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Abstract

The complexity and vastness of our world can require large models with numerous variables.
Unfortunately, coming up with a model that is both accurate and able to provide predictions
in a reasonable amount of time can prove difficult. One possibility to help overcome such
problems is sum-product networks (SPNs), probabilistic models with the ability to tractably
perform inference in linear time. In this paper, we extend SPNs’ capabilities to the field of
causality and introduce the family of structural causal circuits (SCCs), a type of SPNs capa-
ble of answering causal questions. Starting from conventional SPNs, we “climb the ladder of
causation” and show how SCCs can represent not only observational but also interventional
and counterfactual problems. We demonstrate successful application in different settings,
ranging from simple binary variables to physics-based simulations.

1 Introduction

Consider the following example, which is an adaptation of a well-known scenario. Person U keeps a small
plant in their office but forgets to water it before going on a business trip. If person U now remembers the
plant (U = 1), a message M is sent (M = 1) to two colleagues A and B. Both colleagues water the plant
(A = 1, B = 1) if they get a message, in which case the plant remains healthy (H = 1). Figure 1 shows
the corresponding causal graph. In this example, a strong correlation between the plant being healthy and
a message being sent can be observed, but it is clear that the plant’s health has no causal impact on the
message. To reason about causes and effects or to answer counterfactual questions such as “Given that the
plant is healthy, would it still be healthy had A not watered it?”, an understanding of causality and its
implications on the underlying structural equations is necessary.
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Table 1: Comparison of Models. Types of causal queries (observational, interventional, counterfactual),
which models are powerful enough to answer them, and whether inference is tractable.

Obs. Interv. Counterf. Tractability
p(H|A) p(H| do(¬A)) p(Hdo(¬A)|A) Full Evidence Marginal

SPN (Poon & Domingos, 2011) ✓ × × ✓ ✓
iSPN (Zečević et al., 2021) ✓ ✓ × ✓ ✓
Causal NF (Javaloy et al., 2024) ✓ ✓ ✓ ✓ ×
NCM (Xia et al., 2023) ✓ ✓ ✓ × ×
cf-SPN (ours) ✓ ✓ ✓ ✓ ✓

Figure 1: Watering Example.
Causal graph for the plant wa-
tering problem. U : owner re-
members plant, M : owner sends
message, A,B: colleague waters
plant, H: plant is healthy. (Best
viewed in color.)

Causality can be seen as the science centered around the study of causes
and effects (Pearl, 2009; Bareinboim & Pearl, 2016), which distinguishes
between purely correlational observations and directed causal relations.
Here, Pearl introduced the “ladder of causation” (Pearl & Mackenzie,
2018), which consists of an observational rung (correlations), an inter-
ventional rung (general causes and effects), and a counterfactual rung
(hypothetical statements based on real-world evidence). Starting from
the observational rung, each further step on the causal ladder describes a
more difficult problem that requires more information to solve. Starting
from the second rung, models can differentiate between the plant’s health
being correlated with ‘sending a message’ and the directed causal impact
of the message on the plant.

An example of probabilistic models that can reason causally is Causal
Bayesian networks (CBNs; Pearl (1995)). CBNs combine the advantages
of Bayesian networks, i.e., decomposing the joint probability distribution
into (interpretable) conditional distributions, with the field of causality
and can thus reach the interventional, second rung of the causal ladder.

A major downside of CBNs is inference being intractable (Cooper, 1990).
While approaches exist that circumvent this problem using approxima-
tions (Murphy et al., 2013), it would be desirable to obtain causal models
that can perform exact inference in tractable time. To achieve this, sum-product networks (SPNs) (Poon &
Domingos, 2011) pose a promising alternative as they specifically allow for exact tractable inference.

Unfortunately, conventional SPNs only operate on the observational rung of the ladder of causation. With
the goal of utilizing the tractable inference property of SPNs in the field of causality, we take existing work
of interventional sum-product networks (Zečević et al., 2021) leading us to ‘climb one rung of the causal
ladder’ and introduce the novel class of counterfactual sum-product networks (cf-SPNs) to ‘climb the final
rung’. Overall, we propose the idea of Structural Causal Circuits (SCCs), a model family of SPNs capable
of computing causal queries of any rung of Pearl’s causal hierarchy. While there are other types of causal
models, such as neural causal models (NCMs; Xia et al. (2023)) and causal normalizing flows (CNFs; Javaloy
et al. (2024)), these either are intractable or lack the ability for tractable marginal inference (c.f. Table 1).
The contributions of this paper are as follows:

1. We introduce cf-SPNs, tractable models capable of calculating probabilities for counterfactual queries
by using a neural net (NN) to determine the SPN parameters for specific counterfactual worlds.

2. We introduce the model family of SCCs consisting of SPNs, iSPNs, and cf-SPNS, which consider the
whole ladder of causation, enabling SPNs to answer questions on the entire Pearl’s causal hierarchy.

3. We successfully apply SCCs on various problems, including discrete and continuous domains.
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First, we go over the required background and related work in Section 2. Afterward, we introduce Structural
Causal Circuits in Section 3. In Section 4, we start by experimentally comparing iSPNs and cf-SPNs and
then demonstrate the capabilities of cf-SPNs in several experiments with varying problem difficulty.

2 Background and Related Work

Here, we explain the required background on causal models, the causal hierarchy, and SPNs, and give an
overview of related work. We denote random variables by upper-case letters V , sets of random variables in
boldface V, values of single and sets of random variables as v and v respectively, and probabilities of them
as P (v) or P (v).

2.1 Causal Models

In order to introduce the necessary background on causality, we follow Pearl’s formalism of causal models
and say that
Definition 1. A structural causal model (SCM) is a tuple M := ⟨V,U,F, PU⟩ over a set of variables
X = {X1, . . . , XK} taking values in XXX =

∏
k∈{1...K} Xk subject to a strict partial order <X, where

• V = {X1, . . . , XN } ⊆ X, N ≤ K is the set of endogenous variables,

• U = X \ V = {XN+1, . . . , XK} is the set of exogenous variables,

• F = {f1, . . . , fN } is the set of deterministic structural equations, i.e. Vi := fi(X′) for Vi ∈ V and
X′ ⊆ {Xj ∈ X|Xj <X Vi},

• PU is the probability distribution over the exogenous variables U.

The relationships between the variables as described by F induce the directed graph G(M), which by
definition is acyclic due to <X. The exogenous variables U are usually unobserved. We say that an SCM
M entails the probability distribution PM

V over the set of endogenous variables V.

Interventions in causal models change how a variable value is determined, ignoring what was previously
defined in the set of functions F.
Definition 2. Consider an SCM M := ⟨V,U,F, PU⟩ and a variable Vi ∈ V. Applying an intervention
do(Vi = vi) ∈ I on M replaces the structural equation fi with f̃i := vi and results in the intervened SCM
Mdo(Vi=vi) := ⟨V,U, F̃, PU⟩ where F̃ = (F \ {fi}) ∪ {f̃i := vi}.

While naturally extendable to the multi-intervention case, we restrict our setting to a set of “allowed”
interventions I for practical purposes, namely the set of all perfect interventions I = {do(Vi = vi)|Vi ∈
V ∧ vi ∈ XXX i}i∈{1...N}, i.e., interventions which set a variable to a constant value (Bongers et al., 2021).
Every intervention induces a new mutilated graph G(Mdo(Vi=vi)) to which we will refer to as G̃ for notational
brevity. Every intervened causal model Mdo(Vi=vi) entails a new probability distribution P

Mdo(Vi=vi)
V .

One frequent assumption when using SCMs is the invariance of cause-effect relations (also known as invari-
ance to the origin of the mechanism). In particular, a special type of invariance for interventions called
“autonomy”1 states that interventions should be local, i.e., with PA(Vi) denoting the set of direct parents
of Vi according to G and for all j ̸= i, it holds that

PM(Vj |PA(Vj)) = PMdo(Vi=vi)(Vj |PA(Vj)). (1)

That is, the conditional distributions of unintervened Vj remain unchanged. This then allows for the trun-
cated factorization of the SCM (Pearl, 2009)

P (V) =
∏
j ̸=i

P (Vj |PA(Vj)), (2)

1For a short discussion on the meaning of “autonomy”, see Appendix B.
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suggesting independence between the intervened variable Vi and its previous parents.

To extend our notion of SCMs to counterfactuals, we use the terminology of a “world” to describe a specific
configuration of the entire set of endogenous variables.
Definition 3. Consider an SCM M := ⟨V,U,F, PU⟩, an original world V′ = v′, and an intervention
do(Vi = vi) ∈ I. Due to the (counterfactual) intervention, we have F̃ = (F \ {fi}) ∪ {f̃i := vi}. The distribu-
tion over the exogenous variables PU is inferred to reproduce the original world v′: PV′=v′

U = PU(U|V′ = v′).
We call MV′=v′

do(Vi=vi) := ⟨V,U, F̃, PV′=v′

U ⟩ the counterfactual SCM.

In SCMs, the entire randomness responsible for sample variability is captured by PU since all functions
computing V are deterministic. In other words, each sample u entails a specific setting of variables v. Thus,
given the original world v′, it is possible to infer information about u′.2 This is the meaning of the change
from PU of the original SCM to PV′=v′

U of the counterfactual one: inferring the probability distribution of
the exogenous variables given v′. Applying an intervention now keeps all variables not influenced by the
intervention fixed so that any counterfactual world v∗ only differs from v′ by the new value of the intervened
variable itself, as well as all variables (and their descendants) incorporating the intervened variable via their
structural equations. The resulting SCM MV′=v′

do(Vi=vi) represents the world counterfactual to v′, had Vi taken

the value vi instead and entails the probability distribution P
MV′=v′

do(Vi=vi)
V .

Another perspective on counterfactuals is provided by “twin-networks” where each world is visualized as a
separate causal graph with separate endogenous variables (Balke & Pearl, 1994). The exogenous variables
are shared across both graphs. Counterfactuals can now be described by intervening on an endogenous
variable in the counterfactual world.

