
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

An Integrated Robotic System for Autonomous Brake

Bleeding in Rail Yards

Huan Tan, Shiraj Sen, Arpit Jain, Shuai Li1,Viktor Holovashchenko, Ghulam Baloch,

Omar Al Assad, Romano Patrick, Douglas Forman, Yonatan Gefen, Pramod Sharma,

Frederick Wheeler, Charles Theurer, Balajee Kannan

balajee.kannan@ge.com2

GE Global Research

One Research Circle

Niskayuna, USA

Abstract. Current operations in rail yards are dangerous and limited by the op-

erational capabilities of humans being able to make critical decisions in the

presence of incomplete or incorrect information. Such issues call out the need

for robust and capable autonomous systems. In this paper, we outline one such

autonomous solution for the railroad domain, capable of performing the brake

bleeding inspection task in a hump yard. Towards that, we integrate a large

form factor mobile robot (the Clearpath Grizzly) with an industrial manipulator

arm (Yasakawa Motoman SIA20F) to effectively detect, identify and subse-

quently manipulate the brake lever under harsh outdoor environments. In this

paper, we focus on the system design and the core algorithms necessary for re-

liable and repeatable system execution. To test our developed solution, we per-

formed extensive field tests in a fully operational rail yard with randomly

picked rail cars under day and night-time conditions. The results from the test-

ing are promising and validate the feasibility of deploying an autonomous brake

bleeding solution for railyards.

Keywords: Field Robotics, Autonomous System, 3D Detection & Segmenta-

tion, Manipulation, Trajectory Planning, System Design, Rail Yard Operations,

Brake Bleeding

1 Introduction

The challenges in the modern rail yard are vast and diverse. Railroad classification

yards, or hump yards, play an important role as consolidation nodes in rail freight

networks. At classification yards, inbound trains are disassembled and the railcars are

sorted by next common destination (or block) [1]. Based on various studies for the

rail industry, the efficiency of yards in part drives the efficiency of the entire rail net-

work [2]. The hump yard is generally divided into three main areas: the receiving

1 Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180
2 Communicating author

yard, where inbound trains arrive and are prepared for sorting, the class yard, where

railcars are sorted into blocks and the departure yard, where blocks are assembled into

outbound trains, inspected and then depart.

In the future, rail yards will be a hub of technological advancements where auton-

omous mobile robotic solutions work in coordination with human yard operators and

cloud-based data analytics to enhance human safety [3] and drive services productivi-

ty (see Fig.1).

Fig. 1. GE Guardian Platform for Autonomous Railyard Inspection Services

Current solutions for field service operations are labor-intensive, dangerous, and

limited by the operational capabilities of humans being able to make critical decisions

in the presence of incomplete or incorrect information. Furthermore, efficient system

level-operations require integrated system wide solutions, more than just point solu-

tions to key challenges [4]. The nature of these missions dictates that the tasks and

environments cannot always be fully anticipated or specified at the design time, yet an

autonomous solution must have the essential capabilities and tools to carry out the

mission even if it encounters situations that were not expected.

Solutions for typical railyard problems, such as brake bleeding, brake line lacing,

coupling cars, etc, require combining mobility, perception, and manipulation towards

a tightly integrated autonomous solution. Currently, there exist a number of mobile

manipulation systems that have been successfully demonstrated in controlled indoor

environments. An exhaustive survey of such systems and techniques is beyond the

scope of this paper. Ciocarlie et. al [5] showed how a PR2 robot can utilize a 3D sen-

sor for object detection and manipulation in cluttered tabletop environments. The Intel

HERB mobile manipulation platform has demonstrated impressive capabilities for

picking up and placing of objects in indoor environments [6]. Nguyen et. al [7] pre-

sented the El-E robot that could autonomously fetch objects from flat surfaces. All

these platforms make certain assumption with regards to the environment in order to

simplify the problem of robot perception. When placing robots in an outdoor envi-

ronment, technical challenges increase largely, but field robotic application benefits

both technically and economically [8]. Some researchers have used robots in the do-

mains of agriculture [9] [10], mining [11] [12], transporting [13] [14], etc. The

