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ABSTRACT

In this paper, we cast the problem of task underspecification in causal terms, and
develop a method for empirical measurement of spurious associations between
gender and gender-neutral entities for unmodified LLMs, detecting previously un-
reported spurious correlations. We then describe a lightweight method to exploit
the resulting spurious associations for prediction task uncertainty classification,
achieving over 90% accuracy on a Winogender Schemas challenge set. Finally,
we generalize our approach to address a wider range of prediction tasks and pro-
vide open-source demos for each method described here.

1 INTRODUCTION AND RELATED WORK

This paper investigates models trained to estimate the conditional distribution: P (Y |X,S), where
S is the cause of sample selection bias in the training dataset. Selection bias is not an uncommon
problem, as most datasets are subsampled representations of a larger population, yet few are sampled
with randomization (Heckman, 1979).

1.1 CAUSAL DAGS AND BIASES

Sample selection bias occurs when some mechanism, observed or not, causes preferential inclusion
of samples into the dataset (Bareinboim and Pearl, 2012). Employing the language of causal infer-
ence, selection bias is distinct from both confounder and collider bias. Confounder bias can occur
when two variables have a common cause, whereas collider bias can occur when two variables have
a common effect. Correcting for confounding bias requires that one condition upon the common
cause variable; conversely correcting for collider bias requires that one does not condition upon the
common effect (Pearl, 2009).

(a) Well-specified:
Symbolic entity G,
a common cause of
both dataset features
and labels.

(b) Underspecified: G
unobserved by fea-
tures, thus features
contain no causes of
the labels.

Figure 1: Data generating process for high
dimensional data, such as in NLP, where X
and Y represent high dimensional text fea-
tures: the dataset features and labels, while
W, G, and S represent low dimensional sym-
bolic entities that may cause the text.

The type of selection bias that interests us here is that
which involves more than one variable (observed or
not), whose common effect results in selection bias.
Such assumed relationships can be compactly and
transparently represented as a causal data-generating
process (DGP) in the form of a directed acyclic
graph (DAG), for example illustrated in Figure 1.
The absence of arrows connecting nodes in causal
DAGs encodes assumptions, for example that W and
G in Figure 1(a) are stochastically independent of
one another. The direction of the arrowhead en-
codes our assumptions about the direction of cau-
sation. For example, the two arrows departing from
W and G toward S encode the assumption that S is a
common effect of W and G.

In Figure 1, the twice-encircled node, S, symbol-
izes some mechanism that can cause samples to be
selected into the dataset. To capture the statistical
process of sampling for dataset formation, one must
condition on S, thus inducing the collider bias relationship between W and G into the DGP.
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We will use the term selection induced collider bias to refer to circumstances such as this one,
when the selection bias mechanism induces a collider bias relationship in the dataset that would
not have been there otherwise1. Selection induced collider bias has been covered in medical and
epidemiological literature (Griffith et al., 2020) (Munafò et al., 2018) (Cole et al., 2009) and re-
ceived extensive theoretical treatment from Pearl and Bareinboim in (Bareinboim and Pearl, 2012),
(Bareinboim et al., 2014), (Bareinboim and Tian, 2015) and (Bareinboim and Pearl, 2016), yet has
received very little attention in deep learning literature.

1.2 UNDERSPECIFICATION AND SPURIOUS ASSOCIATIONS

We define a learning task as underspecified when none of the features available to the model (at
training or inference time) are causes of the label. Figure 1(b) encodes this relationship with the
absence of an arrow between features, X, and labels, Y. With no causal features available, models
must resort to learning any spurious associations that will reduce predictive risk, regardless of how
tenuous the association may be. We refer to these as otherwise non-interacting spurious associations.

We would like to draw a distinction between the type of spurious association induced by underspec-
ification, and the spurious associations most often addressed in today’s literature. For example, the
task of predicting cow vs camel (perhaps based on spurious grassy vs sandy background pixel fea-
tures), would not be considered an underspecified task, due to the availability of the causal cow vs
camel pixel features in the foreground. From a causal perspective, the symbolic background entity
is a common cause of both the pixel features and the labels, inducing confounder bias and thus the
learning of spurious associations along a secondary path (Arjovsky et al., 2019), in addition to the
primary direct causal path from feature to label.

A natural question to ask is, how does spurious association flow from X to Y, if not through
some confounding variable like background, nor though a direct causal path. As demonstrated
in (D’Amour et al., 2020), weakly-interacting prediction tasks display significant variance, even due
to changes in the random seed initialization. In this work, by focusing on variables engaged in a
relationship of selection induced collider bias, we are able to open up a tertiary path between X and
Y : the path along X ←W → S ← G→ Y in Figure 1(b). In distinction to (D’Amour et al., 2020),
we argue this causal perspective facilitates the identification of otherwise non-interacting (and pre-
viously unreported) spurious associations, and importantly enables the injection of these ‘benign’
spurious tokens into text at inference time, to achieve an uncertainty measurement.