2.2 The Causal Hierarchy

The set of functions F applied to a configuration of exogenous variables u yields a setting of endogenous
variables v, we write F(u) = v. We say that for Y ⊆ V with respective values y ⊆ v and any u, it holds that
if F(u) = v, then Y(u) = y. In other words, under the set of exogenous variables u, the variables Y take
the values y. Moreover, the probability PU(Y = y) represents the sum of probabilities over all endogenous
variables U such that Y = y follows from U. This notation makes it possible to distinguish different causal
queries according to their rung on the ladder of causation. To that end, Bareinboim et al. (2022) define the
following symbolic languages:
Definition 4 (Bareinboim et al. (2022)). Let variables V be given and W,X,Y,Z ⊆ V. Each language
Li, i = 1, 2, 3, consists of (Boolean combinations of) inequalities between polynomials over terms P (α), where
P (α) is an Li term, defined as follows:

L1 terms are those of the form P (Y = y), encoding the probability that Y take on values y;

L2 terms additionally include probabilities of interventions, P (Y = y| do(X = x)), giving the probability
that variables Y would take on values y, were X to have values x;

L3 terms encode probabilities over counterfactuals, PU∗(Ydo(X=x) = y, . . . , Zdo(W=w) = z), where
U∗ = {u|Ydo(X=x)(u) = y, . . . ,Zdo(W=w)(u) = z} ⊂ U, symbolizing the probability of variables
Y, . . . ,Z taking values y, . . . , z, were X, . . . ,W to have values x, . . . ,w, under values u consistent
for all variables.

For a model to be of a certain causal rung, it must be able to compute queries according to the desired
symbolic language Li (compare Definition 6). For notational brevity, we will write counterfactuals for a
single counterfactual world PU∗(Ydo(X=x) = y,Z = z), where U∗ = {u|Ydo(X=x)(u) = y,Z(u) = z} ⊂ U
as P (Ydo(X=x) = y|Z = z), highlighting the fact that the probability for the values y in the counterfactual
world depends on the original world variables specified by z.

2A step established as “abduction” in Pearl (2009).
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2.3 Sum-Product Networks (SPNs)

An SPN (see an example in Figure 2, left) is a probabilistic graphical model consisting of a directed acyclic
graph (DAG) and a set of weights. Each leaf represents a probability distribution over a variable, and
multiple leaves can correspond to the same variable but contain different probability distributions. The
inner nodes are either sum or product nodes. In a product node, the child probability distributions are
multiplied and in a sum node, a weighted sum over the children is calculated.

The following definition considers binary variables as a means of illustrating the concepts for computing
probabilities with SPNs. An extension to continuous variables is, without loss of generality, made possible
by having continuous distributions in the leaf nodes of the SPN; for further reference, consider París et al.
(2020). In our experimental section, we also include experiments on continuous variables. Formally, we can
describe an SPN S = (G,w) by a DAG3 G = (V,E) and the non-negative weights w. Sum and product
nodes are given by S(λλλ) =

∑
C∈ch(S) wS,CC(λλλ) and P(λλλ) =

∏
C∈ch(P) C(λλλ) , where λλλ is an indicator variable

(IV). The SPN output is the value at the root node S(λλλ) = S(x) and probabilities can be computed by
marginalization P (x) = S(x)/

∑
x′∈X S(x′).

The scope of a node is the set of variables that appear in the node or either of its children, i.e., for a node
N, the scope sc is defined by

sc(N) =
{

{X} if N is IV (λλλX=x)⋃
C∈ch(N) sc(C) otherwise.

(3)

Completeness is satisfied if all children of the same sum node have the same scope (Equation 4) and decom-
posability holds if no variable appears in multiple scopes of all children of the same product node (Equa-
tion 5) (Poon & Domingos, 2011):

∀S ∈ S : (∀C1,C2 ∈ ch(S) : sc(C1) = sc(C2)), (4)
∀P ∈ S : (∀C1,C2 ∈ ch(S) : C1 ̸= C2 =⇒ sc(C1) ∩ sc(C2) = ∅). (5)

In the scope of this paper, our primary emphasis revolves around enhancing the capability of sum-product
networks (SPNs) to answer causal questions. Nevertheless, it is worth considering a broader perspective by
exploring the encompassing definition of probabilistic circuits, as defined in Peharz et al. (2020a).
Definition 5 (Peharz et al. (2020a)). Given a set of random variables X, a probabilistic circuit (PC)
P is a tuple (G, ψ), where G, denoted as computational graph, is an acyclic directed graph (V,E), and
ψ : V 7→ 2X, denoted as scope function, is a function assigning some scope (i.e. a sub-set of X) to each
node in V. For internal nodes of G, i.e. any node N ∈ V which has children, the scope function satisfies
ψ(N) = ∪N′∈ch(N)ψ(N′), where ch(N) denotes the set of children of N. A leaf L of G computes a probability
density over its scope ψ(L). All internal nodes of G are either sum nodes (S) or product nodes (P). A sum
node S computes a convex combination of its children, i.e. S =

∑
N∈ch(S) wS,N N, where

∑
N∈chS wS,N = 1,

and ∀N ∈ ch(S) : wS,N ≥ 0. A product node P computes a product of its children, i.e. P =
∏

N∈ch(P) N.

By this definition, an SPN is a PC. In contrast to arbitrary PCs, completeness and decomposability are
required to hold for all SPNs.

2.4 Related Work

Related work exists on other models which compute counterfactual probabilities (Xia et al., 2023; Von Kügel-
gen et al., 2023; Bläser et al., 2025). As illustrated by further related work, arithmetic circuits (Darwiche,
2003) in general are a precursor to SPNs and have also been considered for a preliminary approach to causal
inference (Darwiche, 2021). While Causal Bayesian networks are powerful and can be transformed into

3Not to be confused with a causal graph, which is also a DAG but not what is referred to here. While SPNs are usually
depicted as trees, other DAG structures are also possible, e.g., by some nodes sharing the same parent nodes in the upper layers,
see, for example, RAT-SPNs (Peharz et al., 2020b).
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Figure 2: SPN Examples. Left: Observational SPN with fixed parameters. Right: In the iSPN and in
the cf-SPN, the weights of the sum nodes w and the leaf distributions l are set according to the interventional
information I, i.e., the intervention or counterfactual world (highlighted in blue). (Best viewed in color.)

SPNs and back (Zhao et al., 2015), this transformation from SPNs generally leads to degenerate4 Bayesian
Networks incapable of subsequent causal inference (Papantonis & Belle, 2020). However, a model class
extension, as used in this paper, poses a viable candidate for overcoming the problems of using SPNs for
causal inference. More recently, Papantonisa & Belle (2023) introduced an algorithm to transform SPNs
into Bayesian networks, which simplifies the calculation of interventional queries. Studying the complexity of
counterfactuals, Han et al. (2022) highlighted that calculating counterfactuals using circuits is not any more
complex than interventional or observational questions. Huber et al. (2023) also consider counterfactuals
in circuits by investigating partial identifiability. A compositional perspective on inference in probabilistic
circuits allows inferring interventional distributions (Wang & Kwiatkowska, 2023). Recently, normalizing
flows have also been used for causality (Javaloy et al., 2024) but lack the capability to perform marginal
inference or only consider small problems (Chen et al., 2024).

Recent work has used SPNs for generating counterfactuals for prediction tasks (Němeček et al., 2025), but
they do consider counterfactual predictions from an explainable artificial intelligence perspective and do not
consider a wider range of counterfactuals for probabilistic problems. Shao et al. (2020) introduced conditional
SPNs where an NN is used to set the SPN parameters depending on some set of conditional variables that
are input in the NN. Building on top of this work, Zečević et al. (2021) introduced interventional SPNs
(iSPNs) which use the same idea of a combined NN and SPN architecture to allow for interventional queries.
Causal circuits have been shown to help with scaling (Busch et al., 2024). In this paper, we take iSPNs and
extend them further to cf-SPNs (counterfactuals SPNs) by providing the necessary causal information into
an NN setting the SPN parameters (see Figure 2 on an example of how parameters are set in SPNs, iSPNs,
cf-SPNs). In combination, we end up with a family of causal SPNs that span the entirety of Pearl’s ladder
of causation: Structural Causal Circuits (SCCs).

3 Structural Causal Circuits

Known for their tractable inference properties, SPNs have mainly been employed to answer queries on
observational data. In the following, we outline a path that sees SPNs as “climbing up the ladder” of
causation, thereby forming a family of structural causal circuits capable of answering causal questions. To
do so, we must first define when a model can be considered to answer observational, interventional, or
counterfactual queries. We make use of the definition of symbolic languages by Bareinboim et al. (2022)
that link the particular syntactic expression of a query to a respective rung on the causal ladder. We require
models to be able to truthfully answer those queries to be considered part of a specific rung.
Definition 6. Structural Causal Circuits (SCCs) are a family of probabilistic circuits {SCC1,SCC2,SCC3}
able to answer causal queries defined by the symbolic languages Li of Definition 4. For a model m : V → R
containing a PC over variables V, we say that Pm is the probability distribution entailed by m and we define

• m ∈ SCC1 iff ∀P (V = v) ∈ L1(M).Pm(V) = PM
V

• m ∈ SCC2 iff ∀P (V = v| do(Vi = vi)) ∈ L2(M).Pm(V,do(Vi=vi)) = P
Mdo(Vi=vi)
V

4A bipartite graph in which the actual variables of interest are not connected is called degenerate.

6



Published in Transactions on Machine Learning Research (09/2025)

• m ∈ SCC3 iff ∀P (Vdo(Vi=vi) = v|V′ = v′) ∈ L3(M).Pm(V,do(Vi=vi),V′=v′) = P
MV′=v′

do(Vi=vi)
V

where M is any SCM.

In plain terms, a model m is part of the respective class SCC1/SCC2/SCC3 if it can represent the observa-
tional/interventional/counterfactual probability distribution of the particular rung. To this end, an SCC1
model takes a setting of variables V as input. An SCC2 model takes additional intervention information
do(Vi = vi), and an SCC3 model additionally gets provided with the original world setting. We write V′ = v′

to indicate a single fully specified original world. We will show in Section 4.2 that models of lower rungs
cannot answer causal queries of higher rungs correctly since they do not integrate the additionally required
interventional or counterfactual information in their inference process. Most common counterfactual queries
consider one original and one counterfactual world, which is why we opted for this definition due to ease of
notation. The definition could be adapted by adding a variable number of worlds that are not required to be
fully specified in order to support any type of counterfactual query as in Definition 4. The definition requires
matching the probability distribution of “some” coherent SCM, since multiple SCMs can generate the same
data. Therefore, it is unreasonable to expect any model to learn the “true” SCM for a specific problem.