DARPA Robotics Challenge (DRC), aimed at advancing the capabilities of robotic

systems for disaster response, is one of the few examples of robots working in un-

structured outdoor environments [15]. This challenge required a robot to collaborate

with humans in order to achieve varied task objectives such as opening a door, turning

a valve, and drilling a hole. The difficulty associated with detecting objects reliably in

outdoor environment results in the problem of object detection primarily being per-

formed by a human operator, fitting models to sensory data [16].

One key challenge in yard operation is that of bleeding brakes on inbound cars in

the receiving yard. Railcars have pneumatic breaking systems that work on the con-

cept of a pressure differential. Fig.2 displays different types of brake levers robots

need to grasp and pull. Interestingly, the size of the brake lever is significantly small

compared to the size of the environment and the rail cars. In addition, there are lots of

variations on the shape, location, and the material of the brake levers. Coupled with

that is the inherent uncertainty in the environment; every day, rail cars are placed at

different locations, and the spaces between cars are very narrow and unstructured.

In our vision, we believe that intelligent autonomy, robust perception, and robust

actuation are the keys to a successful autonomous robotic system. In this paper we

outline one such autonomous solution for performing the brake bleeding task in a rail

yard environment. We believe our solution is one of the first of its kind in automating

the brake bleeding process for rail yards, addressing a real need for robotics in the

domain of industrial applications.

The rest of the paper is organized as follows: Section 2 explains the system design

in detail, Section 3 discusses our experimental results, and Section 4 summarizes the

results and identifies future work scope.

Fig. 2. Typical Cars and Brake Levers

2 System Design

The developed system is used to actuate brake levers on rail yards, which is a typical

field robotic operation. The system involves the robot autonomously navigating with-

in the track corridor along the length of the train moving from car to car (given an

initial coarse estimate of the brake rod location from rail database), locating the brake

rod, positioning itself next to the brake rod before actuating the brake rod. During the

autonomous navigation, the robot needs to maintain a distance of separation (0-4”)

from the plane of the railcar while moving forward. In order to ensure real-time brake

rod detection and subsequent estimation of the brake rod location, a two-stage detec-

tion strategy is utilized. Once the robot has navigated near to the brake rod location an

extremely fast 2D vision-based search algorithm confirms a coarse location of the

brake rod. The second stage of the algorithm involves building a dense model for

template-based shape matching (brake rod) to identify the exact location and pose of

the break rod. Once the robot reaches the desired location, the final step in the process

is to actuate and manipulate the rod with a robotic arm. The manipulation solution

needs to be flexible enough to handle variations in the environment, the location and

state of the rod and in sensing and perception. The detail of the grasping strategy is

beyond the scope of this paper.

2.1 System Architecture

The brake bleeding architecture is composed of three layers: Physical Layer, Pro-

cessing Layer, and Planning Layer (see Fig. 3). The physical layer deals with the ro-

bots and sensors. For the physical layer, we leverage commercially available sensors

and platforms integrating to build a cohesive and highly capable platform. The details

of the actual platform are described later in Section 3.

Fig. 3. System Architecture

The processing layer is the crucial part of the system, since most of the algorithms

and functions are implemented on this layer. Based on the fields of study, we catego-

rize the major components into four modules: Deliberation, Perception, Navigation,

and Manipulation. Deliberation module is responsible for planning and coordinating

all the behaviors in the system. It gets processed information from sensors and makes

decisions to move the Grizzly robot and the SIA20F robot. Perception module pro-

cesses sensory information and find the poses of brake levers in the environment.

