Are Graph Neural Networks Optimal Approximation Algorithms?

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this work we design graph neural network architectures that capture optimal approximation algorithms for a large class of combinatorial optimization problems using powerful algorithmic tools from semidefinite programming (SDP). Concretely, we prove that polynomial-sized message passing algorithms can represent the most powerful polynomial time algorithms for Max Constraint Satisfaction Problems assuming the Unique Games Conjecture. We leverage this result to construct an efficient graph neural network architecture called OptGNN, that obtains high-quality approximate solutions on landmark combinatorial optimization problems such as Max Cut and Minimum Vertex Cover. Finally, we take advantage of OptGNN's ability to capture convex relaxations to design an algorithm for producing dual certificates of optimality (bounds on the optimal solution) from the learned embeddings of OptGNN.

1 Introduction

The emerging field at the intersection of machine learning (ML) and combinatorial optimization (CO) has led to novel algorithms with promising empirical results for several CO problems. However, similar to classical approaches to CO, ML pipelines have to manage a tradeoff between efficiency and optimality. Indeed, prominent works in this line of research forego optimality and focus on efficiently obtaining solutions by parametrizing heuristics (Li et al., 2018, Khalil et al., 2017, Yolcu \& Póczos, 2019; Chen \& Tian, 2019) or by employing specialized models (Zhang et al., 2023; Nazari et al.,|2018; Toenshoff et al.|| 2019;|Xu et al., 2021; Min et al., 2022) and task-specific loss functions (Amizadeh et al., 2018; Karalias \& Loukas, 2020; Wang et al., 2022, Karalias et al., 2022; Sun et al., 2022). On the other hand, most prominent exact ML solvers that can guarantee optimality often leverage general techniques like branch and bound (Gasse et al., 2019; Paulus et al., 2022) and constraint programming (Parjadis et al., 2021; Cappart et al., 2019), which offer the additional benefit of providing approximate solutions together with a bound on the distance to the optimal solution. Unfortunately, securing solution quality guarantees with those methods comes at the cost of exponential worst-case time complexity. This leads us to the central question that our work aims to answer:

Can we design neural architectures for general combinatorial optimization that can efficiently learn to adapt to a data distribution over instances yet capture algorithms with optimal worst-case approximation guarantees?

To answer this question, we build on the extensive literature on approximation algorithms and semidefinite programming. Convex relaxations of CO problems via semidefinite programming are the fundamental building block for breakthrough results in the design of efficient algorithms for NP-Hard combinatorial problems (e.g., Goemans \& Williamson (1995) and Lovász (1979); Grötschel et al. (1981)). In fact, it is known that if the Unique Games Conjecture is true, then the approximation
guarantees obtained through a general SDP-based algorithm are indeed the best that can be achieved for several important problems (Raghavendra, 2008; Barak \& Steurer, 2014). We will leverage these results to provide an affirmative answer to our question. By designing neural network architectures that capture this optimal algorithm for the large class of maximum constraint satisfaction problems.

2 Solving CO problems with message passing

To motivate our approach to optimal architecture design and build intuition for our main result, it will be instructive to look at the canonical CO example of finding the maximum cut in a graph. Given a graph $G=(V, E)$ with vertices $V,|V|=N$ and edge set E, in the Max Cut problem we are looking to find a set of nodes in G that maximize the number of edges with exactly one endpoint in that set. Formally, this means solving the following nonconvex quadratic integer program over variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.

$$
\begin{align*}
\max _{\mathbf{x}} & \sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right) \tag{1}\\
\text { subject to: } & x_{i}^{2}=1
\end{align*}
$$

$$
\forall i \in[N]
$$

A typical approach to solving nonconvex optimization problems is to employ a continuous relaxation. We can solve the following (non-convex) vector optimization problem where we replace variables x_{i} with vectors $v_{i} \in \mathbb{R}^{r}$,

$$
\begin{array}{lll}
\min _{v_{1}, v_{2}, \ldots, v_{N}} & -\sum_{(i, j) \in E}{ }^{\frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right)} & \tag{2}\\
\text { subject to: } & \left\|v_{i}\right\|=1 & \forall i \in[N]
\end{array}
$$

Solving for $r=N$ is equivalent to solving a semidefinite program (SDP) Boyd \& Vandenberghe 2004). For $r=\Omega(\sqrt{N})$ the global optimum of this optimization is equivalent to the standard SDP optimum with no rank constraint Barvinok (1995) Pataki (1998). Burer \& Monteiro (2003) proposed a fast iterative algorithm for descending this loss. The landscape of this nonconvex optimization is benign in that all local minima are approximately global minima Ge et al. (2016) and variations on stochastic gradient descent converge to its optimum Bhojanapalli et al. (2018) Jin et al. (2017) under a variety of smoothness and compactness assumptions.
In iteration t (and for T iterations), projected gradient descent updates vector v_{i} in \mathbf{v} as

$$
\begin{array}{r}
\hat{v}_{i}^{t+1}=v_{i}^{t}-\eta \sum_{j \in N(i)} v_{j}^{t} \\
v_{i}^{t+1}=\frac{\hat{v}_{i}^{t+1}}{\left\|\hat{v}_{i}^{t+1}\right\|}, \tag{4}
\end{array}
$$

where $\eta \in \mathbb{R}^{+}$is an adjustable step size and we let $N(i)$ denote the neighborhood of node i. The gradient updates to the vectors are local, i.e., each vector is updated by aggregating information from its neighboring vectors, so we can interpret this projected gradient iteration as a message-passing iteration.

2.1 An overparametrized message passing algorithm for CO

Our approach can be viewed as a generalized version of the gradient descent updates in equations 3 and 4. Let $\left\{M_{1, t}\right\}_{t \in[T]} \in \mathbb{R}^{r \times r}$ and $\left\{M_{2, t}\right\}_{t \in[T]} \in \mathbb{R}^{r \times r}$ each be sets of T learnable matrices corresponding to T layers of a neural network. Then for layer t in max iterations T, for embedding v_{i} in \mathbf{v}, we define the following iterative procedure

$$
\begin{align*}
\hat{v}_{i}^{t+1} & :=M_{1, t} v_{i}^{t}-M_{2, t} \sum_{j \in N(i)} v_{j}^{t}+b_{t} \tag{5}\\
v_{i}^{t+1} & :=\frac{\hat{v}_{i}^{t+1}}{\left\|\hat{v}_{i}^{t+1}\right\|} \tag{6}
\end{align*}
$$

where $\left\{b_{t}\right\}_{t \in[T]}$ is a learnable affine shift. More generally, we can write our dynamics as

$$
\begin{align*}
\hat{v}_{i}^{t+1} & :=\operatorname{UPDATE}\left(M_{1, t} v_{i}^{t}, \operatorname{AGGREGATE}\left(M_{2, t},\left\{v_{j}^{t}\right\}_{j \in N(i)}\right), b_{t}\right) \tag{7}\\
v_{i}^{t+1} & :=\operatorname{NONLINEAR}\left(\hat{v}_{i}^{t+1}\right) \tag{8}
\end{align*}
$$

for efficiently computable functions UPDATE : $\mathbb{R}^{3 r} \rightarrow \mathbb{R}^{r}$ and AGGREGATE : $\mathbb{R}^{r \times r} \times \mathbb{R}^{r|N(i)|} \rightarrow$ \mathbb{R}^{r} and NONLINEAR : $\mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$. This approach can be generalized to several problems (see appendix Afor Vertex Cover and Max Clique examples).

3 Designing optimal neural network architectures

Our main contribution is to utilize the approach presented in the previous section in order to create optimal approximation algorithms for several combinatorial optimization problems. Our result focuses on an important class of CO problems called maximum constraint satisfaction problems (max-CSPs).
Given a set of constraints over variables, Max-CSP asks to find a variable assignment that maximizes the number of satisfied constraints. Max-CSP includes Max Cut, boolean satisfiability, etc. Formally, a constraint satisfaction problem $\Lambda=(\mathcal{V}, \mathcal{P}, q)$ consists of a set of N variables $\mathcal{V}:=\left\{x_{i}\right\}_{i \in[N]}$ each taking values in an alphabet $[q]$ and a set of predicates $\mathcal{P}:=\left\{P_{z}\right\}_{z \subset \mathcal{V}}$ where each predicate is a payoff function over k variables denoted $X_{z}=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right\}$. Here we refer to k as the arity of the Max-k-CSP. We adopt the normalization that each predicate P_{z} returns outputs in $[0,1]$. We index each predicate P_{z} by its domain z. The goal of Max-k-CSP is to maximize the payoff of the predicates.

$$
\begin{equation*}
O P T:=\max _{\left(x_{1}, \ldots, x_{N}\right) \in[q]^{N}} \frac{1}{|\mathcal{P}|} \sum_{P_{z} \in \mathcal{P}} P_{z}\left(X_{z}\right) \tag{9}
\end{equation*}
$$

where we normalize by the number of constraints so that the total payoff is in $[0,1]$. Therefore we can unambiguously define an ϵ-approximate assignment as an assignment achieving a payoff of $O P T-\epsilon$.

In order to arrive at our main result we will need the concept of a constraint graph. Formally, given a Max-k-CSP instance $\Lambda=(\mathcal{V}, \mathcal{P}, q)$ a constraint graph $G_{\Lambda}=(V, E)$ is comprised of vertices $V=\left\{v_{\phi, \zeta}\right\}$ for every subset of variables $\phi \subseteq z$ for every predicate $P_{z} \in \mathcal{P}$ and every assignment $\zeta \in[q]^{k}$ to the variables in z. The edges E are between any pair of vectors $v_{\phi, \zeta}$ and $v_{\phi^{\prime}, \zeta^{\prime}}$ such that the variables in ϕ and ϕ^{\prime} appear in a predicate together.

3.1 A message passing algorithm for constraint satisfaction problems

The first important component for our result is SDP 1 which is a reformulation of the SDP presented in Raghavendra (2008). Assuming the UGC, this achieves the optimal integrality gap for Max-k-CSP. For Max-k-CSP we define the approximation ratio to be

$$
\text { Approximation Ratio }:=\min _{\Lambda \in \operatorname{Max}-\mathrm{k}-\mathrm{CSP}} \frac{O P T(\Lambda)}{S D P(\Lambda)}
$$

where the minimization is being taken over all instances Λ with arity k. The approximation ratio is always smaller than one. Similarly the integrality gap is defined to be the inverse of the approximation ratio and is always greater than one. There is no polynomial time algorithm that can achieve a superior (larger) approximation ratio assuming the truth of the conjecture. Furthermore, there is a polynomial time rounding algorithm (Raghavendra \& Steurer, 2009) that achieves the integrality gap of the SDP of (Raghavendra, 2008) and therefore outputs an integral solution with the optimal approximation ratio. Our main theoretical result is a polynomial time message passing algorithm that solves the Unique Games optimal SDP, i.e., for SDP 1 we can show the following.
Theorem 3.1. (Informal) Given a Max-k-CSP instance Λ, there exists a message passing Algorithm $\left\lceil 1\right.$ on constraint graph G_{Λ} with a per iteration update time of poly $\left(|\mathcal{P}|, q^{k}\right)$ that computes in poly $\left(\frac{1}{\epsilon},|\mathcal{P}|, q^{k}, \log \left(\delta^{-1}\right)\right)$ iterations an ϵ-approximate solution to $S D P 1$ with probability $1-\delta$. That is to say, Algorithm 1 computes a set of vectors \boldsymbol{v} satisfying constraints of $\operatorname{SDP} 1$ to error ϵ with objective value denoted $O B J(\boldsymbol{v})$ satisfying $|O B J(\boldsymbol{v})-S D P(\Lambda)| \leq \epsilon$.