Previous work on inference using tractable circuits shows that exact computation of interventional distribu-
tions is #P-hard (Wang & Kwiatkowska, 2023). While this is true for complex distributions, simple problems
(distributions) can still be computed exactly and efficiently. Simple graph structures (for example, chains)
or properties of the data distribution can be leveraged to compute queries more efficiently. Thus, we argue
that practical applications rarely represent the worst-case scenario, but rather feature compressible distri-
butions that facilitate the training of an SCC that, therefore, supports tractable computation of queries.
Distributions are well compressible by an SCC if there are many (context-specific) independencies that the
SCC can leverage. In this case, even small SCCs can learn complex problems well or even exactly (Martens
& Medabalimi, 2014). Otherwise, increasingly larger SCCs can be employed to approximate more complex
probability distributions arbitrarily well. The possible problems to be encountered do not lie so much in the
realm of causal representability but are rather related to the engineering side of setting up and training SCC.
Generally, our definition states that if a model is found to fulfill the above criteria, it is part of the respective
family of SCCs. Another practical constraint concerns the approximate behavior of our models. We require
the probability distributions of model m and SCM M to be equal. In practice, however, training is performed
with a finite amount of data, making perfect matching of the distribution impossible. We, therefore, relax
the equality constraint and say that our models should “truthfully approximate” the probability distribution
up to some small ϵ. Consider also that in some scenarios, domain experts could potentially set up models
with the exact weights, yielding a model that matches the causal distribution perfectly.

3.1 Observational Sum-Product Networks

The first type of SCCs does not require any causal knowledge. Here, we can consider conventional SPNs
and make the following definition.
Definition 7. We refer to any SPN that does not incorporate interventional or counterfactual data to answer
a probabilistic query as an observational SPN.

In other words, an SPN models an observational probability distribution and is, therefore, to be placed on
the first rung of the ladder of causation.

Reconsider the plant watering example of Figure 1. For the sake of a simple example sufficient for conveying
the key concepts, it is assumed that all relations are deterministic (this is just for simplicity and not a
necessary assumption). Say that U is an exogenous, unobserved variable that is true with some probability,
and all other variables are endogenous. We have V = {M,A,B,H} and U = {U}. For this watering problem,
one is able to deduce U from any other variable since all assignments are deterministic and bijective. Note
that this is not always true, for example, if the relation between U and M was not deterministic, and person
U might remember the plant but still not write the message. In this deterministic case, however, observing
the problem boils down to only two possible configurations: either person U did not remember, which leads

7
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to all other variables being false as well and the plant ending up in an unhealthy state, or person U did
remember, all variables are true, and the plant ends up healthy.

Let us say an SPN is learned using data for the observable variables of the watering problem. Several leaves,
each representing an observable variable, would be created and combined into alternating product and then
sum nodes until the final root sum node of the SPN is reached. In our example, the SPN would have
sc(N) = V = {M,A,B,H} as its scope and be able to compute any probability of the joint distribution of
those variables, e. g. P (W,A,B,H) or P (¬A).

Generally speaking, we have
Proposition 1. All observational SPNs are in SCC1.

Proof. Observational SPNs are complete and decomposable, and therefore valid (Poon & Domingos, 2011).
By definition, valid SPNs approximate normalized distributions (up to numerical error). Specifically, valid
SPNs are able to approximate the observational distribution PM of some SCM M. All queries P (V = v) ∈
L1 are terms over PM and thus can be answered by an observational SPN.

Now, what if A takes care of the plant anyway, independent of whether its owner wrote a message or not?
Or, knowing that the plant ended up healthy, would it still be healthy had B not watered it? In these easy
examples, the consequences are obvious, but they can not be computed by a purely observational SPN, as
it lacks the required vocabulary and information to ask and answer such questions. The following section
(3.2) goes into detail on how interventional queries differ from observational ones and which changes to an
SPN can be made to allow for answering such queries.

3.2 Interventional Sum-Product Networks

Let us address the first of the two concluding questions from the previous section, namely “What if A has
always taken care of the plant anyway?”. Considering the causal graph, this intervention represents removing
all edges going towards the variable to be intervened upon, indicating that A is no longer determined by
its parents. In this example, we would see a scenario where the plant is always healthy, independent of U .
Generally, interventions can greatly change probabilities compared to the observational setting. The obser-
vational SPN lacks a mechanism to answer interventional queries as it only models the observational joint
probability distribution. There is simply no way to ask an observational SPN the question of P (H|do(A)),
as no kind of inference results in the correct answer.5 Having been trained only on correlational data, an
observational SPN lacks the necessary causal information about the effects of interventions.

An SPN capable of answering interventional queries must, therefore, have a source of information about
the second rung of the causal ladder and an appropriate mechanism to utilize that knowledge and make
answering interventional queries possible. To this end, the following architecture for an interventional sum-
product network (iSPN) was proposed by Zečević et al. (2021).
Definition 8 (Zečević et al. (2021)). An interventional sum-product network (iSPN) is the joint model
m(G,D) = g(D;ψψψ = f(G;θθθ)), where g(·) is a SPN, f(·) a non-parametric function approximator and
ψψψ = f(G) are shared parameters.

The (mutilated) causal graph G ∈ {0, 1}N×N is given as input into the neural network f so that the model
m can estimate the density of the given data matrix {Vk}K

k = D ∈ RK×N by learning the parameters θθθ,
where K is the number of data points and N is the number of variables.

For example, given the question P (H|do(A)), the NN would get the intervention do(A) as an input and
return the parameters ψψψ (leaf distributions and sum node weights) of the SPN. Now, the SPN can be queried
just like an observational SPN, but each query is conditioned on the intervention. Asking for P (H) on the
intervened upon SPN is the answer to the query P (H|do(A)). In other words, each intervention creates an
observational SPN of the world where that intervention takes place.

5Except when an interventional question can be transformed into an observational one, which, of course, can be calculated
by an observational SPN. The exact conditions for when this can be inferred follow from the do-calculus (Pearl, 2009).
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From the original paper on iSPNs (Zečević et al., 2021), we have for an intervention do(Vj = vj), data
matrix {Vk}K

k = D ∈ RK×N and causal graph G:

Proposition 2 (Zečević et al. (2021)). Assuming autonomy and invariance, an iSPN m(G,D) is able to
identify any interventional (L2) distribution PM(Vi = vi| do(Vj = vj)), permitted by a SCM M through
interventions, with knowledge of the mutilated causal graph Ĝ and data D generated from the intervened
SCMs by modelling the conditional distribution PMdo(Vj =vj )(Vi = vi|Vj = vj). Any iSPN is part of SCC2.

Therefore, an iSPN is able to correctly calculate that P (H| do(A)) = 1.

3.3 Counterfactual Sum-Product Networks

Let us now consider the last rung of the causal ladder by imagining the question, “Given that we know
that person B watered the plant, would the plant still be healthy had person B not watered the plant?”.
It is clear that the answer to this question is given neither by the observational rung 1 query P (H|¬B)
nor by the interventional rung 2 query P (H|do(¬B)), as both queries can not express the current and
counterfactual state of B simultaneously. The right way to express the question is via the counterfactual
formulation P (Hdo(¬B)|B). The query asks for the counterfactual value of H under an intervention that
sets B to false, given that B was true in the original world. To give the right answer, a model needs to
infer the state of A from the actual state of B, and incorporate the inferred knowledge about A into the
counterfactual world where B is intervened. However, to an iSPN, which does not differentiate between
actual and counterfactual values, B can only be true or false (or unknown). Serving the intervention do(¬B)
to an iSPN while simultaneously conditioning it B = true results in a probability of 0, which is the correct
answer, considering the interventional query P (B| do(¬B)) = 0, i.e., “What is the probability of B being
true if B is set to false?”.

The proposed counterfactual sum-product network (cf-SPN) expands upon the iSPN and enables SPN to
answer counterfactual queries. We use an asterisk (*) to indicate variables of the counterfactual world.

Definition 9. A counterfactual sum-product network (cf-SPN) is the joint model m(G,D) = g(D∗;ψψψ =
f(D′,G;θθθ)), where g(·) is an SPN, f(·) a non-parametric function approximator, ψψψ = f(D′,G) are shared
parameters of the SPN, D′ ∈ RK×N and D∗ ∈ RK×N are data matrices with observational and counterfactual
values, respectively, and D = (D′,D∗).

G ∈ {0, 1}N×N is the (mutilated) causal graph according to some intervention do(V∗
j = v∗

j ). We use
counterfactual data to train the model, such that the data matrix D ∈ RK×2N contains pairs of observational
D′ = {V′

k}K
k ∈ RK×N and counterfactual D∗ = {V∗

k}K
k ∈ RK×N variable settings. This definition assumes

complete evidence of both the observational and the counterfactual world.

Generally, one can view cf-SPNs as part of a family of partially causal models (PCMs) (Zečević et al., 2023).
In practice, one might be unable to provide full data on all possible counterfactual settings during cf-SPN
training. In such cases, cf-SPNs might only be trained to answer particular subsets of counterfactual queries
(e.g., all queries containing a single intervention). Still, we present limited generalization results of cf-SPN
beyond their training distribution in Section 4.6.

As with iSPNs, a neural network, which is provided with interventional information G, is used to determine
the parameters of the SPN. However, cf-SPNs extend the NN input by concatenating the setting of variables
for the original world D′ to it. This extension adds the required inputs to provide the value of the original
world as a separate input while simultaneously being able to reason over the counterfactual world at the
SPN inputs, therefore lifting the cf-SPN above the interventional level.

Proposition 3. Assuming autonomy and invariance, a cf-SPN m(G,D) is able to identify any counter-
factual (L3) distribution PM(V∗

i = v∗
i |V′ = v′, do(V∗

j = v∗
j )), permitted by a SCM M through coun-

terfactuals, with knowledge of the mutilated graph G∗, the original world variables v′ ∈ D′ generated
from the original SCM, and corresponding counterfactual data v∗ ∈ D∗ by modelling the distribution
P

MV′=v′
do(Vi=vi)(V∗

i = v∗
i |V′

j = v′
j). Any cf-SPN is part of SCC3.
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Figure 3: Counterfactual SPN. Computation of the counterfactual query arg maxXP (Xdo(¬B)|M,A,B,H)
using a cf-SPN. Information about the observational world (blue box) and the intervention (red box; indi-
cating the intervened upon variables and their new value) is concatenated and given to a NN, which in turn
computes the SPN parameters. The parameterized SPN can then be evaluated to answer counterfactual
questions about a counterfactual world (violet box). (Best viewed in color.)

