20.0 88.0±8.1 57.8±8.2 61.5±7.7
Car 47.7±2.1 60.2±10.6 25.4±6.0 73.0±2.2 29.9±14.1 23.5±6.0
Crop 53.7±0.7 53.7±1.2 47.1±0.8 40.4±2.5 19.6±9.8 14.1±1.1
Fish 59.4±1.9 55.0±7.9 31.8±6.9 44.6±7.3 12.5±6.3 08.5±4.6
FreezerRegularTrain 77.2±0.3 76.2±0.3 76.9±1.2 76.9±0.5 73.1±8.0 58.3±3.0
GunPoint 72.1±6.3 78.9±2.1 58.7±17.0 94.4±2.8 62.4±22.4 64.6±12.0
GunPointMaleV.Female 92.7±2.2 95.7±3.7 77.6±5.7 86.7±3.4 75.5±8.0 74.3±3.8
Lightning7 65.9±1.2 50.5±3.1 17.5±3.6 78.8±4.7 35.6±17.2 37.3±2.7
MedicalImages 22.2±1.0 06.8±0.0 12.2±3.0 06.8±0.0 09.7±4.3 08.2±2.5
MiddlePh.O.AgeGroup 31.8±4.7 20.2±7.3 39.6±1.8 21.1±2.3 23.9±13.1 25.4±14.9
MiddlePh.O.Correct 36.3±0.0 36.3±0.0 36.3±0.0 36.3±0.0 36.3±0.0 36.3±0.0
MiddlePhalanxTW 19.9±3.7 14.3±2.3 24.3±2.0 15.6±0.7 14.3±7.4 14.6±8.1
OSULeaf 41.9±0.6 41.7±3.0 34.1±2.8 46.1±0.6 14.6±6.6 12.3±2.0
ProximalPh.O.Correct 41.0±0.7 41.0±0.7 46.8±6.2 40.6±0.0 41.4±1.8 40.6±0.0
ShapesAll 70.9±0.2 66.4±0.8 28.4±6.9 50.1±3.9 08.0±5.5 03.0±0.9
SonyAIBORobotSur.1 30.3±0.2 30.0±0.0 76.0±10.3 38.1±4.7 47.8±13.1 45.7±14.0
SonyAIBORobotSur.2 51.6±11.8 50.9±11.6 86.2±1.1 70.4±4.2 63.7±5.7 65.4±1.3
Symbols 72.0±0.5 74.7±1.3 36.7±3.0 90.7±1.9 45.1±19.5 53.6±16.7
Tiselac 29.3±0.3 26.3±0.7 21.2±TBA 18.5±1.2 15.3±2.7 12.3±0.2
ToeSegmentation2 69.6±7.4 74.3±9.6 46.9±18.4 76.0±3.0 56.3±8.4 57.8±0.3
UWaveGestureLib.X 77.1±0.3 69.7±0.5 55.1±5.7 64.1±0.2 32.3±10.6 21.1±2.6
UWaveGestureLib.Z 68.3±1.3 61.3±1.9 51.4±3.2 55.5±1.1 27.1±11.8 22.9±3.1
WordSynonyms 35.1±4.4 17.3±0.6 06.6±1.1 03.3±0.5 04.0±1.3 03.1±1.7

Average Macro F1 ↑ 54.4±3.2 51.1±3.5 43.1±6.1 53.7±2.5 36.4±9.1 34.2±4.7
Rank ↓ 2.10±1.2 3.06±1.6 3.56±1.8 2.82±1.6 4.48±1.0 4.98±1.1

Table 3: The ablation studies we performed to answer (Q4). We followed the same evaluation as in
Table 2. Ranks closer to one are better, bold denotes best. The results demonstrate that each of the
key components, XD-MixUp, TC loss, and SICC loss, contribute to the overall performance of XIT.

Pretraining Component AUROC rank ↓ Accuracy rank ↓ Macro F1 rank ↓
XD-MixUp + SICC + TC (XIT) 1.800 ±0.91 1.780 ±0.89 1.780 ±0.84
XD-MixUp + SICC 3.560 ±0.87 3.700 ±0.56 3.580 ±0.79
XD-MixUp + TC 2.060 ±0.94 1.920 ±0.84 1.980 ±0.91
TC 2.580 ±0.91 2.600 ±0.78 2.660 ±0.81

pretraining losses induce beneficial structure in the latent space, which is consistent with the results
of Figure 4.