For the formal theorem and proof see Theorem B.1. Our algorithm is remarkably simple: perform gradient descent on the quadratically penalized objective of the reformulated SDP1. Similar to the

Max Cut example in equations 3 and equation 4, we observe that the gradient takes the form of a message passing algorithm. The updates on each vector only depend on the vectors appearing in the same predicates. This message-passing form allows us to define a natural GNN generalization (OptGNN) that captures the gradient iteration of Algorithm 1.

3.2 OptGNN: An optimal graph neural network

Definition (OptGNN). Given a Max-k-CSP instance Λ, an $\operatorname{OptGNN}_{\left(T, r, G_{\Lambda}\right)}(\mathbf{v})$ is a T layer, dimension r, neural network over constraint graph G_{Λ} with learnable matrices $\left\{M_{1, t}\right\}_{t \in[T]},\left\{M_{2, t}\right\}_{t \in[T]}$, and affine shift $\left\{b_{t}\right\}_{t \in[T]}$ that generalizes the gradient iteration equation 31 of Algorithm 1 with an embedding $v \in \mathbf{v}$ for every node in G_{Λ} with updates of the form

$$
\begin{gathered}
v_{w}^{t+1}=\operatorname{UPDATE}\left(M_{1, t} v_{w}^{t}, \operatorname{AGGREGATE}\left(M_{2, t},\left\{v_{j}^{t}\right\}_{j \in N(w)}, v_{w}^{t}\right), b_{t}\right) \\
v_{w}^{t+1}=\operatorname{NONLINEAR}\left(v_{w}^{t+1}\right)
\end{gathered}
$$

For arbitrary polynomial time computable functions UPDATE : $\mathbb{R}^{3 r} \rightarrow \mathbb{R}^{r}$, AGGREGATE $: \mathbb{R}^{r \times r} \times$ $\mathbb{R}^{r(|N(w)|+1)} \rightarrow \mathbb{R}^{r}$, and NONLINEAR : $\mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$. Here by 'generalize' we mean there exists an instantiation of the learnable parameters $\left\{M_{1, t}\right\}_{t \in[T]}$ and $\left\{M_{2, t}\right\}_{t \in[T]}$ such that OptGNN is equivalent to equation 31 .
Corollary 1. Given a Max-k-CSP instance Λ, there is an $\operatorname{OptGNN}_{\left(T, r, G_{\Lambda}\right)}(\mathbf{v})$ with $T=$ $\operatorname{poly}\left(\delta^{-1}, \epsilon^{-1},|\mathcal{P}| q^{k}\right)$ layers, $r=|\mathcal{P}| q^{k}$ dimensional embeddings, with learnable parameters $\left\{M_{1, t}\right\}_{t \in[T]}$ and $\left\{M_{2, t}\right\}_{t \in[T]}$ that outputs a set of vectors \mathbf{v} satisfying the constraints of SDP 1 and approximating its objective, $O B J_{\mathrm{SDP}}(\Lambda)$, to error ϵ with probability $1-\delta$.

We can also conclude that the rounding of Raghavendra \& Steurer (2009) achieves the integrality gap of SDP 1, and any OptGNN that approximates its solution. For completeness, we discuss the implications of the rounding. Let the integrality gap curve $S_{\Lambda}(c)$ be defined as

$$
S_{\Lambda}(c):=\inf _{\substack{\Lambda \in \operatorname{Max}-\mathrm{k}-\mathrm{CSP} \\ O B J_{\mathrm{SDP}}(\Lambda)=c}} O P T(\Lambda)
$$

which leads us to the following statement about rounding.
Corollary 2. The OptGNN of Corollary 3, which by construction is equivalent to Algorithm 1 . outputs a set of embeddings \mathbf{v} such that the rounding of Raghavendra \& Steurer (2009) outputs an integral assignment \mathcal{V} with a Max-k-CSP objective $\mathrm{OBJ}(\mathcal{V})$ satisfying $O B J(\mathcal{V}) \geq S_{\Lambda}\left(O B J_{\mathrm{SDP}}(\Lambda)-\right.$ $\epsilon)-\epsilon$ in time $\exp \left(\exp \left(\operatorname{poly}\left(\frac{k q}{\epsilon}\right)\right)\right)$ which approximately dominates the Unique Games optimal approximation ratio.

We defer the proofs of the corollaries to subsection B. 2

3.3 Certificates of optimality and experiments

In Appendix B.1 we provide a neural certification scheme that produces optimality certificates based on the learned representations of the neural network. We show how to use the learned representations to compute a lower bound on the optimal solution of the primal SDP through the dual, which in turn can be used to bound the optimal solution. Our neural bounds closely track the bounds obtained by an SDP solver. Finally, we report the performance of the OptGNN approach on two NP-Hard combinatorial optimization problems, Maximum Cut and Minimum Vertex Cover on several datasets. The results as well as additional experiments and details about the experimental setup can be found in Appendix C

4 Conclusion

We have presented OptGNN, a graph neural network architecture that can be shown to be optimal for several CO problems, assuming the Unique Games Conjecture. To the best of our knowledge, this is the first neural network approximation algorithm that achieves optimal approximation guarantees. Our hope is that this work draws attention to the interesting connections between representation learning and semidefinite programming, and inspires the development of new neural approximation algorithms that can flexibly adapt to real-world data.

References

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent sets. In International Conference on Machine Learning, pp. 134-144. PMLR, 2020.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An unsupervised differentiable approach. 2018.

Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal algorithms. arXiv preprint arXiv:1404.5236, 2014.

Alexander I. Barvinok. Problems of distance geometry and convex properties of quadratic maps. Discrete \& Computational Geometry, 13:189-202, 1995. URLhttps://api.semanticscholar org/CorpusID:20628306

Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, and Praneeth Netrapalli. Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form, 2018.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich. What's wrong with deep learning in tree search for combinatorial optimization. arXiv preprint arXiv:2201.10494, 2022.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
Samuel Burer and Renato Monteiro. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical Programming, Series B, 95:329-357, 022003. doi: 10.1007/s10107-002-0352-8.

Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau. Improving optimization bounds using machine learning: decision diagrams meet deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 1443-1451, 2019.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization. In Advances in Neural Information Processing Systems, pp. 6278-6289, 2019.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural networks with learnable structural and positional representations. arXiv preprint arXiv:2110.07875, 2021.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial optimization with graph convolutional neural networks. arXiv preprint arXiv:1906.01629, 2019.

Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. CoRR, abs/1605.07272, 2016. URL http://arxiv.org/abs/1605.07272

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6): 1115-1145, 1995.

Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1:169-197, 1981.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman (eds.), Proceedings of the 7th Python in Science Conference, pp. 11 - 15, Pasadena, CA USA, 2008.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape saddle points efficiently, 2017.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs. arXiv preprint arXiv:2006.10643, 2020.

Nikolaos Karalias, Joshua Robinson, Andreas Loukas, and Stefanie Jegelka. Neural set function extensions: Learning with discrete functions in high dimensions. Advances in Neural Information Processing Systems, 35:15338-15352, 2022.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization algorithms over graphs. In Advances in Neural Information Processing Systems, pp. 6348-6358, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional networks and guided tree search. In Advances in Neural Information Processing Systems, pp. 539-548, 2018.

László Lovász. On the shannon capacity of a graph. IEEE Transactions on Information theory, 25(1): 1-7, 1979.

Yimeng Min, Frederik Wenkel, Michael Perlmutter, and Guy Wolf. Can hybrid geometric scattering networks help solve the maximum clique problem? Advances in Neural Information Processing Systems, 35:22713-22724, 2022.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602-4609, 2019.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement learning for solving the vehicle routing problem. In Advances in Neural Information Processing Systems, pp. 9839-9849, 2018.

Augustin Parjadis, Quentin Cappart, Louis-Martin Rousseau, and David Bergman. Improving branch-and-bound using decision diagrams and reinforcement learning. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research: 18th International Conference, CPAIOR 2021, Vienna, Austria, July 5-8, 2021, Proceedings 18, pp. 446-455. Springer, 2021.

Gábor Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res., 23(2):339-358, may 1998. ISSN 0364-765X.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to cut by looking ahead: Cutting plane selection via imitation learning. In International conference on machine learning, pp. 17584-17600. PMLR, 2022.

Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In Proceedings of the fortieth annual ACM symposium on Theory of computing, pp. 245-254, 2008.

Prasad Raghavendra and David Steurer. How to round any csp. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 586-594, 2009. doi: 10.1109/FOCS.2009.74.

Haoran Sun, Etash K Guha, and Hanjun Dai. Annealed training for combinatorial optimization on graphs. arXiv preprint arXiv:2207.11542, 2022.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Run-csp: Unsupervised learning of message passing networks for binary constraint satisfaction problems. arXiv preprint arXiv:1909.08387, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. In International Conference on Learning Representations, 2018.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for combinatorial optimization with principled objective relaxation. In Advances in Neural Information Processing Systems, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In International Conference on Learning Representations, 2019. URL https:// openreview.net/forum?id=ryGs6iA5Km

Yunqiu Xu, Meng Fang, Ling Chen, Gangyan Xu, Yali Du, and Chengqi Zhang. Reinforcement learning with multiple relational attention for solving vehicle routing problems. IEEE Transactions on Cybernetics, 52(10):11107-11120, 2021.

Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfiability. Advances in Neural Information Processing Systems, 32, 2019.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let the flows tell: Solving graph combinatorial optimization problems with gflownets. arXiv preprint arXiv:2305.17010, 2023.

A Vertex Cover and Max Clique

Minimum Vertex Cover can be written as the following integer program

$$
\begin{array}{llr}
\min _{x_{1}, x_{2}, \ldots, x_{n}} & \text { VertexCover }(\mathbf{x}):=\sum_{i \in[N]} \frac{1+x_{i}}{2} & \\
\text { subject to: } & \left(1-x_{i}\right)\left(1-x_{j}\right)=0 & \forall(i, j) \in E \\
& x_{i}^{2}=1 & \forall i \in[N] \tag{12}
\end{array}
$$

To deal with the constraint on the edges $\left(1-x_{i}\right)\left(1-x_{j}\right)=0$, we add a quadratic penalty to the objective with a penalty parameter $\rho>0$ yielding

$$
\begin{array}{ll}
\min _{x_{1}, x_{2}, \ldots, x_{n}} & \operatorname{VertexCover}(\mathbf{x}):=\sum_{i \in[N]} \frac{1+x_{i}}{2}+\rho \sum_{(i, j) \in E}\left(1-x_{i}-x_{j}+x_{i} x_{j}\right)^{2} \\
\text { subject to: } & x_{i}^{2}=1 \quad \forall i \in[N] \tag{14}
\end{array}
$$

Analogously to Max Cut, we introduce a natural low rank vector formulation $\operatorname{LiftVertex}^{\operatorname{Cover}}{ }_{r}(\mathbf{v})$ for vectors $\mathbf{v}=\left\{v_{i}\right\}_{i \in[N]}$ in r dimensions.

$$
\begin{equation*}
\min _{v_{1}, v_{2}, \ldots, v_{n}}{\left.\operatorname{LiftVertex} \operatorname{Cover}_{r}(\mathbf{v}):=\sum_{i \in[N]} \frac{1+\left\langle v_{i}, e_{1}\right\rangle}{2}+\rho \sum_{(i, j) \in E}\left(1-\left\langle v_{i}, e_{1}\right\rangle-\left\langle v_{j}, e_{1}\right\rangle+\left\langle v_{i}, v_{j}\right\rangle\right)^{2},{ }^{2},{ }^{2}\right)} \tag{15}
\end{equation*}
$$

subject to: $\quad\left\|v_{i}\right\|=1 \quad v_{i} \in \mathbb{R}^{r} \quad \forall i \in[N]$