2 CONTRIBUTIONS

In this paper we make the following contributions:

• We cast the problem of task underspecification in causal terms and apply causal inference methods
to hypothesize the effects of selection induced collider bias on underspecified tasks.

• We test these hypotheses on unmodified and widely used pre-trained LLMs via a case study of
gender pronoun resolution, resulting in two new findings:

– A method for empirical measurement of spurious correlations between gender and gender-
neutral entities for unmodified LLMs which permits measurement of previously unreported
spurious correlations between gender vs location and time.

– A method for quantifying inference-time task uncertainty with an accuracy of over 90% when
testing RoBERTa-large with the Winogender Schema challenge test set.

• To demonstrate that both above methods are reproducible, lightweight (dozens of lines of code),
time-efficient (takes seconds), and plug-n-play compatible with almost any BERT-like LLM, we
provide open-source and running demos:

– Spurious Correlations: https://huggingface.co/spaces/paper5186/spurious.
– Uncertainty: https://huggingface.co/spaces/paper5186/uncertainty.

• We generalize our approach to address a wider range of prediction tasks and provide results on a
generic DGP that are consistent with our empirically measured results on LLMs.

1Although conflated, collider bias can occur independent of selection bias and vice versa (Hernán, 2017).

2

https://huggingface.co/spaces/paper5186/spurious
https://huggingface.co/spaces/paper5186/uncertainty


Under review as a conference paper at ICLR 2023

3 PROBLEM SETTING: GENDER PRONOUN RESOLUTION TASKS

An example of underspecification can be found in the gender pronoun resolution task in Figure 2(b)2

Gender pronoun resolution will serve as a case study for the rest of this paper, for largely two
reasons: 1) it is a well-studied problem with many recent advances (Cao and Daumé III, 2020),
(Lu et al., 2018), (Webster et al., 2020), (Zhao et al., 2018) and yet remains a challenging problem
for modern LLMs (Deng et al., 2022) and 2) it provides many human-relatable underspecified task
scenarios.

(a) Well-specified (X → Y ): Masked
pronoun coreferent with the man.

(b) Underspecified (X ↛ Y ): Masked
pronoun coreferent with psychologist.

Figure 2: Gender pronoun resolution task with modified Winogender
Schema (Rudinger et al., 2018) test sentences.

To apply causal infer-
ence methods to gender
pronoun resolution, we
must make some initial as-
sumptions about a plau-
sible DGP for the rele-
vant features and labels,
that we can later support
with empirical measure-
ment. These assumptions
have been transparently represented in Figure 1 and Figure 2. Note the heterogenous nature of the
DAG variables, in which X and Y represent high dimensional features like text in the dataset, while
W, G, and S represent low dimensional symbolic entities that may cause the text.

Specifically in Figure 2, the symbol X represents the text sentences in our dataset, and Y represents
the label: a gender pronoun. The arrow pointing from X to Y encodes our assumption that X is
more likely to cause Y, rather than vice versa. The remaining symbols in Figure 2 are not recorded
in the dataset. The symbol G represents gender and in well-specified gender resolution tasks, G
causes both X and Y . W represents gender-neutral entities that are not the cause of Y , but still of
interest because they cause X . Additionally, in order to measure the effects of selection induced
collider bias, we must find entities for W that are also the cause of S: selection into the dataset.

The W → S ← G relationship can represent any selection bias mechanism that has a gender depen-
dency upon otherwise gender-neutral entities. For example, in data sources like Wikipedia written
about people, it is plausible that access (e.g. access to resources) has become increasingly less gen-
der dependent as the date approaches more modern times, but not evenly in every place. In data
sources like Reddit written by people, W → S ← G can plausibly capture the scenario that even
in the case of subreddits about gender-neutral hobbies, the style of the moderation and community
may result in gender-disparate access to a given subreddit. In both cases, the disparity in access can
result in preferential inclusion of samples into the dataset, on the biases of gender. In this paper, we
use W to represent date and place, for our LLM measurements.

Figure 1(b) and Figure 2(b) are the underspecified counterparts to the well-specified prediction tasks
in Figure 1(a) and Figure 2(a). As defined above, to achieve the underspecification of interest here,
we must obscure any causal features from X . In the case of gender pronoun resolution, this is
achieved by removing the path between G and X . Further, because W is also gender-neutral, once
we have removed any gender-identifying features from X , we should additionally remove the path
between X and Y, as there is no longer any feature in X causing Y.