4 RELATED WORK

Pretraining is a key element of current deep learning, allowing state-of-the-art outcomes in areas
with scarce labels or data by utilizing a shared representation as the basis for adapting to the target
domain. Although it has been extensively studied for domains such as natural language processing
and computer vision, it still remains a challenge for the time series domain (Ma et al., 2023). We
can generally differentiate between supervised, unsupervised, and self-supervised pretraining. The
core idea for the former is to utilize labels to steer the representation learning, while the latter two

8
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approaches work without any labels. Due to the wide availability of unlabeled time series datasets,
we will focus on self-supervised methods in this paper.

Self-Supervised Time Series Pretraining Several methods have been proposed to pretrain models
on unlabeled datasets. The three main types of losses to optimize are reconstruction, pseudo-
labels, and contrastive methods (Ma et al., 2023). The SimMTM framework (Dong et al., 2023)
reconstructs time series from multiple masked variants and series-wise similarities within and across
domains. Further models based on reconstructions are Ti-MAE Li et al. (2023) and its extension
TimeMAE Cheng et al. (2023). Contrastive methods, on the other hand, need means to generate view
pairs, e.g., as proposed in LEAVES (Yu et al., 2022), by Tang et al. (2020), or in PAITS (Beebe-Wang
et al., 2023). Shi et al. (2021) learn long-term dependencies using Dynamic Time Warping (DTW)
(Sakoe & Chiba, 1978). Kiyasseh et al. (2021) specifically apply their contrastive learning method
CLOCS to ECG signals. In TS2Vec by Yue et al. (2022), instance-wise and temporal hierarchical
contrasting is used to capture multiscale contextual information and dynamics. TS-TCC (Eldele et al.,
2021) is a pretraining framework involving two views generated by weak and strong augmentations,
which we also use in XIT. This is then fed into a temporal and contextual contrasting module using
the NTXent loss (Sohn, 2016) for learning robust and discriminative representations. Furthermore,
the authors indicate that it is effective in transfer learning scenarios with few-labeled targets. To
use spectral information in contrasting, Zhang et al. (2022) developed TF-C, allowing the model to
align the time and frequency domains with the respective views. Wickstrøm et al. (2022) propose
MixUp (Zhang et al., 2018) for the time domain, where two samples are combined by a sampled
parameter λ, which is predicted as a pseudo-label. Furthermore, the two mixed views are aligned via
the same contrastive NTXent loss used in TS2Vec, TS-TCC, TF-C, and our method XIT. Tonekaboni
et al. (2020) propose TNC, utilizing time series windows where ones with close-proximity share
similar latent representations. In addition, Franceschi et al. (2019) propose T-Loss, which employs
time-based negative sampling along with a triplet loss to learn an encoding.

Multi-Dataset Pretraining While it is common to pretrain on a single source dataset, there is
very little research in the area of multi-dataset pretraining, especially in the context of time series
classification (Ma et al., 2023). This arises from the fact that applying multiple datasets in a suboptimal
setting may drastically decrease the performance (Zhang et al., 2022), leading to a so-called negative
transfer. Other works (Gikunda & Jouandeau, 2021; Tseng et al., 2023; Brüsch et al., 2023) leverage
multiple datasets in homogeneous settings where source and target distributions match. As far as
the authors are aware, Kashiparekh et al. (2019) and Zhang et al. (2022) are the only works that
investigate proper multi-dataset pretraining. However, the former applies it in a supervised and very
inflexible way, using one encoding head per source dataset, and the latter reports significant challenges
when applying their method TF-C to multiple datasets at once, which they call many-to-one setting.
They note a clear drop in performance when increasing the number of datasets from one to two, three,
and four.

5 CONCLUSION & FUTURE WORK

Our research presents a paradigm shift in time series pretraining. Contrary to prevailing beliefs, our
findings illustrate the possibility and effectiveness of multi-dataset pretraining for time series. By
introducing XIT, consisting of XD-MixUp along with the SICC and TC losses, we have carved a
promising path in self-supervised contrastive pretraining for time series. Our empirical evaluations
showcased the efficacy of this method, especially in low-data regimes, against both supervised
training and other self-supervised pretraining techniques. In essence, not only have we debunked the
myth that multi-dataset pretraining is infeasible for time series, but we have also opened the door for
further advancements in leveraging multiple datasets—beyond simultaneously using 75 datasets.