Navigation module controls the Grizzly robot to move to desired position. In order to

move safely and precisely, a variant of RTAB-Map [17] algorithm based on Envi-

ronmental Modeling is implemented to provide necessary information for motion

planning. Manipulation module is used for controlling the SIA20F robot to touch the

lever. Environmental Modeling is used to help the robot to plan the motion trajecto-

ries while avoiding collision.

Finally, in the planning layer, all sensory information and states information are

collected from lower layers towards action selection. According to requirements of a

task, the system will make different decisions based on current task-relevant situation.

A state machine ties all the layers together and transfer signals from navigation to

perception and then subsequently manipulation. Whenever there is an emergency stop

signal generated or there are error information reported by three sub-modules, the

system safety primitives are triggered, preventing any damages to both the robot and

the environment.

2.2 Environmental Modeling and Platform Motion Control

Moving the platform between different locations in rail yards to perform tasks is a

basic requirement for mobile manipulation systems. We provide two operation modes

in the navigation module: one is the teleoperation mode, and the other is autonomous

mode. Using the triggered signal from a joy stick, the deliberation module sends a

command to the navigation module to switch the mode. In the autonomous mode, the

robot moves to search brake levers in the environment. The navigation module is

tightly coupled with the detection module, moving the robot in a trajectory parallel to

the plane of the railcar until a lever is found. Fig.4 (next page) displays the state ma-

chine for the navigation module.

Environmental Modeling.

In order to move in the environment, the robot needs to model and understand the

environment. Currently, the robot motion is limited to being able to navigate the

length of a train (typically about 100 rail cars long) and subsequently does not need to

move long distance, which means global planning is not required. However, even in

the local planning and movement, the robot needs to safely operate in its environment.

Towards that, we implemented a Kinect-based SLAM algorithm in our system. There

are lots of SLAM algorithms off-the-shelf and we choose Real-Time Appearance-

Based Mapping (RTAB-Map) [17], which is a RGB-D Graph-Based SLAM approach

Fig. 4. Navigation State Machine

based on an incremental appearance-based loop closure detector. In our testing, we

found it to be very stable under most of the weather conditions. Using RTAB-Map,

the robot knows the relative location of itself, which is used to close the motion con-

trol loop. At the same time, we use point cloud data to recognize the plane of the cars.

This information is used to keep the robot away from the rail cars and maintain a pre-

defined distance of separation (see Fig.5, next page).

Motion Planning and Control.

There are two planning modules implemented in our system. One is to move mini-

mize the distance between the robot and the desired location, and the other is to keep

safe distance between the robot and the tracks. The computed control commands from

the goal controller for driving the robot forward and from the safety controller for

keeping the robot away from rail cars are fused to compute a velocity command

which will control the motors of the robot to move in the environment. The fusion is a

weighted sum of the two control commands:

𝑐𝑚𝑑𝑣𝑒𝑙 = 𝛼 ∗ 𝑐𝑚𝑑𝑔𝑜𝑎𝑙 + 𝛽 ∗ 𝑐𝑚𝑑𝑠𝑎𝑓𝑒𝑡𝑦 (1)

𝛼 + 𝛽 = 1 (2)

𝑐𝑚𝑑𝑔𝑜𝑎𝑙 and 𝑐𝑚𝑑𝑠𝑎𝑓𝑒𝑡𝑦are generated using the Artificial Potential Field [18] algo-

rithm. 𝛼 and 𝛽 are parameters tuned based on the task-relevant situations.

Fig. 5. Point Cloud Building and Subsequent Waypoint generation for Navigation

2.3 Target-of-Interest Detection and Pose-Estimation [19]

Detecting and finding the correct 6D pose of the correct brake lever is a necessary

first step to actuating the brake lever. Our approach for object detection in uncon-

strained environments relies on obtaining object hypothesis candidates by fusing de-

tection results from 2D images and 3D point clouds. The candidates are then com-

bined temporally and reasoned upon in an online fashion by using real time Simulta-

neous Localization and Mapping (SLAM). We propose a confidence function that

ranks the candidate detections based on its detection score, spatial, and temporal con-

sistency. The confidence function also takes into account the uncertainty in detection

location due to occlusion or SLAM misalignment. Fig.6 shows the pipeline of our

approach.