Proof. Let M := ⟨V,U,F, PU⟩ be the observational SCM. From the do-calculus (Pearl, 2009), we know that
PM(V∗

i = v∗
i | do(V∗

j = v∗
j )) = P

Mdo(V′
j

=v′
j

)(V∗
i = v∗

i |V∗
j = v∗

j ). The counterfactual SCM MV′=v′

do(Vi=vi) :=
⟨V,U, F̃, PV′=v′

U ⟩ is equal to the interventional SCM Mdo(Vi=vi) := ⟨V,U, F̃, PU⟩ if PV′=v′

U = PU. For the
specific sample V′ = v′, we have PU(U|V′ = v′) = PV′=v′

U . It remains to be shown that an SPN can learn
the joint probability distribution P (V∗), which follows from Poon & Domingos (2011).

The full flow of computation for a cf-SPN is illustrated in Figure 3. All original setting variables in the
aforementioned example are set to true, and the variable B is intervened with a value of zero. Both vectors
are concatenated and given to the NN, which outputs the parameters for the SPN ψψψ. The resulting SPN
estimates the distribution of the counterfactual world, such that all queries to the SPN are of a counterfactual
nature. In our example, the desired probability for H would be 1, indicating a 100% probability that the
plant would still be healthy. This is the correct prediction as A would still have watered the plant, even if
B would have been prevented from doing so.

Note that counterfactual data is required for training a cf-SPN. This is generally unobtainable, as it is
generally impossible to directly “measure” values from the counterfactual outcome. This situation can be
addressed in multiple ways. First, our model shows that SPNs are capable of answering counterfactual
queries if the correct model is given, illustrating the potential of the proposed approach for domain-specific,
expert-engineered models. Second, as shown in other works on counterfactual models (e.g., Xia et al. (2023)),
it is sometimes possible to calculate counterfactuals when only being provided with information from the
lower rungs of the causal ladder. Furthermore, several methods exist that can be used to approximate
counterfactual outcomes.

3.4 Learning Structural Causal Circuits

We assume the architecture of the SPN to be given and use RAT-SPNs (Peharz et al., 2020b) in our
experiments to set the architecture. How to strategically learn the structure of SCCs is left for future work.
SCCs are trained similarly to conventional SPNs. The learning objective is to maximize the log-likelihood
of the data given a dataset D ∈ RK×N with K instances and N features. For the observational SPN,

10
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(a) 1 Instance (b) 1000 Instances

Figure 4: cf-SPN Watering Experiment Results. The cf-SPN predictions (blue lines) match the ground
truth (bars) without any noticeable error. With the additional information about the original world, coun-
terfactual statements can be made reliably even about single instances. (Best viewed in color.)

we can simply backpropagate through the SPN nodes to learn the correct parameters (see also Poon &
Domingos (2011)). The interventional as well as the counterfactual SPN can be learned end-to-end using
backpropagation, where the leaf distributions and sum node weights are not learned as fixed parameters but
instead set through the preceding neural network. Therefore, we do not learn the parameters ψψψ directly, but
backpropagate into the NN and optimize its parameters θθθ.

The acquisition of counterfactual data can be challenging in practice. Multiple approaches, such as propensity
matching (Rosenbaum & Rubin, 1983), quasi-experiments (Rutter, 2007), or “difference-in-differences” (Liu
et al., 2021) can be used to approximate counterfactual data. We go into further detail on this topic and
provide a brief discussion in Appendix C.

4 Experiments

There already exists plenty of work demonstrating the application of SPNs for the observational setting.
We kindly refer the reader to the survey of Sánchez-Cauce et al. (2021) for a more comprehensive overview.
In our evaluation, we will therefore focus specifically on interventional and, in particular, counterfactual
queries. We will briefly revisit the watering example from the introduction and continue with an experiment
that showcases the inability of iSPNs to correctly model counterfactual distributions, while the cf-SPN is
able to do so. Finally, we present two physics-related experiments, showcasing the use of cf-SPN for particle
movements and simulated galaxy collisions. In all experiments, we use a RAT-SPN (Peharz et al., 2020b)
to create the graph of the SPN and assume Gaussian distributions in the leaf nodes. We make our code
publicly available at https://github.com/olfub/SCC.

4.1 Watering Example

In this experiment, we revisit the watering example from the introduction to explain the behavior of the
cf-SPN in detail (c.f. Figures 1 and 3). The root variable U is true 50% of the time, and all other variables
M,A,B, and H follow from it deterministically. The input to the NN of our cf-SPN consists of the interven-
tion information (i.e., both the intervention target variable and the intervention value to be set) and a single
configuration of the original world variables. The output of the NN is then used to parameterize the SPN.
The model is trained using counterfactual data by providing pairs of instances where the original world,
the counterfactual world, and the intervention that distinguishes the counterfactual from the original world
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Figure 5: Counterfactual Predictions of iSPN and cf-SPN. The original world setting is {A = 1, B =
1, C = 1, D = 0, E = 1, F = 1, G = 1, H = 1}. D is intervened upon (do(D = 0)). The iSPN (green lines)
does not consider the original world setting, therefore averaging predictions and failing to match the ground
truth. The cf-SPN (blue lines) incorporates the original world setting and can, therefore, predict the correct
counterfactual outcome of the counterfactual query. (Best viewed in color.)

are known. As the SPN and the NN are differentiable, both can be optimized with an end-to-end training
procedure. (Compare for Appendix D, describing the training setups for this and all following experiments.)

Figure 4 shows results for an intervention on variable B. (Refer to Appendix E.3 for all results.) Because
we use Gaussian leaves within the SPN, the model predicts continuous probability densities. We plot the
densities in the range of [−0.5, 1.5] (lines) while displaying the ground truth as discrete values (bars). For
Figure 4a, all variables in the original world are set to false and –without an intervention– the counterfactual
world is identical to the original world. When specifying an intervention on B, which sets it to 1, the cf-SPN
infers that H = 1 is the correct counterfactual outcome. An intervention on B indicates that person B is
set to water the plant, independent of getting the message M or A watering the plant. The predictions of
the cf-SPN for M or A are therefore kept correctly unaltered.

Figure 4b follows the same type of setup but averaged over 1000 different original world instances with a 50%
chance of an intervention do(B = 1). Without interventions, U (and thus all other variables) would have
been set to 0 and 1 half of the time. However, considering the average distribution over 1000 samples, H is
set to 1 more often. This is because the intervention on B introduces a new possibility for H being 1, namely
the scenario where U (and therefore H) would have been set to zero, but the counterfactual intervention on
B sets B, and therefore H, to 1.

4.2 Answering Counterfactual Queries with cf-SPN

Consider the causal graph depicted in Figure 7.6 The exogenous variables A and B are unobserved and
random with P (A) = 0.7 and P (B) = 0.4 from which all other variables follow deterministically. We use
an iSPN and a cf-SPN to calculate the resulting counterfactual probabilities for each variable, given the
intervention do(D = 0) and the specific original world setting that follows from {A = 1, B = 1} using
the equations in Figure 7. Results are shown in Figure 5. The iSPN is only able to predict the general
interventional distribution, while the cf-SPN matches the ground truth accurately. As discussed before,

6The causal graph was taken from https://plato.stanford.edu/entries/counterfactuals/.
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Figure 6: cf-SPN Experiment with Noise Results. “Noisy” setup with a 10% probability of switching
the resulting value of a function to its opposite value. The cf-SPN prediction (blue lines) matches the
ground truth (bars) without any significant error, showing the success of the model to learn the distributions
correctly. All graphs were created by sampling 1000 instances. (Best viewed in color.)

this is not surprising as the iSPN does not incorporate the sample-specific information of the original world
and only predicts the general interventional distribution for do(D = 0). On the other hand, the cf-SPN
considers the additional ‘original world’ input, which allows the model to make predictions about the specific
counterfactual outcome. Generally, the cf-SPN is able to match the ground truth well, while the iSPN is
forced to resort to predicting averaged probabilities.

Figure 7: Exemplary Causal Graph. A and
B are treated as unobserved, exogenous vari-
ables. In one variation, all assignments are de-
terministic. In another variation, the underly-
ing functions are the same, but each variable has
a chance of 10% to take on the opposite value.

To demonstrate that cf-SPN can also deal with non-
deterministic environments, we can also consider the
slightly more challenging setting where the same logical
operators as before are applied, but modified to give op-
posite results 10% of the time. We show the results for
an exemplary intervention on the variable F in Figure 6.
(Results for interventions on all other variables are pre-
sented in Appendix E.2.) The ground truth probability
masses are given by the bar charts and are computed as
the average over 1000 samples. Similarly, the averaged
model predictions are computed over the same 1000 sam-
ples and plotted as blue lines. We can see how a uniform,
random intervention on F increases the probability of H
being true while C, D, E, and G remain unchanged. This
noisy dataset is learned without noticeable error by the cf-SPN. But shouldn’t there be some uncertainty
due to the noise? No! As all noise –e.g., due to external factors– is already encoded in the original world
setting, the cf-SPN should be able to make an accurate prediction and answer the counterfactual queries
perfectly and without error, which it does successfully.
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Figure 8: cf-SPN Particle Collision Experiment. GT: Obs: simulation without intervention, GT:
CF: simulation with intervention, cf-SPN: cf-SPN prediction for the intervention. Left: move a particle to
the right on t26. Right: set the velocity of a particle slightly upwards (t0). The model prediction matches the
simulation very well, with only some visible differences when it comes to collisions. (Best viewed in color.)

4.3 Particle Collision

This more challenging, continuous problem is based on a simulation for particles moving and colliding in a
box7. Here, the size of the box, the number and radius of particles, and the forces between them (collision
and external accelerations) are fixed. Three particles are used, which can be described by four values each:
vertical position, horizontal position, vertical velocity, and horizontal velocity. Using this simulation, we
can both run a simulation without intervention and run the same simulation but, at some time step, set a
value to some specific other value, i.e., apply an intervention. Considering two such runs, the second one is
counterfactual to the first one, for example, “How would the particles have behaved, had one specific particle
been moved to another spot after some time steps?”.

In order to highlight the expressiveness and flexibility of cf-SPNs, we slightly alter the experimental setup
compared to the previous ones. Instead of only inputting the original world at the time of an intervention
and training an SPN to predict the resulting counterfactual state, which only differs from the original one
by means of the counterfactual intervention, we additionally learn the simulation step of the counterfactual
state. This additional task, which involves predicting the particles’ movement with respect to their velocity,
changes what the NN must learn and enables the cf-SPN to run full simulations by itself.