Now we can design a simple projected gradient descent scheme as follows. For iteration t in max iterations T, and for vector v_{i} in \mathbf{v} we perform the following update.

$$
\begin{equation*}
\hat{v}_{i}^{t+1}:=v_{i}^{t}-\eta\left(e_{1}+2 \rho \sum_{j \in N(i)}\left(1-\left\langle v_{i}^{t}, e_{1}\right\rangle-\left\langle v_{j}^{t}, e_{1}\right\rangle+\left\langle v_{i}^{t}, v_{j}^{t}\right\rangle\right)\left(-e_{1}+v_{j}^{t}\right)\right) \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
v_{i}^{t+1}:=\frac{\hat{v}_{i}^{t+1}}{\left\|\hat{v}_{i}^{t+1}\right\|} \tag{18}
\end{equation*}
$$

We can then define a OptGNN-VertexCover $\operatorname{Or}_{r}(\mathbf{v})$ analogously with learnable matrices $\left\{M_{1, t}\right\}_{t \in[T]} \in$ $\mathbb{R}^{r \times r}$ and $\left\{M_{2, t}\right\}_{t \in[T]} \in \mathbb{R}^{r \times r}$ which are each sets of T learnable matrices corresponding to T layers of neural network. Then for layer t in max iterations T, for v_{i} in \mathbf{v}, we have

$$
\begin{equation*}
\hat{v}_{i}^{t+1}:=M_{1, t} v_{i}^{t}+M_{2, t}\left(e_{1}+2 \rho \sum_{j \in N(i)}\left(1-\left\langle v_{i}^{t}, e_{1}\right\rangle-\left\langle v_{j}^{t}, e_{1}\right\rangle+\left\langle v_{i}^{t}, v_{j}^{t}\right\rangle\right)\left(-e_{1}+v_{j}^{t}\right)\right)+b_{t} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
v_{i}^{t+1}:=\frac{\hat{v}_{i}^{t+1}}{\left\|\hat{v}_{i}^{t+1}\right\|} \tag{20}
\end{equation*}
$$

Here we added an affine shift $\left\{b_{t}\right\}_{t \in[T]}$ for completeness. Once again we see equation 19 is captured by the dynamic

$$
\begin{align*}
\hat{v}_{i}^{t+1} & =\operatorname{UPDATE}\left(M_{1, t}, v_{i}^{t}, \operatorname{AGGREGATE}\left(M_{2, t}, v_{i}^{t},\left\{v_{j}^{t}\right\}_{j \in N(i)}\right), b_{t}\right) \tag{21}\\
v_{i}^{t+1} & =\operatorname{NONLINEAR}\left(\hat{v}_{i}^{t+1}\right) \tag{22}
\end{align*}
$$

For functions UPDATE : $\mathbb{R}^{r \times r} \times \mathbb{R}^{r} \times \mathbb{R}^{r} \times \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ and AGGREGATE $: \mathbb{R}^{r \times r} \times \mathbb{R}^{r|N(i)|} \times \mathbb{R}^{r} \rightarrow$ \mathbb{R}^{r} and NONLINEAR : $\mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$. Max Clique is computed by flipping the vertices of a min Vertex Cover on the complement graph.

B Optimality of Message Passing for Max-CSP

Our primary theoretical result is that a polynomial time message passing algorithm on an appropriately defined constraint graph computes the approximate optimum of SDP 1 which is notable for being an SDP that achieves the Unique Games optimal integrality gap.
Our proof roadmap is simple. First, we design an SDP relaxation SDP 1 for Max-k-CSP that is provably equivalent to the SDP of Raghavendra (2008) and therefore inherits its complexity theoretic optimality. Finally, we design a message passing algorithm to approximately solve SDP 1 in polynomial time to polynomial precision. Our message passing algorithm has the advantage of being formulated on an appropriately defined constraint graph. For a Max-k-CSP instance Λ with N variables, $|\mathcal{P}|$ predicates, over an alphabet of size q, it takes $|\mathcal{P}| q^{k}$ space to represent the Max-CSP. Our message passing algorithm achieves an additive ϵ approximation in time poly $\left(\epsilon^{-1}, N,|\mathcal{P}| q^{k}\right)$ which is then polynomial in the size of the CSP and inverse polynomial in the precision.
Here we briefly reiterate the definition of Max-k-CSP. A Max-k-CSP instance $\Lambda=(\mathcal{V}, \mathcal{P}, q)$ consists of a set of N variables $\mathcal{V}:=\left\{x_{i}\right\}_{i \in[N]}$ each taking values in an alphabet $[q]$ and a set of predicates $\mathcal{P}:=\left\{P_{z}\right\}_{z \subset \mathcal{V}}$ where each predicate is a payoff function over k variables denoted $z=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right\}$. Here we refer to k as the arity of the Max-k-CSP, and we adopt the normalization that each predicate P_{z} returns outputs in $[0,1]$. We index each predicate P_{z} by its domain z and we will use the notation $\mathcal{S}(P)$ to denote the domain of a predicate P. The goal of Max-k-CSP is to maximize the payoff of the predicates.

$$
\begin{equation*}
\max _{\left(x_{1}, \ldots, x_{N}\right) \in[q]^{N}} \frac{1}{|\mathcal{P}|} \sum_{P_{z} \in \mathcal{P}} P_{z}\left(X_{z}\right) \tag{23}
\end{equation*}
$$

Where X_{z} denotes the assignment of variables $\left\{x_{i}\right\}_{i \in z}$.
There is an SDP relaxation of equation 23 that is the "qualitatively most powerful assuming the Unique Games conjecture" Raghavendra(2008). More specifically, the integrality gap of the SDP achieves the Unique Games optimal approximation ratio. Furthermore, there exists a rounding that achieves its integrality gap.

SDP Reformulation: Next we will introduce the SDP formulation we adopt in this paper. For the sake of exposition and notational simplicity, we will work with binary Max-k-CSP's where $q=\{0,1\}$. The extension to general q is straightforward and detailed in the appendix.

We will adopt the standard pseudoexpectation and pseudodistribution formalism in describing our SDP. Let $\tilde{\mathbb{E}}_{\mu}[\mathbf{X}]$ be a matrix in dimension $\mathbb{R}^{(N+1)^{d / 2} \times(N+1)^{d / 2}}$ of optimization variables defined as follows

$$
\begin{equation*}
\tilde{\mathbb{E}}_{\mu}[\mathbf{X}]:=\tilde{\mathbb{E}}_{\mu}\left[\left(1, x_{1}, x_{2}, \ldots, x_{N}\right)^{\otimes d / 2}\left(\left(1, x_{1}, x_{2}, \ldots, x_{N}\right)^{\otimes d / 2}\right)^{T}\right] \tag{24}
\end{equation*}
$$

Where we use \otimes to denote tensor product. It is convenient to think of $\tilde{\mathbb{E}}_{\mu}[\mathbf{X}]$ as a matrix of variables denoting the up to d multilinear moments of a distribution μ over the variables \mathcal{V}. A multilinear
polynomial is a polynomial of the form $X_{\phi}:=\prod_{i \in \phi} x_{i}$ for some subset of the variables $\phi \subseteq \mathcal{V}$. We index the variables of the matrix $\tilde{\mathbb{E}}_{\mu}[\mathbf{X}]$ by the multilinear moment that it represents. Notice that this creates repeat copies as their are multiple entries representing the same monomial. This is dealt with by constraining the repeated copies to be equal with linear equality constraints.
Specifically, let z be a subset of the CSP variables $z \subset\left\{x_{i}\right\}_{i \in[N]}$ of size k. Let X_{z} denote the multilinear moment $X_{z}:=\prod_{i \in z} x_{i}$. Then $\tilde{\mathbb{E}}_{\mu}\left[X_{z}\right]$ denotes the SDP variable corresponding to the multilinear moment $\mathbb{E}_{\mu}\left[X_{z}\right]$. Of course optimizing over the space of distributions μ over \mathcal{V} is intractable, and so we opt for optimizing over the space of low degree pseudodistributions and their associated pseudoexpecation functionals. See Barak \& Steurer (2014) for references therein.
In particular, for any subset of variables $X_{z}:=\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\} \in \mathcal{V}$ we let $\left.\tilde{\mathbb{E}}_{\mu}[\mathbf{X}]\right|_{z, d}$ denote the matrix of the up to degree up to d multilinear moments of the variables in z.

$$
\begin{equation*}
\left.\tilde{\mathbb{E}}_{\mu}[\mathbf{X}]\right|_{z}:=\tilde{\mathbb{E}}_{\mu}\left[\left(1, x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right)^{\otimes d / 2}\left(\left(1, x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right)^{\otimes d / 2}\right)^{T}\right] \tag{25}
\end{equation*}
$$

We refer to the above matrix as a degree d pseudoexpectation funcitonal over X_{z}. Subsequently, we describe a pseudoexpectation formulation of our SDP followed by a vector formulation.

Multilinear Formulation: A predicate for a boolean Max-k-CSP $P_{z}\left(X_{z}\right)$ can be written as a multilinear polynomial

$$
\begin{equation*}
P_{z}\left(X_{z}\right):=\sum_{\tau=\left(\tau_{1}, \ldots, \tau_{k}\right) \in\{-1,1\}^{k}} w_{z, \tau} \prod_{x_{i} \in z} \frac{1+\tau_{i} x_{i}}{2}:=\sum_{s \subseteq z} y_{s} X_{s} \tag{26}
\end{equation*}
$$

For some real valued weights $w_{z, \tau}$ and y_{s} which are simply the fourier coefficients of the function P_{z}. Then the pseudoexpectation formulation of our SDP is as follows

$$
\begin{equation*}
\max _{\widetilde{\mathbb{E}}_{\mu}[\mathbf{X}]} \sum_{P_{z} \in \mathcal{P}} \tilde{\mathbb{E}}_{\mu}\left[P_{z}\left(X_{z}\right)\right] \tag{27}
\end{equation*}
$$

subject to the following constraints

1. Unit: $\tilde{\mathbb{E}}_{\mu}[1]=1, \tilde{\mathbb{E}}_{\mu}\left[x_{i}^{2}\right]=1$ for all $x_{i} \in \mathcal{V}$, and $\tilde{\mathbb{E}}_{\mu}\left[\prod_{i \in s} x_{i}^{2} \prod_{j \in s^{\prime}} x_{j}\right]=\tilde{\mathbb{E}}_{\mu}\left[\prod_{j \in s^{\prime}} x_{j}\right]$ for all $s, s^{\prime} \subseteq \mathcal{S}(P)$ for every predicate $P \in \mathcal{P}$ such that $2 s+s^{\prime} \leq k$. In expectation, the squares of all multilinear polynomials are equal to 1.
2. Positive Semidefinite: $\left.\tilde{\mathbb{E}}_{\mu}[\mathbf{X}]\right|_{\mathcal{V}, 2} \succeq 0$ i.e the degree two pseudoexpectation is positive semidefinite. $\left.\tilde{\mathbb{E}}_{\mu}[\mathbf{X}]\right|_{z, 2 k} \succeq 0$ for all $z=\mathcal{S}(P)$ for all $P \in \mathcal{P}$. The moment matrix for the multilinear polynomials corresponding to every predicate is positive semidefinite.