While our study has advanced time series pretraining, several promising directions beckon further
exploration. The versatility of our approach needs evaluation on further tasks like forecasting and
anomaly detection. We are eager to explore model reprogramming (Yang et al., 2021) to enhance
adaptability and further decrease negative transfer. While we utilized MixUp augmentation, exploring
specialized interpolations like DTW may yield further insights. Furthermore, we want to explore the
potential of our SICC loss and integrated interpolation mechanism in other time series models and
different modalities. Much like in NLP, future work might consider creating compound datasets with
special attention to the types and proportions of contained data.
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REPRODUCIBILITY

We acknowledge the significance of reproducibility in scientific research and have taken multiple
steps to ensure the strength and replicability of our work.

• Code: Our implementation is accessible on GitHub at https://anonymous.4open.
science/r/TS-XIT. We have used publicly available software and libraries to guarantee
accessibility and have comprehensively described the architecture, software, versions, and
hyperparameters in the Appendix A.2. Our code is deterministic, incorporating seeds for all
random number generators to guarantee the replicability of results. We attempted to include
most of the code used to create the result tables and figures in this manuscript.

• Datasets: This study only utilizes publicly available datasets that have been correctly cited.
Furthermore, the authors contribute to an open-source repository containing all the datasets
used in this work, which will be made available upon acceptance.

• Architecture and Algorithm Details: We have provided thorough descriptions and for-
mulations of our architecture in the main text, supplemented by additional clarifications
and implementation details in the Appendix A.2, ensuring a clear understanding of our
contributions and facilitating reproduction. This documentation is intended to provide
researchers with all the necessary information to replicate our experiments accurately.
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A APPENDIX

A.1 OUR PROPOSED PROCEDURE

The complete XIT procedure to perform both pretraining and subsequent finetuning is given in
Algorithm 1.

A.2 EXPERIMENTAL DETAILS

This section gives more details for the experimental evaluation that should aid in reproducing our
results. First of all, Table 4 lists the datasets we used in the many2many evaluation. Similarly,
Table 5 compares the datasets in the UCR repository, which are freely available from https:
//timeseriesclassification.com.

Implementation details We used PyTorch (Paszke et al., 2019) version 2.0 as the base framework
for all models. We performed almost all training in 16-bit mixed precision to save resources. For
TS2Vec, we stayed very close to the reference implementation and therefore trained in 32-bit
precision, used the existing hyperparameters for pretraining (see Table 6), and no early stopping in
finetuning. We used early stopping after four training epochs without improvements in the AUROC
score for all other finetuning/supervised experiments. We ensured that we trained for at least 40
steps before stopping and up to a maximum of 2000 steps. The Adam optimizer with β1 = 0.9 and
β2 = 0.999 was used to optimize all models with the hyperparameters given in Table 6. For the
special case of the disproportionally large Tiselac dataset, we increased the batch size to 256 for faster
completion. For the data interpolation in eq. (1), we set α = 0.2 as determined by a hyperparameter
search. In eq. (2) we set β = 0.25 according to our hyperparameter search, effectively giving
three times more weight to LSICC than to LTC. In h(c), BatchNorm1D normalizes the vectors per
dimension by subtracting the mean and dividing by the empirical standard deviation. We used the
default PyTorch configuration, maintaining a running average of the elements within the mini-batches.
We set the temperature τ in eq. (4) to 0.2. We based our implementation of the baselines on the official
repositories of TS-TCC (https://github.com/emadeldeen24/TS-TCC), TF-C (https:
//github.com/mims-harvard/tfc-pretraining), TNC https://github.com/
sanatonek/TNC_representation_learning, T-Loss https://github.com/
White-Link/UnsupervisedScalableRepresentationLearningTimeSeries and
TS2Vec (https://github.com/yuezhihan/ts2vec), respectively.