In the experiments, an acceleration force (gravity) is dragging the particles to the bottom, and all particles
start with a velocity of 0 at time step 0. Particles can collide with each other and with the walls of the box.
In Figure 8, two simulations are shown where the overall velocity of the particles is indicated by their color,
ranging from dark blue (0 velocity) over green and yellow to red (increasingly faster).8 In the first row (GT:
Obs), the simulation is shown, which runs for 50 time steps without interventions, i.e., a rung 1 simulation.
The second row (GT: CF) also shows data from the simulation, but at a certain time step, an intervention
occurs, i.e., this is the counterfactual simulation. Finally, the third row (cf-SPN) shows the same as the row
above (GT: CF), but now, instead of using the simulation, the cf-SPN model is used to predict the most
likely next positions and velocities. The third row (cf-SPN) should ideally be identical to the respective
ground truth shown above in the second row.

For the first example (Figure 8, left), the particles start at some position further up and then slowly but
steadily accelerate downwards for 25 time steps. At this point in time (t25), the bottom particle is moved
to the right (indicated as an intervention with a red circle and arrow), where it can be found one time step
later at t26. The particle behavior is learned by the cf-SPN, with only some small deviation when it comes
to collisions. In the second example (right half of Figure 8), the intervention takes place immediately, this
time not changing a position but the velocity in the vertical direction (indicated by a red arrow “pushing”
that particle upwards). While this velocity is relatively quickly negated by the downwards acceleration, a

7https://github.com/ineporozhnii/particles_in_a_box
8See https://github.com/olfub/SCC/blob/main/PaperGifs.md for the gifs.
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Figure 9: cf-SPN Galaxies Experiment. Interventions on the positions of some particles (magenta)
between time step 49 and time step 50 move these particles down, such that the unfolding of the system is
altered in the following. The cf-SPN is able to reflect the changes of the intervention and roughly simulate
the consequent unfolding of the simulation. (Best viewed in color.)

clear difference between this intervened case (GT: CF) and the non-intervened behavior (GT: Obs) can be
seen for later time steps. In this example without any collisions, the cf-SPN predictions show no visible
differences to the simulation.

4.4 Galaxies

Upscaling the problem from before, we now consider the collision of galaxies with stars (particles) orbiting
around black holes. Using a publicly available simulation9, the semi-implicit Euler is used to calculate a
ground truth simulation where a galaxy with a smaller mass comes into contact with a galaxy with a heavier
black hole. As a result, some particles from the smaller galaxy join the larger one while others are thrown
out of orbit.

We adopt a similar approach to the particle collision experiment. Black holes and particles are encoded
using Euclidean coordinates and velocities among these coordinates. Since individual particles are only
influenced by the black holes (no inter-particle gravity), it suffices to input both black holes along with one
particular particle to predict its position and velocity at the next time step. Multiple particles are predicted
by repeating the single-particle simulation, using the same black hole values to end up with a full simulation
step. In a perfect model, the black hole prediction would be independent of the particle information. Since
the black hole position is predicted with every particle prediction, we average all predictions to calculate the
black holes’ positions and velocities for the next time step. Our experiment focuses on a single trajectory of
these two black holes. Even though this does simplify the problem, learning the gravitational forces simulated
in the model, combined with the escalating propagation of even minor errors in earlier time steps, still poses
a major challenge. As part of a hyperparameter optimization (see Appendix D.1 for more information), we
found that the best results were achieved using an NN without any hidden layers.

From top to bottom, the three rows in Figure 9 show the simulation without intervention, the simulation
where an intervention occurs in time step 49, and the prediction of the interventional scenario by the cf-
SPN.10 The intervention moves 5 particles (stars; colored magenta) downwards while leaving their velocities
unaltered. Over all time steps, the model predictions deviate slightly from the simulation, leading to a steady
accumulation of smaller errors over time. The interventions themselves, however, are roughly matched with
the particles’ position changing in the correct direction. Despite several challenges, the two galaxies and
a significant portion of the particles are predicted to lie in the correct regions even after more than 70

9https://github.com/EnguerranVidal/GalaxyCollision
10See https://github.com/olfub/SCC/blob/main/PaperGifs.md for an animation of the simulation, and Appendix E.5 for

additional time steps.
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Method 5/5 10/12 15/20 20/30 50/100 100/250

ID cf-SPN 0.99 ± 0.01 0.99 ± 0.00 0.97 ± 0.01 N/A N/A N/A
CNF 0.98 ± 0.01 0.98 ± 0.01 0.97 ± 0.02 N/A N/A N/A

OOD cf-SPN 0.97 ± 0.02 0.98 ± 0.01 0.98 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.00
CNF 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Table 2: Element-Wise Accuracy Comparing cf-SPNs and CNFs. Different combinations of
nodes/edges are evaluated, ranging from 5 to 100 nodes. Some counterfactual queries have been part of
the training data (ID), others have not (OOD). Both models predict the values of single variables correctly
almost every time. CNFs perform slightly better on OOD data.

Method 5/5 10/12 15/20 20/30 50/100 100/250

ID cf-SPN 0.27 ± 0.20 0.34 ± 0.20 0.86 ± 0.90 N/A N/A N/A
CNF 6.84 ± 6.94 1.72 ± 0.92 1.28 ± 1.32 N/A N/A N/A

OOD cf-SPN 2.56 ± 1.36 0.60 ± 0.35 0.60 ± 0.23 0.54 ± 0.13 0.91 ± 0.07 1.90 ± 0.28
CNF 13.20 ± 7.40 4.38 ± 1.91 10.09 ± 6.84 4.77 ± 2.91 1.31 ± 0.10 1.19 ± 0.27

Table 3: L2-Errors of Marginal Probabilities for cf-SPNs and CNFs (scaled by 100). Different
combinations of nodes/edges are evaluated, ranging from 5 to 100 nodes. Some counterfactual queries have
been part of the training data (ID), others have not (OOD). This table shows the average L2-error for the
marginal probability per variable times 100 (as most differences are quite small). ID samples tend to be
predicted with lower errors, and the cf-SPN gives smaller errors throughout all but the largest setting.

time steps, which –considering the propagating errors– is a noteworthy achievement. We acknowledge the
challenge of learning complex, larger problems and are looking at scaling causal SPNs in future work.

4.5 Model Comparison

To the best of our knowledge, SCCs are the only models capable of performing tractable marginal inference for
causal queries (Bareinboim et al., 2022). There are not many other models that are suitable for comparison.
In this section, we compare cf-SPNs with two other models for causal inference, namely causal Bayesian
networks (CBN) (Pearl, 1995) and causal normalizing flows (CNF) (Javaloy et al., 2024). These models are
close to cf-SPNs in scope; however, CBNs do not support tractable marginal inference, and CNFs can not
perform marginal inference at all. In addition, both models require the causal graph as an input.

For these experiments, we generate random DAGs with binary variables and random conditional probability
tables, given a specified number of variables (nodes) and edges. We sample counterfactual data from these
graphs and then train a cf-SPN on this data, in the same manner as for the experiments described in
previous sections. Additionally, a CBN is trained on the counterfactual data and the causal graph, and
a CNF is trained on the observational data and the causal graph. Both models require the causal graph
to be known, which cf-SPNs do not. We evaluate these models by randomly sampling 100 unique original
worlds and intervention combinations for each experiment. The CBN is then used to calculate the marginal
probabilities for each variable using the variable elimination algorithm.11 We use the resulting CBN marginal
probabilities as the gold standard prediction and measure the error of cf-SPN and CNF outputs against it.
While doing so, the inference time of all models is measured and recorded. Note that CNFs do not support
marginal queries and only return counterfactual samples. We can (and will) use these samples and interpret
them as marginal probabilities by interpreting the counterfactual samples as the marginal probabilities. This
is not entirely unreasonable, as we are dealing with binary variables and, therefore, a sample of 0/1 could
reasonably represent a marginal probability of 0/1 for the respective variable. Of course, this approach is
still not technically correct (these are not probabilities), but it serves as a proxy given the CNF’s general
inability to compute marginal probabilities. While this allows us to compute the error between the expected
(CBN) marginal probability and the model (cf-SPN, CNF) predictions, we also employ another evaluation

11We only evaluate on 100 unique original worlds as otherwise this CBN evaluation takes too much time for the larger
problems (see Table 4).
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Method 5/5 10/12 15/20 20/30 50/100 100/250
cf-SPN 1.05 ±0.04 2.10 ±0.05 3.07 ±0.06 3.80 ±0.20 9.92 ±1.00 18.47 ±1.05
CBN 1.00 ±0.02 2.10 ±0.08 3.55 ±0.54 22.47 ±25.73 17.68 ±2.03 1395.52 ±2194.34

CNF 0.33 ±0.01 0.52 ±0.01 0.70 ±0.02 0.81 ±0.05 1.90 ±0.20 3.35 ±0.18

Table 4: Average Inference Runtimes for CBNs and cf-SPNs (seconds). CNFs are faster but
do not compute marginal probabilities, but only single samples. Shown are the inference times
for computing all marginal probabilities in an evaluation, divided by the number of variables. While the
runtime scales roughly linearly for cf-SPNs, the computation for CBNs is much less efficient because of its
intractability. The runtime decreases from 20 to 50 nodes as we use slightly different evaluation strategies.
More information can be found in Appendix D.2.

metric that fairly assesses the CNF prediction quality by considering the most probable explanation instead
of marginal probabilities. To this end, we map all probabilities or samples larger than 0.5 to 1 and all others
to 0 and record the resulting predictive accuracy. We conduct experiments with the following number of
nodes/edges across 5 seeds each: 5/5, 10/12, 15/20, 20/30, 50/100, 100/250. Further details and explanations
on the experimental setup and choice of evaluation are included in Appendix D.2.