With the causal path from X → Y removed, we would then expect X and Y to be unconditionally
independent in the real world (RW ). However, in the scenario depicted in Figure 1(b) and Fig-
ure 2(b), selection induced collider bias has opened the backdoor path, X ← W → S ← G → Y ,
Thus, the learned model (LM ) is encouraged to learn any spurious association along this path that
reduces predictive risk, resulting in X and Y becoming unconditionally dependent.

Formally, selection induced collider bias causes the transformation: (Y ⊥⊥X)RW
s⇒ (Y ⊥̸⊥X)LM,

due to the spurious path through S: X ← W → S ← G → Y . Whereas spurious associations
learned in the well-specified model would more likely travel a path directly through a confounding
shortcut feature, such as a sandy or grassy background, as was discussed previously in the camel vs
cow example.

2A single prediction task may be partitioned into well-specified and underspecified ‘sub’tasks. For example,
Figure 2(b) may be well-specified for part-of-speech tagging.
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4 METHOD: SPURIOUSNESS DUE TO SELECTION INDUCED COLLIDER BIAS

In addition to transparently stating our assumptions, the causal DAGs in Figure 1 and Figure 2 entail
specific conditional probabilities that should be empirically measurable, under the condition of two
additional assumptions: For a given causal graph, Gr, and a measured probability distribution Pr,
we are assuming 1) the Markov assumption: (X⊥⊥Y |Z)Gr =⇒ (X⊥⊥Y |Z)Pr and 2) faithfulness:
(X⊥⊥Y |Z)Gr ⇐= (X⊥⊥Y |Z)Pr (Peters et al., 2017), where Z is the set {W,G, S}.
To capture the statistical process of dataset formation, we implicitly condition on S = 1 for all the
samples in the dataset. Conditioning on S induces collider bias between G and W in the form of
S’s structural equation (Pearl, 2009): S := fs(W,G,Us) (where Us is the exogenous noise of the S
variable), entailing a conditional dependency between otherwise non-interacting entities: G,W .

However, at inference-time we only have access to X,Y . Here we will show that for underspecified
tasks, we would expect P (Y |X) to be distributed similarly to P (G|W ). Revisiting the underspec-
ified DAGs in Figure 1(b) and Figure 2(b), and applying the Markov and faithfulness assumptions,
we can estimate the conditional probability of a gender pronoun, Y, given gender-neutral text, X.

P (Y |X) = P (Y |X,S=1) (1)
∼ P (G|X,S=1) (2)
∼ P (G|X,W ) (3)
∼ P (G|W ) (4)

Equation (1) shows a mapping from the target unbiased quan-
tity to the measured selection biased data, as defined in
(Bareinboim and Pearl, 2012). Equation (2) assumes very high
correlation between the textual form of gender in Y (as a gen-
der pronoun), with the symbolic variable for gender, G. Equa-
tion (3) replaces S with the variables in its structural equation,
S := fs(W,G,Us), which entails the conditional dependence
P (G|W ) ̸= P (G), and thus we add W behind G’s conditioning bar. Finally, Equation (4) assumes
we have an underspecified (gender-neutral) text, X, so P (G|X) = P (G), and thus we remove X
from behind the conditioning bar.

Equation (1) - Equation (4) show that P (Y |X) ∼ P (G|W ) in underspecified tasks, providing
information about the otherwise inaccessible latent representations for G and W, and specifying a
measurable relationship between X and Y, that we can validate in the next section.

4.1 EXPERIMENTAL SETUP: MASKED GENDER TASK (MGT) CHALLENGE SET

To validate spurious associations between otherwise non-interacting entities, such as time
and gender, we desire a challenge test set of gender-neutral text. However, the text from
the example in Figure 2(b) does not satisfy this requirement due to associations between
gender and occupation. We also desire a test set compatible with the Masked Language
Modeling (MLM) objective used in the pretraining of LLMs3, for the greatest applicabil-
ity of the results. Table 1 shows the heuristic used to create the MGT challenge set
composed of (2Python f-string templates) × (5 tenses ofverb to-be) × (6life stages) ×
(30 values forW as date)× (20 values forW as place) = 36000 gender-neutral test sentences.

In Section 4.2, each plotted dot is the softmax probability (averaged over 60 gender-neutral texts) for
predicted gender pronouns. These are plotted against year (or country), where the year (or country)
along the x-axis matches the gender-neutral W value injected into the gender-neutral text4.