Encoder & Summarization Model We used a simple and efficient encoder F with three residual
convolution layers and configured it as in the work of Wang et al. (2017) and TS-TCC. For the model
S used to obtain the context vectors c, we used the exact same transformer model configuration as
in TS-TCC: A token dimension of 64 obtained from a linear projection with bias term, multi-head
attention with four heads, and a total of four pre-norm transformer layers. The feedforward MLPs
each consist of two layers with hidden dimensions 64, with a ReLU activation and subsequent
dropout layer in between and a final dropout layer at the end. Both dropout probabilities were set to
10%. We employed a transformer model (Vaswani et al., 2017) S to calculate the context vectors c,
similar to TS-TCC. We observed in the supplementary implementation that Eldele et al. (2021) did
not include positional encodings in their transformer tokens and thus used a set model instead of a
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Algorithm 1 The XIT method consists of the pretraining and finetuning phases.

Input: datasets for pretraining DPT (unlabeled) and finetuning DFT (labeled); batch size B;
constants α, β, and τ ; random strong and weak augmentations As and Aw; initialized models Fθ ,
S, g, and h; gradient descent optimizer OPT over all four models; initialized classifier model C;
gradient descent optimizer OFT over C (and optionally Fθ)
Output: learned models Fθ and C

if no parameters θ of F are known then
# Pretraining phase
for mini-batch {xi}Bi=1 ∼ DPT do ▷ loop until convergence

for all i ∈ {1, . . . , B} do
# Projections
zi ← Fθ(xi)

κi ← h
(
S
(
z
1:(K−1)
i

))
# XD-MixUp
λi ∼ Beta(α, α)
j ← (i+ 1) mod B
x̃i ← λixi + (1− λi)xj

# Strong augmentation
x̃i,s ∼ As(x̃i)
z̃i,s ← Fθ(x̃i,s)

c̃i,s ← S
(
z̃
1:(K−1)
i,s

)
κi,s ← h(c̃i,s)
# Weak augmentation
x̃i,w ∼ Aw(x̃i)
z̃i,w ← Fθ(x̃i,w)

c̃i,w ← S
(
z̃
1:(K−1)
i,w

)
κi,w ← h(c̃i,w)

end for
# Compute the Temporal Contrasting loss

Ls
TC = − 1

B

∑B
i=1 log

(
g(c̃i,w,z̃K

i,s)∑B
j=1 g(c̃i,w,z̃K

j,s)

)
Lw

TC = − 1
B

∑B
i=1 log

(
g(c̃i,s,z̃

K
i,w)∑B

j=1 g(c̃i,s,z̃K
j,w)

)
LTC ← 1

2 (L
s
TC + Lw

TC)
# Compute the Soft Interpolation Contextual Contrasting loss
Form Bs = (κ1,l, . . . , κB,l, κ1,s, . . . , κB,s, κ1,r, . . . , κB,r)
Form Bw = (κ1,l, . . . , κB,l, κ1,w, . . . , κB,w, κ1,r, . . . , κB,r)
Compute LSICC(B

s) and LSICC(B
w) according to eq. (3)

LSICC ← 1
2 (LSICC(B

s) + LSICC(B
w))

# Complete iteration
LTotal ← βLTC + (1− β)LSICC
Update all model parameters with OPT to minimize LTotal

end for
Store learned parameters θ of F

end if

# Finetuning phase
for mini-batch {(xi, yi)}Bi=1 ∼ DFT do ▷ loop until convergence

zi ← Fθ(xi)
ŷi ← C(zi) ▷ Obtain class probabilities
LClass ← CE(ŷi, yi) ▷ Use cross-entropy as criterion
Update model parameters with OFT to minimize LClass

end for
return learned composed model Fθ ◦ C
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Table 4: This provides an overview of the datasets we used to evaluate and compare our method with
the baselines. Note that we always only used the first variate in the case of multivariate datasets.

# Samples
Name Train Validation Test Length # Classes Balanced

Sleep-EDF 25,612 7,786 8,910 3,000 5 No
FD-A 8,184 2,728 2,728 5,120 3 No
HAR 5,881 1,471 2,947 128 6 No
ECG 43,673 10,920 1,904 1,500 4 No
Epilepsy 7,360 1,840 2,300 178 2 No

Table 5: The distribution of datasets from the UCR repository used in our experiments.

