UPSCALE: Unconstrained Channel Pruning

Alvin Wan Hanxiang Hao Kaushik Patnaik Yueyang Xu Omer Hadad David Giiera Zhile Ren Qi Shan'

Abstract

As neural networks grow in size and complexity,
inference speeds decline. To combat this, one
of the most effective compression techniques —
channel pruning — removes channels from weights.
However, for multi-branch segments of a model,
channel removal can introduce inference-time
memory copies. In turn, these copies increase
inference latency — so much so that the pruned
model can be slower than the unpruned model. As
a workaround, pruners conventionally constrain
certain channels to be pruned together. This
fully eliminates memory copies but, as we show,
significantly impairs accuracy. We now have
a dilemma: Remove constraints but increase
latency, or add constraints and impair accuracy.
In response, our insight is to reorder channels
at export time, (1) reducing latency by reducing
memory copies and (2) improving accuracy by
removing constraints. Using this insight, we
design a generic algorithm UPSCALEE] to prune
models with any pruning pattern. By removing
constraints from existing pruners, we improve
ImageNet accuracy for post-training pruned
models by 2.1 points on average — benefiting
DenseNet (+16.9), EfficientNetV2 (+7.9), and
ResNet (+6.2). Furthermore, by reordering
channels, UPSCALE improves inference speeds
by up to 2x over a baseline export.

1. Introduction

Deep neural networks are intrinsic to an increasing number
of real-world applications, but neural network architectures
are simultaneously growing in size and complexity, year
over year. This is problematic for a growing number of
uses cases with inference-time resource constraints, making
model compression techniques a necessity.

"Apple, Cupertino, USA. Correspondence to: Alvin Wan
<alvinwan@apple.com>, Qi Shan <qgshan@apple.com>>.

Proceedings of the 40 International Conference on Machine

Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright

2023 by the author(s).
'"https://github.com/apple/ml-upscale

Latency vs. Sparsity (MobileNetV3-Small)

13 H————=t= s e ~
7 X\ NIRRT
12
I
5 11 Heuristic
g |
(@] -— anl
L LAMP
Method
09 — ()lllS»
—-—- DBaseline
0 20 40 60 80 100

Parameter Sparsity Level (%)

Figure 1. Our export achieves lower latency (UPSCALE, solid)
than the baseline export (dotted) for an unconstrained pruned
model. Notice the baseline export (dotted) is unable to achieve
a latency lower than the unpruned model’s latency of ~1.1ms,
even with over 95% sparsity levels. By contrast, our export
(solid) reduces latency more appropriately. The above plot
features MobileNetV3-Small pruned at various sparsity levels,
using existing pruning heuristics (FPGM, HRank, LAMP) but
modified to run without channel constraints.

One of the most effective families of model compression
methods is channel pruning, which removes entire channels
of convolutional or dense weights to reduce inference-time
latency. Despite its effectiveness, the process of channel
removal itself — which we refer to as the export step
— is non-trivial and is often overlooked. This leads
to two disagreeable options for channel pruning: (1)
Add constraints, per convention, that impede accuracy,
or (2) remove constraints and unsustainably increase
inference-time latency.

First, without constraints, exporting is non-trivial
specifically for multi-branch segments of network. In
these segments, layers from different branches may all
use the same input feature map and simultaneously prune
different channels. This causes incompatible dimensions
and more importantly, during inference time, the network
must then perform memory copies to ensure that tensors are
contiguous in memory. These memory copies are latency
hungry — so much so that pruned models can be even slower
than unpruned models (Figure 2)).

https://github.com/apple/ml-upscale

Unconstrained Channel Pruning

Memory Copies Drop No Copies
l—‘—| r ! 1 T : 1

0
/' 11
2

>< 'm
\ 3 Z

Baseline

wal—‘Cl

Constrained

Reorder No Copies

11 m v | %
2
1 Taaad
2
3
X

renbsy
w = N O

Y

Unconstrained (Ours)

Figure 2. Unconstrained pruning patterns are non-trivial to export. Left: Different convolutions (II, III) prune different channels in a
shared tensor X. As a result, channels from X are copied during inference time to assemble inputs for II (purple), III (blue). Unfortunately,
these memory copies incur significant latency costs. Middle: To sidestep this, previous methods constrain all convolutions (IL, III) to
prune the same channels. Since all convolutions prune the same channels, the common, pruned filters can be removed before inference,
converting convolution I into I’. However, these constraints limit the pruned model’s accuracy. Right: To eliminate memory copies
without constraints, we reorder output channels in convolution I to generate I’. This way, inputs for downstream convolutions (II, III) are
contiguous in memory, in Y. Our UPSCALE algorithm computes this reordering.

Unconstrained Minus Constrained Accuracy
densenet121 16.9
efficientnet v2_s 7.9
resnet101 6.2
wide_resnet50.2 3.6
resnetb0 3.1
efficientnet b3 2.5
efficientnet_b1 2.1
efficientnet b2 [
mobilenet_v3_large 2
squeezenet]_1 | W
squeezenet1 0 W0.6
mnasnet]_3 0
mnasnet0_5 -0.1
mobilenet v2 -0.2]
mnasnet0_75 -0.31
resnet18 -0.8H
mobilenet v3 small -1.2HH
0 5 10 15
ImageNet Validation Accuracy Difference (points)

Model

Figure 3. Removing pruning constraints improves accuracy.
Above is the accuracy of unconstrained minus constrained
pruned models, averaged across sparsity levels and heuristics.
Positive values mean that unconstrained pruning outperforms
constrained pruning. For example, on DenseNet121, unconstrained
outperforms constrained pruning by an average of 16.9 points. This
is generally true as the model grows larger; we hypothesize this is
due to larger models with more channels having more constraints.
For example, ResNet18 (-0.8) favors constrained pruning, but its
larger variants ResNet50 (+3.1) and ResNet101 (+6.2) both favor
unconstrained pruning. The same pattern repeats for MobileNetV 3.

Second, to address this, early works established
convention by adding constraints (Li et al.,|2017; |Wen
et al.}2016) — specifically, constrain layers in all branches
of a segment to prune the same channels. These constraints
simplify export, and as a result, modern pruning works focus
on which channels to prune rather than how to remove them
during export. Yet, despite significant progress in structured
pruning, these constraints impair accuracy (Liu et al.| [2019).
Intuitively, constraints restrict the set of possible pruning
patterns, limiting pruning’s effectiveness (Figure [3).

To tackle this problem, our insight is two-fold: (1)
reordering channels can keep subsets of the tensor
contiguous and (2) contiguous slices of a tensor are “free”
to use, without memory copies. In short, this allows us to
abandon conventional pruning constraints to obtain higher
accuracy. Furthermore, by eliminating memory copies, this
allows accuracy gains to come at a reduced latency penalty.

These insights yield a general-purpose export algorithm
Unconstrained Channel Pruning Export (UPSCALE) that
can prune models with any pruning pattern. This
enables a broader class of possible pruning algorithms by
making latency for unconstrained pruned models much
more palatable — in some cases, almost fully eliminating
extraneous memory copies. This work yields the following
three contributions:

1. Comparison of unconstrained and constrained
pruning accuracy, on a variety of pruning heuristics,
architectures, and sparsity levels. Unconstrained
pruning improves post-training pruned accuracy by
an average of 2.1 points on ImageNet.

2. A generic export utility for unconstrained pruning
dubbed UPSCALE, which produces models with
inference times over 2x faster than baseline export.
This drop-in utility enables future researchers to
abstract away export concerns. To the best of our
knowledge, we are the first to develop an export utility
that can support unconstrained pruning patterns.

3. Graph formulation of memory copy maximization,
an abstraction that may open opportunities for further
latency optimizations.

Unconstrained Channel Pruning

Case 1: Disjoint Sets

m —> 1,3 .:.':. 13 Path 1 /\
=Ll [—[™ . 1,324 — [[—[] ~[]—[]
1,3 2.4 B 2,4 @ 2,4 Path 2 .
1,3,2,4 2.4 24
I“x04 0*x0P 0Fx0* 0"'x0oP

3x3 3x3 3x3 3x3

L=l [—[]
13 2,3 _’ B 23

Step 1: Segment ‘Canonical Form”

Step 2: Graph

Case 2: Overlapping Sets

—> B 1,3 @ 1,3 B’
N\ P

Path /—\
o132 ==k
“‘@,‘ 2.3 D 1,3

teaet 1,3,2 3,2 3,2

Step 3: Path Step 4: Reorder

Figure 4. Pipeline to export a model pruned without constraints: 7op: Consider a typical residual block on the left. Underneath, we
list the in and out channels, as well as the kernel size. In Step 1, extract a segment: This includes the A — B, A — D, C — D edges.
Convolution B retains channels 1, 3; D retains 2, 4. Notice B and D retain disjoint sets of channels. Redraw in “canonical” form, with
producers on the left and consumers on the right. This helps visualize constraints. In Step 2, construct a graph. Since B and D don’t
retain any shared channels, they don’t share an edge. There are now two paths, each just a single node (dotted circles). In Step 3, order
the channels. Simply place the channels for each path one after another. In Step 4, use this channel ordering to reorder channels for all
convolutions. Bottom: In Step 1, extract a segment. This time, D retains 2,3. Notice B and D share a retained channel (3). In Step 2, draw
two nodes for the two consumers B and C. Since B and D both retain 3, they share an edge. Find a maximum reward acyclic path, which
includes the only two nodes (gray, dotted line). In Step 3, list channels unique to B (1), those shared by B and D (3), then those unique to

D (2). In Step 4, reorder channels.

2. Related Work

Structured vs. Unstructured Pruning. Existing pruning
work can be divided into unstructured methods (Han et al

2016; Molchanov et al 20174} [Janowskyl, [1989; [Frantar|
& Alistarhl 2022} [Yu et al.} [2022b}, [He et al.| 2022) and
structured methods (Anwar et all[2017;[He et al, 20174,

et al, 2017, Molchanov et al.} 2017b; [Zhu & Guptal 2017}
Huang & Lee) [2021). Unstructured methods threshold and

zero individual weight values, whereas structured methods
impose structure on sparsity patterns at various levels of

granularity — from pruning in blocks (Narang et al.| 2017)
to removing entire channels (Lee et al} 2021} [Lin et al.}
2020) — the latter of which is called channel pruning
2016). Channel pruning is a unique pruning
strategy, as its benefits are not dependent on custom sparse
matrix primitives (Bulu¢ & Gilbert, [2012}; [Azad & Bulug),
[2017}; Baskaran & Bordawekar, [2009} [Vuduc et al., 2005).
Instead, channel pruning’s benefits stem from removing
convolutional weight channels at export time, reducing
resource consumption at inference time.

Channel Pruning Strategies In addition to its unique
benefit, channel pruning introduces a unique challenge:
removing channels is difficult for complex topologies,
especially when multiple branches in a network use or
produce a shared tensor. In response, prior work
[20176%[Wen et al., 2016} [Li et al., 2017) imposes constraints
on pruning masks, restricting the set of possible pruning

patterns in complex portions of a network. Most work
in structured pruning focuses on other aspects of pruning,
other than exporting — including heuristics for importance,
whether local to a segment of the network
or global, across layers and channels

Frankle & Carbin| [2019); the amount to sparsify at once
let all 2017 [Gale et al., 2019)); and techniques for learning

masks, whether using additional networks or layers
let all 2018} [Yamamoto & Maenol 2019} [He et al.,[2018)) or

auxiliary variables (Guo et al, 2016} [Savarese et al.| 2020;
[Courbariaux et all 2015} [Couizos et al., 2018} [Srinivas et al.]

2017} Xiao et all,[2019; Bengio et al.} 2013).

Notably, these works overlook the export challenge for
two reasons: Most works (1) apply zero-one masks during
training to mimic pruning (He et al., 2019; 20170} [Yu et al
[20224), without ultimately removing channels; this means
the challenge of dropping channels from multi-branch
segments is never surfaced. Most works furthermore (2)
report FLOPs as a proxy for latency (He et al., 2019} [Reed,
[1993: [Blalock et al.,[2020} [Li et al., 2022a; [Miao et all 2021}
[Wang et al.,[2022; [Li et al, 20220} [Shang et al., 2022); this
means that the latency impact of memory copies would have
never been realized, had these works removed constraints.
The combination of both practices thus hides export-related
challenges. To remedy this, we study export directly to
allow a broader class of pruning algorithms, showing that
existing pruning heuristics can attain higher accuracy by
simply removing these constraints.

Unconstrained Channel Pruning

Algorithm 1 UPSCALE

0: procedure UPSCALE(model)

L <+ model.layers

while L do

producers <— { L.pop() }{Sec3.1]}

consumers < {}

N <+0

while LEN(producers) + LEN(consumers) > N do
N < LEN(producers) + LEN(consumers)
consumers <— CONSUMERS(producers)
producers <— PRODUCERS(consumers)

end while

¢ < model.channels

G « consumers {Sec[3.3]}

forn € G do
Ry [n] < LEN(c[n])

end for

for m,n € G do
Rc[m,n] < —LEN(c[m] N ¢[n])

end for

A < R. > 0{edge if > 0 shared channels}

II; < REDUCE(producers){Sec@

o< I

while G do{Sec.
p < MRAP(G){Eqn. 3}
for n; in p do{Sec. [3.5]}
Mg — Ni — Nij—1 — n¢+1{Eqn. @}
o.extend(r; U (n; N'niy1)) {Eqn. 7}
end for
G+~ G-p
end while
W < model.weights
IT < 7(0){to permutation matrix}
for p; in producers do {Sec[3.6]}
end for
for c; in consumers do
W[CZ] < W[CZ}H
end for
end while
: end procedure=0

segment net

1.

2. define graph

compute order

3.

4. reorder weights

PR R R R?

3. Method

Previous work focuses on pruning strategies, which mimics
pruning patterns by “zero’ing”, channels during training.
Our work is orthogonal to this line of work, instead focusing
on how to export unconstrained pruning patterns.

Both the input and output channels in a kernel can be pruned;
pruning the former is called “input pruning” (i.e., place the
pruning mask before the convolution layer), and pruning
the latter is called “output pruning” (i.e., place the pruning
mask after the convolution layer). Without loss of generality,
we will focus on unconstrained input pruning. To see an
explicit description of unconstrained output pruning, see
Appendix [F] We also empirically observe that input pruning
generally outperforms output pruning (Figures A[T5] A[T6)),
motivating our focus on input pruning.

Note that throughout this methods section, we explicitly
specify “convolutions” for ease of understanding. However,
our algorithm generalizes to any operation where the number
of input channels is independent from the number of output
channels, such as dense layers.

3.1. Step 1 - Reduce to a Segment

Our algorithm divides the network architecture into
segments (Figure [Step 1) — informally, a set of layers
that can be pruned independently of the rest of the network.
A segment includes (a) convolutions that produce outputs,
dubbed producers and (b) convolutions that consume those
tensors, dubbed consumers.

To identify segments, start from an arbitrary producer. Find
all consumers for that producer, then find all producers for
those consumers. Repeat iteratively until both sets converge.
See Algorithm [I|for a more exact formulation.

For example, in Figure] (Step 1), start from producer A.
Find A’s consumers: { B, D}. Find their producers: { A, C'}.
Find their consumers: {B, D}. Notice our set of consumers
has converged, so our segment is complete. This segment
can now be pruned independently of the rest of the network,
reducing the problem of pruning a network to pruning a
single segment. See Figure A[T4]for more examples.

3.2. Why Memory Copies Occur

In a nutshell, memory copies occur when consumers prune
different channels. To handle this, prior methods simply
constrain all consumers to prune the same channels, as
in Figure 2| “Constrained”. Since both consumers are
constrained to prune the same channels, this is trivial to
export: Simply drop the producer’s output channels that all
consumers prune.

However, consider now the unconstrained case in Figure
“Inefficient”. Say consumer II prunes channels that
consumer III does not. At export time, we cannot drop
channels that II prunes, since III still needs it. Instead,
during inference time, we subselect the producer’s output —
copy every unpruned channel that II needs into a new tensor
— to then pass to II. This method is the baseline approach to
exporting unconstrained pruned models. Unfortunately, the
memory copies in the baseline approach incur significant
latency costs at inference time, so much so that this pruned
model incurs higher latency than the original, unpruned
model (Figure[7).

Our key insight is that contiguous slices are “free”. In
other words, each consumer takes a slice of the input tensor,
instead of copying channels into a new tensor. We therefore
design an algorithm that reorders producer output channels
and consumer input channels (Figure 2} “Ours”, Sec [3.6).
We now discuss how to compute this reordering.

Unconstrained Channel Pruning

Figure 5. Dividing a graph into maximum reward acyclic paths.

This is a more detailed version of Fig[d] where we show a slightly
more involved example. Left: We have a segment in canonical
form, with 1 producer and 3 consumers. Center: We build the
graph, with one node per consumer. Notice every consumer shares
a channel with every other consumer. This means the graph is
fully-connected, creating a cycle. B has a reward of 2 since B
retains 2 channels. D and E both retain 3 channels so have a
reward of 3. Every pair shares exactly 1 retained channel, so every
edge has a reward of -1. Right: We find the maximum reward
acyclic path. Since the graph is fully-connected, any pair of nodes
is a viable path: BD, BE, or DE. Of the 3, DE has the highest
reward (3 + 3 - 1), so DE is “Path 1. B is then “Path 2”.

3.3. Step 2 - Formulate as a Graph

To simplify explanations, moving forward, we will refer
to the channels that a consumer retains, rather than the
channels that it prunes.

To formalize our objective, we formulate our constraints as
an undirected graph (Figure {] Step 2): Each node in our

graph represents the set of channels that a consumer retains.

Two nodes share an undirected edge if both nodes share
one more more retained channels. Each node’s reward is
the number of retained channels, and each edge’s reward is
negative of the number of shared retained channels. We will
discuss why shortly. With this graph, we can formalize our
memory-copy maximization objective.