Table 2 shows the element-wise accuracy of the most likely counterfactual values.12 For each input sample,
we check whether it also existed as such in the training data, which then determines whether it will be
included as in-distribution (ID) or out-of-distribution (OOD). Both cf-SPNs and CNFs perform well overall,
both when the query was part of the training data and when it was not. CNFs sometimes perform slightly
better, but the differences are very small throughout. Note that CNFs are trained using the ground truth
causal graphs. In practical scenarios, it is often unlikely that the true graph is discovered from the data
perfectly. In Table 3, the average L2-errors (times 100) of the marginal probabilities are shown. Firstly,
we can see how now out-of-distribution samples are predicted with larger error for both models (with one
exception for 15/20). Additionally, we can now see how CNFs’ outputs are less useful when interpreted
as marginal probabilities. While doing so is inherently unfaithful, CNFs do not support the computation
of marginal probabilities directly, which is why we had to use such a proxy. With this proxy, however,
cf-SPNs perform much better, especially on out-of-distribution samples, where interpreting CNF samples as
probabilities is inherently flawed, as can be seen from the small configurations in particular. We include two
additional metrics in Appendix E.4.

In Table 4, the average inference times per variable are shown. CNFs are faster than both CBNs and cf-
SPNs, but they do not compute marginal probabilities and, therefore, their fast inference times should not
be compared directly to CBNs and cf-SPNs. Both these models are close to each other at first, but the
tractability property of cf-SPNs allows them to remain much faster than CBNs for larger problems, scaling
approximately linearly, while the inference time for CBNs explodes for larger problems.

4.6 Prediction on Unseen Inputs

We revisit the noise problem of Section 4.2 to further analyze our model’s generalization capabilities. In our
first experiment for testing on unseen inputs, we take the same training data as before but remove the k
least frequent variable settings, i.e., data points where the original world has these variable settings are not
included.13 We use a special evaluation test set that contains all possible inputs once, i.e., any original world
paired with any single intervention, resulting in 832 inputs. Since we only consider counterfactuals, we can
ask the model for the most probable explanation and compare its answer with the ground truth. This way,
we judge our model’s performance by measuring its accuracy. Results are shown in Table 5a. Even if 48 of
the possible 64 combinations are not part of the training data, the model is still able to predict the majority
of samples correctly, showcasing its potential to adapt to unseen instances.

12Only two seeds for 5/5 contain OOD samples, therefore, the mean and standard deviation are only computed using a few
evaluations on these two seeds.

13Note that, due to binary variables, there are 26 = 64 possible variable settings in this problem.
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Table 5: Prediction on Unseen Inputs. (a): Out of 64 possible variable settings, k are excluded from
the training data. The accuracy is calculated based on how often the model predicts the most probable
counterfactual outcome correctly. Even if most inputs are unseen when training, accuracy remains relatively
high. (b) and (c): The accuracy shows the model predictions when a new number of interventions are
considered. For training, the model only saw instances with 1 and 2 (b) or 1 and 3 interventions (c).

(a) Unseen Worlds

k Accuracy
0 1.00 ± 0.00
8 0.99 ± 0.00
16 0.99 ± 0.01
24 0.98 ± 0.01
32 0.95 ± 0.02
40 0.90 ± 0.01
48 0.83 ± 0.03
56 0.52 ± 0.03

(b) Multiple Interventions.
Trained on 1 and 2 Interventions.

m Accuracy
1 0.96 ± 0.01
2 0.92 ± 0.01
3 0.83 ± 0.04
4 0.72 ± 0.06
5 0.61 ± 0.09
6 0.52 ± 0.14

(c) Multiple Interventions.
Trained on 1 and 3 Interventions.

m Accuracy
1 0.89 ± 0.03
2 0.84 ± 0.03
3 0.86 ± 0.03
4 0.89 ± 0.03
5 0.91 ± 0.03
6 0.91 ± 0.07

Secondly, we take a look at how well the cf-SPN manages to go beyond single interventions. To this end,
we first change the model input. Instead of a single one-hot encoder with one additional field for the
intervention values, each variable that supports interventions now has two fields: one for indicating whether
an intervention takes place, and another one containing the intervention value itself. Now, we train one model
on data that contains interventions on 1 or 2 variables and another model on data containing interventions on
1 or 3 variables. We evaluate all possible inputs for m ∈ [1, 2, 3, 4, 5, 6] counterfactual interventions (where 6
indicates an intervention on every variable) and record the accuracy in the same manner as for the previous
experiment. From the results in Tables 5b and 5c, we can see how the model trained on up to 2 interventions
generalizes with mixed success, while a model trained on 1 and 3 interventions does not drop in accuracy
for the higher number of interventions (m). We conclude that the cf-SPN model can successfully generalize
to new inputs that have never been seen as part of the training data.

5 Conclusion

In this paper, we introduced SCCs, a novel class of models that utilize the tractability of SPNs for causal
settings, therefore “climbing” the ladder of causation. We demonstrated how iSPNs can learn interventional
distributions but fail when it comes to counterfactual predictions. To this end, we introduced the novel class
of cf-SPN and demonstrated throughout several experiments that this more powerful class of SPNs succeeds
in learning counterfactual distributions, highlighting the expressiveness of cf-SPNs on various problems with
tabular data and in settings of particle and galaxy collisions. Having shown the potential of SCCs across
all rungs of the ladder of causation, we can look towards improving the practical applicability of SCCs even
further. Our current models require data from the respective rung of the causal ladder to train them. While
some causal information will always be necessary for models beyond the observational level, one could try to
utilize different information, for example by including domain knowledge or counterfactual samples gained
from human experts. Another challenge when applying these models is scalability and expressiveness for
more difficult problems with a large number of variables.

Limitations. The presentations learned by SCCs do not represent a semantic structure similar to that
of structural causal models, but rather present an efficient representation of the distributions’ partition
function (Martens & Medabalimi, 2014). While this might complicate validation of the learned mechanisms,
our experiments show good coherence to the underlying ground truth data. As with all approaches that rely
on learning mechanisms purely from data, adequate amounts of data with sufficient variability are required
for the model to identify the underlying mechanisms and converge to the true distribution. For the individual
case, corresponding testing and validations should be put in place to secure the safe operation of the model.
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Jiří Němeček, Tomáš Pevnỳ, and Jakub Marecek. Generating likely counterfactuals using sum-product
networks. In The Thirteenth International Conference on Learning Representations, 2025.

Ioannis Papantonis and Vaishak Belle. Interventions and counterfactuals in tractable probabilistic models:
Limitations of contemporary transformations. arXiv preprint arXiv:2001.10905, 2020.

Ioannis Papantonisa and Vaishak Belle. Transparency in sum-product network decompilation. In 26th
European Conference on Artificial Intelligence, 2023.

Iago París, Raquel Sánchez-Cauce, and Francisco Javier Díez. Sum-product networks: A survey. arXiv
preprint arXiv:2004.01167, 2020.

Judea Pearl. From bayesian networks to causal networks. In Mathematical models for handling partial
knowledge in artificial intelligence. 1995.

Judea Pearl. Causality. Cambridge university press, Cambridge, 2009.

Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic books, New
York City, 2018.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den
Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable learning of
tractable probabilistic circuits. ICML, 2020a.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp, Kristian
Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and effective approach to
probabilistic deep learning. In Uncertainty in Artificial Intelligence, pp. 334–344. PMLR, 2020b.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and
learning algorithms. The MIT Press, Cambridge, Massachusetts, 2017.

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In 2011 IEEE
International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–690. IEEE, 2011.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational studies
for causal effects. Biometrika, 70(1):41–55, 1983.

Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal of the
American Statistical Association, 100(469):322–331, 2005.

20



Published in Transactions on Machine Learning Research (09/2025)

Michael Rutter. Proceeding from observed correlation to causal inference: The use of natural experiments.
Perspectives on Psychological Science, 2(4):377–395, 2007.

Raquel Sánchez-Cauce, Iago París, and Francisco Javier Díez. Sum-product networks: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(7):3821–3839, 2021.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, and Kris-
tian Kersting. Conditional sum-product networks: Imposing structure on deep probabilistic architectures.
In International Conference on Probabilistic Graphical Models, pp. 401–412. PMLR, 2020.

Julius Von Kügelgen, Abdirisak Mohamed, and Sander Beckers. Backtracking counterfactuals. In Conference
on Causal Learning and Reasoning, pp. 177–196. PMLR, 2023.

Benjie Wang and Marta Kwiatkowska. Compositional probabilistic and causal inference using tractable
circuit models. In International Conference on Artificial Intelligence and Statistics, pp. 9488–9498. PMLR,
2023.

Kevin Muyuan Xia, Yushu Pan, and Elias Bareinboim. Neural causal models for counterfactual identification
and estimation. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=vouQcZS8KfW.

Matej Zečević, Devendra Dhami, Athresh Karanam, Sriraam Natarajan, and Kristian Kersting. Interven-
tional sum-product networks: Causal inference with tractable probabilistic models. Advances in Neural
Information Processing Systems, 34:15019–15031, 2021.

Matej Zečević, Devendra Singh Dhami, and Kristian Kersting. Not all causal inference is the same. Trans-
actions on Machine Learning Research, 2023.

Han Zhao, Mazen Melibari, and Pascal Poupart. On the relationship between sum-product networks and
bayesian networks. In ICML, 2015.

21

https://openreview.net/forum?id=vouQcZS8KfW


Published in Transactions on Machine Learning Research (09/2025)

Appendix

In this appendix, we first elaborate on the tractability of SCCs (Appendix A) and the definition of “Auton-
omy” used in this paper (Appendix B). After that, we discuss the possibilities of acquiring counterfactual
data for training a cf-SPN (Appendix C). We then elaborate on our experimental section of the main paper
by first giving additional details on the experimental setup (Appendix D), then providing additional results
(Appendix E), and, lastly, giving some technical details regarding the environment in which experiments
were run (Appendix F).

A Tractability and Expressivity of SCCs

We motivated our work on causal SPNs by having tractable models for answering causal questions. Obser-
vational SPNs are tractable (Poon & Domingos, 2011), being able to answer queries in time linear in the
size d of the model, that is, O(d). Considering iSPN and cf-SPN, the NN time depends on its architecture.
For a simple NN, the runtime is mainly determined by the matrix-vector multiplications, so the complexity
depends cubically on the size of the input N , resulting in O(N2). Any query can then be answered within
O(N2d) which, if the intervention G of the iSPN or the counterfactual world of the cf-SPN (described by
the intervention and the original world, i.e., G∗, v′ ∈ D′) remains unchanged, reduces to O(d) since the NN
pass does not need to be repeated for every query.