Domain Sequence Length Dataset Train Size
min mean max count min median max

Audio 270 337.5 405 2 60 132 204
Device 96 120.0 144 2 180 4553 8926
Ecg 82 113.5 140 4 23 61 500
Eeg 50 230.0 510 5 56 316 5890
Har 30 127.2 315 9 30 151 2238
Image 23 226.1 512 30 16 399 81714
Meg 200 200.0 200 1 727 727 727
Motion 8 229.8 343 14 36 332 7494
Other 36 118.5 201 2 18 1238 2459
Sensor 24 273.1 577 14 20 85 3636
Simulated 15 159.4 500 8 20 93 1000
Sound 217 217.0 217 1 3315 3315 3315
Spectro 234 382.0 570 7 28 57 613
Traffic 24 24.0 24 1 20 20 20

Total 8 221.1 577 100 16 180 81714

sequence model. Nevertheless, we decided not to use it either since adding a sine-cosine positional
encoding (Vaswani et al., 2017) did not noticeably affect the results.

Finetuning To evaluate the utility of the learned representation for classification, we trained simple
classifiers C on top of all encoder models Fθ. This is embedded into the complete procedure as
shown in Algorithm 1. Following the linear probing experiment of van den Oord et al. (2018) for
good comparability, a neural classifier head with a single linear layer is trained while the encoder is
frozen. The final output is transformed with a softmax, and the training criterion is cross-entropy.
The hyperparameters for finetuning are given in Table 6.

Details on TF-C We changed the frequency transformation via the FFT to be orthonormal by
scaling the result of length T by

√
T . This preserves the signal’s magnitude, allowing us to perform

training and inference in 16-bit mixed precision without numerical issues. Furthermore, we use the
complete pretraining datasets instead of only subsets for the N-to-one settings (Zhang et al., 2022,
Appendix K). We use mostly the same hyperparameters as in Appendix E when pretraining TF-C.
However, we deviate slightly to follow the linear probing evaluation. This means that in finetuning,
we only train a single-layer classifier head instead of a deeper MLP. We only optimize the classifier
and classifier loss instead of training the encoder as well or optimizing the pretraining and classifier
losses jointly. We use the very same encoder config for all datasets for a more direct comparison,
especially in the multi-dataset experiments.

A.3 ADDIDITONAL RESULTS

First, we show how our approach compares to the baselines when run on increasing fractions of the
labeled target datasets. We follow the same setup as in Table 1, so all experiments were run five times
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Table 6: This table shows the differing hyperparameters we chose by search using Optuna (Akiba
et al., 2019). In particular, we also considered larger batch sizes of up to 1,024 for the pretraining
phase but did not find them to be beneficial, much like in the works of TS-TCC and TF-C.

Pretraining Finetuning

Model Batch size LR Weight decay Batch size LR Weight decay

XIT 64 0.0001 0.0003 64 0.00014 0.0016
TS-TCC 128 0.0003 0.0003 64 0.00014 0.0016
TF-C 64 0.0003 0.0005 64 0.0003 0.0003
TS2Vec 16 0.001 0.0005 64 0.00014 0.0016
TNC 64 0.001 0.0005 64 0.00014 0.0016
T-Loss 20 0.001 0.0005 64 0.00014 0.0016
Supervised – – – 64 0.00014 0.0016

with different seeds. Results are shown in Figure 5. We excluded Epilepsy since, except for TF-C, all
models performed similarly well for 5% of the data and more. We can generally conclude that our
method works best in low-data scenarios and has the smallest variance. We also suspect that some
bad data samples are present in ECG since increasing the amount of data caused a deterioration in
classification performance. Similar effects might affect TF-C when pretrained on Sleep-EDF.

Table 1 in the main paper only contained AUROC scores due to space constraints. Thus, we provide
Accuracy and Macro F1 scores for easier comparison in Table 8 and Table 7, respectively.

As a supplement to the inspection of the embedding spaces in Section 3.3, we provide a qualitative
visual excerpt of their low-dimensional projections on three datasets. See Figure 6.

Table 7: Macro F1 scores in percent for the evaluation shown in Table 1. Higher is better.