Our goal is to find a path — or in other words, a sequence of
nodes: Since each node is a consumer, a sequence of nodes
represents a sequence of consumers. In turn, every sequence
of consumers admits a zero-copy order of channels. For
example, say we have two consumers with node sequence
A, B. The zero-copy channel order can be obtained by:
ordering channels retained only by A, then channels shared
by A and B, then channels retained only by B. This
ordering ensures zero memory copies, as both A and B’s
inputs are already contiguous in memory. We can continue
indefinitely for any number of consumers, so long as the
consumers are ordered in a sequence. In sum, a path can
be translated into a zero-copy channel ordering. For more
examples, see Appendix

Our goal is to find an acyclic path: Say the first and last
nodes in our path share channels. Now, there’s a dilemma:
Place the shared channels either at the beginning or the end

of the channel ordering. Either way, at least one consumer
will have its input spread non-contiguously in memory.
More generally, non-adjacent consumers in the sequence
cannot share channels. In other words, no two non-adjacent
nodes can share an edge — or more succinctly, the path must
be acyclic; otherwise, we will need to introduce additional
memory copies for the shared channels during inference.

Our goal is to find the maximum reward acyclic path: As
mentioned earlier, all channels in a path require zero copies,
so to minimize memory copies, maximize the number of
channels included in the path. Previously, we defined
node and edge reward so that path reward is equal to the
number of channels included in a path. As a result, in turn,
maximizing included channels maximizes path reward.

Our final, formal objective is to find the maximum reward
acyclic path. For end-to-end examples of how this
minimizes memory copies, see Appendix [C|or Figure A[T0}

3.4. How to Find Maximum Reward Acyclic Path

We start by computing the reward of the maximum reward
path, which we abbreviate as “mrp”. To compute this reward
MRP(G) for a graph G, iterate over all nodes s € G, and
compute reward f(s) of the mrp starting from node s.

MRP(G) = MAX({f(s) : s € G}) (1)

Our goal is now to define f(s). To do so, consider all of node
s’s neighbors: n € A[s], for adjacency matrix A. Intuitively,
the reward f(s) of the mrp is the maximum (a) reward of all
maximum reward paths starting from its neighboring nodes
f(n) : n € Als], along with (b) the reward of traveling to
its neighboring nodes R.[s, n], for edge reward matrix R..
Recall that R, is the number of shared channels. This is
summarized in the following recurrence relation

f(s) = Max({f(n) + Re[s,n] : n € Als]}) + Rn[s] (2)

for node reward matrix R,,. Recall R,, is the number of
channels that a consumer retains. This finds the maximum
reward path, but it does not handle the acyclic constraint.
Note that the mrp path p is the node sequence obtained
by optimizing the objective (i.e., Eqn [[) via dynamic
programming.

Handling the acyclic constraint: We abbreviate maximum
reward acyclic path as “mrap”. To handle the acyclic
constraint, we define a set of nodes I, which includes all
invalid nodes. Invalid nodes include (a) already-traversed
nodes included in the current path, as well as (b) nodes
neighboring the path — i.e., nodes sharing an edge with a
node in the path. Our path is guaranteed to be acyclic if we
never traverse nodes neighboring our path. We redefine our
subproblem to be f(s, I), the reward of the mrap starting
from source node s and excluding nodes in /.

Unconstrained Channel Pruning

Accuracy vs. Sparsity with Post-Training Pruning

unconstrained -==- constrained

L2 LAMP

resnet101 method

model —— densenet121 efficientnet v2.s

FPGM HRANK

*

)

o

ImageNet Val Acc (%

0 10 2 30 40 0 10 20 30 40 0 10 2 30 40 0 10 20 30 40 0 10 2 30 40
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)

Figure 6. Unconstrained Outperforms Constrained Pruning Accuracy for larger models and models with complex topologies. The
above models are pruned, then evaluated on ImageNet’s validation set across various sparsity levels. Unconstrained pruning (solid)
achieves higher accuracy than constrained pruning (dashed), with benefits varying depending on the pruning strategy. Per figures A[T3]
A[I6]input pruning outperforms output pruning in our experiments, so we narrow our focus to input pruning in the main text. Pruning
heuristics include L1 (Li et al., 2017), L2 (Wen et al.| [2016), LAMP (Lee et al.,[2021), FPGM (He et al.,[2019)), and HRank (Lin et al.}
2020). Architectures include DenseNet (Huang et al.l 2017), EfficientNetV2 (Tan & Le, |2021), ResNet (He et al.| [2016). See all 80+ plots

across architectures and heuristics in figures AR2] A[23]

We can then amend our original objective to be the following.
The initial invalid set 7 is the only node in the path, {s}.

MRAP(G) = MAX({f(S,\Si) :s € GY) 3)
I

We can then amend the recurrence relation to be the
following. For convenience, we factor out the definition
for g(s,n, I), which is the reward of traveling only from s
to n while avoiding invalid set .

ignoring I
f(s, 1) =MAX({g(s,I,n) :n € Als] — I}) + Ry[s]
g(s,I,n) = f(n, TU{n} U A[s]) + Re[s, n] (©)
—_——

expanding I

Less formally, Eqn [excludes all invalid nodes when
considering neighbors to traverse to. When considering each
neighboring node, we expand the invalid set I by adding
the neighboring node itself {n}, as well the source node’s
neighbors A[s].

3.5. Step 3 - Compute Channel Order From Graph

Note that the maximum reward acyclic path p can be
obtained by solving the optimization (i.e., Eqn via
dynamic programming, which is denoted as p < MRAP(G).
Furthermore, the mrap path p may not include all nodes —
for example, if all nodes lie in a ring. As a result, continue
to find paths on all remaining nodes MRAP(G — p) until
there are no more nodes remaining.

The paths we find in the previous step are then translated
into a final channel ordering. As in Section[3.3]and Figure[4]
(Case 2), say we have two consumers, A, B. Order channels

retained only by A, then channels shared by A and B, then
channels retained only by B. For example, say A retains
1, 3 and B retains 2, 3. Order A-only channels (1), then
shared channels (3), then B-only channels (2) to produce a
final ordering: 1, 3, 2.

More generally, we denote the ordered nodes in the mrap
path as p = [n1, ng, ng,...]. We first take all the channels
that are retained only by the first node, which we denote 7.
The first node should only share channels with the second
node, so this is equivalent to computing the set subtraction:

7L~1 =nNi1 — N2 (5)

More generally, we denote channels “unique” to node
as n;. The ith node should only share channels with the
previous n;_; and next n;4; nodes, so take the difference
to find all channels “unique” to node n;.

Mg = Ny — Ni—1 — Nit1 (6)

Then, take all channels shared by the first and second nodes,
n1 N ns. Then, take channels unique to the second node 75.
Then, take channels shared by the second and third nodes,
na N ng. Continue this for all nodes in the path. The total
ordering looks like the following

7{1U(nlﬂn2)Uﬁ2U(n2ﬂn3)"' 7)

Once the path is exhausted, continue the ordering with nodes
in the following path. Once all paths are exhausted, the
ordering is complete. This channel ordering is summarized
as a permutation matrix IT in Algorithm[I] See Figure []
(Step 3) or Figure A[TT|for examples.

Unconstrained Channel Pruning

Latency vs. Sparsity with Post-Training Pruning

mnasnet0_75 —— UPSCALE (Ours) ---- Baseline Optimal

squeezenet1 0 method

model —— mobilenet v3 large

FPGM HRANK LAMP

175 ¢

50T

ms)

1.25

1.0 1.00

o

GPU L;dluu(‘\' (ms)
GPU Latency (

GPU Latency (ms)
GPU Latency (ms)
GPU Latency (ms

0 50 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 5 100

Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)

Figure 7. Necessity of Reordering for Latency Improvement: We observe that baseline unconstrained pruning export (dashed) can
actually be detrimental to total latency, even increasing latency beyond that of the unpruned model. By contrast, using UPSCALE (solid),
the pruned model sees more appropriate latency reductions. To visualize the upper bound on UPSCALE’s latency savings, we include
latency for a theoretical, zero-memory-copy export (dotted). UPSCALE vastly outperforms the baseline export and for mobile models such
as SqueezeNet (green), UPSCALE’s latency (solid green) even approaches the optimal latency reduction (dotted green). Architectures
include MobileNetV3 (Howard et al.,|2019), MnasNet (Tan et al.,2019), SqueezeNet (Iandola et al.;, 2016). See all plots in Figure A

3.6. Step 4 - Reorder Weights

The channel ordering from the previous step is then used
to reorder channels in producers and consumers. First, the
channel order directly determines output channel order for
all producers in the segment. More formally, for a list of
model weights W and producer index p;, we denote the
channel reordering as W p;]II. Second, for each consumer,
reorder the consumer’s input channels accordingly (i.e.,
W e;]ID). See the full algorithm in Algorithm [1} description
in Appendix |G|or example in Figure |4 (Step 4).

3.7. Generalized Method

Some nodes are subsets of other nodes. For example,
consumer A retains 1, 2, 3; consumer B retains 1, 2;
and consumer C' retains 2, 3. A is the parent node and
B, C are the children nodes. Even though A, B, C form
a cycle in our graph, we can achieve a zero memory copy
solution that accommodates all three consumers. Simply
order channels as 1, 2, 3. This contradicts our acyclic path
requirement. To handle this, we introduce two modifications:
(1) Parent-child edges are ignored when rejecting cyclic
paths, and (2) If child nodes in the path include all parent
node channels, then the parent node’s reward is added to the
path’s reward. For an extended description of this subset
case and its resolution, see Appendix D}

Multiple producers. Our algorithm above assumes there is
only one producer. To handle multiple producers, we find

which channels correspond to one another, across producers.

Say producer A and B’s outputs are simply summed. In this

case, channel 1 from A is equivalent to channel 1 from B.

Channel 2 from A is equivalent to channel 2 from B, and so
on and so forth. Knowing this, we can reduce to the single
producer case, as an ordering for A’s filters automatically
provides the ordering for B’s filters.

We can then run our method assuming convolution A is the
only producer. Afterwards, when reordering the producer
weights (i.e., step 4), we map the original permutation II to
each producer via the aforementioned equivalent channel
map II;. Then order the weights by W [p;]II;I1. For a more
detailed description and examples, see Appendix

4. Experiments

We present extensive experimentation to show that
unconstrained pruning can attain significantly higher
accuracy than constrained pruning, especially for modern,
larger models and for those with complex topologies. For
these unconstrained pruned models, we then show that
UPSCALE outperforms a baseline export in inference-time
latency — in fact, without UPSCALE, latency of the pruned
models actually increases, making UPSCALE necessary for
export. All prior methods utilize constrained pruning, so for
our experiments, we remove those constraints and instead
use UPSCALE to export.

For the post-training setting, unconstrained pruning
improves ImageNet top-1 accuracy by up to 76.7
points over constrained pruning. Our goal is to assess
the accuracy impact of switching from constrained to
unconstrained pruning. For simplicity, we naively adapt
pruning algorithms previously used for constrained pruning,
to the unconstrained setting, by removing constraints
on the pruning zero-one masks. To evaluate the effect
of constrained or unconstrained pruning, independent
of training recipes, we conduct experiments without
fine-tuning, dubbed post-training pruning: (1) Take models
pretrained on ImageNet, (2) apply various pruning heuristics
at different sparsity levels, and (3) measure ImageNet top-1
validation accuracy. We sparsify parameters at intervals of
2.5% from 0% to 100% and test 5 pruning strategies across
15+ architectures.

Unconstrained Channel Pruning

Model ‘ Heuristic ‘ Statistic 1% 5% 10% 15% 20% 25% 30%
Densenet121 HRank Acc (Ours) 72.04% 63.59% 40.68% 17.95% 4.87% 1.59% 0.62%
Acc (Cons) 72.36% 54.10% 17.03% 11.95% 1.46% 0.47% 0.11%
Lat (Ours) 5440018 5670016 569+£0.010 549+0.005 541+0.008 529£0.005 5.63+0.0085
Lat (Base) 593+0.007 6.13£0.004 6.15+0.017 5.94£0.011 589+0.013 5.76 £0.008 6.11 +£0.008
Lat (Zero) 529+0.012 525+0.003 521+0.008 4.98+0.004 493+0.005 4.79+0.003 5.59 +0.004
Squeezenet]_1 L2 Acc (Ours) 57.71% 39.84% 9.44% 0.88% 0.35% 0.19% 0.13%
Acc (Cons) 57.71% 29.70% 5.80% 1.41% 0.32% 0.12% 0.14%
Lat (Ours) 0.67+0.003 0.67+0.001 0.67+0.002 0.67+0.002 0.66+0.002 0.65+0.003 0.65 +0.002
Lat (Base) 0.73+£0.003 0.81 +0.001 0.84+0.002 0.85+0.002 0.82+0.001 0.82 +0.003 0.81 +0.003
Lat (Zero) 0.67 £0.002 0.68 £0.001 0.67 £0.003 0.67 £0.001 0.67 £0.004 0.66 £ 0.001 0.65 +0.001
Mobilenet_v3_large | LI Acc (Ours) 73.72% 64.88% 39.87% 2.23% 0.49% 0.16% 0.21%
Acc (Cons) 73.69% 52.93% 22.81% 1.06% 0.14% 0.18% 0.15%
Lat (Ours) 1.80 + 0.005 1.75+£0.004 1.78 £0.005 1.75 £ 0.001 1.71 £ 0.004 1.69 +0.001 1.58 £ 0.003
Lat (Base) 1.77+£0.004 1.88 +0.008 1.89 +0.005 1.86 +0.003 1.82 £ 0.004 1.84 +£0.003 1.84 £ 0.003
Lat (Zero) 1.56 £ 0.001 1.55 £0.002 1.49 +0.006 1.47 £ 0.002 1.45 £ 0.002 1.48 £ 0.003 1.43 £0.003

Table 1. Unconstrained vs. Constrained Accuracy and Latency after applying post-training pruning — experiments on various heuristics
and architectures, across sparsity levels. Unconstrained accuracy matches or outperforms the baseline constrained accuracy. See full
results across architectures, heuristics, and sparsity levels in Tables A[7] A[§] A[9] A[I0]

Model | Type | 1% 10% 20% 30% 40%
Efficientnet_bl Ours 76.2% 74.4% 66.4% 46.0% 7.1%
Cons | 759% 72.0% 58.8% 24.4% 0.7%
Efficientnet_b3 Ours 780% 76.8% 698% 53.0% 15.2%
Cons | 77.7% 73.3% 60.1% 20.0% 0.4%
Efficientnet_v2_s | Ours 80.3% 787% 65.6% 3.8% 0.3%
Cons | 80.0% 11.4% 0.1% 0.1% 0.1%

Table 2. Unconstrained vs. Constrained ImageNet Accuracy
after applying post-training pruning, across sparsity levels.
Experiments above all use the LAMP heuristic. Unconstrained
(Ours) accuracy outperforms baseline constrained (Cons) accuracy.

Although these pruning strategies were designed for
constrained pruning, we find that unconstrained pruning
achieves comparable or better accuracy than constrained
pruning, for an average 2.1 point win averaged across
all settings. For several cases, especially for complex
topologies and larger models (Figure [3), unconstrained
pruning yields significant accuracy benefits, up to a
21.7-point (DenseNetl121, L1) increase in ImageNet
accuracy, averaged across all sparsity levels — or, up
to a 76.7-point increase at a specific sparsity level
(EfficientNetV2-Small, LAMP, 12.5%). This demonstrates
that unconstrained pruning can provide outsized benefits in
the appropriate settings. We summarize results in Figure []
and report full results in Figures A22] A23] Preliminary
results for fine-tuning also show a sizable (5-point) accuracy
gap per Appendix [A] and more thorough investigation is left
to future work.

Latency improves by up to 52.8% when exporting
pruned models using UPSCALE, when compared with
a baseline export for unconstrained pruning patterns — this
baseline is described in Section 3.2l To evaluate the
effectiveness of our reordering algorithm independently,

we (1) apply post-training pruning to models pretrained on
ImageNet; (2) export unconstrained-pruned models with
and without UPSCALE; and (3) benchmark the exported
model’s latency. UPSCALE reduces latency of the exported
model by 8.6% on average across all settings and yields
significant latency benefits, by up to 24.9% (SqueezeNetl-1,
L1), averaged across all sparsity levels — or, up to a 52.8%
latency reduction at a specific sparsity level (ResNetl8,
FPGM). Critically, exporting unconstrained-pruned models
without UPSCALE actually increases latency relative to the
original, unpruned model; in the same setting, UPSCALE is
able to realize more appropriate latency reductions.

We summarize results in Figures [/| and reporting
full results in Figure A[24] Note that there are
no hyperparameters in our algorithm that can control
performance, so we run our algorithm homogenously on
all models to obtain said performance. We additionally
plot latency for a theoretical zero-memory-copy solution,
illustrating the maximum latency reduction attainable
by any unconstrained pruning export; we observe that
UPSCALE often performs near-optimally, with latency
nearly matching zero-memory-copy latency.

Setup. We use a single V100 GPU with 32 GB RAM.
To export models for timing, we run an existing pruning
strategy on the provided model, export using UPSCALE,
then use PyTorch’s jit trace to produce a Python-less
executable. This traced model is then benchmarked
using PyTorch’s built-in profiling utility, including CUDA
“activities” and tracking tensor memory allocation. Note this
utility handles warmup automatically e.g., running several
forward passes before initiating timed runs. All our latency
measurements are the aggregate of 100 runs, with both mean
and standard deviations reported. All accuracies are reported
on the ImageNet ILSVRC 2015 (Russakovsky et al., 2015)
validation dataset.

Unconstrained Channel Pruning

5. Conclusion

We introduce Unconstrained Channel Pruning
Export (UPSCALE) to support pruning export more
generically; out of the box, UPSCALE handles a
predominant challenge for pruning modern neural networks:
namely, memory and thus latency inefficiency. Furthermore,
we introduce both a framework and an approximate solution
to mitigating inefficiencies, by reducing memory copies at
inference time. The end result — a generic pruning export
library — expands the total surface area that existing and new
pruning algorithms can operate on, by allowing any pruning
pattern to be exported and making unconstrained pruning
a competitive alternative to conventional, constrained
pruning.

References

Anwar, S., Hwang, K., and Sung, W. Structured pruning
of deep convolutional neural networks. ACM Journal on
Emerging Technologies in Computing Systems (JETC),
13(3):1-18, 2017.

Azad, A. and Bulug, A. A work-efficient parallel sparse
matrix-sparse vector multiplication algorithm. In 2017
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 688—697. IEEE, 2017.

Baskaran, M. M. and Bordawekar, R. Optimizing sparse
matrix-vector multiplication on gpus. IBM research
report RC24704, 1(W0812-047), 2009.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons
for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.
What is the state of neural network pruning? Proceedings
of machine learning and systems, 2:129-146, 2020.