As the final layer in the pre-trained LLM is a softmax over the entire tokenizer’s vocabulary, we sum
(without normalization) the gender-identified portion (as listed in Table 3) of the probability mass
from the top five predicted words5.

4.2 RESULTS: PRE-TRAINED LLMS GENDER-DATE AND GENDER-PLACE DEPENDENCIES

Figure 3 shows pre-trained BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019), base and
large, results following the experimental setup described above.

3Tests compatible with the MLM objective can avoid fine-tuning weights during measurement procedures.
4For example, the purple and green dots at the x-axis position of 1938 are the female and male pronoun

softmax probabilities for the masked word in input texts like ‘In 1938, [MASK] will became a teenager.’.
5We pick the number k = 5 for the ‘top k’ predicted words, because 5 is the default value for the ‘top k’

argument in the Hugging Face ‘fillmask()’ function used for inference.
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Table 1: Heuristic for creating gender-neutral input texts for the MGT challenge set, and example
rendered text. For verb we used past, present and future tenses of the verb to be: [‘was’, ‘became’,
‘is’, ‘will be’, ‘becomes’], and for life stage we used proper and colloquial terms for a range
of life stages: [‘a child’, ‘a kid’, ‘an adolescent’, ‘a teenager’, ‘an adult’, ‘all grown up’], excluding
life stages past adulthood due to age gender-inequities. For the text versions of w, we used a range
of 30 dates and 20 places, defined in Appendix C.

W Category Python f-string templates Example text

Date & Place ‘f"[MASK] {verb} {life stage} in {w}."’ ‘[MASK] was a teenager, in 1953.’
‘f"In {w}, [MASK] {verb} {life stage}."’ ‘In Mali, [MASK] will be an adult.’

(a) Spurious correlation between gen-
der and time plotted as averaged soft-
max probabilities for predicted gender
pronouns vs a range of dates.

(b) Difference, between
the female and male pro-
noun, linear fit slope and
Pearson’s r coefficients
for Figure 3(a) (top) and
Figure 3(c) (bottom).

(c) Spurious correlation between gender
and place as list of countries, ordered
by their Global Gender Gap rank (see
Appendix C.1).

Figure 3: Softmax probabilities and linear fit coefficients for LLM predictions displaying spurious
correlation between gender, G, and gender-neutral entities, W, injected into gender-neutral input
texts described in Table 1.

The shaded regions in Figure 3(a) and Figure 3(c) show the 95% confidence interval for the linear
fit, and Figure 3(b) shows the slope and Pearson’s r correlation coefficient (following (Rudinger
et al., 2018)) of the y-axis value against the index of the x-axis, for these plots. It is noteworthy
that the magnitude of the spurious correlations appears similar across model size, but from this data
alone, it is unclear the role of model overparameterization in the learning of spurious associations
due selection induced collider bias.

Overall, in Figure 3 we can see that the injection of different W values into X results in a changed
prediction for Y consistent with the P (G|W ) conditional dependency entailed by collider bias at
S. These spurious associations of gender vs time and place have not been reported before this
work. Further, with the derivation that P (Y |X) ∼ P (G|W ) in underspecified tasks, additional
such spurious associations can be more easily identifiable and measurable using the inference-time
method introduced here.

5 METHOD: EXPLOITING FOR UNCERTAINTY MEASUREMENT

In (Bareinboim et al., 2014) it is proven that one can recover the unbiased conditional distribution
P (Y |X) from a causal DAG, GS , with selection bias: P (Y |X,S =1), if and only if the selection
mechanism can become conditionally independent of the effect, given the cause: (Y ⊥⊥ S|X)GS

.
However, in Figure 1(b) we can see (Y ⊥̸⊥ S|X) trivially, due to the lack of a direct path between X
and Y. Thus, the conditional distribution learned on an underspecified task with selection induced
collider bias will not converge toward the unbiased distribution without additional data or assump-
tions (Bareinboim et al., 2014). However, in this section we will exploit the outcomes of selection
bias to our benefit, in a method we call W-injection and describe below.
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Table 2: Extended Winogender evaluation sentences and uncertainty results for occupation as ‘Doc-
tor’. Only sentence IDs 5 & 6 are well-specified for gender pronoun prediction, and appropriately
all models show the lowest uncertainty for these sentences. For example, a cutoff threshold of 1.0
for our uncertainty metric would correctly classify each sentence as well or underspecified.