Overall, SPNs are tractable partly because they only use simple arithmetic operations for any inference.
Product nodes (multiplication) are responsible for the SPN’s ability to represent simple distributions very
efficiently: if parts of the data are independent, their probabilities can simply be multiplied. In the most
trivial case, an SPN could even only consist of a single product node and no sum nodes; this would represent
a probability distribution where all variables are independent from each other. Since this will almost never
be true in practice (and if it is, one would not need to employ an SPN), sum nodes are the other SPN
component to increase the expressivity of the model. In other words, by splitting the data into different
regions (sum nodes), the SPN can leverage independencies that only hold in such regions: context-specific
independencies. By combining these two aspects, SPNs are capable of learning or approximating many
distributions very well.

On the other hand, not every single distribution can be represented perfectly with an arbitrary SPN. Since
underlying operations such as marginalization are inherently intractable, tractability can not always be
achieved without compromise. However, if distributions are well compressible, i.e., they contain context-
specific independencies that the SPN can leverage, then SPNs can learn such distributions with no or only
a small margin of error, meaning that all distributions can be approximated up to an ϵ of error. For iSPN
and cf-SPN in particular, the NN component is also a universal function approximator, ensuring that SCCs
can learn any distribution of their respective rung.

B Interpretations of “Autonomy”

We are aware of two notions of autonomy. In Peters et al. (2017), the authors refer to Aldrich (1989), stat-
ing that in Aldrich’s notion “autonomous relations are likely to be more stable than others. He equates
Haavelmo’s autonomous variables with what subsequently became known as exogenous variables. Au-
tonomous variables are parameters fixed by external forces or treated as stochastically independent.” In
other words, this notion of autonomy describes the exogenous variables, i.e., the “noise variables” or the
randomness of the model. Our notion of autonomy (also described in Peters et al. (2017)) describes the
invariance with respect to interventions, i.e., that conditional distributions of unintervened variables remain
unchanged from interventions on different variables.

C Acquisition of Counterfactual Data

The main benefit of cf-SPNs lies in their aforementioned tractability, allowing for fast inference of a variety
of queries. However, counterfactual data is required for training such a model. Often, we are unable to
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acquire “truly” counterfactual data as, by definition, only the factual outcome can be observed, while the
counterfactual outcome stays hidden. While true counterfactuals can only be obtained in a very limited
number of settings, several approaches exist to remedy this kind of situation. First of all, it is always
possible to utilize preexisting knowledge of domain experts to construct an SPN. Similar to how BNs and
other graphical models can be set up explicitly, we can also construct (i/cf-)SPNs with their corresponding
conditioning mechanisms that truthfully represent the underlying causal relations.

However, there might arise situations where we are unable to access expert knowledge. Thus, our SPNs have
to be trained from data. Several approaches exist and are in widespread use as of today to approximate
the potential outcome of counterfactual events (Rubin, 2005). While randomized controlled trials (Chalmers
et al., 1981) are acknowledged as the gold standard for estimating overall effects, they do not help us with
individual-level causal effects. One idea to remedy this situation is the use of propensity score match-
ing (Rosenbaum & Rubin, 1983). The key idea is to pair up similar participants/data points, assuming
that their starting conditions (speak - latent variables u) are also the same. Apart from analyzing actual
but scarcely available twin studies (McCartney et al., 1990; McGue et al., 2010), this method can help to
create ‘statistical’ twins that share the same initial properties. This allows us to observe multiple factual
outcomes, where one can be seen as the counterfactual to the other. Research on this topic includes analysis
methods such as quasi-experiments (Rutter, 2007) in general and the “difference-in-differences” (Liu et al.,
2021) method in particular, and is still applied in today’s modern systems (e.g., online advertising (Bottou
et al., 2013)).

As long as we hold the means of acquiring such counterfactual data to a degree that allows for practical appli-
cation by revealing causal relations and/or breaking spurious confounding, we are guaranteed to approximate
the true underlying distribution up to numerical error and the expressive capacity of our model.

If counterfactual data is approximated with noise or errors, the cf-SPN will learn the distribution as given
by the data. In other words, if the data is noisy, the cf-SPN predictions will be more uncertain, and if the
data is faulty, the cf-SPN will assume this to be representative of the true distribution. The challenge of
obtaining good counterfactual data is, therefore, separate from the learning task of the cf-SPN.

Practical Limitations. Most commonly, counterfactual queries are computed with respect to a single
“factual” world. While L3 (Definition 4) permits multiple such factual worlds, we are restricting ourselves
to the former scenario and consider data with fully specified original and counterfactual variables, where the
counterfactual differs from the observation by means of a single intervention.

D Experimental Details

Additional details on the experimental setup are shown in Table 6. All experiments use the Adam opti-
mizer (Kingma & Ba, 2014) with a learning rate of 0.001. We always use Gaussian distributions in the leaves
for their ability to represent continuous distributions. When computing probabilities for binary variables,
we normalize the densities for 0 and 1 to obtain the probabilities for 0 and 1. Gradient clipping is applied to
Galaxies experiments, where gradients are clipped to a value of 0.5 for numerical stability. For the particles
experiment (*), an intervention can be applied to any of the 12 variables. (Three particles defined via four
attributes [position X, position Y, velocity X, velocity Y]). The positions can be set to some value within the
box and the velocity has a minimum and maximum possible value as well. For the data generation process,
an intervention is chosen randomly and uniformly within its domain. Several simulations are run where
random timesteps are stored in the data. In a single simulation, most data points are discarded so that the
datasets consist of a variety of different data points. This is balanced in such a way that sufficiently many
interventions are included in the data. For the galaxies experiment (**), each prediction step only considers
two black holes and a single star. Only the position of the stars can be intervened upon, moving them a fixed
amount to the top/bottom/left/right. The information about the original world here describes the previous
timestep, but since we only simulate a specific collision course, the space of possible inputs is not exhausted.
All interventions take place at the same time in the simulation, and some are randomly selected to be part
of the training data.
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Table 6: Experimental Setup Details. The Interventional dataset was shown in Section E.1, the varia-
tions CF without Noise and CF with Noise in Section 4.2 and Appendix E.2, Watering in Section 4.1 and
Appendix E.3, Particles in Section 4.3, and Galaxies in Section 4.4 and Appendix E.5. #V, #Train/test,
and #E show the number of variables, the train/test set size, and the training epochs. I indicates the set
of interventions, i.e., on how many variables can be intervened upon. V describes the input for the original
world in the cf-SPN.

Dataset Name #V #Train/Test #E I V
Interventional 6 560000/140000 50 Any -

CF without Noise 6 560000/140000 50 Any Any
CF with Noise 6 560000/140000 50 Any Any

Watering 4 400000/100000 50 Any Any
Particles 12 192000/48000 100 Any* Any*
Galaxies 12 96000/24000 100 2** Trajectory**

D.1 Galaxy Collision Details

For the galaxy collision experiment, we systematically explored various hyperparameters to improve the
model performance. See Table 7 for the different parameters that were tried out. In addition, 3 different
seeds were used to generate the dataset, and 4 different seeds for training the model. Not all possible
combinations of hyperparameters were run. The result shown in the paper uses 0 layers, a batch size of 25,6
with 100 epochs and a gradient clipping of 0.5 during training.

Table 7: Hyperparameter Values Tried Out for the Galaxy Experiment. Epochs: number of epochs.
Neurons: number of neurons per layer. Layers: number of layers of the NN. Batch Size: batch size during
training. Grad. Clip: Gradient clipping during training.

Epochs Neurons Layers Batch Size Grad. Clip.
50, 100 50, 75, 100 0, 1, 2, 3 32, 64, 128, 256, 1024, 2048 0, 0.5, 1, 2

D.2 Model Comparison Details

Data for these experiments is synthetically generated by first sampling an acyclic causal graph with the
specified number of nodes and edges. We create a causal Bayesian network model for this graph, adding
two additional nodes for each original node: the respective counterfactual node and an exogenous variable.
The counterfactual nodes follow the same graph structure as their original twins, mimicking the “twin-
network” (Balke & Pearl, 1994) approach. Any exogenous variable is connected to be a parent of both the
respective original and counterfactual world node, but not any other node (we do not consider unobserved
confounding). We generate random conditional probabilities for all endogenous variables, but then move
all randomness to the exogenous variables only, such that each node value can be perfectly and uniquely
determined if all parent variables (including the exogenous variable) are known. The value of any exogenous
variable is determined as follows. First, an exogenous variable is thought to be sampled as a uniform value
between 0 and 1. The value of the endogenous variable is 1 if and only if this sampled value is smaller than or
equal to the conditional probability under which the variable would be 1 given its endogenous parents. This
approach allows us to consider equivalence classes for the exogenous variables that produce the same results
for any possible setting of endogenous parent variables. For example, an endogenous node with one parent
variable would have 2 conditional probabilities given its parent. This would result in 3 equivalence classes
for the exogenous variable, namely the values where the uniform samples are smaller than any conditional
probability (node takes value 1), one where uniform samples are larger than one, but smaller than the other
conditional probability (node takes value 1 or 0 depending on the parent value), and one where uniform
samples are larger than any conditional probability (node takes value 0). The range of these equivalent
samples is then used as the prior probability of the discrete value that the exogenous variable can take. As
the possible exogenous variable settings explode exponentially with the number of endogenous parent nodes,
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we cap the possible exogenous values at 10, ensuring that any two exogenous values result in different values
for at least one setting of parent variables.14 This way, all randomness is contained within the exogenous
variables, allowing us to use this CBN both for generating observational and counterfactual samples, and
for computing ground truth counterfactual probabilities, which we can compare with CF-SPN and CNF
predictions in our evaluation. For each edge-node configuration and seed, 10,000 samples are generated for
each possible counterfactual intervention and the no-intervention case (where the original and counterfactual
worlds are identical). The cf-SPN is trained on this dataset of counterfactual samples for 100 epochs. The
CNF is trained on the observational data and the causal graph.

For the evaluation, 100 random but unique original world and intervention combinations are sampled (such
that each evaluation is different), each representing a different counterfactual query.15 We employ two
different strategies, depending on the problem size. For the four smaller configurations (up to 20 nodes and
30 edges), these counterfactual queries are sampled randomly from the space of all possible queries (avoiding
repeating queries). These queries require the CBN to compute the probabilities of the counterfactual world
by considering the possible exogenous variables compatible with the original world. However, this requires an
exponential amount of both time and storage, such that it was impossible for us to do the same computation
using CBNs for the larger problems. Therefore, we use sampled queries from a separate test set (compared
to the other case, queries are now not sampled uniformly from the entire possible space but instead sampled
according to the probabilities of the CBN), which allows us to provide exogenous values for the CBN, making
computation feasible. However, this has two downsides. For one, the inference time we record for these
configurations for CBNs is lower than it would be if they had to compute the queries correctly. Secondly,
the resulting counterfactual probabilities change, as, instead of estimating the possible exogenous values
(“abduction”, in Pearl’s three-step procedure), only one specific value of the sample is provided, even when
other values would be possible given the original world setting. In any scenario, we then put the respective
query (with or without specific exogenous values) into the CBN, which determines the marginal probability
of each variable using variable elimination. We use these probabilities as gold standard probabilities and
then compare the cf-SPN and CNF outputs to those.