Fig. 6. Detection and Pose Estimation

Image based Object Detector

We use deep learning to train an object detector from images. Our detector utilizes the

layered architecture of deep CNN [20] to learn the object representation. Each layer

comprises of linear and non-linear operators that are learned jointly in an end-to-end

system using a task specific loss function. The goal of CNN is to learn a feed-forward

neural network defined as:

𝑓(𝑥) = 𝑓𝐿(… 𝑓2(𝑓1(𝑥; 𝑤1); 𝑤2) … ; 𝑤𝐿) (3)

Each 𝑓𝑖 represents a layer that takes data 𝑥𝑙 from previous layer and a parameter 𝑤𝑖

and produces an output 𝑥𝑙+1 for next layer. The parameters of a CNN 𝑤 =
(𝑤1, 𝑤2 , … , 𝑤𝐿) are learned using back-propagation to reduce the overall classification

error [21].

We bootstrap the training images with the ImageNet model [22] trained on the

AlexNet architecture. Deep learning detectors have high precision provided there is

enough training data. However their runtime performance is slow due to the high

computational requirements of the multilayered neural network. In this paper, a De-

formable Part-based Model (DPM) [23] detector is used to filter the image and reduce

the number of object candidates being passed to the neural network. A DPM learns

the appearance and spatial arrangement of the object and its parts using histogram of

oriented gradient features. The top N candidates above a threshold that are returned

by the deep learning classifier are selected as potential object hypotheses. An Ensem-

ble of Shape Functions (ESF) [24] is extracted from each of the 3D segments. Three

histograms are generated from each of these shape functions, including the histogram

of the connecting lines generated from random points that lie on the object surface,

the histogram of connecting lines that do not lie on the object surface, and the histo-

gram for the case when part of the connecting lines lie on the object surface. The 3D

feature descriptor comprising of multiple histograms is encoded into a single high

dimensional feature descriptor by using Fisher Vector encoding. Two sets of classifi-

ers were trained using Support Vector Machines (SVM) [25] and Real Ad-Boost.

Multiple classifiers allow us to leverage strengths of individual classifier to obtain a

robust score for detection.

3D Segmentation

Object proposals from 3D point cloud are obtained through segmentation process. We

use Locally Convex Connected Patches (LCCP) [26] algorithm to segment the 3D

point cloud [27]. LCCP is a bottom up approach that merges super voxels into object

parts based on a local convexity/concavity criterion. A basic filtering step based on

size and shape constraints are applied to these segments to reduce the object hypothe-

sis space.

Temporal Fusion

A voting scheme is utilized for hypothesis evaluation, wherein each hypothesis

votes for the position of the object.
The confidence of the object being at a particular location is computed by

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑙𝑗) = 𝜇𝑗 ∗ 𝑒(𝜇𝑗∗𝐶𝑜𝑢𝑛𝑡𝑗−𝛿𝑗) (4)

where 𝜇𝑗 and 𝛿𝑗 are the means and variances of classifier scores for all segments vot-

ing for location 𝑙𝑗 , and 𝐶𝑜𝑢𝑛𝑡𝑗 is the number of segments voting for that particular

location.

2.4 Trajectory planning and actuation

The ultimate goal is to actuate (touch) brake levers on rail cars. After the detection

is done, the robot knows where the target of interest, i.e., the brake lever, is. Using the

pose estimation results, the robot plans a motion trajectory in the workspace based on

the current environmental modeling results. Then the controller drives the arm safely

to touch the brake lever. Fig.7 displays the state machine of manipulation.

Fig. 7. Manipulation State Machine

Environmental Modeling

Our system is used to touch brake levers on rail cars, which means the majority of

the motions are “moving toward”. In our testing, we found that grid-based algorithm

is enough for modeling our environment.