ID Sentence with Participant and Coreferent Highlighted
Uncertainty

BERT RoBERTa
base large base large

1 In DATE: The doctor told the man that [MASK] would be on vacation next week. 1.7 1.8 15.0 14.0
2 In DATE: The doctor told the woman that [MASK] would be on vacation next week. 4.3 27.3 4.0 18.8
3 In DATE: The doctor told someone that [MASK] would be on vacation next week. 10.6 8.0 13.3 20.2
4 In DATE: The doctor told the patient that [MASK] would be on vacation next week. 1.9 6.6 14.7 16.6
5 In DATE: The doctor told the man that [MASK] would be at risk without the vaccination. 0.0 0.0 0.3 0.1
6 In DATE: The doctor told the woman that [MASK] would be at risk without the vaccination. 0.3 0.1 0.7 0.5
7 In DATE: The doctor told someone that [MASK] would be at risk without the vaccination. 11.3 10.5 41.3 16.4
8 In DATE: The doctor told the patient that [MASK] would be at risk without the vaccination. 6.1 12.3 19.2 9.3

5.1 EXPERIMENTAL SETUP: EXTENDING WINOGENDER TEXTS AND USING SPURIOUSNESS

We test W-injection using the Winogender Schema evaluation set (Rudinger et al., 2018), composed
of 120 sentence templates, hand-written in the style of the Winograd Schemas (Levesque et al.,
2012), and already seen in Figure 2.

Figure 4: Averaged softmax percentages from
RoBERTa large for predicted female gender pro-
nouns (normalized over all gendered predictions)
vs a range of dates (injected into the text), for the
‘Doctor’ Winogender texts listed in Table 2.

The ‘Sentence’ column in Table 2 shows ex-
ample texts from our extended version of the
Winogender evaluation set, where the occupa-
tion is ‘doctor’. Each sentence in the evalu-
ation set contains: 1) a professional, referred
to by their profession, such as ‘doctor’ 2) a
context appropriate participant, referred by one
of: {‘man’, ‘woman’, ‘someone’, other} where
other is replaced by a context specific term like
‘patient’, and 3) a single pronoun that is ei-
ther coreferent with (1) the professional or (2)
the participant in the sentence (Rudinger et al.,
2018). As was the case in the MGT challenge
set, this pronoun is replaced with a [MASK] for
prediction.

Our extensions to the evaluation set are two-
fold: 1) we add {‘man’, ‘woman’} to the list of
words used to describe the participant in order
to add well-specified tasks to the existing Wino-
gender set, which are all underspecified, and
2) we perform W-injection by prepending each
sentence with the phrase ‘In DATE’6, where
‘DATE’ is replaced by a range of years from
1901 to 20167, similar to what was done in Fig-
ure 3(a).

In Sentence IDs 1 - 4 of Table 2, the masked pronoun is coreferent with the professional, who is
always referred to as the ‘doctor’. Whereas in Sentence IDs 5 - 8, the masked pronoun is coreferent
with the participant, who is referred to as {‘man’, ‘woman’, ‘someone’, and ‘patient’}, respectively.
Thus, of the eight sentences, six are underspecified for the pronoun prediction task, with only IDs 5
& 6 as well-specified. An uncertainty metric should only show low uncertainty for IDs 5 & 6.

6Similar results can be obtained with the W-injection of countries, as was done in Figure 3(c).
7We picked a slightly narrower and more modern date range as compared to that of Figure 3(a) for semantic

consistency with some of the more modern occupations in the Winogender evaluation set.
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(a) Masked pronoun is coreferent with the professional (similar to IDs 1-4 in Table 2), so all these sentences
are underspecified.

(b) Masked pronoun is coreferent with the participant (similar to IDs 5-8 in Table 2), thus sentences containing
‘man’ and ‘woman’ are well-specified, and the rest are underspecified.

Figure 5: RoBERTa-large uncertainty metric on all Winogender Schema occupations. Setting a
threshold at 1.0 for the metric, produces greater than 90% outcomes for both the true-positive clas-
sification of the underspecified tasks and true-negative classification of well-specified tasks.

5.2 RESULTS AND DESIGN OF A SIMPLE UNCERTAINTY METRIC

Figure 4 shows the predicted softmax probability for female pronouns for the masked words in
the Table 2 sentences, normalized to the gendered predictions of the top five predicted words from
pre-trained RoBERTa large. Similar to the findings in (Rudinger et al., 2018), at any given W
value, the softmax probabilities for female pronouns are higher for masked pronouns coreferent with
the patient as opposed to the doctor, indicating the now well-known learned spurious association
between gender vs occupation.

Our contribution here is that we see no gender-time spurious associations in the well-specified sen-
tence IDs 5 & 6. Further, in Figure 4 we can see that the spurious associations due to the W-injection
of an unrelated spurious association (time vs gender) appears additive with the existing spurious as-
sociation between occupation and gender.