Equivalently we can view the SDP in terms of the vectors in the cholesky decomposition of $\tilde{\mathbb{E}}_{\mu}[\mathbf{X}]$. We rewrite the above SDP accordingly. For this purpose it is useful to introduce the notation $\zeta(A, B):=A \cup B / A \cap B$. It is also useful to introduce the notation $\mathcal{C}(s)$ for the size of the set $\left\{g, g^{\prime} \subseteq s: \zeta\left(g, g^{\prime}\right)=s\right\}$.
Lemma B.1. For Max-k-CSP instance Λ, The SDP of SDP 1 is at least as tight as the SDP of Raghavendra (2008).

Proof. The SDP of Raghavendra (2008) is a based degree 2 SoS SDP augmented with k-local distributions for every predicate $P \in \mathcal{P}$. By using the vectors of the cholesky decomposition and constraining them to be unit vectors we automatically capture degree 2 SoS. To capture k local distributions we simply enforce degree $2 k \operatorname{SoS}$ on the boolean hypercube for the domain of every predicate. This can be done with the standard vector formulation written in SDP 1 . See Barak \& Steurer (2014) for background and references.

SDP Vector Formulation $\Lambda=(\mathcal{V}, \mathcal{P},\{0,1\})$. Multilinear formulation of objective.

$$
\begin{align*}
& \min _{x_{1}, x_{2}, \ldots, x_{N}} \sum_{P_{z} \subset \mathcal{P}} \tilde{\mathbb{E}}_{\mu}\left[-P_{z}\left(X_{z}\right)\right]:=\sum_{P_{z} \in \mathcal{P}} \sum_{s \subseteq z} w_{s} \frac{1}{|\mathcal{C}(s)|} \sum_{g, g^{\prime} \subseteq s: \zeta\left(g, g^{\prime}\right)=s}\left\langle v_{g}, v_{g^{\prime}}\right\rangle \tag{28}\\
& \text { subject to: }\left\|v_{s}\right\|^{2}=1 \quad \forall s \subseteq \mathcal{S}(P), \forall P \in \mathcal{P} \tag{29}\\
& \tilde{\mathbb{E}}_{\mu}\left[X_{\zeta\left(g, g^{\prime}\right)}\right]:=\left\langle v_{g}, v_{g^{\prime}}\right\rangle \\
&=\left\langle v_{h}, v_{h^{\prime}}\right\rangle \quad \forall \zeta\left(g, g^{\prime}\right)=\zeta\left(h, h^{\prime}\right) \text { s.t } g \cup g^{\prime} \subseteq \mathcal{S}(P), \forall P \in \mathcal{P} \tag{30}
\end{align*}
$$

First constraint is the square of multilinear polynomials are unit.
Second constraint are degree $2 k$ SoS constraints for products of multilinear polynomials.

```
Algorithm 1 Message Passing for Max-CSP
    procedure Message Passing \((\Lambda=(\mathcal{V}, \mathcal{P},\{0,1\}))\)
        \(n \leftarrow|\mathcal{P}| 2^{k} \log \left(\delta^{-1}\right)\)
        \(\eta, \psi, \sigma \leftarrow n^{-100} \quad \triangleright\) Initialize step size, noise threshold, and noise variance
        \(\mathbf{v}^{0}=\left\{v_{s}\right\}_{s \subseteq z: P_{z} \in \mathcal{P}} \leftarrow U n i f o r m\left(\mathcal{S}^{n-1}\right) \triangleright\) Initialize vectors to uniform on the unit sphere
        for \(t \in\left[\operatorname{poly}\left(\epsilon^{-1},|\mathcal{P}|, 2^{k}, \log \left(\delta^{-1}\right)\right)\right]\) do
            for \(v_{w}^{t} \in \mathbf{v}^{t}\) do \(\quad \triangleright\) Iterate over vectors
                \(\hat{v}_{q}^{t+1} \leftarrow v_{w}^{t}-\eta \sum_{\substack{P_{z} \in \mathcal{P} \\ \text { s.t } w \subseteq z \\ w}} \sum_{\substack{s \subseteq z \\ \text { s.t }}} y_{s} \frac{1}{|\mathcal{C}(s)|} \sum_{\substack{w^{\prime} \subseteq s \\ \text { s.t } \zeta\left(w, w^{\prime}\right)=s}} v_{w^{\prime}}^{t}\)
                \(+2 \rho\left[\sum_{\substack{P_{z} \in \mathcal{P} \\ \text { s.t } t \subseteq z \in z_{\text {s.t }}}} \sum_{\substack{w^{\prime}, h, h^{\prime} \subseteq s \\\left(w, w^{\prime}\right)=\zeta\left(h, h^{\prime}\right)}}\left(\left\langle v_{w}^{t}, v_{w^{\prime}}^{t}\right\rangle-\left\langle v_{h}^{t}, v_{h^{\prime}}^{t}\right\rangle\right) v_{w}^{\prime t}\right.\)
                                    \(\left.+\left(\left\|v_{w}^{t}\right\|^{2}-1\right) v_{w}^{t}\right]\)
\(\triangleright\) Update each vector with neighboring vectors in constraint graph
            if \(\left\|v_{w}^{t+1}-v_{w}^{t}\right\| \leq \psi\) then
                    \(\zeta \leftarrow N(0, \sigma I)\)
                else
                    \(\zeta \leftarrow 0\)
            end if
                \(v_{w}^{t+1} \leftarrow v_{w}^{t+1}+\zeta \quad \triangleright\) Add perturbed noise if gradient smaller than threshold
        end for
    end for
    return \(\mathbf{v}^{t} \quad \triangleright\) Returns the vectors corresponding to solution to \(\operatorname{SDP} 1\)
    end procedure
```

Theorem B.1. Algorithm 1 computes in poly $\left(\epsilon^{-1},|\mathcal{P}|, 2^{k}, \log \left(\delta^{-1}\right)\right)$ iterations a set of vectors $v:=\left\{\hat{v}_{s}\right\}$ for all $s \subseteq \mathcal{S}(\vec{P})$ for all $P \in \mathcal{P}$ that satisfy the constraints of $\left.S D P 1\right]$ to error ϵ and approximates the optimum of $\operatorname{SDP}[1$ to error ϵ with probability $1-\delta$

$$
\left|\sum_{P_{z} \in \mathcal{P}} \tilde{\mathbb{E}}_{\hat{\mu}}\left[P_{z}\left(X_{z}\right)\right]-\operatorname{OPTSDP}(\Lambda)\right| \leq \epsilon
$$

where $\operatorname{OPTSDP}(\Lambda)$ is the optimum of $\operatorname{SDP} 1$.
Proof. We begin by writing down the objective penalized by a quadratic on the constraints.

$$
\begin{align*}
& \mathcal{L}_{\rho}(\mathbf{v}):=\sum_{P_{z} \in \mathcal{P}} \tilde{\mathbb{E}}_{\mu}\left[P_{z}\left(X_{z}\right)\right] \\
&+\rho\left[\sum_{P_{z} \in \mathcal{P}} \sum_{\substack{g, g^{\prime}, h, h^{\prime} \subseteq z \\
\text { s.t } \zeta\left(g, g^{\prime}\right)=\zeta\left(h, h^{\prime}\right)}}\left(\left\langle v_{g}, v_{g^{\prime}}\right\rangle-\left\langle v_{h}, v_{h^{\prime}}\right\rangle\right)^{2}+\sum_{v_{s} \in \mathbf{v}}\left(\left\|v_{s}\right\|^{2}-1\right)^{2}\right] \tag{34}
\end{align*}
$$

For any monomial $X_{s}=\prod_{i \in s} x_{i}$ in $P_{z}\left(X_{z}\right)$ we write

$$
\begin{equation*}
\tilde{\mathbb{E}}_{\mu}\left[X_{s}\right]:=\frac{1}{|\mathcal{C}(s)|} \sum_{\substack{g, g^{\prime} \subseteq s \\ \text { s.t } \zeta\left(g, g^{\prime}\right)=s}}\left\langle v_{g}, v_{g^{\prime}}\right\rangle \tag{35}
\end{equation*}
$$

Where $\mathcal{C}(s)$ is the size of the set $\left\{g, g^{\prime} \subseteq s: \zeta\left(g, g^{\prime}\right)=s\right\}$. In a small abuse of notation, we regard this as the definition of $\tilde{\mathbb{E}}_{\mu}\left[X_{s}\right]$ but realize that we're referring to the iterates of the algorithm before they've converged to a pseudoexpectation. Now recall equation 26, we can expand the polynomial $P_{z}\left(X_{z}\right)$ along its standard monomial basis

$$
\begin{equation*}
P_{z}\left(X_{z}\right)=\sum_{s \subseteq z} y_{s} X_{s} \tag{36}
\end{equation*}
$$

where we have defined coefficients y_{s} for every monomial in $P_{z}\left(X_{z}\right)$. Plugging equation 35 and equation 36 into equation 34 we obtain

$$
\begin{align*}
& 334=\sum_{P_{z} \in \mathcal{P}} \sum_{s \subseteq z} y_{s} \frac{1}{|\mathcal{C}(s)|} \sum_{\substack{g, g^{\prime} \subseteq s \\
\text { s.t } \\
\zeta\left(g, g^{\prime}\right)=s}}\left\langle v_{g}, v_{g^{\prime}}\right\rangle \\
& \\
& +\rho\left[\sum_{P_{z} \in \mathcal{P}} \sum_{\substack{g, g^{\prime}, h, h^{\prime} \subseteq z \\
\text { s.t } \\
\zeta\left(g, g^{\prime}\right)=\zeta\left(h, h^{\prime}\right)}}\left(\left\langle v_{g}, v_{g^{\prime}}\right\rangle-\left\langle v_{h}, v_{h^{\prime}}\right\rangle\right)^{2}\right. \tag{37}\\
&
\end{align*}
$$

Taking the derivative with respect to any $v_{w} \in \mathbf{v}$ we obtain

$$
\begin{align*}
& \frac{\partial \mathcal{L}_{\rho}(\mathbf{v})}{\partial v_{w}}= \sum_{\substack{P_{z} \in \mathcal{P} \\
\text { s.t } w \subseteq z \text { s.t }}} \sum_{\substack{s \subseteq z \\
w \subseteq s}} y_{s} \frac{1}{|\mathcal{C}(s)|} \sum_{\substack{w^{\prime} \subseteq s \\
\text { s.t } \zeta\left(w, w^{\prime}\right)=s}} v_{w^{\prime}} \\
&+2 \rho\left[\sum_{\substack{P_{z} \in \mathcal{P} \\
\text { s.t } w \subseteq z_{\text {s.t }} \zeta}} \sum_{\substack{w^{\prime}, h, h^{\prime} \subseteq s \\
\left(w, w^{\prime}\right)=\bar{\zeta}\left(h, h^{\prime}\right)}}\left(\left\langle v_{w}, v_{w^{\prime}}\right\rangle-\left\langle v_{h}, v_{h^{\prime}}\right\rangle\right) v_{w}^{\prime}\right. \\
&\left.+\left(\left\|v_{w}\right\|^{2}-1\right) v_{w}\right] \tag{38}
\end{align*}
$$

The gradient update is then what is detailed in Algorithm 1

$$
\begin{equation*}
v_{w}^{t+1}=v_{w}^{t}-\eta \frac{\partial \mathcal{L}_{\rho}(\mathbf{v})}{\partial v_{w}} \tag{39}
\end{equation*}
$$

Thus far we have established the form of the gradient. To prove the gradient iteration converges we reference the literature on convergence of perturbed gradient descent (Jin et al. 2017) which we rewrite in Theorem B.2. First we note that the SDP equation ?? has ℓ smooth gradient for $\ell \leq \operatorname{poly}\left(\rho,|\mathcal{P}|, 2^{k}\right)$ and has γ lipschitz Hessian for $\gamma=\operatorname{poly}\left(\rho,|\mathcal{P}|, 2^{k}\right)$ which we arrive at by
bounding the size of every matrix involved in the objective and constraints of $\operatorname{SDP} 1$. Then by Theorem B. 2 the iteration converges to an $\left(\epsilon^{\prime}, \gamma^{2}\right)$-SOSP Definition B. 2 in no more than $\tilde{O}\left(\frac{1}{\epsilon^{\prime 2}}\right)$ iterations with probability $1-\delta$. It remains to show that $\left(\epsilon^{\prime}, \gamma^{2}\right)$-SOSP are approximately global optimum.