The environmental data is collected using Kinect. All the point cloud data points

are processed and grouped into grid, i.e., OctoMap [28]. Fig.8 (next page) displays an

Example of modeling the environment. The grid are cubes with the sizes of

10cm*10cm*10cm. The Kinect can detect the point cloud data points up to 8m. In

order to speed up the modeling and analysis process, we only model the environment

around the manipulator, which is in a sphere with the radius 2.5m.

Fig. 8. Environmental Modeling

Trajectory Generation

Two requirements are set up for the motion planning algorithm: 1. Fast; 2. Safe. We

used the Robot Operating System (ROS) [29] Motoman Package [30] developed by

ROS-Industrial Consortium as the basic motion planning driver and created three

ROS services, including linear trajectory planning in joint space, linear trajectory

planning in Cartesian space, and Point-to-Point trajectory planning in joint space, for

motion planning in our system.

Linear Trajectory Planning in Joint Space.

When the robot is moving in an open space for a long distance and far away from

the cars and brake levers, we do not need to worry about the motion patterns. Then we

define the starting position and target position of the motion. Using Artificial Poten-

tial Field algorithm, we can find the way points on the desired motion, which is linear

in all 6 degrees of freedom, but non-linear in the Cartesian space. Then we assign

velocities to each way points depending on the task requirements.

When integrated with the deliberation module, we cannot use this method directly.

Because the positions of the brake levers are defined as 6D poses in Cartesian space.

After get the 6D poses in the Cartesian space, using Inverse Kinematics, we convert

the 6D pose from Cartesian space to 6 joint angles in the joint space. Then this service

can compute the desired joint angles on the motion trajectory.

Linear Trajectory Planning in Cartesian Space.

This service is an enhanced version of the first service. We use Artificial Potential

Field algorithm to find the way points on a desired motion trajectory in the Cartesian

space. Using Inverse Kinematics, we get corresponding way points in the joint space.

Then we assign velocities to all the way points.

Point-to-Point Trajectory Planning in Joint Space.

This service is created for homing or resetting. We just defined the target joint an-

gles without any internal way points. This method could bring the robot to the target

position as fast as possible.

Motion Control

The generated motion trajectories are defined as a sequence of way points in the

joint space. Each way point contains the information of 7 joint angles, timing stamp,

and velocity. The joint angles, timing stamp, and velocity are put in the vector of

points. The standard MotoROS program is run on the robot to receive the command to

drive the robot to move along the desired motion trajectory.

Validation

A microswitch produced by Honeywell is attached to the wrist of the SIA20F robot.

And the other end is a white ball. Whenever the ball touches the brake lever, the mi-

croswitch will be triggered to provide feedback information to the robot.

3 Experimental Results and Discussion

The proposed design was developed and validated on a practical mobile robotic plat-

form. Fig.9 displays the created system. We use a Clearpath Grizzly mobile robot as

our base platform integrated with a 7-degree of freedom Yasakawa Motoman SIA20F

manipulator arm coupled with a custom end effector. Towards environmental model-

ing and brake lever detection, we used two RGB cameras for 2D processing including

detection and segmentation in conjunction with two Kinect sensors. The point cloud

information is also used for mapping and localization for the mobile platform.

Fig. 9. Development Platform (hardware and software centric views)

Two Lenovo W541 laptops, which are equipped with Intel Core i7-4910MQ

2.90GHZ GPU and 32.0G RAM Memory, are used in our system. One is responsible

for motion control of the mobile platform, detection and pose-estimation of targets,

and high level state machine. The other is majorly used for controlling the SIA20F

robot to plan the motion trajectories and physically touch brake levers. Robot Operat-

ing System (ROS) is used as the low-level IPC for our system.