As a simple and naive single-value uncertainty metric, we can measure the absolute difference be-
tween the averaged softmax probabilities for the first and last several dates along the x-axis in Fig-
ure 4. For this uncertainty metric, we would expect larger values for underspecified prediction tasks,
in which W-injection has a larger influence on the prediction. For the predictions in Figure 4, this
metric is shown in the ‘Uncertainty’ columns in Table 2 for all four LLMs studied in this paper. Here
we see uncertainty values closest to 0 for well-specified sentence IDs 5 & 6, with a cutoff threshold
of 1.0 producing 100% outcomes for both the true-positive classification (the model should be uncer-
tain) of the underspecified tasks, and true-negative classification (the model should not be uncertain)
of well-specified tasks, for the sentences in Table 2.

Our extended version of the Winogender Schema contains (60 professional occupations )×(4 partic-
ipant texts )× (30 values for DATE )× (2 sentence templates8). This totals to 14,400 test sentences,
which we provide as input text to the 4 pre-trained models thus far investigated in this paper: BERT
base and large, and RoBERTa base and large.

8One template with the masked pronoun coreferent with the professional and the other with the participant.
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We calculate the above-described uncertainty metric for all 60 occupations in the Winogender eval-
uation set and show the results from RoBERTa large in 1) Figure 5(a), with input sentences like
IDs 1 - 4 where the masked pronoun is coreferent with the professional, and 2) Figure 5(b), with
input sentences like IDs 5 - 8 where the masked pronoun is coreferent with the participant. In these
plots the x-axis is ordered from lower to higher female representation, according to Bureau of Labor
Statistics 2015/16 statistics provided by (Rudinger et al., 2018), and the y-axis is the uncertainty
metric defined in the proceeding paragraphs.

Similar to the ‘doctor’ example, in Figure 5, we again see high uncertainty for all six of the un-
derspecified tasks, and low uncertainty for the two well-specified tasks, for almost all Winogender
occupations. For each occupation, we should and largely do see high uncertainty for all four partici-
pants (including sentences containing ‘man’ and ‘woman’) in Figure 5(a), and only high uncertainty
for two participants (excluding sentences contain ‘man’ and ‘woman’) in Figure 5(b).

Concretely, even if we focus exclusively on the most challenging Winogender sentence-types,
in which gender-identifying text: ‘man’ or ‘woman’ is co-occurring but not coreferent with the
masked-out pronoun, with a thresholding value of 1.0 we find the uncertainty metric has a true-
positive classification rate of 90.0% for the underspecified sentences, and a true-negative classifica-
tion rate of 91.7% for the well-specified sentences.

Overall, we see this simple metric can provide accurate task uncertainty classification for unmodified
pre-trained LLMs, with only several additional inference runs. It is noteworthy that the metric
underperforms on roles most traditionally male, e.g. plumber to electrician, perhaps due to the
strong gender-occupation association overpowering our weaker gender-time association. Finally,
we show similar plots for BERT and RoBERTa base and BERT large in Appendix D, but note the
uncertainty metric appears more accurate for more overparameterized models.

6 EXTENDING TO MORE GENERAL SETTING

We now explore a more general problem space where the symbols in Figure 1 take on the follow-
ing meanings: G is the causal parent of Y, and W is the non-causal parent of Y , yet nonetheless
included because W is a cause of both X and S, where S has the same meaning as before. We
can thus partition any feature space into G, and candidates for W. A candidate can be validated as
a suitable W feature by checking for the conditional dependencies which we plot below. To make
this hypothetical example slightly more concrete, we parameterize the DAGs in Figure 1, with the
structural causal model (SCM) shown on the right.

G := αN (0, 1) (5)

W :=
α

2
N (0, 1) (6)

S := (W −G+N (0, 1)) > 2α (7)
X := W + γG+N (0, 1) (8)
Y := γX +G+N (0, 1) (9)

Equation (5) and Equation (6) define W and
G as independent exogenous 0-mean Gaussian
noise, for which we set α = 10 so that we can
more easily trace the amplified noise through
the DAG9. Equation (7) defines S as an un-
weighted combination of W, G and exogenous
noise, with the selection mechanism setting all
values above 2α to 1, and to 0 otherwise, reduc-
ing the dataset to about 5% of its original size.
Equation (8) and Equation (9) we set γ to 0 for the underspecified task and to 1 for the well-specified
task, consistent with a 0 path weight for the grayed out arrows G→ X and X → Y in Figure 1(b),
and a full path weight for those same arrows in Figure 1(a).