Thus far we have worked with the vector version of the SDP which is overparameterized and nonconvex. For subsequent analysis we need to define the penalized loss which we denote $\mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\mathbf{X}])$ in terms of the SDP moment matrix $\tilde{\mathbb{E}}[\mathbf{X}]$.

$$
\begin{align*}
& \mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\mathbf{X}]):=\sum_{P_{z} \in \mathcal{P}} \tilde{\mathbb{E}}_{\hat{\mu}}\left[P_{z}\left(X_{z}\right)\right] \\
& +\rho\left[\sum_{P_{z} \in \mathcal{P}} \sum_{\substack{g, g^{\prime}, h, h^{\prime} \subseteq z \\
\text { s.t } \\
\zeta\left(g, g^{\prime}\right)=\zeta\left(h, h^{\prime}\right)}}\left(\tilde{\mathbb{E}}_{\hat{\mu}}\left[X_{\zeta\left(g, g^{\prime}\right)}\right]-\tilde{\mathbb{E}}_{\hat{\mu}}\left[X_{\left.\zeta\left(h, h^{\prime}\right)\right]}\right]\right)^{2}+\sum_{\substack{X_{s} \text { s.t } s \subset \mathcal{S}(P) \\
|s| \leq k, \forall P \in \mathcal{P}}}\left(\tilde{\mathbb{E}}_{\hat{\mu}}\left[X_{s}^{2}\right]-1\right)^{2}\right] \tag{40}
\end{align*}
$$

Here we use the notation $\tilde{\mathbb{E}}_{\hat{\mu}}\left[X_{\zeta\left(g, g^{\prime}\right)}\right]$ and $\tilde{\mathbb{E}}_{\hat{\mu}}\left[X_{\zeta\left(h, h^{\prime}\right)}\right]$ to denote $\left\langle v_{g}, v_{g}^{\prime}\right\rangle$ and $\left\langle v_{h}, v_{h}^{\prime}\right\rangle$ respectively. Note that although by definition $\mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\mathbf{X}])=\mathcal{L}_{\rho}(\mathbf{v})$, their gradients and hessians are distinct because $\mathcal{L}_{\rho}(\mathbf{v})$ is overparameterized.
For SDP 1 we are working with a global optimum clearly exists which we denote $\tilde{\mathbb{E}}_{\tilde{\mu}}[\tilde{\mathbf{X}}]$ with a cholesky decomposition $\tilde{\mathbf{v}}$. Let $\hat{\mathbf{v}}$ be the set of vectors outputted by Algorithm 1 with associated pseudoexpectation $\tilde{\mathbb{E}}_{\hat{\mu}}[\hat{\mathbf{X}}]$. Then, we can bound

$$
\begin{equation*}
\mathcal{L}_{\rho}(\hat{\mathbf{v}})-\mathcal{L}_{\rho}(\tilde{\mathbf{v}})=\mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\hat{\mathbf{X}}])-\mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\tilde{\mathbf{X}}]) \leq\left\langle\nabla \mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\hat{\mathbf{X}}]), \tilde{\mathbb{E}}[\hat{\mathbf{X}}]-\tilde{\mathbb{E}}[\tilde{\mathbf{X}}]\right\rangle \tag{41}
\end{equation*}
$$

Here the first equality is by definition, and the inequality is by the convexity of \mathcal{H}_{ρ}. Moving on, observe that $\nabla^{2} \mathcal{L}_{\rho}(\hat{\mathbf{v}}) \succeq-\gamma \sqrt{\epsilon^{\prime}}$ implies $\lambda_{\min }\left(\nabla \mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\hat{\mathbf{X}}])\right) \geq-\gamma \sqrt{\epsilon^{\prime}}$. This fact is folklore, and it follows from inspecting the form of the hessian $\mathcal{L}_{\rho}(\hat{\mathbf{v}})$ and can be found in multiple references such as Bhojanapalli et al. (2018) lemma 3. Subsequently, we adapt the lines of their argument in lemma 3 most relevant to our analysis which we detail here for the sake of completeness.

$$
\begin{align*}
\text { equation } 41 \leq- & \lambda_{\min }\left(\nabla \mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\hat{\mathbf{X}}])\right) \operatorname{Tr}(\tilde{\mathbb{E}}[\hat{\mathbf{X}}])-\left\langle\nabla \mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\hat{\mathbf{X}}]), \tilde{\mathbb{E}}[\tilde{\mathbf{X}}]\right\rangle \\
\leq & -\lambda_{\min }\left(\nabla \mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\hat{\mathbf{X}}])\right) \operatorname{Tr}(\tilde{\mathbb{E}}[\hat{\mathbf{X}}])+\left\|\nabla \mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\hat{\mathbf{X}}])\right\|_{F}\|\tilde{\mathbb{E}}[\tilde{\mathbf{X}}]\|_{F} \\
& \leq \gamma \sqrt{\epsilon^{\prime}} \operatorname{Tr}(\tilde{\mathbb{E}}[\mathbf{X}])+\epsilon^{\prime}\|\tilde{\mathbf{v}}\|_{F} \leq \gamma \sqrt{\epsilon^{\prime}}|\mathcal{P}| 2^{k}+\epsilon^{\prime}|\mathcal{P}| 2^{k} \leq \epsilon \tag{42}
\end{align*}
$$

Here the first inequality follows by a standard inequality of frobenius inner product, the second inequality follows by Cauchy-Schwarz, the third inequality follows by the $\left(\epsilon^{\prime}, \gamma^{2}\right)$-SOSP conditions on both the min eigenvalue of the hessian and the norm of the gradient, the final two inequalities follow from knowing the main diagonal of $\tilde{\mathbb{E}}[\hat{\mathbf{X}}]$ is the identity and that every vector in $\tilde{\mathbf{v}}$ is a unit vector up to inverse polynomial error $\operatorname{poly}\left(\rho^{-1},|\mathcal{P}|, 2^{k}\right)$. For this last point see the proof in Lemma B. 2 Therefore if we set $\epsilon^{\prime}=\operatorname{poly}\left(\epsilon,|\mathcal{P}|^{-1}, 2^{-k}\right)$ we arrive at any ϵ error. Therefore we have established our estimate \hat{v} is approximates the global optimum of the quadratically penalized objective i.e $\mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\hat{\mathbf{X}}])-\mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\tilde{\mathbf{X}}]) \leq \epsilon$. To finish our proof, we have to bound the distance between the global optimum of the quadratically penalized objective $\mathcal{H}_{\rho}(\tilde{\mathbb{E}}[\tilde{\mathbf{X}}])$ and $\operatorname{OPTSDP}(\Lambda)$ the optimum of $\operatorname{SDP} 1$ This is established for ρ a sufficiently large poly $\left(\epsilon^{-1},|\mathcal{P}|, 2^{k}\right)$ in Lemma B. 2 This concludes our proof that the iterates of Algorithm 1 converge to the solution of the SDP SDP1.

The following Lemma B.2 establishes that for a sufficiently large penalty parameter $\rho=$ $\operatorname{poly}\left(\epsilon^{-1},|\mathcal{P}|, 2^{k}\right)$ the optimum of the penalized problem and the exact solution to $\operatorname{SDP} 1$ are close.
Lemma B.2. Let Λ be a Max-k-CSP instance, and let $\operatorname{OPTSDP}(\Lambda)$ be the optimum of $\operatorname{SDP} 1$. Let $\mathcal{L}_{\rho}(\mathbf{v})$ be the quadratically penalized objective

$$
\begin{align*}
\mathcal{L}_{\rho}(\mathbf{v}):= & \sum_{P_{z} \in \mathcal{P}} \sum_{s \subseteq z} y_{s} \frac{1}{|\mathcal{C}(s)|} \sum_{\substack{g, g^{\prime} \subseteq s \\
\text { s.t } \\
\zeta\left(g, g^{\prime}\right)=s}}\left\langle v_{g}, v_{g^{\prime}}\right\rangle \\
& +\rho\left[\sum_{P_{z} \in \mathcal{P}} \sum_{\substack{g, g^{\prime}, h, h \\
\zeta\left(g, g^{\prime}\right)=\zeta\left(h, h^{\prime}\right)}}\left(\left\langle v_{g}, v_{g^{\prime}}\right\rangle-\left\langle v_{h}, v_{h^{\prime}}\right\rangle\right)^{2}\right. \\
& \left.+\sum_{v_{s} \in \mathbf{v}}\left(\left\|v_{s}\right\|^{2}-1\right)^{2}\right] \tag{43}
\end{align*}
$$

This implies

$$
\begin{equation*}
\left\langle C, X^{*}\right\rangle-\left(\langle C, \tilde{X}\rangle+\rho \sum_{i \in \mathcal{F}} \tau_{i}^{2}\right) \leq 0 \tag{49}
\end{equation*}
$$

$$
\begin{equation*}
\rho \sum_{i \in \mathcal{F}} \tau_{i}^{2} \leq\left\langle C, \tilde{X}-X^{*}\right\rangle \tag{50}
\end{equation*}
$$

We know the RHS is upper bounded

$$
\begin{equation*}
\rho \sum_{i \in \mathcal{F}} \tau_{i}^{2} \leq\left\langle C, \tilde{X}-X^{*}\right\rangle \leq \sum_{i \in \mathcal{F}} \tau_{i} p o l y(k, q) \tag{51}
\end{equation*}
$$

The last line follows from the robustness theorem of Raghavendra \& Steurer (2009) restated in the appendix Theorem B. 3 which states that an SDP solution that violates the constraints by a small perturbation changes the objective by a small amount. Then taking Cauchy-Schwarz of the RHS we further bound by

$$
\rho \sum_{i \in \mathcal{F}} \tau_{i}^{2} \leq \sqrt{|\mathcal{F}| \sum_{i \in \mathcal{F}} \tau_{i}^{2}} \text { poly }(k, q)
$$

Rearranging left and right hand sides we obtain

$$
\sum_{i \in \mathcal{F}} \tau_{i}^{2} \leq \rho^{-1} \operatorname{poly}(k, q)|\mathcal{F}|
$$

which implies $\|\tau\|=\operatorname{poly}\left(|\mathcal{P}|, 2^{k}, \rho^{-1}\right)$. Moving on, consider the dual feasibility condition

$$
C=Q+\sum_{i \in \mathcal{F}} \lambda_{i} A_{i}
$$

for some $Q \succeq 0$. Then we have

$$
\left\langle C, X^{*}-\tilde{X}\right\rangle=\left\langle Q, X^{*}\right\rangle-\langle Q, \tilde{X}\rangle+\sum_{i \in \mathcal{F}} \lambda_{i}\left\langle A_{i}, X^{*}-\tilde{X}\right\rangle
$$

By complementary slackness $\left\langle Q, X^{*}\right\rangle=0$ so we obtain

$$
=-\langle Q, \tilde{X}\rangle+\sum_{i \in \mathcal{F}} \lambda_{i}\left\langle A_{i}, X^{*}-\tilde{X}\right\rangle
$$