19

System	Components	

This Document contains GE confidential data

3.1 Detection Results

The performances of the image-based detectors were evaluated on 2000 color images

collected from 80 test rail cars. Fig.10 shows the performance of the two image-based

detectors. As is evident, the CNN detector performs better than the DPM. This is be-

cause the deep learning architecture doesn’t reply on hand designed features but

learns the appropriate features directly from the data that are more discriminative.

There is very little loss in performance when the CNN detector takes as input the

candidate patches selected by DPM. However, using the detectors in sequence leads

to significant improvement in detection speed compared to the CNN detector running

on the entire image.

The performance of the 3D feature descriptors were evaluated by randomly divid-

ing the positive and negative 3D segments into training and testing data and training a

Real AdaBoost classifier. We evaluated the performance of our system for braking

mechanism detection and touching on 80 test rail cars.

In our approach, with SLAM incorporated, our system achieved 85% detection

performance. This demonstrates that temporally fusing detection results significantly

improve object detection accuracy. Moreover, our perception system performed

equally well on detection task during the day and the night time validating that our

approach is robust to environmental and illumination changes.

Fig. 10. Figure shows the precision-recall curve for the Deformable part-based model detector

and the detector trained using deep learning. The performance of the combination of DPM and

CNN detector is comparable to CNN-based detector.

3.2 Motion Planning Results

After we successfully find a brake lever, we need to plan a trajectory for the SIA20F

to touch the lever. When the environment is open and there are no obstacles in the

environment, as long as the brake lever is in the reachable space of the manipulator,

the trajectory planning is 100% successful.

3.3 System Testing Results

In GE’s Railcar repair facility in Sayre, PA (see Fig.11), we evaluated our system on

61 rail cars over multiple days and times (see Fig.11) to account for varying environ-

ment conditions. For our tests, we randomly picked cars in the rail with the distribu-

tion of the cars ranging from hoppers to tankers, box and gondolas. For testing, we

restrict the search distance to about 2.5m. A test is considered as a success if the robot

touches the designated brake lever, otherwise it is a failure. We randomly picked rail

cars from our rail yard and tested 61 times.

Fig. 11. Test Environment (GE Railcar Repair Facility) and test conditions (day & night)

 (a) Test railcar set (b) Robot Navigation (c) Brake Lever Detection

 (d) Trajectory Generation (e) Motion Execution (f) Successful Actuation

Fig. 12. Autonomous Brake Bleeding Operations – from left to right; the robot is lined next to a

set of railcars, navigates to the first one, detects the brake lever, moves into position adjacent to

the brake lever, calculates appropriate trajectory and actuates brake lever.

Fig. 12 displays the scenario of the testing process: (a) the robot is placed in a rail

yard, where it needs to handle the brake levers along a rail track, (b) the robot is ini-

tially placed on a location about 2.5m away from the brake lever and it moves along a

rail track, (c) the robot keeps detecting the brake lever in the environment using visual

information, (d) the robot stops at a location and plans a motion trajectory to move the

robot manipulator to touch the brake lever, (e) the arm moves toward the brake lever,

and (f) touches the brake lever without hitting obstacles in the environment. After the

lever is touched, the robot moves to the next location.

Raw Testing Results

In 61 trials, our system successfully touched the brake levers 41 times. The overall

success rate of touching is 67.21%. Table 1 displays the original data collected.

Table 1. Original Testing Results

Error Type Occurrence

1 - Perception - Not found 1

2 - Perception - Wrong detection 7

3 - Perception - Back to prior detection 0

4 - Perception - Undefined 1

5 - Navigation 1

6 – Navigation - Motor Malfunction 4

7 - Human error - Positioning 3

8 - Human error - Undefined 1

9 - Manipulation - Obstacle Collision 0

10 - Manipulation - Motion Incomplete 1

11 - Other 1

 Total errors: 20

 Overall Success Rate: 67.21%

Adjusted Testing Results.

In the 20 failed trials, we categorized the cause of failure into four types: Detection

Error, Navigation Error, Manipulation Error, and Human Operation Error. The origi-

nal distribution of the causes of errors is displayed in Table 2.