Figure 6 plots the statistical relationships entailed by the SCM above. Columns (i) plots X vs Y for
the unsampled, and columns (ii) plots X vs Y for the S=1 sampled distributions. In both Figure 6(a)
and Figure 6(b), we can see that selection induced collider bias has little effect on the distributions
(i) vs (ii) for the well-specified SCM, but causes the underspecified SCM’s Pearson’s r coefficient
to go from about 0 to 0.7. The latter is consistent with Section 4.2, in which entities such as gender
and date (as well as gender and place) that are uncorrelated in the unsampled population, become
spuriously correlated in LLMs trained on subsampled populations, where we claim the subsampling
caused selection induced collider bias.

9We set different noise weights to G and W by arbitrarily dividing α by 2 in Equation (6), to reduce the
likelihood of unintentionally constructing an unfaithful graph.
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(a) (W −G+N (0, 1)) > 2α sampled. (b) (W +G+N (0, 1)) > 2α sampled.

Figure 6: Statistical relationships induced by the SCM defined in Equation (5) to Equation (9), with
Equation (7) separately defined above, with the well-specified (top row in blue) and underspecified
(bottom row in green) DGP in Figure 1.

Figure 7: W-injection implemented via
increasingly larger values of β as the
W → X path weight.

Columns (iii) and (iv) in Figure 6 plot the unsampled and
the S =1 sampled distributions for W vs G. Comparing
Figure 6(a) and Figure 6(b), we can see the direction of
the correlation coefficient has been flipped for both the
well and underspecified SCMs. However, the direction of
the correlation coefficient flips in the X vs Y distributions
of column (ii) only for the underspecified SCM. This is
consistent with our derivation of P (Y |X) ∼ P (G|W )
for underspecified tasks in Section 4.

In Figure 7, we replace Equation (8) with X := βW +
γG +N (0, 1), where β takes increasingly larger values:
1) β = 0.01 2) β = 0.1 and 3) β = 1 (thus identical
to Equation (8)), as a toy demonstration of W-injection.
Similar to the uncertainty results in Section 5, we see
underspecified tasks are more sensitive to W-injection,
while well-specified are not.

7 DISCUSSION AND REPRODUCIBILITY

As underscored in (D’Amour et al., 2020), the prevalence of underspecified tasks in machine learn-
ing requires the development of nuanced stress tests. In this work we strived to make our methods
accessible and extensible to other tasks in machine learning. Please see more details in Appendix A.

We have argued that underspecified prediction tasks leave models vulnerable to selection induced
collider bias which can result in the learning of otherwise non-interacting spurious associations,
such as previously unreported associations between gender vs time and gender vs place, which
we demonstrate on unmodified pre-trained BERT-like LLMs. We have introduced a lightweight
inference-time technique for injecting spurious signals into prediction tasks to determine if the task
is well-specified or underspecified, and demonstrated this in the form of an uncertainty metric on
an established evaluation set. While not a universal solution, we hope our work can lead to the
development of targeted heuristics, using our method to determine when the model is uncertain
about a prediction task, and thus an alternate value should be returned (for example ‘they’ in the
case of gender pronoun resolution).

For further research, we believe our work complements that of (Vig et al., 2020), which uses causal
mediation analysis to intervene on LLMs at the individual attention head and neuron level to provide
insights into the model’s internal causal mechanisms mediating gender bias. Despite the more lim-
ited nature of our non-invasive investigation, our surprising empirical findings about the additivity
of unrelated spurious associations is consistent with their surprising finding that gender bias appears
decomposable between the elements of the direct and indirect effect within the model. We hope to
be able to complement more of their internal model findings via external methods.
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A REPRODUCIBILITY

Please see the following sources to reproduce the methods and measurements in this paper:

• Spurious Correlations Open Source Hugging Face Space (screen shot at Figure 10):
https://huggingface.co/spaces/paper5186/spurious.

• Uncertainty Measurement Open Source Hugging Face Space (screen shot at Figure 11) :
https://huggingface.co/spaces/paper5186/uncertainty.

• More General Setting Toy SCM : https://tinyurl.com/2ub4xyjs.
• Github repo to replicate all the plots in this paper: https://github.com/
anon-anon-anony/sicb_paper.

B GENDER-IDENTIFYING WORDS

See Table 3 for the list of gender-identifying words that would contribute to total softmax proba-
bilities masses accumulated for female and male genders for a given prediction in Figure 3. For
example, if an LLM predicted ‘her’ in addition to ‘she’, we would sum their two softmax probabili-
ties together for the final total softmax probability assigned to ‘female’.
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Table 3: A list of explicitly gendered words described in .