Bulug, A. and Gilbert, J. R. Parallel sparse matrix-matrix
multiplication and indexing: Implementation and
experiments. SIAM Journal on Scientific Computing,
34(4):C170-C191, 2012.

Courbariaux, M., Bengio, Y., and David, J.-P.
Binaryconnect: Training deep neural networks
with binary weights during propagations. Advances in

Neural Information Processing Systems (NeurIPS), 28,
2015.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. International
Conference on Learning Representations (ICLR), 2019.

Frantar, E. and Alistarh, D. Spdy: Accurate pruning with
speedup guarantees. In International Conference on
Machine Learning (ICML), pp. 6726-6743. PMLR, 2022.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery
for efficient dnns. Advances in Neural Information
Processing Systems (NeurIPS), 29, 2016.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in Neural Information Processing Systems
(NeurlPS), 28, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. In International
Conference on Learning Representations (ICLR), 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770-778, 2016.

He, Y., Zhang, X., and Sun, J. Channel pruning for
accelerating very deep neural networks. In Proceedings
of the IEEE International Conference on Computer Vision
(ICCV), Oct 2017a.

He, Y., Zhang, X., and Sun, J. Channel pruning for
accelerating very deep neural networks. In Proceedings
of the IEEE International Conference on Computer Vision
(ICCV), pp. 1389-1397, 2017b.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S.
Amc: Automl for model compression and acceleration
on mobile devices. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 784-800,
2018.

He, Y., Liu, P, Wang, Z., Hu, Z., and Yang, Y. Filter
pruning via geometric median for deep convolutional
neural networks acceleration. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4340-4349, 2019.

He, Z., Xie, Z., Zhu, Q., and Qin, Z. Sparse double descent:
Where network pruning aggravates overfitting. In
International Conference on Machine Learning (ICML),
pp- 8635-8659. PMLR, 2022.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al.
Searching for mobilenetv3. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pp.
1314-1324, 2019.

Unconstrained Channel Pruning

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4700-4708, 2017.

Huang, Q., Zhou, K., You, S., and Neumann, U. Learning
to prune filters in convolutional neural networks. In JEEE

Winter Conference on Applications of Computer Vision
(WACV), pp. 709-718. IEEE, 2018.

Huang, Z.-S. and Lee, C.-p. Training structured neural
networks through manifold identification and variance
reduction. arXiv preprint arXiv:2112.02612, 2021.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and; 0.5 mb model
size. arXiv preprint arXiv:1602.07360, 2016.

Janowsky, S. A. Pruning versus clipping in neural networks.
Physical Review A, 39(12):6600, 1989.

Lee, J., Park, S., Mo, S., Ahn, S., and Shin, J.
Layer-adaptive sparsity for the magnitude-based pruning.
In International Conference on Learning Representations
(ICLR), 2021. URL https://openreview.net/
forum?id=H6ATJJO0TKdf.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot
network pruning based on connection sensitivity.

International Conference on Learning Representations
(ICLR), 2019.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. International
Conference on Learning Representations (ICLR), 2017.

Li, Y., Adamczewski, K., Li, W., Gu, S., Timofte, R., and
Van Gool, L. Revisiting random channel pruning for
neural network compression. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition

(CVPR), pp.- 191-201, June 2022a.

Li, Y., Zhao, P,, Yuan, G., Lin, X., Wang, Y., and Chen, X.
Pruning-as-search: Efficient neural architecture search
via channel pruning and structural reparameterization.

International Joint Conference on Artificial Intelligence
(IJCAI), 2022b.

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y.,
and Shao, L. Hrank: Filter pruning using high-rank
feature map. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
1529-1538, 2020.

Liu, Z.,, Li, J., Shen, Z., Huang, G., Yan, S., and
Zhang, C. Learning efficient convolutional networks
through network slimming. In Proceedings of the IEEE

10

International Conference on Computer Vision (ICCV), pp.
2736-2744, 2017.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell,
T. Rethinking the value of network pruning. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
1d=rJ1InB3C5Ym.

Louizos, C., Welling, M., and Kingma, D. P. Learning sparse
neural networks through [_0 regularization. International
Conference on Learning Representations (ICLR), 2018.

Miao, L., Luo, X., Chen, T., Chen, W., Liu, D., and Wang,
Z. Learning pruning-friendly networks via frank-wolfe:
One-shot, any-sparsity, and no retraining. In International
Conference on Learning Representations (ICLR), 2021.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational
dropout sparsifies deep neural networks. In International
Conference on Machine Learning (ICML), pp.
2498-2507. PMLR, 2017a.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz,
J. Pruning convolutional neural networks for resource
efficient inference. International Conference on Learning
Representations (ICLR), 2017b.

Narang, S., Undersander, E., and Diamos, G.
Block-sparse recurrent neural networks. arXiv
preprint arXiv:1711.02782, 2017.

Reed, R. Pruning algorithms-a survey. IEEFE transactions
on Neural Networks, 4(5):740-747, 1993.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition

challenge. International Journal of Computer Vision
(IJCV), 115(3):211-252, 2015.

Savarese, P., Silva, H., and Maire, M. Winning the
lottery with continuous sparsification. Advances in
Neural Information Processing Systems (NeurIPS), 33:
11380-11390, 2020.

Shang, H., Wu, J.-L., Hong, W., and Qian, C. Neural
network pruning by cooperative coevolution. arXiv
preprint arXiv:2204.05639, 2022.

Srinivas, S., Subramanya, A., and Venkatesh Babu, R.
Training sparse neural networks. In Proceedings of
the IEEE conference on computer vision and pattern
recognition workshops, pp. 138-145, 2017.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. Efficient
processing of deep neural networks: A tutorial and survey.
Proceedings of the IEEE, 105(12):2295-2329, 2017.

https://openreview.net/forum?id=H6ATjJ0TKdf
https://openreview.net/forum?id=H6ATjJ0TKdf
https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rJlnB3C5Ym

Unconstrained Channel Pruning

Tan, M. and Le, Q. Efficientnetv2: Smaller models and
faster training. In International Conference on Machine
Learning (ICML), pp. 10096-10106, 2021.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., and Le, Q. V. Mnasnet: Platform-aware
neural architecture search for mobile. In Proceedings of

the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2820-2828, 2019.

Vuduc, R., Demmel, J. W., and Yelick, K. A. Oski: A library
of automatically tuned sparse matrix kernels. In Journal
of Physics: Conference Series, volume 16, pp. 521. IOP
Publishing, 2005.

Wang, H., Qin, C., Bai, Y., Zhang, Y., and Fu, Y. Recent
advances on neural network pruning at initialization. In
International Joint Conference on Artificial Intelligence

(IJCAI), pp. 23-29, 2022.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning
structured sparsity in deep learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2016.

Xiao, X., Wang, Z., and Rajasekaran, S. Autoprune:
Automatic network pruning by regularizing auxiliary
parameters. Advances in Neural Information Processing
Systems (NeurlPS), 32, 2019.

Yamamoto, K. and Maeno, K. Pcas: Pruning channels
with attention statistics for deep network compression.
Proceedings of the British Machine Vision Conference
(BMVC), 2019.

Yu, S., Mazaheri, A., and Jannesari, A. Topology-aware
network pruning using multi-stage graph embedding and
reinforcement learning. In International Conference on
Machine Learning (ICML), pp. 25656-25667. PMLR,
2022a.

Yu, X., Serra, T., Ramalingam, S., and Zhe, S.
The combinatorial brain surgeon: Pruning weights
that cancel one another in neural networks. In

International Conference on Machine Learning (ICML),
pp- 25668-25683. PMLR, 2022b.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.

11

Unconstrained Channel Pruning

DenseNet121 LAMP-Pruned on ImageNet DenseNet121 LAMP-Pruned on ImageNet DenseNet121 LAMP-Pruned + Fine-Tuned on ImageNet

Constraints - — 0.67
———

—— unconstrained S —

constrained

°
N
]

°

B

_—

o
-1

°

@

G
°
2

o
w

g
5
ImageNet Top-1 Validation

ImageNet Top-1 Validation

ImageNet Top-1 Validation
°
2

o

o

a
°
3

Constraints
~—— unconstrained
constrained

o

Constraints
—— unconstrained 0.61
constrained

o

°

E
o
El

010 015 020 025 030 035 040 045 050 o 1 3 3 H s 010 015 020 025 030 035 040 045 050
Sparsity Level (% Params) Epoch Sparsity Level (% Params)

Figure 8. On the left, we show post-training pruned accuracy, with no fine-tuning. In the middle, we show only sparsity level 50% but for
fine-tuned accuracies over each epoch. This shows that the fine-tuned models have mostly converged. On the right, we show accuracies
across sparsity levels, after fine-tuning for 5 epochs. In short, unconstrained still outperforms constrained after fine-tuning.

A. How Fine-Tuning Affects Constraint Impact on Accuracy

We note that the gap between unconstrained and constrained pruning remains significant (> 5 points on ImageNet) even
after fine-tuning.

We channel prune DenseNet121 at 10%, 20%, 30%, 40%, 50% parameter sparsity using the LAMP heuristic — using both
the constrained variant and an unconstrained variant. We then fine-tune all 10 models for 5 epochs each. These experiments
show that unconstrained accuracy still significantly outperforms constrained accuracy on ImageNet. We show results in
Figure[§] from which we can make the following conclusions:

1. After fine-tuning, unconstrained outperforms constrained by up to 6 ImageNet validation points.

2. Unconstrained accuracy is almost independent of the pruning level, suggesting that constraints may hinder fine-tuned
accuracy.

3. We observe throughout training that unconstrained accuracy converges much quicker than constrained accuracy, so
removing constraints can lower fine-tuning cost.

Note that, the accuracy of the pruned model depends on many factors, including the dataset/task, pruning strategy, training
strategy, model structure, etc. Therefore, it is hard to justify if unconstrained pruning always outperforms constrained
pruning in terms of accuracy. Our major contribution was to provide a method/tool (UPSCALE) that is able to speed up
any pruning methods (i.e., to bridge the latency gap between constrained pruning and unconstrained pruning). With the
proposed UPSCALE, when designing a pruning method, we will only need to focus on the accuracy without worrying the
latency regression brought by memory copies.

B. How Reordering Reduces Memory Copies

There are several cases, with various degrees of complexity, for consumer interactions. In each scenario, we can use
reordering to minimize the number of memory copies. See Figure A[9for the architecture.

1. Case 1: Disjoint sets. Say convolution B retains channels 1 and 3. Convolution C retains channels 2 and 4. To
minimize memory copies, ensure each convolution’s retained channels are side-by-side in the output tensor X . To do
so, we rearrange the filters in convolution A to be 1, 3, 2, 4. This means the channels in X are also rearranged to be 1,
3, 2, 4. Notice the channels B retains — 1, 3 — are now contiguous in memory in the first two channels of X . Channels
C retains — 2, 4 — are contiguous in the last two channels of X. Now, no memory copies are needed at inference time,
as convolution B takes the first two channels X [: 2] and C takes the last two X[2 :]. (Figure[d] Case 1)

2. Case 2: Overlapping sets. Say convolution B retains channels 1 and 3. Convolution C retains channels 2 and 3.
Again, ensure each convolution’s retained channels are side-by-side in X. To do so, rearrange the filters in convolution

12

Unconstrained Channel Pruning

4]

mm ARG

iv.

TN Bl B

—[]—[]—[] g™
[[[[E] [E
RESNET BLOCK
1,3 2,4 2,3 1,3 0,3,4 0,1,2

[l =[]

2

/

-1 \71
OExO)
3 3

©

2

OF
OF

(] =[] (] =[]
ii

Figure 10. Step 2 - Translate each segment into a graph. Only
consumers (blue box) are translated into nodes (gray circles). The
blue numbers (ex. 1,3 in i.) are the channels each consumer
retains. The gray numbers (e.g., 2 in i.) are the node and edge

Figure 9. Step 1 - Divide architecture into segments that can be
independently pruned. At the top, we illustrate a ResNet building
block, with convolutions A, B, C, D. This block contains two
segments, illustrated as i. in the middle row and ii. in the bottom
row. Within each segment, a convolution is either a producer that
produces output (purple) or a consumer that consumes input (blue).
This is better illustrated in the “canonical” figures on the right,
which places all producers on the left and consumers on the right.

reward. Examples i, i, iii are ResNet segments from Figure[J] (i)
Since C retains two channels, its node has a reward of 2. (ii) B
retains 1,3 and D retains 2,4; since both nodes retain two channels,
their reward are each 2. They do not share channels so do not share
an edge. (iii) B retains 1,3 and D retains 2,3; since both nodes
retain channel 2, they share an edge with reward -1. (iv.) All nodes
are densely connected, because every convolution shares channels

with all other nodes.

Atobe 1, 3, 2. More generally, include channels unique to B, then channels shared by B and C, then channels unique
to C. Now, the channels B retains — 1, 3 — are contiguous and channels C' retains — 2, 3 — are contiguous. However,
for convolution C, notice X contains channels in the reverse order: 3, 2 in stead of 2, 3. As a result, we also need to
reorder input channels in convolution C' to be 3, 2. Now, no memory copies are needed at inference time, as B uses
X[: 2] as input and C' uses X [2 :]. (Figure[d] Case 2)

. Case 3: Unsolvable sets. Say convolution B retains channels 1, 3, 4. Convolution C retains channels 2, 3, 4. We

introduce another convolution D, which retains channels 1, 2. There is no ordering of channels that would completely
eliminate memory copies, as satisfying any pair of convolutions would necessarily exclude the remaining convolution.
We will formalize the definition of this unsolvable case later. For now, our intuition is to instead maximize the number
of channels placed in the correct order. This means satisfying convolutions B and C' and ignoring convolution D, since
convolutions B and C each retain 3 channels and convolution D retains only 2 channels.

C. How Graph Algorithm Solves Reordering

For the three cases in the previous section, Appendix [B] here is how our graph would be constructed and how the solution

path minimizes memory copies (Figures PJTOITT]T2).

1.

Case 1: Disjoint Sets. In the simplest case, no convolutions share retained channels, so when rearranging channels,
place all channels retained by one convolution together, then all channels retained by a second convolution etc. Any
ordering of convolutions works. Translated into our graph: There are no edges, and we can pick any ordering of nodes.
The ordering of nodes then directly corresponds to an ordering of channels.

Case 2: Overlapping Sets. Say we have a linear ordering of convolutions, where each convolution shares retained
channels only with the preceding and succeeding convolutions. In this case, there always exists a zero-copy solution:
start with channels unique to the first convolution, channels shared between the first and second, channels unique to the

13

Unconstrained Channel Pruning

1.3 PATH 1 PATH PATH 1
, —
1,3,2,4 —— _E
PATHé 1"3’2‘ 172’07374‘
D D

Figure 11. Step 3 - Translate graph into channel ordering. Find
maximum reward acyclic paths. Then, translate paths into a
channel ordering. Examples i, ii, iii are ResNet segments from
Figure 0] (i) There is only one node, so order its channels
arbitrarily. (ii) Since there are no edges, there are two single-node
paths. Order path 1 node’s channels (purple), then path 2
node’s channels (blue). (iii) There is one path with both nodes.
Order B-only channels (1, purple), B-and-D shared channels (3,
purple-blue), then D-only channels (2, blue). (iv) Since all three
nodes are densely connected, the first path can only contain two of
three nodes. The two nodes with the highest reward are D and E,
each with reward three, so they comprise path 1. B comprises path
2. Per path 1, take E-only channels (1, 2, blue), then E-D shared
channels (0, blue-purple), then D-only channels (3, 4, purple). All
channels in the second path are already covered by the ordering,
so the ordering is complete.

i, 1,3,2

in previous figures. (ii) The final ordering dictates the ordering
for producer A and C. However, producer C' omits 1,3 as none
of its consumers (D) use those channels. Consumers B and D do
not need reordering, as their retained channels 1,3 and 2,4 were
not reordered. (iii) Consumer B does not need reordering, as the
final ordering lists its channels 1,3 in order. However, consumer
D needs to reorder its channels from 2,3 to 3,2.

second convolution, channels shared between the second and third etc. Translated into our graph: Find a set of nodes
where each node has at most two neighbors — in other words, an acyclic path.

3. Case 3: Unsolvable Sets. Say one or more convolutions share retained channels with all other convolutions. This
means we have a cycle: Attempting to order the nodes linearly will result in one node belonging at both the end and the
start at the same time. In other words, we cannot achieve a perfect zero-memory-copy solution. In this case, our goal is
to maximize the number of channels that don’t need to be copied. Translated into our graph: Assign a reward to every
node and edge. Every node’s reward is the number of channels the corresponding convolutions retains. Every edge’s
reward is negative of the number of shared channels between the two node’s convolutions. This way, a path’s reward
corresponds to the number of channels included in that path. To maximize the number of copy-free channels, minimize
the path reward. In short, find the maximum reward acyclic path.

D. Handling Node Subsets

Recall each node is equivalent to a convolution. In particular, each node represents the set of retained channels for a
convolution. Some nodes may be strict sets of another node: For example, one node A may correspond to retained channels
1, 2, 3. Call this the parent. However, two other nodes may correspond to channels 1, 2 (B); and 2, 3 (C). Call these the
child nodes. Although there exists a cycle between A, B, C, there exists a valid channel ordering: 1, 2, 3.

As a result, nodes with parent-child relationships break the requirement for an acyclic path. One possibility is to simply
drop parent or child nodes, to ensure retain the acyclic path requirement. However, parent node neighbors may influence
within-parent channel ordering, which conflicts with the ordering imposed by child nodes. Here are two examples:

Unconstrained Channel Pruning

NO MEMORY COPIES
CONSUMER

] .
/ Z I:l
CONSUMER

INPUT

NS

CONSUMER
CONSUMER

? REORDER

wre NS

3 WEIGHTS

REORDERED
OUTPUT

PRODUCER
OUTPUT

INPUT

FIX INEFFICIENCY

Figure 13. How to fix inefficient memory copies for pruned
multi-branch segments? To avoid memory copies at inference
time reorder producer weights as shown in green above. This
ensures that the two consumers (purple and pink) take as input
contiguous slices of the green output tensor. Since these slices are
already contiguous in memory, no memory copies are needed to
assemble the pair of consumer inputs.