Table 2. Error Distribution

Trials Categorization Percentage

Success Successful 67.21%

Failure Detection Error 14.75%

Navigation Error 8.20%

Manipulation Error 1.64%

Human Operation Error 8.20%

Detection errors and Manipulation errors are produced due to technical reasons.

For example, the detection module may find a wrong lever, which is a positive false

error; the detection module may not be able to find any levers in the environment,

which is a negative true error. However, the human operation error can be removed

after the users are well trained. 4 navigation errors are produced by the malfunction of

the motors. If we replace those motors, the errors can also be removed. Then we re-

move the human operation errors and 4 navigation errors, the adjusted result is dis-

played in Table 3.

Table 3. Adjusted Testing Results

Trials Categorization Percentage

Success Successful 81.97%

Failure Detection Error 14.75%

Navigation Error 1.64%

Manipulation Error 1.64%

Human Operation Error 0.0%

4 Conclusion

This paper proposes an integrated system design of deploying mobile robots in rail

yards for autonomous operations. We integrate two robots to perform autonomous

brake bleeding in rail yards and the system design is explained in detail in this paper.

The developed system has been tested in a rail yard and the experimental results vali-

date that our system can successfully navigate, find, and touch brake levers. As men-

tioned earlier, this is an on-going project. The next step is to develop grasping and

pulling capabilities for the industrial manipulator. The system will be tested more in

more rail yards under different conditions.

References

1. https://en.wikipedia.org/wiki/Rail_yard

2. Oum, Tae Hoon, W. G. Waters, and Chunyan Yum (1999) A survey of productivity and

efficiency measurement in rail transport. Journal of Transport economics and Policy: 9-42.

3. Drudi, Dino. "Railroad-related work injury fatalities." Monthly Lab. Rev. 130 (2007): 17.

4. Thorpe, Chuck, Hugh Durrant-Whyte (2001). Field robots. Proceedings of the 10th Inter-

national Symposium of Robotics Research (ISRR’01)

5. Meeussen, Wim, Melonee Wise, Stuart Glaser, Sachin Chitta, Conor McGann, Patrick Mi-

helich, Eitan Marder-Eppstein (2010) Autonomous door opening and plugging in with a

personal robot. Proceedings of 2010 IEEE International Conference on Robotics and Au-

tomation (ICRA): 729-736

6. Srinivasa, Siddhartha S., Dave Ferguson, Casey J. Helfrich, Dmitry Berenson, Alvaro Col-

let, Rosen Diankov, Garratt Gallagher, Geoffrey Hollinger, James Kuffner, and Michael

Vande Weghe (2010) HERB: a home exploring robotic butler. Autonomous Robots 28(1):

5-20.

7. Nguyen, Hai, Cressel Anderson, Alexander Trevor, Advait Jain, Zhe Xu, and Charles C.

Kemp (2008) El-e: An assistive robot that fetches objects from flat surfaces. Proceedings

of the 2008 International Conference on Human-Robot Interaction

8. Pedersen, Søren Marcus, Spyros Fountas, Henrik Have, and B. S. Blackmore (2002) Agri-

cultural robots: an economic feasibility study. Precision Agriculture 5: 589-595

9. Blackmore, B. S. (2007) A systems view of agricultural robots. Proceedings 6th European

conference on precision agriculture (ECPA): 23-31

10. Redhead, Fiona, Stephen Snow, Dhaval Vyas, Owen Bawden, Ray Russell, Tristan Perez,

and Margot Brereton (2015) Bringing the Farmer Perspective to Agricultural Robots. Pro-

ceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in

Computing Systems:1067-1072

11. Green, Jeremy (2012) Underground mining robot: A CSIR project. Proceedings of 2012

IEEE International Symposium on Safety, Security, and Rescue Robotics: 1-6

12. Skonieczny, Krzysztof, Matthew Delaney, David S. Wettergreen, and William L. “Red”

Whittaker (2013) Productive Lightweight Robotic Excavation for the Moon and Mars."