MALE-VARIANT FEMALE-VARIANT

HE SHE
HIM HER
HIS HER

HIMSELF HERSELF
MALE FEMALE
MAN WOMAN
MEN WOMEN

HUSBAND WIFE
FATHER MOTHER

BOYFRIEND GIRLFRIEND
BROTHER SISTER

ACTOR ACTRESS

C W VARIABLE X-AXIS VALUES

For {w} we require a list of values that are gender-neutral in the real world, yet due to selection
induced collider bias are hypothesized to be a spectrum of gender-inequitable values in the dataset.
For W as date, we just use time itself, as over time women have become more likely to be recorded
into historical documents reflected in Wikipedia, so we pick years ranging from 1801 - 2001. For W
as place, we use the bottom and top 10 World Economic Forum Global Gender Gap ranked countries
(see details in Appendix C.1).

C.1 PLACE VALUES

Ordered list of bottom 10 and top 10 World Economic Forum Global Gender Gap ranked countries
used for the x-axis in Figure 3(c), that were taken directly without modification from https:
//www3.weforum.org/docs/WEF_GGGR_2021.pdf:

‘Afghanistan’, ‘Yemen’, ‘Iraq’, ‘Pakistan’, ‘Syria’, ‘Democratic Republic of Congo’, ‘Iran’, ‘Mali’,
‘Chad’, ‘Saudi Arabia’, ‘Switzerland’, ‘Ireland’, ‘Lithuania’, ‘Rwanda’, ‘Namibia’, ‘Sweden’,
‘New Zealand’, ‘Norway’, ‘Finland’, ‘Iceland’

D EXTENDED WINOGENDER UNCERTAINTY RESULTS ON MORE LLMS

Figure 8 shows uncertainty results for all Winogender occupations where the masked pronoun is
coreferent with the professional. Because the injected text (one of: {‘man’, ‘woman’, ‘someone’,
‘other’}) is referring to the participant and not the professional, all these sentences are underspec-
ified. The plots show that like RoBERTa large in Figure 5(a), RoBERTa base tends to report un-
certainty results above 0 for most occupations, regardless of the word injected into the evaluation
text for the participant, thus the model does not become erroneously certain about gender when the
words ‘man’ and ‘woman’ are injected into the text. However, note that it is more difficult to see
such a trend in BERT base and large.

Figure 9 shows uncertainty results for all Winogender occupations where the masked pronoun is
coreferent with the participant, unlike Figure 8 where the pronoun is coreferent with the profes-
sional. Because the injected text (again one of: {‘man’, ‘woman’, ‘someone’, ‘other’}) is referring
to the participant, the sentences containing ‘man’ and ‘woman’ are well-specified, while the rest are
underspecified. We see uncertainty results closer to 0 for most occupations when ‘man’ or ‘woman’
has been injected into the evaluation text for the participant, and generally above 0 otherwise, in
particular for more highly overparameterized models like BERT large and RoBERTa base & large
in Figure 5(b). It is more difficult to see this trend in BERT base.

E MODEL UNCERTAINTY DEMO

See Figure 11 for our open-source freely available demonstration where users can choose their
own input text and select almost any BERT-like model hosted on Hugging Face to test for model
uncertainty using selection induced collider bias induced spurious correlations.
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(a) BERT base

(b) BERT large

(c) RoBERTa base

Figure 8: Uncertainty results for all Winogender occupations where the masked pronoun is coref-
erent with the gender-unidentified professional, thus all sentences are underspecified. These plots
show that like RoBERTa large in Figure 5(a), RoBERTa base tends to report uncertainty results
above 0 for most occupations, regardless of the word injected into the evaluation text for the par-
ticipant, thus the model does not become erroneously certain about gender when the words ‘man’
and ‘woman’ are injected into the text. However, note that it is more difficult to see such a trend in
BERT base and large.
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(a) BERT base

(b) BERT large

(c) RoBERTa base

Figure 9: Uncertainty results for all Winogender occupations where the masked pronoun is corefer-
ent with the participant, thus the sentences containing ‘man’ and ‘woman’ are well-specified, while
the rest are underspecified. We see uncertainty results closer to 0 for most occupations when ‘man’
or ‘woman’ has been injected into the evaluation text for the participant, and generally above 0
otherwise, in particular for more highly overparameterized models like BERT large and RoBERTa
base & large in Figure 5(b). It is more difficult to see this trend in BERT base.
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Figure 10: Demo where users can choose their own input text and select almost any BERT-like model
hosted on Hugging Face to test for selection induced collider bias induced spurious correlations.
https://huggingface.co/spaces/paper5186/spurious.
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Figure 11: Demo where users can choose their own input text and select almost any BERT-like model
hosted on Hugging Face to test for model uncertainty using selection induced collider bias induced
spurious correlations. https://huggingface.co/spaces/paper5186/uncertainty.
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