By PSD'ness of both Q and \tilde{X} we upper bound by

$$
\leq \sum_{i \in \mathcal{F}} \lambda_{i}\left\langle A_{i}, X^{*}-\tilde{X}\right\rangle=\sum_{i \in \mathcal{F}} \lambda_{i}\left(b_{i}-\left\langle A_{i}, \tilde{X}\right\rangle\right) \leq \sqrt{\sum_{i \in \mathcal{F}} \lambda_{i}^{2}}\|\tau\|
$$

Where in the first equality we used the fact that $\left\langle A_{i}, \tilde{X}\right\rangle=b_{i}$, and the second inequality is CauchySchwarz. Since we've already established that $\|\tau\| \propto \rho^{-1}$ we must simply bound the size of the dual variables λ_{i}. To bound the size of λ_{i}, we separate the constraints A_{i} into the diagonal constraints $\left\{F_{i}\right\}_{i \in \mathcal{W}}$ and equality constraints $\left\{G_{i}\right\}_{i \in \mathcal{R}}$ where

$$
\left\langle F_{i}, X\right\rangle=1 \quad \forall i \in \mathcal{W} \quad\left\langle G_{i}, X\right\rangle=0 \quad \forall i \in \mathcal{R}
$$

The dual takes on the following form for $\delta, \eta \in \mathbb{R}$

$$
\begin{equation*}
\max \sum_{i \in \mathcal{W}} \delta_{i} \tag{52}
\end{equation*}
$$

$$
\begin{equation*}
\text { subject to: } C-\sum_{i \in \mathcal{W}} \delta_{i} F_{i}-\sum_{i \in \mathcal{R}} \eta_{i} G_{i} \succeq 0 \tag{53}
\end{equation*}
$$

Where we've split the dual variables $\left\{\lambda_{i}\right\}_{i \in \mathcal{F}}$ into two sets $\left\{\delta_{i}\right\}_{i \in \mathcal{W}}$ and $\left\{\eta_{i}\right\}_{i \in \mathcal{R}}$. Note that the δ_{i} are polynomially bounded i.e $\left|\delta_{i}\right| \leq \operatorname{poly}\left(|\mathcal{P}|, 2^{k}\right)$. Assume the contrary, if $\delta_{i}>\operatorname{poly}\left(|\mathcal{P}|, 2^{k}\right)$ then the objective is polynomially unbounded which contradicts dual objective being smaller than primal objective. If $\delta_{i}<-\operatorname{poly}\left(\mathcal{P}, 2^{k}\right)$ then the i^{\prime} th diagonal coordinate of equation 53 is polynomially unbounded and then e_{i} is a negative eigenvalue of equation 53 which is a contradiction of PSD'ness. Therefore, the δ_{i} are polynomially bounded. To demonstrate the $\left\{\eta_{i}\right\}_{i \in \mathcal{R}}$ are polynomially bounded, note that because of linear independence of the constraints plus the minimum singular value being greater than a constant, there exists a setting of the η that is polynomially bounded such that the dual feasibility constraint is satisfied. Since the η do not appear in the objective, finding a setting that satisfies equation 53 suffices.

Constraint matrix is well conditioned. The smallest singular value of $\left\{A_{i}\right\}_{i \in \mathcal{F}}$ is a constant. This is a technical observation the $\left\{A_{i}\right\}_{i \in \mathcal{F}}$ matrices which are collections of vectors of the form $\left\{e_{1}+e_{j}\right\}_{j \in[2, T]}$ where we let e_{i} denote the i^{\prime} th standard basis vector. Any unit vector v satisfies $\left\|\sum_{j} v_{j}\left(e_{1}+e_{j}\right)\right\|=\left(\sum_{j} v_{j}\right)^{2}+\sum_{j} v_{j}^{2} \geq 1$.

Finally we show it's not hard to generalize our algorithm to alphabets of size $[q]$.
Notation for General Alphabet. For any predicate $P \in \mathcal{P}$, let $\mathcal{D}(P)$ be the set of all variable assignment tuples indexed by a set of variables $s \subseteq \mathcal{S}(P)$ and an assignment $\tau \in[q]^{|s|}$. Let $x_{(i, a)}$ denote an assignment of value $a \in[q]$ to variable x_{i}.

SDP 2 SDP Vector Formulation for Max-k-CSP General Alphabet (Equivalent to UGC optimal)
SDP Vector Formulation General Alphabet $\Lambda=(\mathcal{V}, \mathcal{P}, q)$.
Pseudoexpectation formulation of the objective.

$$
\begin{equation*}
\min _{x_{1}, x_{2}, \ldots, x_{N}} \sum_{P_{z} \subset \mathcal{P}} \tilde{\mathbb{E}}_{\mu}\left[-P_{z}\left(X_{z}\right)\right] \tag{54}
\end{equation*}
$$

subject to: $\quad \tilde{\mathbb{E}}_{\mu}\left[\left(x_{(i, a)}^{2}-x_{(i, a)}\right) \prod_{(j, b) \in \phi} x_{(j, b)}\right]=0 \quad \forall i \in \mathcal{V}, \forall a \in[q], \forall \phi \subseteq \mathcal{D}(P), \forall P \in \mathcal{P}$

$$
\begin{align*}
& \tilde{\mathbb{E}}_{\mu}\left[\left(\sum_{a \in[q]} x_{i a}-1\right) \prod_{(j, b) \in \phi} x_{(j, b)}\right]=0 \quad \forall i \in \mathcal{V}, \forall \phi \subseteq \mathcal{D}(P), \forall P \in \mathcal{P} \tag{56}\\
& \tilde{\mathbb{E}}_{\mu}\left[x_{(i, a)} x_{\left(i, a^{\prime}\right)} \prod_{(j, b) \in \phi} x_{(j, b)}\right]=0 \quad \forall i \in \mathcal{V}, \forall a \neq a^{\prime} \in[q], \forall \phi \subseteq \mathcal{D}(P), \forall P \in \mathcal{P}
\end{align*}
$$

$$
\begin{equation*}
\tilde{\mathbb{E}}\left[S o S_{2 k q}\left(X_{\phi}\right)\right] \geq 0 \quad \forall \phi \subseteq \mathcal{D}(P), \forall P \in \mathcal{P} \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\mathbb{E}}\left[S o S_{2}(\mathbf{X})\right] \geq 0 \tag{58}
\end{equation*}
$$

First constraint corresponds to booleanity of each value in the alphabet.
Second constraint corresponds to a variable taking on only one value in the alphabet.
Third constraint corresponds to a variable taking on only one value in the alphabet.
Fourth constraint corresponds to local distribution on the variables in each predicate.
Fifth constraint correpsonds to the positivity of every degree two sum of squares of polynomials.

Lemma B.3. There exists a message passing algorithm that computes in $\operatorname{poly}\left(\epsilon^{-1},|\mathcal{P}|, 2^{k}, \log \left(\delta^{-1}\right)\right)$ iterations a set of vectors $\mathbf{v}:=\left\{\hat{v}_{(i, a)}\right\}$ for all $(i, a) \in \phi$, for all $\phi \subseteq \mathcal{D}(P)$, for all $P \in \mathcal{P}$ that satisfy the constraints of Algorithm 2 to error ϵ and approximates the optimum of Algorithm 2 to error ϵ with probability $1-\delta$

$$
\left|\sum_{P_{z} \in \mathcal{P}} \tilde{\mathbb{E}}_{\hat{\mu}}\left[P_{z}\left(X_{z}\right)\right]-\operatorname{OPTSDP}(\Lambda)\right| \leq \epsilon
$$

where $\operatorname{OPTSDP}(\Lambda)$ is the optimum of Algorithm 2

Proof. The proof is entirely parallel to the proof of TheoremB.1. We can write Algorithm 2 entirely in terms of the vector of its cholesky decomposition where once again we take advantage of the fact that SoS degree $2 k q$ distributions are actual distributions over subsets of $k q$ variables over each predicate. Given the overparameterized vector formulation, we observe that once again we are faced with equality constraints that can be added to the objective with a quadratic penalty. Perturbed gradient descent induces a message passing algorithm over the constraint graph G_{Λ}, and in no more than poly $\left(\epsilon^{-1},|P|, q^{k}\right)$ iterations reaches an (ϵ, γ)-SOSP. The analysis of optimality goes along the same lines as Lemma B. 2 For sufficiently large penalty $\rho=\operatorname{poly}\left(\epsilon^{-1},|P|, q^{k}\right)$ the error in satisfying the constraints is ϵ and the objective is robust to small perturbations in satisfying the constraint. That concludes our discussion of generalizing to general alphabets.

Now let V^{*} be the minimizer of equation 64 and let $X^{*}=V^{*}\left(V^{*}\right)^{T}$. We have by convexity that

$$
\begin{array}{r}
F_{\lambda^{*}}(X)-F_{\lambda^{*}}\left(X^{*}\right) \leq\left\langle\nabla F_{\lambda^{*}}(X), X-X^{*}\right\rangle=\left\langle\nabla F_{\lambda^{*}}(X), X\right\rangle+\left\langle-\nabla F_{\lambda^{*}}(X), X^{*}\right\rangle \\
\leq\left\langle\nabla F_{\lambda^{*}}(X), X\right\rangle-\lambda_{\min }\left(\nabla F_{\lambda^{*}}(X)\right) \operatorname{Tr}\left(X^{*}\right) \\
\leq\left\langle\nabla F_{\lambda^{*}}(X), X\right\rangle-\lambda_{\min }\left(\nabla F_{\lambda^{*}}(X)\right) N \tag{67}
\end{array}
$$

In the first inequality we apply the convexity of $F_{\lambda^{*}}$. In the second inequality we apply a standard inequality of frobenius inner product. In the last inequality we use the fact that $\operatorname{Tr}\left(X^{*}\right)=N$. Rearranging we obtain for any X

$$
\begin{equation*}
O P T \geq F_{\lambda}\left(X^{*}\right) \geq F_{\lambda^{*}}(X)-\left\langle\nabla F_{\lambda^{*}}(X), X\right\rangle+\lambda_{\min }\left(\nabla F_{\lambda^{*}}(X)\right) N \tag{68}
\end{equation*}
$$

Therefore it suffices to upper bound the two terms above $\left\langle\nabla F_{\lambda^{*}}(X), X\right\rangle$ and $\lambda_{\min }\left(\nabla F_{\lambda^{*}}(X)\right)$ which is an expression that holds for any X. Given the output embeddings \tilde{V} of OptGNN (or indeed any set of vectors \tilde{V}) let $\tilde{X}=\tilde{V} \tilde{V}^{T}$. Then we have concluded

$$
\begin{equation*}
O P T \geq F_{\lambda}\left(X^{*}\right) \geq F_{\lambda^{*}}(\tilde{X})-\left\langle\nabla F_{\lambda^{*}}(\tilde{X}), \tilde{X}\right\rangle+\lambda_{\min }\left(\nabla F_{\lambda^{*}}(\tilde{X})\right) N \tag{69}
\end{equation*}
$$

as desired.