CONSUMER

L
|

CONSUMER

PRODUCER CONSUMER

-

CONVOLUTIONS

PRODUCER

1<

SIMPLE SEGMENT COMPLEX SEGMENT

Figure 14. A segment is made up of (a) convolutions that have
their outputs combined (e.g., summed or concatenated), along
with (b) all the convolutions that use those values. We call the
convolutions producing output producers and the convolutions
consuming values consumers. We define a single-branch segment
(left) to be a part of the architecture that includes just one
convolution producing output and one convolution consuming
input. We define a multi-branch segment (right) to be a part of the
architecture that contains multiple convolutions producing outputs
or multiple convolutions consuming inputs.

1. Child nodes cannot be ignored. One natural idea is to include only the parent node in the graph and drop all child
nodes. Here is a counterexample: Say there are nodes A, B, C. A retains 1, 2, 3. B retains 2, 3, 4, 5. C retains 4, 5, 6.
The ordering is straightforward: A — B — C, inducing the order 1, 2, 3, 4, 5, 6. However, say there also exists child
nodes D, which retains 3, 4, 5 and E, which retains 2, 3, 5. By ignoring D, E' and using B, we incur more memory
copies. Instead, the algorithm should including the two child nodes, ordering A — D — E — C, inducing the order 1,

2,3,5,4,6.

2. Parent nodes cannot be ignored: . Another natural idea is to include only the child nodes in the graph and drop all
parent nodes. However, parent nodes are only automatically accounted for if enough child nodes are used to cover all
channels retained by the parent node. In any other case, the algorithm must choose between child nodes or the parent
node. For example, say we have nodes A, B, C, which retain 1, 2, 3, 4; 2, 3,4, 5; and 4, 5, 6, respectively. Then, child
nodes D, F retain 2, 4, 5; and 2, 3, 5. There are 3 options here: A - B — CorA— D - CorA— FE — C. The
maximum reward path is actually the one that includes the parent node B.

Knowing this, our only option left is to include both child and parent nodes in the graph. Instead, we introduce two

modifications:

1. Permit cycles between parent and child nodes.

2. Modify the reward function.

We can modify the reward functions in the following way, by breaking down all possible ways to incorporate parent-child

nodes in the solution path.

* If select child nodes after selecting parent

— Parent contributes to reward regardless of how you leave the parent’s group of child nodes. (no modification

needed)

* If select child nodes without selecting parent

— Parent contributes to reward if you leave by selecting the parent (no modification needed)

15

Unconstrained Channel Pruning

— Alternatively, tour enough children nodes to cover the parent node’s channels, to contribute to the reward.

As aresult of this breakdown, we only need to modify the reward if enough child nodes are toured to cover the parent node’s
channels. In other words: If included child nodes include all channels for the parent node, then the parent node’s reward is
automatically added to the path’s reward. If otherwise, the parent node contributes to the reward normally, depending on its
participation in the maximum-reward path.

E. Reduction to Single Producer

To reduce the multiple-producer case to the single-producer case, we make two critical assumptions, for operations other
than a multiply-reduce:

1. Producer channels are not “mixed” with other channels from the same producer. Here, channels i and j are
“mixed” if they both affect one output channel. For example y = z[:, {] + z[:, j] would “mix” both channels ¢ and j.
Using this definition of “mix”: our assumption is that channel ¢ from any producer is never mixed with channel j # ¢
from that same producer. This does not preclude channel ¢ from mixing with itself. This is generally a true assumption,
as channel mixing in common architectures is parameterized as a multiply-reduce. Note that neither channel shuffling
nor transformers would violate this assumption.

2. If producer A mixes with producer B, exactly one channel from A mixes with exactly one channel from B. We
assume that producer outputs are mixed relatively simply without channel micro-management. This is generally a true
statement in common architectures as well, as the only channel-related operations like £1atten only increase the
number of feature map channels associated with a producer channel.

Given the two above assumptions, we can then establish an equivalence class of channels across producers. In particular, we
can define a one-to-one mapping from producer A’s ith channel to producer B’s jth channel and repeat this for all channels.
With this mapping constructed, we can then (1) reduce the multi-producer case to the single-producer case by replacing
B.j with A.i, (2) run the single-producer, multi-consumer algorithm, then (3) use the order of producer A’s channels to
determine the ordering of producer B’s channels.

If we have a concatenation operation, as opposed to an addition for example, then we simply treat every producer
independently, as there are no cross-producer constraints.

F. Unconstrained Output Pruning

The main text describes unconstrained input pruning in detail but omits a description of the output pruning algorithm. We
note empirically that input pruning outperforms output pruning (Figures[I3] [I6). There are several subtleties in exporting an
unconstrained output-pruned model. Like before, memory copies are an issue, but rather than copy channels to produce
input for the subsequent convolution, the memory copies now stem from assembling incompatible convolutional outputs.

Say we have two convolutions A and B. Both outputs have 4 channels and are summed together. There are several possible
pruning patterns and associated problems:

1. Convolution A prunes channel 2. Now, the two outputs feature incompatible dimensions.

2. Convolution A prunes channel 2, and convolution B prunes channel 3. The two outputs feature compatible dimensions,
but naively summing the two tensors is incorrect.

To resolve this, the naive solution is to infill zeros, but this incurs a large number of memory copies. This infilling operation
is the naive baseline for output pruning latency.

Instead, we can sum all channels that both convolutions A and B both retain. Then, we can concatenate with channels
unique to A and B each. This is reminiscent of unconstrained input pruning: Reorder filters in A and B to place channels
unique to A first, then channels shared by A and B, then channels unique to B. This is exactly how we order channels for
unconstrained pruning.

16

Unconstrained Channel Pruning

densenet121 (FPGM)

50

IS
=
=
S
Z

10 30 40 50
Parameter Sparsity Level (%)

efficientnet b1 (FPGM)

5
S

£
-

02 30 40 50
Parameter Sparsity Level (%)

efficientnet_b2 (FPGM)

g

TmageNet Val Acc (%)

0 10 20 30 40 50
Parameter Sparsity Level (%)

efficientnet_b3 (FPGM)

E

10 20 30 40 50
Parameter Sparsity Level (%)

cfficientnet v2_s (FPGM)

.
-
-

10 20 30 40 50
Parameter Sparsity Level (%)

mnasnet0_5 (FPGM)

K

Input vs. Output Post-Training Pruning Accuracy

densenet121 (HRank)

ImageNet Val Ace (%)

ImageNet Val Ace (%)
- 8

=3

10 20 30 40
Parameter Sparsity Level (%)

efficientnet bl (HRank)

o
S

Im.

0 10 20 30 40 50
Parameter Sparsity Level (%)

efficientnet_b2 (HRank)

¢

50

-

0 10 20 30 40 50
Parameter Sparsity Level (%)

efficientnet_b3 (HRank)

50

Net Val Acc (%)
-
ot Val Acc
=

ImageNet Val Acc (%)

I

10 20 30 40 50
Parameter Sparsity Level (%)

cfficientnet v2_s (HRank)

0 10 20 30 40 50
Parameter Sparsity Level (%)

mnasnet0 5 (HRank)

ﬁ

10 20 30 40 50
Parameter Sparsity Level (%)

1020 30 40 50
Parameter Sparsity Level (%)

o

10 20 30 40 50
Parameter Sparsity Level (%)

mnasnet1 3 (FPGM)

7

mnasnet0_75 (FPGM) = mnasnet0_75 (HRank)
<50
=
G

o

10 20 30 40 50
Parameter Sparsity Level (%)

mnasnet] 3 (HRank)

1020 30 40 50
Parameter Sparsity Level (%)

mobilenet v2 (FPGM)

50

Val Ace (%)

ImageNet Val Acc (%)

o

ImageNet Val Acc (%)
- 8

< 50

—— input output

densenet121 (L1)

0 10 20 30 40 50
Parameter Sparsity Level (%)

efficientnet b1 (L1)

g
g

ImageNet Val Acc (%)

/

=

10 20 30 40 50
Parameter Sparsity Level (%)

cfficientnet b2 (L1)

(%)

g
g

10 20 30 40 50
Parameter Sparsity Level (%)

efficientnet b3 (L1)

= 0 10 20 30 40 50
Parameter Sparsity Level (%)

cfficientnet v2.s (L1)

= 0 10 20 30 40
Parameter Sparsity Level (%)

mnasnet0.5 (L1)

ImageNet Val Acc (%
v
s B

2

1020 30 40
Parameter Sparsity Level (%)

mnasnet0 75 (L1)

=50

geNet Val Acc (%)
-

Tm

o

10 20 30 40
Parameter Sparsity Level (%)

mnasnet1 3 (L1)

o
3

(%)

T Net Val Acc
=

— 50
G

10 20 30 40 50 0 10 20 30 40 50
Parameter Sparsity Level (%) Parameter Sparsity Level (%)
mobilenet v2 (HRank) S mobilenet_v2 (L1)
< 50
=
=
N

0 10 20 30 40 50 0 10 20 30 40 50
Parameter Sparsity Level (%) Parameter Sparsity Level (%)
mobilenet v3 large (FPGM) I mobilenet v3 large (HRank)
=50
=
<
&
Z 0
10 20 30 40 50 = 0 10 20 30 40 50

Parameter Sparsity Level (%)

Parameter Sparsity Level (%)

0 10 20 30 40
Parameter Sparsity Level (%)

o
3

mobilenet_v3 large (L1)

=3

ImageNet Val Acc (%)
=) g

10020 30 40 50
Parameter Sparsity Level (%)

densenet121 (L2)

g

TmageNet Val Acc (%)

E
= 0 10 20 30 40 50
Parameter Sparsity Level (%)

= cfficientnet b1 (L2)

10 20 30 40 50
Parameter Sparsity Level (%)

cfficientnet b2 (L2)

10 20 30 40 50
Parameter Sparsity Level (%)

efficientnet_b3 (L2)

10 20 30 40 50
Parameter Sparsity Level (%)

cfficientnet v2.s (L2)

-

10 20 30 40 50
Parameter Sparsity Level (%)

mnasnet0.5 (L2)

Net Val Ace (%)

i

1020 30 40 50
Parameter Sparsity Level (%)

mnasnet0 75 (L2)

10 20 30 40 50
Parameter Sparsity Level (%)

mnasnet1 3 (L2)

g

ImageNet Val Acc (%)

10 20 30 40 50
Parameter Sparsity Level (%)

mobilenet_v2 (L2)

(%)

5

o
3

Val Acc
o
3

10 20 30 40
Parameter Sparsity Level (%)

mobilenet_v3 large (L2)

g

o
3

1020 30 40
Parameter Sparsity Level (%)

<
=
[
&

Net Val Ace (%)

g

geNet Val Acc (%)

oo
o & g

Tm

geNet Val Acc (%)

Im

a

TmageNet Val Acc (%)

ImageNet Val Acc (%)
8 &

densenet121 (LAMP)

E

=3
S

0 20 30 40
Parameter Sparsity Level (%)

efficientnet bl (LAMP)

0 10 20 30 40
Parameter Sparsity Level (%)

efficientnet_b2 (LAMP)

50

/

10 20 30 40
Parameter Sparsity Level (%)

efficientnet_b3 (LAMP)

:

0 10 20 30 40 5(
Parameter Sparsity Level (%)

efficientnet v2_s (LAMP)

0 10 20 30 40
Parameter Sparsity Level (%)

mnasnet0 5 (LAMP)

0 10 20 30 40
Parameter Sparsity Level (%)

mnasnet0_75 (LAMP)

=

o
o 3

=3

102 30 40
Parameter Sparsity Level (%)

mnasnet1 3 (LAMP)

o
3

o
o 3

)
g

10 20 30 40
Parameter Sparsity Level (%)

mobilenet_v2 (LAMP)

o

o
o 3 15

3

10 20 30 40
Parameter Sparsity Level (%)

mobilenet_v3_ large (LAMP)

=3

=

5

10 20 30 40
Parameter Sparsity Level (%)

Figure 15. Input vs. Output Pruning Accuracy (Part 1) Input pruning (blue) outperforms output pruning (purple) in accuracy.

17

Unconstrained Channel Pruning

mobilenet v3_small (FPGM)

mobilenet_v3_small (HRank)

Input vs. Output Post-Training Pruning Accuracy

— input output

mobilenet v3_small (L1)

0 10 20 30 40 50
Parameter Sparsity Level (%)

ImageNet Val Acc (%)
e
o B 8

0 10 20 30 40
Parameter Sparsity Level (%)

50 10 20 30 40 50
Parameter Sparsity Level (%)

resnet101 (L1)

o
S
o

10 20 30 40 50
Parameter Sparsity Level (%)

resnet18 (L1)

Parameter Sparsity Level (%)
resnet50 (FPGM)

Net Val Acc (%)

0 10 20 30 40

o
S

Parameter Sparsity Level (%)

squeezenetl 0 (FPGM)

geNet Val Acc (%)

10 20 30 40 50
Parameter Sparsity Level (%)

squeezenet1 1 (FPGM)

resnet101 (FPGM) = resnet101 (HRank)
=
54
10 20 30 40 0 = 0 10 20 30 40
Parameter Sparsity Level (%) Parameter Sparsity Level (%)
resnet18 (FPGM) = resnet18 (HRank)
=50
=
=
= 25
)
10 20 30 40 50 = 0 10 20 30 40

Parameter Sparsity Level (%)

resnet50 (HRank)

o

020 30 4
Parameter Sparsity Level (%)

squeezenetl 0 (HRank)

Im

0 10 20 30 40
Parameter Sparsity Level (%)

squeezenet1_1 (HRank)

geNet Val Ace (%) ImageNet Val Acc (%)
v @ o
= B g = @

o
=

10 20 30 40 50
Parameter Sparsity Level (%)

resnet50 (L1)

| Ace (%)

ImageNet

3

0 10 20 30 40 5
Parameter Sparsity Level (%)

squeezenet] 0 (L1)

geNet Val Acc (%)
v e
= % 8

Im

50 0 10 20 30 40 50
Parameter Sparsity Level (%)

squeezenet] 1 (L1)

mobilenet v3_small (L2)

mobilenet v3 small (LAMP)

10 20 30 40 50
Parameter Sparsity Level (%)

resnet101 (L2)

10 20 30 40 50
Parameter Sparsity Level (%)

resnet18 (L2)

g
< 50
=
=

I
o

10 20 30 40 50
Parameter Sparsity Level (%)

resnet50 (L2)

ce (%)

Net Val
o
o 3

TmageNet Val Acc (%)

= 0 100 22 30 40 50
Parameter Sparsity Level (%)

squeezenet1 0 (12)

Net Val Ace (%)

TmageNet Val Acc (%)

- 0 10 20 30 40 50
Parameter Sparsity Level (%)

squeezenet] 1 (12)

I

ImageNet Val Ace (%)

geNet Val Acc (%)

et Val Ace (%)

0 10 20 30 40 5
Parameter Sparsity Level (%)

resnet101 (LAMP)

3

0 10 20 30 40 50
Parameter Sparsity Level (%)

resnet18 (LAMP)

0 10 20 30 40 Bl
Parameter Sparsity Level (%)

resnet50 (LAMP)

3

0 10 20 30 40 50
Parameter Sparsity Level (%)

squeezenet1 0 (LAMP)

0 10 20 30 40 50
Parameter Sparsity Level (%)

squeezenetl 1 (LAMP)

0 10 20 30 40 50
Parameter Sp: Level (%)

wide_resnet502 (FPGM)

Parameter Sparsity Level (%)

0 10 20
Parameter Spar

30 40
v Level (%)

wide resnet50_2 (HRank)

(%)

Parameter Sparsity Level (%)

50 10 20 30 40 50

Parameter Sparsity Level (%)

wide_resnet50-2 (L1)

(%)

50 = 0 10 20 30 40 50
Parameter Sparsity Level (%)

10 20 30 40 50
Parameter Sparsity Level (%)

wide_resnet50 2 (L2)

0 10 20
Parameter Spar;

30 40 50
¥ Level (%)

ImageNet Val Acc

10 20 30 40 5
Parameter Sparsity Level (%)

2 (LAMP)

wide_resnet5

0 10 20 30 40 50
Parameter Sparsity Level (%)

Figure 16. Input vs. Output Pruning Accuracy (Part 2) Input pruning (blue) outperforms output pruning (purple) in accuracy.

18

Unconstrained Channel Pruning

Model | Stat Segments 10% 20% 30% 40% 50% 60% 70% 80% 90%
ResNet18 FLOPs All (ours) 1.60 1.36 1.13 0.93 0.71 0.52 0.34 0.19 0.07
ResNet18 Acc All (ours) 54.88 5194 51.00 49.75 4524 3994 31.07 1934 10.27
ResNet18 FLOPs Single-branch 1.41 0.99 0.57 0.17 0.16 0.16 0.16 0.16 0.16
ResNet18 Acc Single-branch 54.50 49.87 41.61 8.77 8.28 7.49 8.38 8.64 9.23
MobileNetV3-Small FLOPs All (ours) 0.05 0.04 0.04 0.03 0.02 0.02 0.01 0.01 0.00
MobileNetV3-Small Acc All (ours) 59.32 55.06 51.34 41.67 3446 2420 1530 10.03 3.68

MobileNetV3-Small FLOPs Single-branch 0.05 0.04 0.04 0.04 004 0.04 004 004 0.04
MobileNetV3-Small Acc Single-branch 55.33 3735 0.10 0.15 0.11 0.10 0.10 0.11 0.12

MobileNetV3-Large FLOPs All (ours) 0.19 0.16 0.13 0.11 008 0.06 004 0.02 0.01
MobileNetV3-Large Acc All (ours) 64.23 62.82 59.81 56.55 49.79 41.03 2730 1875 8.14
MobileNetV3-Large FLOPs Single-branch 0.18 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14
MobileNetV3-Large Acc Single-branch 63.84 55.08 0.13 0.14 0.16 0.16 0.14 0.16 0.16

EfficientNetV2-Small | FLOPs All (ours) 247 2.08 1.69 134 098 069 041 0.19 0.06
EfficientNetV2-Small | Acc All (ours) 67.92 6625 6553 6277 59.66 54.16 4480 3336 20.04
EfficientNetV2-Small | FLOPs Single-branch 2.24 1.61 143 143 1.43 1.43 1.43 1.43 1.43
EfficientNetV2-Small | Acc Single-branch 67.40 59.85 0.27 0.32 0.33 0.31 0.31 0.28 0.31

Table 3. Accuracy vs. FLOPs with Fine-Tuning. “Single-branch” means we prune only single-branch segments in the network to attain
the desired compression ratio. “All” means we pruned all segments — single-branch and multi-branch — to reach the desired compression
ratio. Across all models, pruning all segments achieves a better accuracy-latency tradeoff curve.