Journal of Aerospace Engineering 27(4)

13. Jensen, Martin Andreas Falk, Dionysis Bochtis, Claus Grøn Sørensen, Morten Rufus Blas,

and Kasper Lundberg Lykkegaard (2012) In-field and inter-field path planning for agricul-

tural transport units. Computers & Industrial Engineering 63(4): 1054-1061

14. Suessemilch, Irene, Christoph Rohrer, Ramona Roesch, Clemens Guenther, Yorck Von

Collani, Stephanie Linder, and Volker Fischer (2014) Projection Unit for a Self-Directing

Mobile Platform, Transport Robot and Method for Operating a Self-Directing Mobile Plat-

form." U.S. Patent Application 14/447,501, filed July 30, 2014.

15. Pratt, G., & Manzo, J. (2013). The DARPA robotics challenge [competitions]. IEEE Ro-

botics & Automation Magazine 20(2): 10-12.

16. Johnson, Matthew, Brandon Shrewsbury, Sylvain Bertrand, Tingfan Wu, Daniel Duran,

Marshall Floyd, Peter Abeles (2015) Team IHMC's Lessons Learned from the DARPA

Robotics Challenge Trials. Journal of Field Robotics 32 (2): 192-208.

17. Labbe, Mathieu, and François Michaud (2014) Online global loop closure detection for

large-scale multi-session graph-based slam. Proceedings of 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems: 2661-2666.

18. Khatib, Oussama (1986) Real-time obstacle avoidance for manipulators and mobile ro-

bots. The international journal of robotics research 5(1): 90-98.

19. Li, Shuai, Arpit Jain, Pramod Sharma, Shiraj Sen (2016), Robust Object Detection in In-

dustrial En-vironments by using a Mobile Robot

20. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012) Imagenet classification

with deep convolutional neural networks. Advances in neural information processing sys-

tems: 1097-1105

21. LeCun, Yann, and Yoshua Bengio (1995) Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks 10.

22. Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei (2009) Imagenet: A

large-scale hierarchical image database. Proceedings of 2009 IEEE Conference on Com-

puter Vision and Pattern Recognition: 248-255

23. Felzenszwalb, Pedro, David McAllester, and Deva Ramanan (2008) A discriminatively

trained, multiscale, deformable part model. Proceedings of 2008 IEEE Conference on

Computer Vision and Pattern Recognition : 1-8

24. Wohlkinger, Walter, and Markus Vincze (2011) Ensemble of shape functions for 3d object

classification. Proceedings of 2011 IEEE International Conference on Robotics and Bio-

mimetics: 2987-2992

25. Suykens, Johan AK, and Joos Vandewalle (1999) Least squares support vector machine

classifiers. Neural processing letters 9(3): 293-300

26. S. Stein, F. Worgotter, M. Schoeler, J. Papon, and T. Kulvicius (2014) Convexity based

object partitioning for robot applications. Proceedings of 2014 IEEE International Confer-

ence on Robotics and Automation: 3213–3220.

27. Rusu, Radu Bogdan, and Steve Cousins (2011) 3d is here: Point cloud library (PCL). Pro-

ceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA): 1-4

28. Wurm, Kai M., Armin Hornung, Maren Bennewitz, Cyrill Stachniss, and Wolfram

Burgard (2010) OctoMap: A probabilistic, flexible, and compact 3D map representation

for robotic systems. Proceedings of the 2010 ICRA workshop on best practice in 3D per-

ception and modeling for mobile manipulation (2)

29. Quigley, Morgan, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob

Wheeler, and Andrew Y. Ng (2009) ROS: an open-source Robot Operating System. Pro-

ceedings of 2009 ICRA workshop on open source software 3(2): 5

30. http://wiki.ros.org/motoman_driver