PT Model Sleep-EDF FD-A HAR ECG Epilepsy

0 Superv. 28.36 ±4.8 70.36 ±3.8 36.20 ±2.3 24.09 ±1.4 79.17 ±1.5

1
XIT 29.88 ±1.1 80.56 ±0.8 37.85 ±3.3 22.65 ±0.9 71.61 ±15.9
TS-TCC 35.30 ±0.9 20.84 ±0.0 5.10 ±0.0 21.97 ±0.8 45.22 ±1.8
TF-C 34.77 ±1.6 67.18 ±9.7 24.85 ±5.1 17.68 ±0.8 44.46 ±0.0

2
XIT 31.30 ±1.2 81.98 ±1.3 37.02 ±2.0 22.81 ±0.5 83.84 ±1.9
TS-TCC 33.57 ±1.6 20.84 ±0.0 6.34 ±2.6 22.98 ±0.6 44.43 ±0.0
TF-C 29.62 ±5.9 56.83 ±7.8 29.18 ±3.6 17.39 ±0.4 44.46 ±0.0

3
XIT 32.57 ±1.7 82.35 ±1.4 35.48 ±3.0 23.49 ±0.7 82.22 ±1.9
TS-TCC 30.77 ±2.2 20.84 ±0.0 6.74 ±1.7 22.89 ±0.8 44.43 ±0.0
TF-C 29.64 ±3.9 74.66 ±5.0 28.94 ±9.0 22.23 ±1.4 44.46 ±0.0

4
XIT 28.33 ±2.1 77.57 ±2.7 33.88 ±1.7 24.01 ±1.7 80.18 ±7.9
TS-TCC 26.71 ±1.7 20.84 ±0.0 13.32 ±2.0 23.00 ±0.5 44.43 ±0.0
TF-C 29.95 ±3.6 71.89 ±2.4 27.83 ±7.6 19.45 ±3.0 44.46 ±0.0
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Figure 5: Comparison of XIT to TS-TCC, TF-C, and supervised when pretraining on one to four
datasets and subsequent finetuning to each. The performance is measured in AUROC, where higher
is better. Please note the differently scaled y-axes.
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Figure 6: Qualitative excerpt from a single pretrained XIT model trained on 75 UCR datasets,
evaluated on three hold-out datasets. The figure was generated by performing a reduction to two
dimensions via Principal Component Analysis on the output of the encoder F . Furthermore, we
include the DBI to further support our visual observation. Lower DBI→ more separated clusters.

Table 8: Accuracy scores in percent for the evaluation shown in Table 1. Higher is better.

PT Model Sleep-EDF FD-A HAR ECG Epilepsy

0 Superv. 45.92 ±3.9 71.28 ±3.1 44.38 ±2.2 47.98 ±1.5 89.52 ±0.6

1
XIT 55.33 ±1.0 77.72 ±1.0 46.07 ±2.3 45.10 ±1.8 87.48 ±4.9
TS-TCC 57.06 ±0.7 45.46 ±0.0 18.07 ±0.0 50.10 ±0.6 80.12 ±0.3
TF-C 57.53 ±1.0 65.91 ±9.6 38.46 ±3.3 51.81 ±0.2 80.04 ±0.0

2
XIT 54.70 ±1.2 79.21 ±1.7 45.48 ±1.1 46.88 ±0.6 91.38 ±0.8
TS-TCC 56.17 ±1.1 45.46 ±0.0 18.25 ±0.3 49.20 ±1.4 79.96 ±0.0
TF-C 50.71 ±5.8 56.51 ±5.2 39.23 ±2.2 51.82 ±0.1 80.04 ±0.0

3
XIT 54.69 ±1.0 79.56 ±1.7 43.77 ±1.7 47.40 ±1.6 90.69 ±0.8
TS-TCC 54.76 ±1.5 45.46 ±0.0 18.06 ±0.8 50.31 ±0.3 79.96 ±0.0
TF-C 53.47 ±4.8 70.29 ±5.9 38.65 ±8.3 48.14 ±4.1 80.04 ±0.0

4
XIT 50.91 ±1.5 74.20 ±2.8 43.18 ±1.1 46.89 ±2.2 90.11 ±3.0
TS-TCC 50.74 ±1.8 45.46 ±0.0 24.67 ±1.5 49.33 ±0.8 79.96 ±0.0
TF-C 49.18 ±3.9 67.38 ±2.7 39.24 ±5.8 51.37 ±0.4 80.04 ±0.0
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