To support unconstrained output pruning, we define each node in the graph to be a convolution producing output — as
opposed to a convolution consuming input, as in unconstrained input pruning. Then, add edges when those convolutions
retain the same channels. The remainder of the algorithm remains the same.

Note that output pruning is sensitive to a correctness issue: “pruned” channels do not stay “pruned”, as zero is not
idempotent under operations such as a bias. This makes a general purpose export for output pruning slightly more tricky.

G. Reordering Pipeline Example

Here is the full reordering pipeline. For a more formal description, see Algorithm [I]in the main text. Reuse the same
example as above: There is one convolution A producing 4 channels. Convolution B retains channels 1, 3, 4; C retains
channels 2, 3, 4; and D retains channels 1 and 4.

1. Build a graph: every node contains channels retained by the corresponding convolution. Create edges between nodes
when their convolutions share retained channels. We have 3 nodes, labeled B, C, and D. All 3 nodes are densely
connected.

2. Find the maximum reward acyclic path. Every node corresponds to a convolution, so the path admits a convolution
ordering. In this case, our algorithm computes path B — C, excluding D.

3. This convolution ordering admits a channel ordering: Start with channels unique to the first convolution, then channels
shared between the first and second convolution, the channels unique to the second convolution etc. We then write the
channel ordering: (1), (3, 4), (2). We use parentheses to denote channels unique to B, those shared by B and C, then
those unique to C'.

4. Use this ordering to reorder filters in the convolution producing output. Output channels — i.e., the filters — in A are
rearranged as 1, 3, 4, 2.

5. Use this ordering to reorder filters in all convolutions consuming the reordered tensor. Input channels for B are left in
the same order, as 1, 3, 4. Input channels for C' are reordered to be 3, 4, 2.

H. Importance of Multi-Branch Segments

One possible way to handle multi-branch segments is to completely ignore them. In this appendix section, we explore this
possibility.

19

Unconstrained Channel Pruning

Decreasing % of Network is Prunable, Over Time

(=2}
o

[N
o

.
o

«

Do
o

—_
o

2016

% Convolutions in Single-Branch Segments

2014 2018

Model Year

2020

Figure 17. Single-branch segments account for fewer and
fewer of the convolutions over time: Decreasing numbers
of convolutions in neural network architectures belong to a
single-branch segment, starting from 65% with the advent
of ResNets (2015) and decreasing to 26% with models like
EfficientNet (2019). Due to this, pruning export algorithms must
accommodate multi-branch portions of the architecture.

Model \ Method Latency Accuracy
ResNet18 L2 3.74 54.5%
ResNet18 UPSCALE 345 54.9%
ResNet18 L2 3.60 49.9%
ResNet18 UPSCALE 2.54 49.8%
MobileNetV3-Small | L2 1.84 37.3%
MobileNetV3-Small | UPSCALE 1.79 51.4%

Table 4. Accuracy vs.

Latency for Magnitude Pruning: A

summary of accuracy-latency tradeoffs between pruning simple
segments only (L2) compared with pruning all segments

(L2-UPSCALE). In the Ilatter,

since we additionally prune

multi-branch segments, we use UPSCALE to export the model for
final latency measurements. Across various model sizes and sparsity
levels, we find that models using UPSCALE attain lower latency and

comparable or higher accuracy.

20

Decreasing % of Latency is Prunable, Over Time

° .
80 e e simple segments only
) ° e all segments
Ps L]
®

60

Maximum % Latency Pruned

2019

2015 2016 2017 2018 2020 2021

Model Year

Figure 18. Single-branch segments make up less and less of
the total latency over time: We prune the maximum number of
channels in only single-branch segments, which prior methods can
export; just as with FLOP count, single-branch methods can prune
less and less of the total latency over time, only able to prune 4.9%
of the total latency for MobileNet-V3. By contrast, by pruning
all the segments that UPSCALE algorithm can export — meaning
all segments — we are able to reduce a further 15% of latency on
average.

Year to Maximum % FLOP Reduction

100 o
= 80
T 60
[a=t
A, °
S 40 8
=
X

20 . ¢

simple segments only '
0 e all segments
2014 2016 2018 2020
Model Year

Table 5. Single-branch segments make up less and less of the
FLOP count over time: Across models over the past decade,
single-branch segments make up precipitously less and less of
the total FLOP count, only accounting for 6.5% of the total
computational cost for EfficientNet. By contrast, by pruning all
the segments that our UPSCALE algorithm can export — meaning
all segments — we are able to prune 99.5% of the computational
cost, on average.

Unconstrained Channel Pruning

Accuracy GFLOPs
Model Pruning 1% 5% 10% 20% 30% | 1% 5% 10% 20% 30%
MobileNetV3-Small | Ours (All) 66.67% 51.71% 21.98% 0.45% - 0.0537 0.0516 0.0487 0.0421 -
MobileNetV3-Small | Single-branch | 66.01% 34.04% 0.89% 0.08% - 0.0534 0.0503 0.047 0.0413 -
MobileNetV3-Large | Ours (All) 73.70% - 4691% 035% 0.017% | 0.2133 - 0.1883 0.1608 0.1332
MobileNetV3-Large | Single-branch | 73.34% - 1.56% 0.09% 0.010% | 0.2119 - 0.1845 0.1548 0.1392

Table 6. Accuracy vs. FLOPs without Fine-tuning: Above we compare end-to-end the accuracy-FLOPs impact of our method; this
includes (1) pruning all instead of just single-branch segments and (2) using our export strategy that includes reordering weights. The
percentages x% denote what percent of channels we pruned from the total number of channels in the network. However, note that Ours
(All) and Single-branch under the same percentage are not fully comparable, due to the slightly variable FLOPs shown to the right. As a
result, we suggest referencing Figure [T9|for a visual tradeoff curve.

Unfortunately, this strategy is not viable: Over time, less and less computational complexity in a neural network is due
to single-branch segments. More and more are involved in multi-branch segments of a neural network. This is for good
reason, as this has significant impact on accuracy: Pruning 10% of all weights is more difficult when you’re restricted to just
single-branch segments. We show this in Figures and Tables

Single-branch segments account for as little as 4.9% of latency, 6.5% of FLOPs and 26% of convolutions for
modern, efficient models. We could focus on train-time pruning performance for single-branch segments, but for compact,
efficient models, only a small percentage of latency is due to single-branch segments. As a consequence, this approach is
bottlenecked, being able to prune only a small percentage of latency in more modern neural networks—as little as 4.9% of
latency in MobileNetV3-Small (Figure[I8), 6.5% of FLOPs in EfficientNet-B7 (Figure 5)), and 26% of the convolutions in
MobileNetV3-Large (Figure[17).

Algorithms obtain “free’’ improvements by pruning multi-branch segments using our export, of up to 14.1% accuracy
points and 29.4% latency. We assess this improvement by comparing single-branch pruning performance against “our”
method: (1) Prune all segments in the model, instead of only single-branch segments; (2) Fine-tune for 1 epoch on ImageNet;
(3) Evaluate for accuracy, and benchmark both models for latency. This allows us to make an accuracy-latency comparison.
We show accuracy-latency tradeoff curves on GPU (Figure [21] Table).

To break down these accuracy-latency tradeoff curves above, we show that (1) accuracy improves when we additionally
prune multi-branch segments and (2) latency improves when we use reordering to export multi-branch segments.

Accuracy improves by up to 45% when additionally pruning multi-branch segments. We assess the impact of
additionally pruning multi-branch segments: Prune all segments, including multi-branch ones; run a previously-developed
pruning algorithm; fine-tune for 1 epoch; and assess accuracy. We evaluate on a number of modern and baseline neural
networks, showing a better accuracy-FLOPs tradeoff curve, by supporting pruning for multi-branch segments. Note that the
pruning algorithm itself remains constant; the only change is which part of the network we prune. We find that pruning all
segments — instead of pruning only single-branch segments — incurs up to a 45-point increase in accuracy or 14 x reduction
in FLOPs (Table A[3), since single-branch segments account for a limited percentage of the total computational cost (Figure
[3). We also report results without fine-tuning, computing accuracy directly on the post-training pruned network (Figure
A[T9] Table A[6). Above, we report FLOPs to examine the effects of segment choice independently. For completeness, we
also analyze tradeoffs using latency, using our reordering algorithm for export (Figure A [2T).

Taken together, the ablations above explain the accuracy-latency improvements.

I. Unconstrained Input Pruning Accuracy

This section contains the full set of results for unconstrained input pruning across all models, sparsity levels, and heuristics.
These are split between two large grids of figures (Figures [22] and [23]), where we observe that unconstrained accuracy
generally matches or outperforms constrained accuracy. We report numerical results in Tables A[7] A[§] A]

J. Unconstrained Input Pruning Latency

This section contains the full set of results for unconstrained input pruning export latency across all models, heuristics, and
sparsity levels. We plot the results in A[24]and include the results in table-form in Tables A[7} A[§] A[9]

21

Unconstrained Channel Pruning

Accuracy vs. FLOPs without Fine-tuning

baseline

ResNet18 — MobileNetV3-Small MobileNetV3-Large

ours

(=2
(=)
o

(3]
o
o

ImageNet Val (%)
S
o
ImageNet Val (%)
.
(e}
ImageNet Val (%)
Do % D

o

1.0 1.5 0.045 0.050 0.055 0.060 0.150 0.175 0.200 0.225
GFLOPs GFLOPs GFLOPs

Figure 19. Accuracy vs. FLOPs without Fine-Tuning for Single vs. Multi-branch Segments: Existing pruning algorithms obtain a
more favorable accuracy-computation trade off. Note that lower FLOPs (left) and higher accuracy (top) is preferred, so tradeoff curves
closer to the top-left are preferred. In particular, pruning all segments attains higher accuracy than pruning single-branch segments only,

under the same FLOP budget. Results are obtained using L2-magnitude pruning and without fine-tuning. See Table A[6]for numerical
results.

Accuracy vs. FLOPs with Fine-tuning

simple ours

— ResNet18 — MobileNetV3-Small — MobileNetV3-Large
=X 2 S

= =050 g

§ 0.4 2 § 0.50

g 2 0.25 2 0.25

< 0.2 5) 5

E £ 0.00 £ 0.00

~ 00 0.5 1.0 1.5 - 0.00 0.02 0.04 ~ 0.00 0.05 0.10 0.15

GFLOPs GFLOPs GFLOPs

Figure 20. Accuracy vs. FLOPs with Fine-Tuning for Single vs. Multi-branch Segments: Using UPSCALE, existing pruning
algorithms obtain a more favorable accuracy-latency trade off. Note that lower latency (left) and higher accuracy (top) is preferred, so
tradeoft curves closer to the top-left are preferred. In particular, pruning all segments attains higher accuracy than pruning single-branch
segments only, under the same latency budget. Furthermore, employing our export algorithm ensures that that the final exported, pruned
model achieves latency reductions. Results are obtained using L2-magnitude pruning and with fine-tuning.

Accuracy vs. Latency with L2-Magnitude Pruning

ResNet18 MobileNetV3-Small MobileNetV3-Large EfficientNetV2-Small

o
©
>
1<)

® simple
ours

® simple
ours

® simple
ours

@ simple
ours

o
©
54
©

o
o
o
9
3

o
o

= y |

2 3 14 1.6 1.8 2.0 22 24 26 28 8 10 12
Latency (ms) Latency (ms) Latency (ms) Latency (ms)

=4
=
[

o
~
o
~

o
IN)
o
N}
-
N
o

ImageNet Top-1 Accuracy
o
N

ImageNet Top-1 Accuracy
o o
o IS c
[]
ImageNet Top-1 Accuracy
o
o
ImageNet Top-1 Accuracy
o
(4
o

o
o
S
=4
o

Figure 21. Accuracy vs Latency with L2-Magnitude Pruning for Single vs. Multi-branch Segments This shows tradeoff curves for
pruning only single-branch segments of a network (blue), comparing that with pruning all segments — including multi-branch — segments
of a network (orange). The accuracy-latency tradeoff curve for pruning all segments is more favorable.

22

Unconstrained Channel Pruning

densenet121 (FPGM)

=
=
B3

0020 30 40 50 =
Parameter Sparsity Level (%)

efficientnet_b1 (FPGM)

geNet Val Acc (%)

Im

10020 30 40 50
Parameter Sparsity Level (%)

efficientnet b2 (FPGM)

10 20 30 40
Parameter Sparsity Level (%)

efficientnet b3 (FPGM)

50

10 20
Parameter Sparsi

40
Level (%)

efficientnet v2.s (FPGM)

= 0 10 20 30 40 50
Parameter Sparsity Level (%)

mnasnet0_5 (FPGM)

30 40 50
Parameter Sparsity Level (%)

mnasnet0 75 (FPGM)

Accuracy vs. Sparsity with Post-Training Pruning

Unconstrained (Ours) ==-- Constrained
densenet121 (HRank) = densenet121 (L1) densenet121 (12) = densenet121 (LAMP)
S 3
= = < 50
= g g
= = =
o &
£

Im

0 10 20 30 40 50 0 10 20 30 40 50
Parameter Sparsity Level (%) Parameter Sparsity Level (%)

efficientnet_bl (HRank) efficientnet b1 (L1)

1020 30 40 50 0 10 20 30 40 50
Parameter Sparsity Level (%) Parameter Sparsity Level (%)

efficientnet b1 (L2) efficientnet b1 (LAMP)

5

ImageNet Val Ace (%)

Z
o

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)

efficientnet_b2 (HRank) efficientnet b2 (L1) efficientnet b2 (L2) efficientnet b2 (LAMP)

=3

al Acc (%)

\
\
h
1
1
S

10 20 30 40 50
Parameter Sparsity Level (%)

efficientnet b3 (L1)

0 ==
10 20 30 40 50 0 10 20 30 40 30
Parameter Sparsity Level (%) Parameter Sparsity Level (%)

cfficientnet b3 (L2) efficientnet b3 (LAMP)

Z
&

0 10 20 30 40 30
Parameter Sparsity Level (%)

efficientnet b3 (HRank)

10 20 30 40 50 10 20 30
Parameter Sparsity Level (%) Parameter Sparsity

efficientnet v2.s (HRank)

40 10 20 30 40 50 10 20 30

Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)

efficientnet v2.s (LAMP)

efficientnet_v2.s (L1) efficientnet_v2.s (L2)

< <
—= =50
= =
Z Z
0 <0
E 0
0 10 20 30 40 50 = 0 10 20 30 40 50 = 0 10 20 30 40 50 = 0 10 20 0 40 50
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)
mnasnet0 5 (HRank) mnasnet0_5 (L1) mnasnet0_5 (L2) mnasnet0_5 (LAMP)
250
2
]
N]
N % Re.
E)
10 20 30 40 50 = 0 10 20 30 40 50 10 20 30 40 50 = 0 10 20 30 40 50
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)
mnasnet0_75 (HRank) mnasnet0_75 (L1) mnasnet0_75 (L2) mnasnet0_75 (LAMP)

mnasnet1 3 (FPGM)

Ime

10 20 30 40 50
Parameter Sparsity Level (%)

mobilenet_v2 (FPGM) <

10 20 30 40 50
Parameter Sparsity Level (%)

= mobilenet v3 large (FPGM)

0 10 20 30 40 50
Parameter Sparsity Level (%)

Figure 22. Unconstrained vs.

Net Val Acc (%)

< 50 =90

= \ =

< 52

Z Z

0

El 0

10 20 30 40 50 = 0 10 20 30 40 10 20 30 40 50 = 0 10 20 30 40 50
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)

mnasnet1 3 (HRank) < mnasnet]_3 (L1) = mnasnet1 3 (L2) - mnasnet1 3 (LAMP)

0 10 20 30 40 50 = 0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)

mobilenet v2 (HRank) mobilenet v2 (L1) mobilenet v2 (L2) mobilenet v2 (LAMP)

2

10 20 30 40 50 10 20 30 40 50 0 10 20 30 40 50 10 20 30 10 50
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)
mobilenet_v3 large (HRank) = mobilenet_v3 large (L1) mobilenet v3 large (L2) mobilenet v3 large (LAMP)

=50

=

2

\ -

h 5

\ Z

\)

== 20
0 10 20 30 40 50 0 10 20 30 40 50 1020 30 40 5 = 0 10 20 30 40 50
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)

constrained accuracy. In the vast majority of cases, unconstrained accuracy matches or outperforms

constrained accuracy. See numeric results for these plots in Tables A[7] A[S] A9

23

Unconstrained Channel Pruning

ImageNet Val Acc (%)

ImageNet Val Acc (%)

Ace (%)

Z
o
g

ImageNet Val Acc (%)

ImageNet Val Acc (%)

ImageNet Val Acc (%)

mobilenet_v3_small (FPGM)

mobilenet_v3_small (HRank)

Accuracy vs. Sparsity with Post-Training Pruning

10

Parame

20 30 40
Sparsity Level (%)

resnet101 (FPGM)

10 20 30 40
Parameter Sparsity Level (%)

resnetl8 (FPGM)

020 30 40
Parameter Sparsity Level (%)

resnet50 (FPGM)

50

3

%)

0 10

0 10 20

20 30 40
Parameter Sparsity Level (%)

resnet101 (HRank)

30 40
Parameter Sparsity Level (%)

resnet18 (HRank)

-

50

N
p
0 10 20 30 40

Parameter Sparsity Level (%)

resnet50 (HRank)

10
Parame

20 30 40
Sparsity Level (%)

squeezenet1 0 (FPGM)

50

10 20 30 40
Parameter Sparsity Level (%)

squeezenetl 1 (FPGM)

50

10
Parameter Sparsity Level (%)

wide resnet502 (FPGM)

20 30 40

10
Parameter Sparsity Level (%)

20 40

50

%

S

ImageNet Val Acc

< (%)

ImageNet, Ve

0020 30 40
Parameter Sparsity Level (%)

squeezenetl 0 (HRank)

10 30
Parameter Sparsity Level (%)

squeezenetl 1 (HRank)

&)
S

10 20 30 40
Parameter Sparsity Level (%)

wide resnet502 (HRank)

R\
R

10 20 30 40
Parameter Sparsity Level (%)

-

50

====Constrained

Unconstrained (Ours)

mobilenet_v3 small (L1)

mobilenet_v3_small (L2)

ImageNet Val Acc (%)

0 10 20 30 40 50
Parameter Sparsity Level (%)

20
Parameter Sparsity Level (%)

30 40 0

g resnet101 (L1) £ resnet101 (L2)

S

g

< .