Up to this point, every manipulation is formal proof. Subsequently we detail how to make an educated 'guess' of the dual variables λ^{*}. Although any guess will produce a bound, it won't produce a tight bound. To be clear, solving for the optimal λ^{*} would be the same as building an SDP solver which would bring us back into the expensive primal dual procedures that are involved in solving SDP's. We are designing quick and cheap ways to output a dual certificate that may be somewhat looser. Our scheme is simply to set λ^{*} such that $\left\|\nabla F_{\lambda^{*}}(\tilde{X})\right\|$ is minimized, ideally equal to zero. The intuition is that if $\left(\tilde{X}, \lambda^{*}\right)$ were a primal dual pair, then the lagrangian would have a derivative with respect to X evaluated at \tilde{X} would be equal to zero. Let $H_{\lambda}(V)$ be defined as follows

$$
H_{\lambda^{*}}(\tilde{V}):=\left\langle C, \tilde{V} \tilde{V}^{T}\right\rangle+\sum_{i \in \mathcal{F}} \lambda_{i}^{*}\left(\left\langle A_{i}, \tilde{V} \tilde{V}^{T}\right\rangle-b_{i}\right)
$$

We know the gradient of $H_{\lambda}(\tilde{V})$

$$
\nabla H_{\lambda}(\tilde{V})=2\left(C+\sum_{i \in \mathcal{F}} \lambda_{i}^{*} A_{i}\right) \tilde{V}=2 \nabla F_{\lambda}\left(\tilde{V} \tilde{V}^{T}\right) \tilde{V}
$$

Therefore it suffices to find a setting of λ^{*} such that $\left\|\nabla F_{\lambda}(\tilde{X}) \tilde{V}\right\|$ is small, ideally zero. This would be a simple task, indeed a regression, if not for the unfortunate fact that OptGNN explicitly projects the vectors in \tilde{V} to be unit vectors. This creates numerical problems such that minimizing the norm of $\left\|\nabla F_{\lambda}(\tilde{X}) \tilde{V}\right\|$ does not produce a $\nabla F_{\lambda}(\tilde{X})$ with a large minimum eigenvalue.

To fix this issue, let $R_{\eta, \rho}(V)$ denote the penalized lagrangian with quadratic penalties for constraints of the form $\left\langle A_{i}, X\right\rangle=b_{i}$ and linear penalty η_{i} for constraints along the main diagonal of X of the form $\left\langle e_{i} e_{i}^{T}, X\right\rangle=1$.

$$
R_{\eta, \rho}(V):=\left\langle C, V V^{T}\right\rangle+\sum_{i \in \mathcal{J}} \rho\left(\left\langle A_{i}, V V^{T}\right\rangle-b_{i}\right)^{2}+\sum_{i=1}^{N} \eta_{i}\left(\left\langle e_{i} e_{i}^{T}, V V^{T}\right\rangle-1\right)
$$

Taking the gradient of $R_{\eta, \rho}(V)$ we obtain

$$
\nabla R_{\eta, \rho}(V):=2 C V+\sum_{i \in \mathcal{J}} 2 \rho\left(\left\langle A_{i}, V V^{T}\right\rangle-b_{i}\right) A_{i} V+\sum_{i=1}^{N} 2 \eta_{i} e_{i} e_{i}^{T} V
$$

Our rule for setting dual variables δ_{i} for $i \in \mathcal{J}$ is

$$
\delta_{i}:=2 \rho\left(\left\langle A_{i}, \tilde{V} \tilde{V}^{T}\right\rangle-b_{i}\right)
$$

our rule for setting dual variables η_{j} for $j \in[N]$ is

$$
\eta_{j}:=\frac{1}{2}\left\|e_{j}^{T}\left(C+\sum_{i \in \mathcal{F}} 2 \rho\left(\left\langle A_{i}, V V^{T}\right\rangle-b_{i}\right) A_{i}\right) V\right\|
$$

Then our full set of dual variables λ^{*} is simply the concatenation (δ, η). Writing out everything explicitly we obtain the following matrix for $\nabla F_{\lambda^{*}}\left(\tilde{V} \tilde{V}^{T}\right)$

$$
\nabla F_{\lambda}\left(\tilde{V} \tilde{V}^{T}\right)=C+\sum_{i \in \mathcal{F}} \rho\left(\left\langle A_{i}, \tilde{V} \tilde{V}^{T}\right\rangle-b_{i}\right) A_{i}+\sum_{j \in[N]} \frac{1}{2}\left\|e_{j}^{T}\left(C+\sum_{i \in \mathcal{F}} 2 \rho\left(\left\langle A_{i}, \tilde{V} \tilde{V}^{T}\right\rangle-b_{i}\right) A_{i}\right) \tilde{V}\right\| e_{i} e_{i}^{T}
$$

Plugging this expression into Lemma B. 4 the final bound we evaluate in our code is

$$
\begin{align*}
& O P T \geq\left\langle C, \tilde{V} \tilde{V}^{T}\right\rangle+\sum_{i \in \mathcal{F}} 2 \rho\left(\left\langle A_{i}, \tilde{V} \tilde{V}^{T}\right\rangle-b_{i}\right)^{2} \\
- & \left\langle C+\sum_{i \in \mathcal{F}} \rho\left(\left\langle A_{i}, \tilde{V} \tilde{V}^{T}\right\rangle-b_{i}\right) A_{i}+\sum_{j \in[N]} \frac{1}{2}\left\|e_{j}^{T}\left(C+\sum_{i \in \mathcal{F}} 2 \rho\left(\left\langle A_{i}, \tilde{V} \tilde{V}^{T}\right\rangle-b_{i}\right) A_{i}\right) \tilde{V}\right\| e_{i} e_{i}^{T}, \tilde{V} \tilde{V}^{T}\right\rangle \\
+ & \lambda_{\min }\left(C+\sum_{i \in \mathcal{F}} \rho\left(\left\langle A_{i}, \tilde{V} \tilde{V}^{T}\right\rangle-b_{i}\right) A_{i}+\sum_{j \in[N]} \frac{1}{2}\left\|e_{j}^{T}\left(C+\sum_{i \in \mathcal{F}} 2 \rho\left(\left\langle A_{i}, \tilde{V} \tilde{V}^{T}\right\rangle-b_{i}\right) A_{i}\right) \tilde{V}\right\| e_{i} e_{i}^{T}\right) N \tag{70}
\end{align*}
$$

Which is entirely computed in terms of \tilde{V} the output embeddings of OptGNN. The resulting plot is as follows.

Figure 1: $\mathrm{N}=50 \mathrm{p}=0.1 \mathrm{SDP}$ vs Opt-GNN Dual Certificate

Note: The reason for splitting the set of dual variables is because the projection operator onto the unit ball is hard coded into the architecture of the lift network. Satisfying the constraint set via projection is different from the soft quadratic penalties on the remaining constraints and require separate handling.

Max Cut Certificate For Max Cut our dual variables are particularly simple as there are no constraints $\left\langle A_{i}, X\right\rangle=b_{i}$ for $b_{i} \neq 0$. The dual variables for Max Cut take on the form for all $i \in[N]$

$$
\lambda_{i}^{*}=\frac{1}{2}\left\|\sum_{j \in N(i)} w_{i j} v_{j}\right\|
$$

It's certainly possible to come up with tighter certification schemes which we leave to future work.
Intuition: Near global optimality one step of the augmented method of lagrange multipliers ought to closely approximate the dual variables. After obtaining a guess for the penalized lagrange multipliers we estimate the lagrange multipliers for the norm constraint by approximating $\nabla R_{\lambda}(V)=0$. The alternative would have been to solve the linear system for all the lagrange multipliers at once but this runs into numerical issues and degeneracies.

Figure 2: $\mathrm{N}=100 \mathrm{p}=0.1$ SDP vs Opt-GNN Dual Certificate

Certificate Experiment: We run our certification procedure which we name Opt-GNN-cert and compare it to the SDP certificate. Note, that mathematically we will always produce a larger (i.e inferior) dual certificate in comparison to the SDP because we are bounding the distance to the SDP optimum with error in the gradients and hessians of the output embeddings of OptGNN. Our advantage is in the speed of the procedure. Without having to go through a primal dual solver, the entire time of producing Opt-GNN-cert is in the time required to feedforward through Opt-GNN. In this case we train an Opt-GNN-MaxCut with 10 layers, on 1000 Erdos-Renyi graphs, with $N=100$ nodes and edge density $p=0.1$. We plot the Opt-GNN Max Cut value (an actual integer cut) on the x -axis and in the y -axis we plot the dual certificate value on the same graph where we compare the SDP certificate with the Opt-GNN-cert. See 1 for the $N=50$ graphs and 2 for the $N=100$ graphs.

Note of course the dual certificate for any technique must be larger than the cut value outputted by Opt-GNN so the scatter plot must be above the $x=y$ axis of the plot. We see as is mathematically necessary, the Opt-GNN-cert is not as tight as the SDP certificate but certainly competitive and more importantly it is arrived at dramatically faster. Without any attempt at optimizing the runtime, the Opt-GNN feedforward and certification takes no more than 0.02 seconds whereas the SDP takes 0.5 seconds on $N=100$ node graphs.

B. 2 Miscellaneous Lemmas

Theorem B. 2 (perturbed-gd Jin et al. (2017)). Let f be ℓ-smooth (that is, it's gradient is ℓ-Lipschitz) and have a γ-Lipschitz Hessian. There exists an absolute constant $c_{\max }$ such that for any $\delta \in$ $(0,1), \epsilon \leq \frac{\ell^{2}}{\gamma}, \Delta_{f} \geq f\left(X_{0}\right)-f^{*}$, and constant $c \leq c_{\text {max }}, P G D\left(X_{0}, \ell, \gamma, \epsilon, c, \delta, \Delta_{f}\right)$ applied to the cost fucntion f outputs $a\left(\gamma^{2}, \epsilon\right)$ SOSP with probability at least $1-\delta$ in

$$
O\left(\frac{\left(f\left(X_{0}\right)-f^{*}\right) \ell}{\epsilon^{2}} \log ^{4}\left(\frac{n k \ell \Delta_{f}}{\epsilon^{2} \delta}\right)\right)
$$

iterations.
Definition. [(γ, ϵ)-second order stationary point] A (γ, ϵ) second order stationary point of a function f is a point x satisfying

$$
\|\nabla f(x)\| \leq \epsilon
$$

$$
\lambda_{\min }\left(\nabla^{2} f(x)\right) \geq-\sqrt{\gamma \epsilon}
$$

Theorem B.3. (Robustness Theorem 4.6 (Raghavendra \& Steurer 2009) rephrased) Let \boldsymbol{v} be a set of vectors satisfying the constraints of $S D P / \overline{1}$ to additive error ϵ with objective $O B J(\boldsymbol{v})$, then

$$
O B J S D P(\Lambda) \geq O B J(\boldsymbol{v})-\sqrt{\epsilon} \operatorname{poly}(k q)
$$

Corollary 3. Given a Max-k-CSP instance Λ, there is an $\operatorname{OptGNN}_{\left(T, r, G_{\Lambda}\right)}(\mathbf{v})$ with $T=$ $\operatorname{poly}\left(\delta^{-1}, \epsilon^{-1},|\mathcal{P}| q^{k}\right)$ layers, $r=|\mathcal{P}| q^{k}$ dimensional embeddings, with learnable parameters $\left\{M_{1, t}\right\}_{t \in[T]}$ and $\left\{M_{2, t}\right\}_{t \in[T]}$ that outputs a set of vectors \mathbf{v} satisfying the constraints of SDP 1 and approximating its objective, $O B J S D P(\Lambda)$, to error ϵ with probability $1-\delta$.

Proof. The proof is by inspecting the definition of OptGNN in the context of Theorem 3.1
Corollary 4. The OptGNN of Corollary 3, which by construction is equivalent to Algorithm 1 , outputs a set of embeddings \mathbf{v} such that the rounding of Raghavendra \& Steurer (2009) outputs an integral assignment \mathcal{V} with a Max-k-CSP objective $\operatorname{OBJ}(\mathcal{V})$ satisfying $O B J(\mathcal{V}) \geq S_{\Lambda}(O B J S D P(\Lambda)-\epsilon)-\epsilon$ in time $\exp \left(\exp \left(\operatorname{poly}\left(\frac{k q}{\epsilon}\right)\right)\right)$ which approximately dominates the Unique Games optimal approximation ratio.