For the cf-SPNs, we can also compute the marginal probabilities for each variable directly. For CNFs, on
the other hand, we only compute a counterfactual sample. In many cases, such as for our experiments in
Sections 4.1 and 4.2, counterfactuals can be determined fully deterministically. In this case, the NF might
output exactly this counterfactual world correctly, which also fits the marginal probabilities that are 1 or 0 as
well. However, since the exogenous variables can not be inferred precisely every time, the true counterfactual
probability could also not be 0 and 1, in which case the NF might still rather predict the most likely sample,
i.e., 0 or 1. Our evaluation considers multiple metrics to take this into account. First, we interpret the NF
output as probabilities, so a sample of 1 would be a probability of 100% for the positive class. We then
calculate the difference between the true marginal probability and the model (cf-SPN, CNF) probability
and record the L1 and L2 error. Note that this is not entirely fair, as the CNF outputs technically do not
represent probabilities. On the other hand, the CNF could theoretically also predict samples between 0 and
1, which is why interpreting these outputs as marginal probabilities is the best option, considering their
general inability to truly compute marginal probabilities. Additionally, we record two other metrics that do
not suffer from this problem. We compute the per-sample and element-wise accuracy for each counterfactual
by mapping all (marginal) probabilities to 1 that are larger than 0.5 and to 0 otherwise. We then compare
the CBN output with the cf-SPN and CNF and either count the sample as correct if all variable values match
(per-sample) or record each correct and incorrect variable value separately (element-wise). By definition,
the element-wise accuracy is likely to be much higher than the per-sample accuracy.

The entire evaluation is conducted over the following node/edge configurations: 5/5, 10/12, 15/20, 20/30,
50/100, 100/250. Each configuration is run for five different seeds, changing not only the model training,
but also generating a new and different causal model and data each time.

14Not doing so would make computation in the Bayesian Network infeasible to run due to exponentially increasing space and
time constraints.

15Any counterfactual intervention must change the value of the respective original world variable, so interventions that do
not change the variable state are not considered.
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Seed 5-5 10-12 15-20 20-30 50-100 100-250
Time (s) 66.69 ±1.78 235.74 ±16.30 522.15 ±21.27 951.03 ±57.02 4394.05 ±231.03 19700.45 ±672.77

Table 8: cf-SPN Training Times (in seconds). Training ranges from around a minute for the smallest
problem to around 5.5 hours for the largest.

E Further Experimental Results

We include additional experimental results on tabular data for iSPN (Appendix E.1) and cf-SPN (Appen-
dices E.2 and E.3), the comparison between different models (Appendix E.4), and the galaxy experiment
(Appendix E.5).

E.1 Tabular Data: iSPN

We apply an iSPN on the deterministic problem depicted by the causal graph in Figure 7. The approximated
distribution for an iSPN trained on data generated from this setup is shown in Figure 10. As in the main
paper, we specify an intervention (or no intervention) and calculate the probabilities for each variable. The
ground truth is shown in bars, and the model prediction is shown as continuous, green lines (as Gaussian
distributions are used in the SPN leaves). The presented results show the average of 1000 samples. In this
experiment, the iSPN learns both the observational and the interventional distribution very well. For further
experiments on iSPNs, we refer the reader to Zečević et al. (2021).

E.2 Tabular Data: cf-SPN

Consider again the causal graph from Figure 7 in its deterministic form. The results in Figure 11 show the
probabilities on the problem when uniformly, randomly intervening on a variable. It can be seen that the
model matches the ground truth without any visible error.

The non-deterministic case has been discussed in the main paper (Section 4.2). Figure 12 shows results for
interventions on variables not shown in the main paper, highlighting the good model performance throughout.

E.3 Watering: cf-SPN

The watering example has been discussed in detail in the main paper (Section 4.1). Figure 13 provides
additional results.

E.4 Model Comparison

Training times for the cf-SPN are shown in Table 8. In these experiments, all cf-SPNs are trained for 100
epochs, resulting in training times between not much more than one minute for the smallest problems and
around 5.5 hours for the largest problems. Since no early stopping is used, the training loss often converges
much earlier.

In the evaluations, there were rare instances where an evaluation had to be discarded because the probability
of the data point in the CBN was 0. This led to the CBN returning no valid values to probabilities we could
compare to. We omitted these instances, as they were especially rare. In our configurations, 1 seed in the
10-node configuration, 2 seeds in the 15-node configuration, and 2 seeds in the 20-node configuration were
affected. In the first two configurations, this affected only a single evaluation out of all 100, while in the
20-node case, 5 and 4 out of 100 evaluations each were affected. Also note that for 3 seeds in the 5-node
configuration, all samples were ID. Therefore, the mean and standard deviation for the OOD row were only
computed using a few evaluations on these two seeds.

Tables 9 and 10 provide two additional metrics for the experiments in Section 4.5. The L1-error shows that
CNFs generally perform worse than cf-SPNs when it comes to computing probabilities, even if the difference
is not as stark as for the L2-error. For the accuracy, we see cf-SPN starting better than CNF in ID regimes,
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Figure 10: iSPN Full Results Experiment. Showing iSPN predictions (green lines, probability density
functions) and the ground truth (bars, probability mass functions). All graphs were created by sampling
1000 instances from the causal model. (Best viewed in color.)
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Figure 11: cf-SPN Full Results Experiment without Noise. Showing cf-SPN predictions (blue lines)
and the ground truth (bars). All graphs were created by sampling 1000 instances from the causal model.
(Best viewed in color.)
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Figure 12: cf-SPN Full Results Experiment with Noise. Showing cf-SPN predictions (blue lines) and
the ground truth (bars). All graphs were created by sampling 1000 instances from the causal model. (Best
viewed in color.)
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Figure 13: cf-SPN Full Watering Experiment Results. Showing cf-SPN predictions (blue lines) and
the ground truth (bars). All graphs were created by sampling 1000 instances from the causal model. (Best
viewed in color.)
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Method 5/5 10/12 15/20 20/30 50/100 100/250

ID cf-SPN 1.79 ± 0.47 1.96 ± 0.61 2.88 ± 1.67 N/A N/A N/A
CNF 6.81 ± 2.75 3.50 ± 1.18 2.63 ± 1.77 N/A N/A N/A

OOD cf-SPN 5.02 ± 1.28 2.35 ± 0.65 2.19 ± 0.44 2.18 ± 0.27 2.27 ± 0.11 3.28 ± 0.32
CNF 10.97 ± 0.23 5.30 ± 0.87 4.52 ± 1.18 3.53 ± 0.71 1.81 ± 0.09 1.33 ± 0.30

Table 9: L1-Errors of Marginal Probabilities for cf-SPNs and CNFs (scaled by 100). Different
combinations of nodes/edges are evaluated, ranging from 5 to 100 nodes. Some counterfactual queries have
been part of the training data (ID), others have not (OOD). The table shows the average L1-error for the
marginal probability per variable times 100 (as most differences are quite small). In-distribution samples are
predicted with lower errors, and cf-SPNs give lower errors throughout most settings.

Method 5/5 10/12 15/20 20/30 50/100 100/250

ID cf-SPN 0.97 ± 0.03 0.92 ± 0.05 0.66 ± 0.19 N/A N/A N/A
CNF 0.91 ± 0.03 0.90 ± 0.06 0.70 ± 0.17 N/A N/A N/A

OOD cf-SPN 0.84 ± 0.09 0.86 ± 0.07 0.80 ± 0.05 0.77 ± 0.03 0.64 ± 0.04 0.12(*) ± 0.02
CNF 0.94 ± 0.06 0.91 ± 0.04 0.81 ± 0.04 0.79 ± 0.03 0.63 ± 0.01 0.50 ± 0.05

Table 10: Accuracy Comparing cf-SPNs and CNFs. Different combinations of nodes/edges are eval-
uated, ranging from 5 to 100 nodes. Some counterfactual queries have been part of the training data (ID),
others have not (OOD). Generally, CNFs tend to perform slightly better on OOD samples, but slightly worse
on ID samples. Even in the OOD cases, cf-SPNs do not fall far behind, except for the 100/250 configuration
(* more information in the text).

where the model memorizes the training data well. On the other hand, the CNF’s knowledge of the correct
causal graph can help with predicting OOD samples correctly, resulting in better results there. Notably,
the accuracy for 100 nodes and 250 edges for cf-SPNs at 0.12 is surprising. This has several explanations.
For one, we did not conduct any hyperparameter optimization in these experiments. As we also explained
for the galaxy collision experiment, hyperparameter optimization can be quite important, and a bad choice
of parameters can lead to bad results. Additionally, the explicit integration of the causal graph for CNFs
puts it at an advantage here, where it is impossible for the CNF to incorrectly predict counterfactual world
variables that are not affected by the counterfactual intervention, while any one of the 100 variables could be
incorrectly predicted by the cf-SPN, reducing sample-wise accuracy. Still, the other metrics show that the
cf-SPN performance is far better than random, and an optimized choice of hyperparameters would probably
again lead to better results.

E.5 Galaxies

In Figure 14, we show a more extensive illustration of the galaxy experiment introduced in the main paper
(Section 4.4). Here, the displacement of the particles to lower positions after time step 49 can be observed.
While the model performance here shows visible errors compared to the ground truth simulation, the model
still shows sensible results despite more than 70 time/prediction steps that can all introduce new errors.

F Technical Details

All models were built using PyTorch and trained and evaluated in the following environment: Intel(R)
Xeon(R) Platinum 8174 CPU @ 3.10GHz, RAM: 1546 GB, GPU: NVIDIA Tesla V100-SXM3-32GB with 32
GB of RAM.
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Figure 14: cf-SPN Galaxies Experiment. Sim: Simulation. The interventions take place from time step
49 to time step 50 on the magenta particles. From time step 50 onward, the visual shapes of these particles
are additionally changed to stars. (Best viewed in color.)
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