— 50

k]

Z.

&0

El

=0 10 20 30 40 50 0 10 20 30 40 50

Parameter Sparsity Level (%)

resnetl8 (L1)

Parameter Sparsity Level (%)

resnet18 (L2)

Acc (%)

ImageNet Val Acc (%)

0 10 20 30 40 50
Parameter Sparsity Level (%)

resnet50 (L1)

10 20 30 40 50
Parameter Sparsity Level (%)

resnet50 (L2)

g
<
g

0 10 20 30 40 50
Parameter Sparsity Level (%)

10 20 30
Parameter Sparsity Le

40 50
1 (%)
squeezenet1 0 (L2)

squeezenet1 0 (L1)

Net Val Ace (%)

0 10 20 30 40
Parameter Sparsity Level (%)

50 0 10 20 30 40 50

Parameter Sparsity Level (%)

squeezenetl 1 (L1) squeezenet1.1 (L2)

S
=
S
z

0 10 20 30 40 50 0

Parameter Sparsity Level (%)

wide resnet50.2 (L1)

10 20 30 40 50
Parameter Sparsity Level (%)

wide resnet50.2 (L2)

10 20 30 40 50
Parameter Sparsity Level (%)

10 20 30 40 50
Parameter Sparsity Level (%)

constrained accuracy. See numeric results for these plots in Tables A[7] A5} A9

24

mobilenet_v3_small (LAMP)

/

10 20 30 40 50
Parameter Sparsity Level (%)

resnet101 (LAMP)

ImageNet Val Ace (%)

0 10 2 30 40 50
Parameter Sparsity Level (%)

resnet18 (LAMP)

ImageNet Val Ace (%)

0 10 20 30 40 50
Parameter Sparsity Level (%)

resnet50 (LAMP)

eNet Val Acc (%)

0 10 20 30 40 50
Parameter Sparsity Level (%)

squeezenetl 0 (LAMP)

ImageNet Val Acc (%)

0 10 20 30 40
Parameter Sparsity Level (%)

squeezenetl 1 (LAMP)

50

ImageNet Val Acc (%)

0 10 20 30 40
Parameter Sparsity Level (%)

wide resnet50.2 (LAMP)

50

ImageNet Val Acc (%)

0 10
Parameter Sparsity Level (%)

20 30 40 50

Figure 23. Unconstrained vs. constrained accuracy In the vast majority of cases, unconstrained accuracy matches or outperforms

Unconstrained Channel Pruning

Latency vs. Sparsity with Post-Training Pruning

—— UPSCALE (Ours) ---- Baseline Optimal
densenct121 (FPGM) densenct121 (HRank) densenet121 (L1) densenet121 (L2) densenct121 (LAMP)
Ep Qoo i,
5 5 S 25
3 3 34
o4 o4 o
=) = =
S S <}
25 50 75 100 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)
mnasnet0 75 (FPGM) mnasnet0 75 (HRank) mnasnet0.75 (L1) mnasnet0 75 (L2) mnasnet0 75 (LAMP)
Z e Z150 ¢~ ERE: Z 14
14 B = =
l Z12] £12
Sz 3 = . 10
S 2 2100 N 5
o o o o
025 045006 708 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)
mnasnet1_3 (FPGM) mnasnet 13 (HRank) mnasnet1 3 (L1) mnasnet1 3 (L2) mnasnet1 3 (LAMP)
e z -
-~ =15
3
Z 10
Y o
25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)
mobilenet v2 (FPGM) mobilenet v2 (HRank) mobilenet v2 (L1) mobilenet v2 (L2) mobilenet v2 (LAMP)
o TN TN 2

T 15 e
£ |
z 10
5 : S
0 2% 50 75100 0 2 50 75100 0 25 50 75 100 0 2 50 7100 0 2 50 7100
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)
mobilenct v3 large (HRank) mobilenet_v3 large (L1) mobilenet v3 large (L2) mobilenet v3 large (LAMP)
Z18 Fe= =z PNl =z —. 7 p——
g ~| &
216 g
))
N & 14 N | &
T g [}

0 2% 50 7 100 0 2 50 7 100 0 25 50 75 100 0 2 50 7 0 2% 50 7 100
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Leve Parameter Sparsity Level (%)
mobilenet_v3_small (FPGM) mobilenet_v3_small (HRank) mobilenet_v3_small (L1) mobilenet_v3_small (L2) mobilenet_v3_small (LAMP)

e Z13 e T emmeies B
£ Z12
212 3
= 10
SR o
S] >3 -
0 2 50 7100 0 2 50 7100 0 2 50 7100 0 2 50 7100 0 2 50 7100
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)
resnet101 (FPGM) resnet101 (HRank) resnet101 (L1) resnet101 (L2) resnet101 (LAMP)
E71s g S
g
250
K
25 g \
0 2% 50 7100 0 2 50 75100 0 25 50 7 100 0 2 50 7100 0 2 50 7 100
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)
resnet18 (FPGM) resnet18 (HRank) resnet18 (L1) resnet18 (L2) resnet18 (LAMP)
Z2 D 2y
S 31
= D
& &
<}) B
0 2% 50 7100 0 25 50 7100 0 2 50 75 100 0 2% 50 100 0 2 50 7100
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)
resnet50 (FPGM) resnet50 (HRank) resnet50 (L1) resnet50 (L2) resnet50 (LAMP)

] > :
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%)
squeezenet] 0 (FPGM) squeezenet]. 0 (HRank) squeezenet] 0 (L1) squeezenet] 0 (L2) squeezenet] 0 (LAMP)

s

0 % 0 T 100 0 50 100 0 2% 50 75 10) 0 % 0 T 10
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity L Parameter Sparsity Level (%)
squeczenct1_1 (FPGM) squeezenet1_1 (HRank) squeczenct11 (L1) squeczenct1 1 (L2) squeezenct1.1 (LAMP)

FO08 oy z z -) z)

T e 08 B

[l £ o6

o6 506 3

S D S

3 T o4 504

0 % 50 100 0 2 50 75 100 0 50 75 100 0 % 0 75 100 0 % 0 T 100
Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Sparsity Level (%) Parameter Spasity Level (%) Parameter Sparsity Level (%)

Figure 24. Export latency for our unconstrained export, baseline unconstrained export, and the optimal zero-copy export. Notice that
UPSCALE (solid) approaches the optimal (dotted) latency fairly often. See numeric results for these plots in Tables Am A@ AEl

25

Unconstrained Channel Pruning

Model Heuristic ‘ Stat 1% 5% 10% 15% 20% 25% 30% 40%
densenet121 FPGM Acc (Ours) 72.62% 71.04% 67.03% 57.51% 42.15% 21.57% 9.77% 1.17%
Acc (Cons) 71.50% 55.42% 20.77% 4.72% 1.20% 0.47% 0.31% 0.08%

Lat (Ours) 591+£0.012 5.97 £ 0.006 5.89£0.011 5.67+0.010 5.53 £0.007 5.39+0.010 5.63 £ 0.006 5.30 £ 0.003
Lat (Base) 6.31 £0.006 6.42£0.011 6.33+£0.012 6.10 £ 0.025 5.99 £ 0.007 5.82+0.018 6.06 +0.016 5.69 + 0.006
Lat (Zero) 5.33£0.007 535£0.012 5.23+£0.007 4.99 £ 0.006 4.89£0.013 4.69 + 0.004

HRank Acc (Ours) 72.04% 63.59% 40.68% 17.95% 4.87% 1.59% 0.62% 0.17%
Acc (Cons) 72.36% 54.10% 17.03% 11.95% 1.46% 0.47% 0.11% 0.11%
Lat (Ours) 5.44£0.018 5.67+0.016 5.69 £0.010 5.49 £ 0.005 5.41 £0.008 5.29 £ 0.005 5.63 +0.008 5.19 £ 0.005
Lat (Base) 5.93 +0.007 6.13 £0.004 6.15+0.017 5.94+0.011 5.89+0.013 5.76 £ 0.008 6.11 +0.008 5.64+0.010
Lat (Zero) 5.29£0.012 5.25£0.003 5.21 £0.008 4.98 £ 0.004 4.93 £0.005 4.79 £0.003 5.59 £0.004

L1 Acc (Ours) 72.47% 69.16% 62.27% 51.50% 36.07% 19.55% 7.13% 0.43%
Acc (Cons) 70.82% 54.89% 9.04% 1.08% 0.38% 0.18% 0.20% 0.11%
Lat (Ours) 6.08 + 0.009 6.02£0.015 5.92 +£0.008 5.64+£0.013 5.56 +0.006 5.41 £0.005 5.68 £ 0.009 5.27 £0.005
Lat (Base) 6.53+0.014 6.46 + 0.004 6.40 £0.016 6.08 +£0.010 6.01 £0.013 5.84 +0.008 6.08 +0.007 5.69 +0.007
Lat (Zero) 5.35+0.010 5.34+0.010

L2 Acc (Ours) 72.57% 70.89% 66.64% 59.34% 43.06% 21.59% 10.18% 1.36%
Acc (Cons) 71.51% 55.08% 24.76% 5.44% 1.27% 0.64% 0.35% 0.14%
Lat (Ours) 5.99 £ 0.007 5.98 £0.009 5.84 £0.005 5.54 £ 0.006 5.46+£0.010 531+0.014 5.56 + 0.006 5.20 £ 0.002
Lat (Base) 6.51+0.012 6.41 £0.004 6.31+0.012 6.01 £ 0.003 5.93 £0.007 5.78 £ 0.009 6.02 + 0.009 5.63 +0.006
Lat (Zero) 5.36 £ 0.009 533+0.014 5.25+0.002 4.98 £ 0.008 4.88 £0.012 4.71£0.010

LAMP Acc (Ours) 71.80% 64.66% 25.82% 4.33% 0.37% 0.20% 0.11% 0.09%
Acc (Cons) 70.64% 48.28% 1.48% 0.12% 0.12% 0.14% 0.15% 0.10%
Lat (Ours) 553+0013 57920002 581£0007 574£0005 570+0005 5690012 5720006 5.66+0.009
Lat (Base) 553+0005 58320013 585£0003 577£0009 575+0005 572£0011 5760009 574 +0.003
Lat (Zero) 5.17%0.010

mnasnet0_75 FPGM Acc (Ours) 70.40% 57.28% 19.05% 1.01% 0.17% 0.15% 0.24% 0.10%
Acc (Cons) 70.44% 57.24% 22.56% 1.06% 0.25% 0.16% 0.13% 0.07%

Lat (Ours) 1.30 +£0.001 1.33 £0.003 1.32+£0.001 1.28 £ 0.006 1.29 £ 0.002 1.28 £ 0.003 1.27 £ 0.004 1.25 +0.003

Lat (Base) 1.40 £ 0.003 1.52 £0.003 1.52 £0.004 1.50 £0.003 1.49 +0.001 1.50 + 0.005 1.49 + 0.004 1.47 £ 0.004

Lat (Zero) 1.27 £0.003 1.26 £ 0.002 1.26 £0.001 1.27 £0.002 1.26 £ 0.002 1.22 £0.002 1.22 £ 0.004 1.30 £ 0.006
HRank Acc (Ours) 70.38% 0.32% 0.55% 0.22% 0.13% 0.16% 0.14% 0.10%
Acc (Cons) 70.35% 0.53% 0.86% 0.38% 0.11% 0.12% 0.08% 0.12%

Lat (Ours) 1.29 £ 0.004 1.28 £0.003 1.29 £ 0.004 1.28 £ 0.002 1.30 £ 0.002 1.27 £ 0.006 1.28 £ 0.003 1.26 £ 0.005

Lat (Base) 1.38 £0.004 1.47 £ 0.003 1.51 £ 0.004 1.50 £ 0.003 1.51 £ 0.003 1.48 £ 0.005 1.48 £ 0.002 1.47 £ 0.001

Lat (Zero) 1.27 £ 0.004 1.27 £ 0.002 1.29 £ 0.004 1.26 £ 0.004 1.27 £ 0.002 1.24 + 0.002 1.25 £ 0.006 1.22 +0.002
L1 Acc (Ours) 69.47% 45.56% 5.90% 0.35% 0.16% 0.15% 0.16% 0.09%
Acc (Cons) 69.69% 43.38% 8.49% 0.43% 0.16% 0.12% 0.13% 0.11%

Lat (Ours) 1.30 £ 0.003 1.32 £ 0.003 1.32 £ 0.006 1.29 + 0.004 1.28 +0.001 1.27 £ 0.004 1.28 + 0.003 1.25 +0.002
Lat (Base) 1.39 £ 0.003 1.52 £ 0.003 1.52 £ 0.001 1.49 + 0.002 1.49 + 0.005 1.49 + 0.006 1.48 £ 0.004 1.46 + 0.003
Lat (Zero) 1.27 £0.002 1.26 £ 0.002 1.26 £ 0.003 1.26 + 0.006 1.26 £ 0.003 1.22 +0.004 1.22 +0.002 1.30 + 0.005

L2 Acc (Ours) 70.48% 57.40% 23.56% 1.88% 0.36% 0.13% 0.16% 0.10%
Acc (Cons) 70.45% 57.46% 26.91% 2.17% 0.32% 0.10% 0.19% 0.09%
Lat (Ours) 1.30 £ 0.007 1.32£0.002 1.32+£0.001 1.29 £ 0.001 1.28 £ 0.003 1.27 £ 0.001 1.27 £ 0.002 1.25 +0.004
Lat (Base) 1.40 £ 0.004 1.51 £0.004 1.52 £ 0.004 1.49 £ 0.003 1.48 + 0.000 1.49 + 0.003 1.48 + 0.005 1.46 +0.001

Lat (Zero) 1.27 £0.002 1.26 +0.003 1.26 +0.004 1.26 £ 0.002 1.26 £ 0.002 1.22 +0.002 1.22+0.001 1.31 £ 0.003
LAMP Acc (Ours) 61.90% 40.28% 11.29% 4.31% 0.93% 0.68% 0.45% 0.10%

Acc (Cons) 62.01% 41.21% 14.68% 5.82% 3.31% 0.79% 0.39% 0.11%

Lat (Ours) 1.28 £0.002 1.28 £0.002 1.28 £0.003 1.28 £ 0.006 1.28 £0.003 1.29 £ 0.006 1.27 £0.001 1.25 £0.003

Lat (Base) 1.34 £0.003 1.33 £0.004 1.33 £0.002 1.36 £ 0.002 1.37 £0.002 1.38 £0.002 1.38 £0.002 1.35£0.010
Lat (Zero) 1.28 £ 0.004 1.28 £ 0.003 1.28 £0.003 1.26 £ 0.002 1.27 £ 0.002 1.29 £ 0.005 1.27 £0.002 1.27 £0.003

mnasnet]_3 FPGM Acc (Ours) 75.48% 66.67% 42.70% 8.37% 0.79% 0.33% 0.21% 0.17%
Acc (Cons) 75.47% 65.90% 41.05% 6.37% 0.87% 0.31% 0.15% 0.10%
Lat (Ours) 1.50 + 0.005 1.50 +0.003 1.49 +0.003 1.46 +0.002 1.42 +0.002 1.40 +0.003 1.38 +0.002 1.41 +0.004
Lat (Base) 1.64 +0.002 1.73 £ 0.004 1.70 + 0.002 1.67 + 0.006 1.64 +0.003 1.61 +0.008 1.61 +£0.001 1.61 +0.002
Lat (Zero) 1.46 +0.002 1.44 +0.004 1.42 +0.004 1.39 £ 0.003 1.33 £ 0.004 1.32 +0.003 1.31 £ 0.003 1.32 £ 0.006
HRank Acc (Ours) 75.24% 53.23% 20.99% 2.95% 0.24% 0.08% 0.10% 0.10%
Acc (Cons) 75.39% 55.13% 28.11% 3.48% 0.23% 0.14% 0.09% 0.13%

Lat (Ours) 1.49 £ 0.001 1.48 £ 0.003 1.47 £ 0.005 1.47 £ 0.002 1.44 + 0.002 1.41 £ 0.006 1.43 £ 0.004 1.42 +0.003
Lat (Base) 1.63 £0.002 1.70 £ 0.002 1.68 + 0.004 1.68 + 0.003 1.65 + 0.003 1.62 + 0.003 1.64 + 0.004 1.63 + 0.004

Lat (Zero) 1.45 +£0.003 1.45 +0.006 1.42 £ 0.002 1.42 £ 0.004 1.39 + 0.002 1.36 + 0.004 1.38 + 0.006 1.37 £ 0.004
L1 Acc (Ours) 75.50% 63.88% 16.89% 0.99% 0.10% 0.10% 0.09% 0.10%
Acc (Cons) 75.11% 61.19% 16.30% 2.85% 0.32% 0.13% 0.11% 0.10%
Lat (Ours) 1.50 £ 0.004 1.49 £ 0.003 1.49 £ 0.002 1.46 +0.001 1.42 +0.003 1.38 £ 0.003 1.38 £ 0.003 1.35+0.004
Lat (Base) 1.64 +0.001 1.73 £0.003 1.71 £0.003 1.67 £ 0.003 1.63 +0.002 1.60 + 0.003 1.61 +0.005 1.61 +0.003
Lat (Zero) 1.44 £ 0.003 1.44 £ 0.001 1.42 +0.001 1.38 £0.003 1.33 £ 0.004 1.32 £ 0.003 1.31 £0.003 1.32 +0.003
L2 Acc (Ours) 75.41% 66.44% 43.26% 7.88% 0.78% 0.16% 0.10% 0.11%
Acc (Cons) 75.42% 65.88% 41.38% 6.92% 0.73% 0.22% 0.20% 0.10%
Lat (Ours) 1.50 £0.001 1.52 £0.001 1.49 £ 0.006 1.46 £ 0.003 1.42 £0.003 1.40 £ 0.002 1.38 £0.003 1.39 £0.001
Lat (Base) 1.64 £ 0.001 1.73 £0.003 1.70 £ 0.005 1.67 £0.003 1.63 £ 0.004 1.61 £ 0.004 1.61 £0.001 1.62 £ 0.006
Lat (Zero) 1.45 £ 0.005 1.44 £ 0.002 1.42 £ 0.002 1.38 £ 0.002 1.33 £0.004 1.32 £ 0.004 1.31 £0.004 1.32 £ 0.003
LAMP Acc (Ours) 61.34% 42.75% 13.82% 4.54% 1.11% 0.60% 0.14% 0.12%
Acc (Cons) 62.08% 45.27% 19.84% 4.38% 1.40% 0.82% 0.31% 0.13%

Lat (Ours) 1.47 £ 0.004 1.46 £ 0.004 1.45 £ 0.003 1.47 £ 0.002 1.51 £ 0.003 1.49 + 0.004 1.46 + 0.003 1.43 £ 0.003
Lat (Base) 1.58 £ 0.005 1.58 £ 0.004 1.56 £ 0.005 1.59 + 0.002 1.64 +0.001 1.62 +0.001 1.58 +0.003 1.57 £ 0.003
Lat (Zero) 1.45 £ 0.003 1.46 £ 0.002 1.44 £ 0.004 1.45 £ 0.004 1.52 £ 0.003 1.51 £ 0.002 1.46 + 0.003 1.45 £ 0.002

Table 7. UPSCALE accuracy and latency across architectures, sparsity levels, and heuristics. Notice that latency for ours is comparable
to the ideal, zero-copy reference, much lower than the baseline export’s latency. Additionally notice our (unconstrained) accuracy matches
or outperforms the baseline constrained accuracy.

26

Unconstrained Channel Pruning

Model Heuristic | Stat 1% 5% 10% 15% 20% 25% 30% 40%
mobilenet.v2 FPGM Acc (Ours) 69.99% 43.69% 2.82% 0.28% 0.13% 0.10% 0.09% 0.10%
Acc (Cons) 69.54% 44.50% 4.18% 0.38% 0.14% 0.10% 0.10% 0.13%

Lat (Ours) 14820002 1490006 147+0005 1450002 1460005 1390007 136+0.004 1.26+0.004

Lat (Base) 1.60£0.002 1.69+0.004 1.67£0.005 1660002 1580002 160+0.007 1.59£0006 1.480.005

Lat (Zero) ~ 1450003 1440005 143+0004 136+0004 13120007 135£0004 13120005 1.21£0.008
HRank Acc (Ours) 68.52% 45.15% 19.83% 3.00% 1.53% 021% 0.15% 0.11%
Acc (Cons) 68.51% 45.71% 21.60% 3.64% 1.68% 0.26% 0.20% 0.10%

Lat Ours) 14420008 145+0002 145£0003 142£0003 13320004 138+0005 136£0003 1.26=0.001

Lat (Base) ~ 1.5720.004 16120003 1.62+0002 1.60£0002 15220005 1570003 156+0.004 1.460.002

Lat(Zero) 145+0002 144£0006 141£0004 140£0004 132£0002 135£0002 13320002 1.24+0.004
L1 Acc (Ours) 69.35% 41.83% 237% 0.23% 0.13% 0.11% 0.11% 0.10%
Acc (Cons) 69.35% 42.92% 2.81% 0.16% 0.12% 0.13% 0.10% 0.16%

LatOurs) 1490002 1.50£0.005 147£0.005 1460005 1480007 139+0.004 136+0003 1.28=0.003

Lat(Base) 1.61£0.004 1.70£0.003 1.68+0.003 1.66+0002 1580004 1.60£0002 159+0.006 1.48:+0.006

Lat(Zero) 1450005 145£0004 144+0004 137£0004 13120004 136+0011 131£0012 1.22£0.007
L2 Acc (Ours) 69.48% 46.52% 3.08% 0.27% 0.18% 0.10% 0.10% 0.10%
Acc (Cons) 69.60% 47.78% 3.89% 0.39% 0.14% 0.10% 0.10% 0.10%

Lat (Ours) 1480004 1.50£0.005 147+0007 145£0006 1460005 1380002 137£0002 1.27£0.004

Lat(Base) 1.60£0.005 1.69+0.005 1.67+0.004 1660004 1580008 1.60+0.006 1.58+0.004 1.470.003

Lat (Zero) 1450003 14420005 144+0004 137£0006 13120002 135£0003 130£0003 1.21£0.002
LAMP Acc (Ours) 5.28% 1.15% 0.29% 0.24% 0.15% 0.10% 0.14% 0.10%
Acc (Cons) 5.24% 1.87% 0.27% 0.26% 0.18% 0.13% 0.10% 0.13%

Lat Ours) 14220006 14120004 139+0004 136+0003 13520001 13220004 13120001 1.28%0.002

Lat (Base) ~ 1.5120.005 1.50£0.001 147+0003 1450004 14520004 142£0003 14220001 139+0.004

Lat (Zero) 14320004 14120003 139+0004 137£0005 1360003 1.32£0004 13120004 129+0.006
mobilenet_v3_large | FPGM Acc (Ours) 73.67% 66.05% 45.97% 10.13% 0.29% 0.20% 0.22% 0.10%
Acc (Cons) 73.64% 66.13% 47.13% 1.20% 021% 0.15% 0.16% 0.13%

Lat Ours) 17920002 1.71£0001 1.67£0002 17520005 1760003 159+0.003 1.58+0.005 1.54%0.005

Lat (Base) ~ 1.68+0.003 1.77£0.003 182+0009 1.81£0007 1760007 1.82+0004 181+0.006 1.79+0.004

Lat(Zero) 1.54£0002 1.55£0.003 1490001 149£0004 1470006 148£0003 1440002 141 £0.004
HRank Acc (Ours) 68.11% 33.63% 5.46% 0.96% 0.53% 0.22% 0.16% 0.10%
Acc (Cons) 68.03% 49.05% 6.72% 1.02% 0.30% 0.24% 0.21% 0.14%

LatOurs) 1.57+£0.003 1.58+0.003 159£0.005 1580002 1.54£0.002 156+0.004 1.58+0.005 1.54%0.003

Lat(Base) 1.64£0.006 172+0.005 175£0006 1760005 1.74£0.003 179+0.006 1.79£0.006 1.78%0.005

Lat(Zero) 1.56£0.003 1.54+0.004 155£0.006 1.53£0.003 1490002 153+0.004 1.52+0004 1.48%0.003
L1 Acc (Ours) 73.72% 64.88% 39.87% 223% 0.49% 0.16% 0.21% 0.14%
Acc (Cons) 73.69% 52.93% 22.81% 1.06% 0.14% 0.18% 0.15% 0.15%

Lat(Ours) 1.80£0.005 1.75£0.004 178+0.005 1.75£0001 17120004 1690001 158+0.003 1.60+0.004

Lat (Base) 1.77 £ 0.004 1.88 £0.008 1.89 £ 0.005 1.86 £ 0.003 1.82 £0.004 1.84 £0.003 1.84 £0.003 1.81 £0.006
Lat (Zero) 1.56 +0.001 1.55 +0.002 1.49 + 0.006 1.47 £ 0.002 1.45 +£0.002 1.48 £ 0.003 1.43 £0.003 1.40 £ 0.004

L2 Acc (Ours) 73.67% 66.30% 47.81% 13.34% 0.41% 0.20% 0.13% 0.14%
Acc (Cons) 73.59% 67.34% 48.24% 1.81% 0.24% 0.21% 0.16% 0.14%
Lat (Ours) 1.81 £0.005 1.72 £0.002 1.78 £0.005 1.75 £ 0.006 1.76 £ 0.003 1.60 + 0.005 1.58 £ 0.005 1.60 £ 0.006
Lat (Base) 1.78 £ 0.002 1.89 + 0.004 1.89 + 0.004 1.87 £ 0.004 1.82 +0.002 1.85+0.003 1.85+0.003 1.81£0.008

Lat (Zero) 1.56 £ 0.002 1.55 £ 0.004 1.49 £ 0.003 1.48 £ 0.005 1.45 +£0.002 1.47 £0.002 1.44 £ 0.003 1.41 £0.003
LAMP Acc (Ours) 72.49% 0.08% 0.09% 0.17% 0.18% 0.10% 0.10% 0.10%
Acc (Cons) 68.16% 0.11% 0.06% 0.10% 0.11% 0.12% 0.12% 0.08%

Lat (Ours) 1.61 +0.004 1.65 +0.003 1.75 +£0.002 1.63 +0.002 1.63 +0.004 1.64 + 0.004 1.62 +0.003 1.53 +£0.003

Lat (Base) 1.64 +0.003 1.77 £ 0.002 1.76 + 0.007 1.73 £ 0.006 1.75 £ 0.008 1.73 £ 0.005 1.72 £ 0.005 1.70 £0.012

Lat (Zero) 1.54 +0.003 1.53 +0.003 1.50 +0.002 1.50 + 0.004 1.48 +0.001 1.47 +0.004 1.44 +0.001 1.40 + 0.004
mobilenet_v3_small FPGM Acc (Ours) 66.74% 50.26% 24.04% 2.09% 0.41% 0.19% 0.11% 0.12%
Acc (Cons) 66.45% 48.29% 18.80% 1.37% 0.37% 0.23% 0.14% 0.09%

Lat (Ours) 1.27 +0.005 1.18 +0.003 1.16 + 0.002 1.24 +0.004 1.20 + 0.001 1.25 +0.005 1.25 +0.003 1.19 +0.002

Lat (Base) 1.24 +0.003 1.34 £ 0.002 1.36 +£0.001 1.38 £ 0.003 1.37 £ 0.004 1.39 £ 0.005 1.38 £ 0.002 1.37 £0.001

Lat (Zero) 1.12 £ 0.004 1.12 + 0.000 1.18 £ 0.004 1.13 £0.002 1.11 +0.003 1.12 £ 0.002 1.11 £ 0.001 1.07 £ 0.003
HRank Acc (Ours) 67.23% 54.81% 29.53% 1.11% 0.26% 0.19% 0.15% 0.09%
Acc (Cons) 67.20% 63.55% 48.31% 31.20% 4.08% 3.11% 0.80% 0.30%

Lat (Ours) 1.14 £ 0.005 1.14 £ 0.003 1.14 £0.001 1.14 £ 0.002 1.14 £ 0.002 1.15+0.001 1.16 £ 0.003 1.12 £0.002

Lat (Base) 1.20 £ 0.004 1.26 £0.001 1.28 £0.003 1.28 £0.002 1.29 +0.006 1.29 + 0.004 1.31 +0.004 1.29 + 0.004

Lat (Zero) 1.12 £ 0.002 1.12 £0.003 1.11 £0.003 1.12 £ 0.002 1.11 £0.003 1.11 £0.004 1.12 £0.003 1.10 £ 0.002
L1 Acc (Ours) 66.74% 52.21% 12.74% 3.60% 0.43% 0.44% 0.21% 0.11%
Acc (Cons) 64.43% 46.59% 1.02% 0.75% 0.26% 0.12% 0.15% 0.11%

Lat (Ours) 1.27 £0.003 1.22 £ 0.006 1.25 +£0.002 1.21 £0.003 1.20 £ 0.001 1.24 +0.002 1.25 +0.002 1.17 £ 0.002

Lat (Base) 1.25 £ 0.006 1.38 £0.003 1.39 £ 0.004 1.40 = 0.006 1.38 £ 0.004 1.40 £ 0.003 1.40 £ 0.003 1.37 £0.004

Lat (Zero) 1.12 £ 0.004 1.12 £0.001 1.19 £ 0.007 1.13 £0.007 1.11 £0.007 1.12 £ 0.005 1.11 £0.002 1.07 £ 0.003
L2 Acc (Ours) 66.86% 53.90% 24.34% 221% 0.43% 0.21% 0.19% 0.17%
Acc (Cons) 66.89% 50.20% 23.69% 3.00% 0.28% 0.20% 0.25% 0.05%

Lat (Ours) 1.27 +0.004 1.21 £0.003 1.21 +£0.002 1.25 +0.004 1.24 +0.003 1.23 +£0.002 1.20 +0.003 1.17 £ 0.002

Lat (Base) 1.25 +0.003 1.37 £0.002 1.38 +0.003 1.39 +0.003 1.38 +0.004 1.40 + 0.003 1.40 + 0.005 1.37 £0.002

Lat (Zero) 1.12 £ 0.002 1.12 +£0.001 1.19 £ 0.002 1.13 £ 0.005 1.11 £ 0.002 1.12 £ 0.003 1.11 £ 0.002 1.07 £ 0.002
LAMP Acc (Ours) 0.37% 0.38% 0.39% 0.35% 0.20% 0.13% 0.15% 0.09%
Acc (Cons) 3.91% 0.47% 0.42% 0.38% 0.27% 0.17% 0.19% 0.09%

Lat (Ours) 1.12 £ 0.002 1.21£0.001 1.17 £0.004 1.20 £ 0.002 1.17 £0.002 1.18 £ 0.004 1.17 £ 0.004 1.14 £ 0.003
Lat (Base) 1.15 £ 0.002 1.22 +0.002 1.22 +0.003 1.23 +0.003 1.25 +0.001 1.25 +0.003 1.24 +0.004 1.25 +0.002
Lat (Zero) 1.11 £ 0.003 1.11 £ 0.002 1.11 +£0.003 1.10 £ 0.002 1.10 £ 0.004 1.09 + 0.002 1.08 + 0.003 1.06 + 0.002

Table 8. UPSCALE accuracy and latency across architectures, sparsity levels, and heuristics. Notice that latency for ours is comparable
to the ideal, zero-copy reference, much lower than the baseline export’s latency. Additionally notice our (unconstrained) accuracy matches
or outperforms the baseline constrained accuracy.

27

Unconstrained Channel Pruning

Model Heuristic ‘ Stat 1% 5% 10% 15% 20% 25% 30% 40%
resnet101 FPGM Acc (Ours) 75.60% 72.61% 65.96% 49.01% 17.87% 3.47% 1.20% 0.20%
Acc (Cons) 75.39% 71.41% 61.86% 41.75% 13.50% 2.89% 1.30% 0.32%

Lat (Ours) 7.65 £ 0.009 7.27+0.018 7.06 £0.016 6.35 +0.008 6.38 + 0.004 5.35+0.008 5.77 £ 0.007 4.92 +0.002
Lat (Base) 8.08 +0.005 7.69 £ 0.023 7.56 £ 0.007 6.82 + 0.006 6.89 + 0.006 5.99 + 0.005 6.29 +0.015 5.48 £ 0.007
Lat (Zero) 7.17£0.011 6.76 £ 0.012 6.53+0.014 5.81+0.003 5.83 +0.008 4.87 £0.003 5.13 £ 0.008 4.31 £0.005

HRank Acc (Ours) 74.62% 64.80% 44.93% 17.30% 4.78% 1.58% 0.59% 0.22%
Acc (Cons) 74.80% 67.51% 44.38% 12.78% 5.19% 1.85% 0.61% 0.22%
Lat (Ours) 7.39 £ 0.004 7.13 £0.008 6.99 + 0.005 6.94 + 0.004 6.51+0.012 6.06 +0.013 5.94 + 0.006 521+0.014
Lat (Base) 7.96 £0.013 7.66 £ 0.007 7.59 £0.015 7.43 £0.004 7.01 +0.004 6.67 +0.011 6.39 + 0.005 5.92 +0.008
Lat (Zero) 7.22 £0.025 6.80 £ 0.008 6.59 £ 0.008 6.37 £0.008 5.87+0.012 5.48 £0.007 5.20 £ 0.001 4.70 £ 0.005

L1 Acc (Ours) 75.44% 72.61% 65.45% 49.48% 21.84% 3.95% 0.94% 0.18%
Acc (Cons) 74.55% 68.76% 57.33% 36.39% 11.02% 2.20% 0.75% 0.32%
Lat (Ours) 7.76 £0.041 7.15£0.015 7.15 £0.007 6.36 £ 0.006 6.31 £ 0.007 5.47 £0.007 5.72+0.016 4.94 +0.001
Lat (Base) 8.21+0.013 7.87£0.017 7.70 £ 0.022 6.90 £ 0.008 6.96 + 0.004 6.04 £ 0.006 6.41 £0.012 5.53 £0.007
Lat (Zero) 7.24 £0.010 6.81 £0.010 6.58 + 0.008 5.81£0.008 5.86 £ 0.009 4.88 +0.004 5.17£0.021 4.32 £0.005

L2 Acc (Ours) 75.55% 72.75% 65.53% 50.44% 23.15% 4.75% 1.23% 0.24%
Acc (Cons) 75.18% 71.49% 61.43% 42.96% 18.67% 3.79% 1.46% 0.28%
Lat (Ours) 7.68 £ 0.007 7.23 £0.007 6.94+0.011 6.37+0.010 6.39 + 0.006 5.48 £ 0.007 5.78 £ 0.004 4.87 £ 0.003
Lat (Base) 8.11 +£0.012 7.78 £0.012 7.62+0.010 6.90 + 0.008 6.94 + 0.009 6.05 + 0.003 6.37 + 0.006 5.49 + 0.006
Lat (Zero) 7.22£0.035 6.74 £0.013 6.56 +0.010 5.82+0.004 5.84 +0.002 4.87 £0.003 5.13+0.014 4.32 £ 0.006

LAMP Acc (Ours) 66.15% 62.55% 53.84% 43.46% 24.45% 6.25% 1.01% 0.18%
Acc (Cons) 64.56% 56.08% 1.29% 0.17% 0.11% 0.10% 0.10% 0.10%
Lat (Ours) 6.22 + 0.006 6.47 £ 0.009 6.49 £0.011 6.44 + 0.005 6.55+0.013 6.60 + 0.004 6.50 +0.007 6.92+0.011
Lat (Base) 6.36 + 0.009 6.51+0.012 6.59 +0.007 6.52 + 0.005 6.67 + 0.009 6.70 + 0.003 6.62 + 0.006 7.18+0.013
Lat (Zero) 6.14 £ 0.004 6.07 £ 0.005 6.54 +0.008 6.22 +0.040 6.01+0.017 5.58 +0.010 5.19+0.017 4.73 £0.014

resnetl8 FPGM Acc (Ours) 67.69% 54.76% 31.62% 6.44% 2.19% 0.57% 0.68% 0.15%
Acc (Cons) 67.41% 55.00% 34.71% 9.75% 4.93% 1.74% 0.70% 0.14%

Lat (Ours) 2.04 £ 0.009 2.02 +0.004 1.90 + 0.007 1.83 +0.002 1.77 £ 0.005 1.69 + 0.005 1.64 +0.001 1.48 +0.002

Lat (Base) 2.13+£0.033 2.13 £0.005 2.03 +0.004 1.95 +0.004 1.89 + 0.005 1.80 + 0.003 1.75 £ 0.003 1.58 +0.003

Lat (Zero) 1.99 £ 0.002 1.94 £0.010 1.85 £ 0.009 1.77£0.011 1.69 £ 0.007 1.58 £0.010 1.53 £0.004 1.37 £0.008
HRank Acc (Ours) 67.02% 51.01% 24.09% 8.82% 2.66% 0.48% 0.34% 0.19%
Acc (Cons) 67.01% 52.59% 29.94% 8.51% 1.91% 0.77% 0.54% 0.27%

Lat (Ours) 2.03 £0.010 1.99 £ 0.007 1.89 £ 0.008 1.83 £0.008 1.76 £ 0.006 1.66 % 0.004 1.62 % 0.006 1.45 +0.007

Lat (Base) 2.14£0.010 2.16 £ 0.007 2.05 £ 0.009 1.98 + 0.008 1.91 £ 0.009 1.81 £ 0.005 1.78 £0.007 1.59 £ 0.004

Lat (Zero) 2.03£0.010 1.97 £ 0.004 1.90 £ 0.007 1.79 £ 0.006 1.72 £ 0.009 1.60 £ 0.009 1.55 £ 0.003 1.40 £ 0.004
L1 Acc (Ours) 67.50% 55.76% 35.09% 15.84% 7.33% 1.68% 0.48% 0.23%
Acc (Cons) 67.02% 54.53% 30.17% 13.00% 291% 0.93% 0.43% 0.27%

Lat (Ours) 2.02 £ 0.002 2.01 £0.005 1.90 + 0.007 1.83 + 0.005 1.77 £ 0.004 1.69 + 0.003 1.64 + 0.004 1.47 + 0.006
Lat (Base) 2.10 £ 0.006 2.15+0.024 2.03 £ 0.003 1.96 + 0.003 1.88 £0.001 1.81 £0.008 1.75 £ 0.004 1.58 £0.007
Lat (Zero) 2.00 £ 0.009 1.95+0.012 1.85+0.007 1.76 + 0.005 1.70 £ 0.005 1.59 + 0.004 1.53 +0.001 1.38 + 0.006

L2 Acc (Ours) 67.57% 54.34% 35.54% 15.41% 4.54% 1.28% 0.67% 0.18%
Acc (Cons) 67.18% 55.27% 34.29% 15.96% 5.22% 1.61% 1.01% 0.16%
Lat (Ours) 2.06 +0.008 2.03 £ 0.006 1.91 £ 0.006 1.85 +0.004 1.79 £ 0.009 1.71 £0.009 1.65 £ 0.003 1.48 £0.008
Lat (Base) 2.12+£0.020 2.15+0.003 2.05 £0.025 1.96 + 0.005 1.90 + 0.005 1.81 +0.009 1.77 £ 0.004 1.59 +0.003
Lat (Zero) 2.01 £0.008 1.97 £ 0.009 1.86 + 0.004 1.79 £0.010 1.71 £0.012 1.59 + 0.005 1.55 +0.004 1.39 + 0.006

LAMP Acc (Ours) 66.75% 56.40% 38.07% 21.45% 7.74% 2.71% 1.27% 0.28%
Acc (Cons) 67.21% 58.86% 44.88% 30.68% 17.83% 7.71% 3.15% 0.43%
Lat (Ours) 2.03 £0.006 1.98 £ 0.004 1.61 £ 0.005 1.86 £ 0.006 1.80 £ 0.007 1.74 £ 0.006 1.68 % 0.008 1.51 £0.004
Lat (Base) 2.06 % 0.005 2.01 £0.004 1.65 £ 0.002 1.90 £ 0.008 1.87 £0.007 1.80 +0.003 1.74 £ 0.006 1.57 £ 0.006
Lat (Zero) 2.02 +0.008 1.98 £0.025 1.63 £ 0.006 1.87 £ 0.009 1.81 £ 0.009 1.76 + 0.008 1.67 +0.005 1.49 +0.006

resnet50 FPGM Acc (Ours) 73.93% 68.69% 52.07% 19.21% 3.12% 0.68% 0.59% 0.19%
Acc (Cons) 73.84% 65.91% 45.81% 14.15% 2.47% 0.46% 0.58% 0.21%
Lat (Ours) 4.92 +£0.024 4.36 £ 0.009 4.42+0.015 3.60 £ 0.008 3.77 £0.016 3.13 £0.007 3.55+0.004 2.88 +0.005
Lat (Base) 5.06+0.013 4.72£0.012 4.65 +0.004 3.95+0.007 4.15 £0.009 3.40 £ 0.004 3.81+0.013 3.14 £ 0.004
Lat (Zero) 4.59£0.014 4.20£0.018 4.07£0.018 3.36 + 0.000 3.54+0.020 2.77 £ 0.007 3.15+0.005 2.50 +0.003

HRank Acc (Ours) 73.05% 58.48% 30.06% 6.08% 1.08% 0.26% 0.20% 0.10%
Acc (Cons) 72.94% 59.27% 29.90% 3.11% 0.76% 0.19% 0.11% 0.10%
Lat (Ours) 4.73 £0.007 4.40+0.016 4.31 +£0.006 4.23 £0.009 3.87+0.011 3.63+0.010 3.53 +0.009 3.09 + 0.009
Lat (Base) 4.95 £ 0.006 4.66 + 0.006 4.59 +0.004 4.48 +£0.003 4.15 +0.004 3.94 +0.008 3.83+0.016 3.52+0.011
Lat (Zero) 4.54£0.011 420£0.011 4.04 £0.007 3.90 + 0.008 3.53+0.010 3.30 + 0.005 3.17+0.007 2.86 + 0.005

L1 Acc (Ours) 73.88% 68.66% 48.79% 14.87% 2.31% 0.83% 0.47% 0.25%
Acc (Cons) 73.09% 65.24% 37.39% 8.88% 1.68% 0.40% 0.27% 0.15%
Lat (Ours) 4.85 £ 0.004 4.42+0.015 4.37 £0.009 3.72 £ 0.005 3.74 £ 0.009 3.03 +0.004 3.50+0.013 2.87 +0.003
Lat (Base) 5.04 £0.035 4.69 + 0.009 4.60 £0.012 3.96 + 0.004 4.13 £0.009 3.41+0.007 3.76 £ 0.007 3.13 +0.008

Lat (Zero) 4.57+0.051 4.13+£0.013 4.01+0.011 3.34 £ 0.006 3.49+0.016 2.77 £ 0.002 3.10+0.013 2.49 +0.002
L2 Acc (Ours) 73.87% 68.52% 50.38% 18.51% 3.43% 0.84% 0.52% 0.25%
Acc (Cons) 73.90% 65.91% 41.92% 13.03% 3.48% 0.56% 0.51% 0.25%

Lat (Ours) 4.87+0.012 4.48 £0.075 4.39 +£0.004 3.74 £0.007 3.87+0.011 3.13 £0.001 3.51 £0.008 2.89 +0.007
Lat (Base) 5.03£0.011 4.69 £ 0.006 4.61+0.011 3.98 +0.004 4.12 +£0.003 3.40 £ 0.006 3.77 £0.002 3.14 £ 0.004
Lat (Zero) 4.55+0.017 4.19 £0.048 4.03+0.013 3.35 +0.005 3.50+0.014 2.76 +0.003 3.11 £0.009 2.49 +0.004

LAMP Acc (Ours) 67.83% 56.40% 49.41% 35.34% 19.94% 12.11% 3.70% 0.17%
Acc (Cons) 68.32% 61.55% 44.33% 13.28% 1.79% 0.15% 0.20% 0.10%
Lat (Ours) 3.64 £ 0.003 3.61 £0.003 3.62 +0.002 3.58 £ 0.008 3.55+0.004 3.58 £ 0.005 3.55+0.005 3.94+0.010
Lat (Base) 3.65 £ 0.005 3.64 +0.003 3.68 + 0.006 3.65 +0.004 3.65 + 0.002 3.64 +0.003 3.62 + 0.005 4.08 +0.006
Lat (Zero) 3.48 £0.007 3.43 £0.002 3.35+0.004 3.25+0.006 3.79 £ 0.054 3.54 +0.005 3.35+0.007 3.38+0.012

Table 9. UPSCALE accuracy and latency across architectures, sparsity levels, and heuristics. Notice that latency for ours is comparable
to the ideal, zero-copy reference, much lower than the baseline export’s latency. Additionally notice our (unconstrained) accuracy matches
or outperforms the baseline constrained accuracy.

28

Unconstrained Channel Pruning

Model Heuristic ‘ Stat 1% 5% 10% 15% 20% 25% 30% 40%
squeezenet]_0 FPGM Acc (Ours) 57.60% 42.29% 10.70% 4.43% 1.30% 0.33% 0.21% 0.12%
Acc (Cons) 57.60% 30.96% 6.22% 1.76% 0.47% 0.19% 0.17% 0.12%

Lat (Ours) 0.79 £ 0.001 0.79 £ 0.002 0.78 £ 0.004 0.77 £ 0.004 0.76 + 0.002 0.74 £ 0.002 0.74 + 0.003 0.70 + 0.003
Lat (Base) 0.86 £ 0.001 0.94 £ 0.003 0.95 £ 0.003 0.94 £ 0.002 0.94 + 0.004 0.90 + 0.002 0.91 £ 0.003 0.87 £ 0.001
Lat (Zero) 0.79 £ 0.002 0.79 £ 0.002 0.77 £ 0.004 0.76 £ 0.001 0.76 + 0.004 0.73 £ 0.002 0.72 + 0.000 0.69 + 0.003

HRank Acc (Ours) 55.99% 18.79% 1.33% 0.36% 0.21% 0.11% 0.10% 0.10%
Acc (Cons) 55.99% 18.79% 1.33% 0.36% 0.21% 0.11% 0.10% 0.10%
Lat (Ours) 0.78 £ 0.002 0.78 £ 0.002 0.76 +0.003 0.75 £ 0.002 0.75 £0.001 0.73 £ 0.004 0.72 + 0.000 0.67 + 0.002
Lat (Base) 0.85 +0.003 0.88 +0.002 0.88 +0.002 0.87 £ 0.003 0.87 +0.002 0.84 +0.003 0.83 +0.002 0.78 £ 0.002
Lat (Zero) 0.78 £ 0.003 0.78 £ 0.000 0.76 £ 0.000 0.75 £0.001 0.76 £ 0.001 0.73 £0.002 0.72 £ 0.002 0.67 £0.001

L1 Acc (Ours) 55.06% 38.67% 12.88% 2.99% 1.06% 0.33% 0.20% 0.09%
Acc (Cons) 55.06% 28.22% 5.39% 1.49% 0.67% 0.31% 0.22% 0.11%
Lat (Ours) 0.78 £ 0.001 0.78 % 0.005 0.78 £ 0.002 0.76 +0.001 0.76 £ 0.003 0.74 £ 0.001 0.72 +0.003 0.70 £ 0.002
Lat (Base) 0.85 £ 0.002 0.94 £ 0.003 0.94 £ 0.002 0.94 £ 0.003 0.93 £ 0.002 0.90 £ 0.003 0.89 + 0.002 0.86 + 0.002
Lat (Zero) 0.78 £ 0.001 0.79 £ 0.003 0.77 £ 0.003 0.76 £ 0.003 0.76 + 0.004 0.73 £ 0.001 0.71 £ 0.001 0.68 + 0.001

L2 Acc (Ours) 57.61% 44.45% 11.36% 3.02% 1.16% 0.30% 0.15% 0.12%
Acc (Cons) 57.61% 31.25% 5.47% 1.23% 0.26% 0.24% 0.13% 0.19%
Lat (Ours) 0.79 £ 0.003 0.78 £ 0.001 0.77 £ 0.002 0.75 £ 0.004 0.76 + 0.003 0.73 £ 0.001 0.73 £ 0.003 0.70 + 0.002
Lat (Base) 0.85 £ 0.002 0.93 £ 0.003 0.94 £ 0.002 0.93 £0.001 0.93 +0.002 0.90 + 0.002 0.90 + 0.003 0.86 + 0.003
Lat (Zero) 0.79 £ 0.004 0.78 £0.001 0.77 £ 0.003 0.75 £ 0.003 0.75 £ 0.001 0.72 £ 0.003 0.72 £ 0.002 0.68 + 0.002

LAMP Acc (Ours) 56.12% 29.19% 13.54% 3.87% 0.95% 0.47% 0.19% 0.15%
Acc (Cons) 56.39% 41.67% 26.35% 12.60% 4.76% 1.97% 0.95% 0.26%
Lat (Ours) 0.77 £0.001 0.77 £ 0.003 0.76 £ 0.003 0.75 £ 0.000 0.74 £ 0.004 0.74 £ 0.002 0.72 £ 0.001 0.73 £0.001
Lat (Base) 0.83 £0.002 0.83 £0.003 0.83 £ 0.002 0.82 +0.002 0.82 +0.003 0.82 +0.002 0.79 £ 0.002 0.80 + 0.003
Lat (Zero) 0.77 £ 0.004 0.77 £ 0.002 0.77 £ 0.003 0.77 £ 0.002 0.75 £ 0.000 0.75 £ 0.002 0.73 £0.001 0.74 £ 0.001

squeezenet]_1 FPGM Acc (Ours) 57.80% 41.09% 8.25% 1.04% 0.58% 0.23% 0.19% 0.16%
Acc (Cons) 57.80% 28.85% 4.42% 0.78% 0.27% 0.16% 0.13% 0.10%
Lat (Ours) 0.66 + 0.002 0.67 £ 0.002 0.66 +0.001 0.67 +0.003 0.66 + 0.003 0.65 + 0.003 0.65 + 0.002 0.62 + 0.002
Lat (Base) 0.72 £0.003 0.80 £ 0.006 0.83 £ 0.002 0.83 £0.003 0.83 £0.002 0.81 £ 0.002 0.81 £0.001 0.78 £ 0.003
Lat (Zero) 0.66 % 0.002 0.67 £ 0.002 0.66 £ 0.004 0.66 % 0.003 0.67 £0.001 0.66 £ 0.004 0.66 £ 0.002 0.62 £ 0.001

HRank Acc (Ours) 56.09% 20.69% 1.06% 0.28% 0.14% 0.14% 0.13% 0.10%
Acc (Cons) 56.09% 20.69% 1.06% 0.28% 0.14% 0.14% 0.13% 0.10%
Lat (Ours) 0.67 +0.002 0.67 +0.004 0.67 0.002 0.65 £ 0.002 0.67 +0.001 0.66 + 0.004 0.67 £ 0.002 0.62 +0.001
Lat (Base) 0.74 £ 0.001 0.78 £ 0.004 0.79 £ 0.002 0.76 £ 0.002 0.79 £ 0.003 0.77 £ 0.003 0.77 £ 0.003 0.73 £ 0.004
Lat (Zero) 0.67 £ 0.002 0.67 £ 0.002 0.67 £ 0.002 0.65 £ 0.001 0.67 £ 0.001 0.65 + 0.003 0.66 + 0.002 0.62 + 0.003

L1 Acc (Ours) 57.83% 35.67% 12.30% 1.41% 0.70% 0.16% 0.12% 0.13%
Acc (Cons) 57.83% 21.78% 7.73% 0.98% 0.39% 0.21% 0.16% 0.12%
Lat (Ours) 0.66 £ 0.001 0.67 £ 0.002 0.67 £ 0.002 0.67 + 0.004 0.66 + 0.002 0.64 +0.001 0.63 + 0.002 0.61 + 0.003
Lat (Base) 0.72 £ 0.004 0.81 £0.001 0.84 + 0.005 0.84 +0.002 0.83 +0.002 0.81 +0.002 0.82 + 0.003 0.77 £ 0.002
Lat (Zero) 0.66 + 0.002 0.68 +0.003 0.67 £ 0.002 0.66 £ 0.001 0.67 + 0.003 0.66 + 0.001 0.65 + 0.003 0.62 + 0.006

L2 Acc (Ours) 57.71% 39.84% 9.44% 0.88% 0.35% 0.19% 0.13% 0.12%
Acc (Cons) 57.71% 29.70% 5.80% 1.41% 0.32% 0.12% 0.14% 0.09%
Lat (Ours) 0.67 +0.003 0.67 £0.001 0.67 +0.002 0.67 +0.002 0.66 + 0.002 0.65 + 0.003 0.65 + 0.002 0.62 + 0.003
Lat (Base) 0.73 £0.003 0.81 £ 0.001 0.84 +0.002 0.85 +0.002 0.82 £ 0.001 0.82 +0.003 0.81 +0.003 0.78 £ 0.002
Lat (Zero) 0.67 £ 0.002 0.68 £ 0.001 0.67 +0.003 0.67 £ 0.001 0.67 +0.004 0.66 + 0.001 0.65 +0.001 0.61 +0.002

LAMP Acc (Ours) 53.77% 44.22% 25.55% 8.22% 1.76% 0.71% 0.26% 0.11%
Acc (Cons) 53.57% 45.79% 29.27% 11.53% 2.76% 1.22% 0.45% 0.15%
Lat (Ours) 0.67 £0.001 0.66 % 0.002 0.66 % 0.003 0.66 £ 0.002 0.67 £0.001 0.65 £ 0.003 0.69 +0.002 0.69 +0.003
Lat (Base) 0.72 £0.001 0.72 £ 0.002 0.72 £0.001 0.72 £+ 0.004 0.73 £ 0.002 0.71 £0.001 0.75 £ 0.003 0.75 £ 0.003
Lat (Zero) 0.67 +0.003 0.67 +0.002 0.66 + 0.003 0.66 +0.001 0.65 + 0.000 0.67 +0.004 0.65 +0.001 0.70 £ 0.002

Table 10. UPSCALE accuracy and latency across architectures, sparsity levels, and heuristics. Notice that latency for ours is comparable
to the ideal, zero-copy reference, much lower than the baseline export’s latency. Additionally notice our (unconstrained) accuracy matches
or outperforms the baseline constrained accuracy.

29