Proof. The proof follows from the robustness theorem of Raghavendra \& Steurer (2009) which states that any solution to the SDP that satisfies the constraints approximately does not change the objective substantially Theorem B. 3 .

C Experiments

C. 1 Methods

Datasets Our experiments span a variety of randomly generated and real-world datasets. Our randomly generated datasets contain graphs from several random graph models, in particular ErdősRényi (with $p=0.15$), Barabási-Albert (with $m=4$), Holme-Kim (with $m=4$ and $p=0.25$), and Watts-Strogatz (with $k=4$ and $p=0.25$). Our real-world datasets are ENZYMES, PROTEINS, MUTAG, IMDB-BINARY, COLLAB (which we will together call TU-small), and REDDIT-BINARY, REDDIT-MULTI-5K, and REDDIT-MULTI-12K (which we will call TU-REDDIT).
We abbreviate the generated datasets using their initials and the range of vertex counts. For example, by ER $(50,100)$ we denote Erdős-Rényi random graphs with a vertex count drawn uniformly at random from [50, 100]. In tables, we mark generated datasets with superscript ${ }^{\text {a }}, \mathbf{T U}$-small with ${ }^{\text {b }}$, and TU-REDDIT with ${ }^{\mathrm{c}}$.

Baselines We compare the performance of our approach against classical and neural baselines. In terms of classical baselines, we run Gurobi with varying timeouts and include SDP results on smaller datasets. SDP scales extremely poorly with graph size so we omit the results for datasets with larger graphs. For minimum Vertex Cover, we include the classical baseline KaMIS, a maximum independent set solver. We also include a greedy baseline, which is the function one_exchange (for Maximum Cut) or min_weighted_vertex_cover (for minimum Vertex Cover) from networkx (Hagberg et al., 2008). Our neural baselines include LwD (Ahn et al. 2020) and Dgl-TreeSearch (Li et al., 2018; Böther et al., 2022).

Validation and test splits For each dataset we hold out a validation and test slice for evaluation. In our generated graph experiments we set aside 1000 graphs each for validation and testing. Each step of training ran on randomly generated graphs. For TU-small, we used a train/validation/test split of 0.8/0.1/0.1. For TU-REDDIT, we set aside 100 graphs each for validation and testing.

Scoring To measure a model's score on a graph, we first run the model on the graph to generate an SDP output, and then round this output to an integral solution using 1,000 random hyperplanes. We ran validation periodically during each training run and retained the model that achieved the highest validation score. Then for each model and dataset, we selected the hyperparameter setting that achieved the highest validation score, and we report the average score measured on the test slice. Please see subsection C. 5 for further details on the hyperparameter ranges used.

Dataset	OptGNN	Greedy	Gurobi $0.1 \mathrm{~s}$	1.0s	8.0s
$\mathrm{BA}^{\text {a }}(50,100)$	351.49 (18)	200.10	351.87	352.12	352.12
$\mathrm{BA}^{\text {a }}(100,200)$	717.19 (20)	407.98	719.41	719.72	720.17
$\mathrm{BA}^{\mathrm{a}}(400,500)$	2197.99 (66)	1255.22	2208.11	2208.11	2212.49
ER ${ }^{\text {a }}$ (50,100)	528.95 (18)	298.55	529.93	530.03	530.16
$\mathrm{ER}^{\text {a }}(100,200)$	1995.05 (24)	1097.26	2002.88	2002.88	2002.93
$\mathrm{ER}^{\text {a }}(400,500)$	16387.46 (225)	8622.34	16476.72	16491.60	16495.31
$\mathrm{HK}^{\text {a }}$ (50,100)	345.74 (18)	196.23	346.18	346.42	346.42
$\mathrm{HK}^{\text {a }}(100,200)$	709.39 (23)	402.54	711.68	712.26	712.88
$\mathrm{HK}^{\text {a }}(400,500)$	2159.90 (61)	1230.98	2169.46	2169.46	2173.88
$\mathrm{WC}^{\text {a }}(50,100)$	198.29 (18)	116.65	198.74	198.74	198.74
WC ${ }^{\text {a }}$ (100,200)	389.83 (24)	229.43	390.96	392.07	392.07
WC ${ }^{\text {a }}(400,500)$	1166.47 (78)	690.19	1173.45	1175.97	1179.86
MUTAG ${ }^{\text {b }}$	27.95 (9)	16.95	27.95	27.95	27.95
ENZYMES ${ }^{\text {b }}$	81.37 (14)	48.53	81.45	81.45	81.45
PROTEINS ${ }^{\text {b }}$	102.15 (12)	60.74	102.28	102.36	102.36
IMDB-BIN ${ }^{\text {b }}$	97.47 (11)	51.85	97.50	97.50	97.50
COLLAB ${ }^{\text {b }}$	2622.41 (22)	1345.70	2624.32	2624.57	2624.62
REDDIT-BIN ${ }^{\text {c }}$	693.33 (186)	439.79	693.02	694.10	694.14
REDDIT-M-12 ${ }^{\text {c }}$	568.00 (89)	358.40	567.71	568.91	568.94
REDDIT-M-5K ${ }^{\text {c }}$	786.09 (133)	495.02	785.44	787.48	787.92

Table 1: Performance of OptGNN, Greedy, and Gurobi 0.1 s , 1 s , and 8 s on Maximum Cut. For each approach and dataset, we report the average cut size measured on the test slice. Here, higher score is better. In parentheses, we include the average runtime in milliseconds for OptGNN.

Dataset	OptGNN	Greedy	Gurobi 0.1 s	1.0s	8.0s
$\mathrm{BA}^{\text {a }}(50,100)$	42.88 (27)	51.92	42.82	42.82	42.82
$B^{\text {a }}$ (100,200)	83.43 (25)	101.42	83.19	83.19	83.19
$\mathrm{BA}^{\text {a }}(400,500)$	248.74 (27)	302.53	256.33	246.49	246.46
$\mathrm{ER}^{\text {a }}(50,100)$	55.25 (21)	68.85	55.06	54.67	54.67
$E R^{\text {a }}$ (100,200)	126.52 (18)	143.51	127.83	123.47	122.76
$\mathrm{ER}^{\text {a }}(400,500)$	420.70 (41)	442.84	423.07	423.07	415.52
$\mathrm{HK}^{\text {a }}(50,100)$	43.06 (25)	51.38	42.98	42.98	42.98
$\mathrm{HK}^{\text {a }}(100,200)$	84.38 (25)	100.87	84.07	84.07	84.07
$\mathrm{HK}^{\text {a }}(400,500)$	249.26 (27)	298.98	247.90	247.57	247.57
WC ${ }^{\text {a }}(50,100)$	46.38 (26)	72.55	45.74	45.74	45.74
WC ${ }^{\text {a }}$ (100,200)	91.28 (21)	143.70	89.80	89.80	89.80
WC ${ }^{\text {a }}(400,500)$	274.21 (31)	434.52	269.58	269.39	269.39
MUTAG ${ }^{\text {b }}$	7.79 (18)	12.84	7.74	7.74	7.74
ENZYMES ${ }^{\text {b }}$	20.00 (24)	27.35	20.00	20.00	20.00
PROTEINS ${ }^{\text {b }}$	25.29 (18)	33.93	24.96	24.96	24.96
IMDB-BIN ${ }^{\text {b }}$	16.78 (18)	17.24	16.76	16.76	16.76
COLLAB ${ }^{\text {b }}$	67.50 (23)	71.74	67.47	67.46	67.46
REDDIT-BIN ${ }^{\text {c }}$	82.85 (38)	117.16	82.81	82.81	82.81
REDDIT-M-12 ${ }^{\text {c }}$	81.55 (25)	115.72	81.57	81.52	81.52
REDDIT-M-5K ${ }^{\text {c }}$	107.36 (33)	153.24	108.73	107.32	107.32

Table 2: Performance of OptGNN, Greedy, and Gurobi $0.1 \mathrm{~s}, 1 \mathrm{~s}$, and 8 s on Minimum Vertex Cover. For each approach and dataset, we report the average Vertex Cover size measured on the test slice. Here, lower score is better. In parentheses, we include the average runtime in milliseconds for OptGNN.

C. 2 Performance

Table 1 presents the average integral cut value achieved by OptGNN and classical baselines on a variety of datasets. We note that Greedy achieves poor performance compared to OptGNN and Gurobi on every dataset, indicating that for these datasets, finding Maximum Cut is not trivial. On the worst case, WS $(400,500)$, OptGNN achieves a cut value within 1.1% on average of Gurobi with an 8 s time limit. On other datasets, OptGNN is typically within a fraction of a percent. Notably, OptGNN is within 0.1% of Gurobi 8s on all the TU datasets.

Table 2 presents the average size of the Vertex Cover achieved by OptGNN and classical baselines on our datasets. For this problem OptGNN also performs nearly as well as Gurobi 8s, remaining within 1% on the TU datasets and 3.1% on the worst case, ER $(100,200)$.

Dataset	GAT	GCNN	GIN	GatedGCNN	OptGNN
ER $^{\text {a }}(50,100)$	$525.92(25)$	$500.94(17)$	$498.82(14)$	$526.78(14)$	$\mathbf{5 2 8 . 9 5}(18)$
ER $^{\mathrm{a}}(100,200)$	$1979.45(20)$	$1890.10(26)$	$1893.23(23)$	$1978.78(21)$	$\mathbf{1 9 9 5 . 0 5}(24)$
ER $^{\mathrm{a}}(400,500)$	$16317.69(208)$	$15692.12(233)$	$15818.42(212)$	$16188.85(210)$	$\mathbf{1 6 3 8 7 . 4 6}(225)$
MUTAG $^{\text {b }}$	$27.84(19)$	$27.11(12)$	$27.16(13)$	$\mathbf{2 7 . 9 5}(14)$	$\mathbf{2 7 . 9 5}(9)$
ENZYMES $^{\text {b }}$	$80.73(17)$	$74.03(12)$	$73.85(16)$	$81.35(9)$	$\mathbf{8 1 . 3 7}(14)$
PROTEINS $^{\text {b }}$	$100.94(14)$	$92.01(19)$	$92.62(17)$	$101.68(10)$	$\mathbf{1 0 2 . 1 5}(12)$
IMDB-BIN $^{\mathrm{b}}$	$81.89(18)$	$70.56(21)$	$81.50(10)$	$97.11(9)$	$\mathbf{9 7 . 4 7}(11)$
COLLAB $^{\mathrm{b}}$	$2611.83(22)$	$2109.81(21)$	$2430.20(23)$	$2318.19(18)$	$\mathbf{2 6 2 2 . 4 1}(22)$

Table 3: Performance of various model architectures for selected datasets on Maximum Cut. Here, higher is better. GAT is the Graph Attention network (Veličković et al., 2018)
, GIN is the Graph Isomorphism Network (Xu et al. 2019), GCNN is the Graph Convolutional Neural Network (Morris et al. 2019), and GatedGCNN is the gated version (Li et al. 2015).

C. 3 Ablation

Our approach of training on the SDP objective generalizes to neural network architectures other than OptGNN. We trained several architectures besides OptGNN on a subset of our datasets for both maximum cut and minimum vertex cover. We present the comparison of their performance to OptGNN for maximum cut in Table 3, please see subsection C. 7 for the analogous table for minimum vertex cover. On the datasets we used, OptGNN outperforms the other architectures we tested. We note that compared to OptGNN, many other models performed fairly well; for instance, GatedGCNN achieves average cut values within a few percent of OptGNN on nearly all the datasets (excluding COLLAB). An interesting question for future investigation is what architectures may perform better than OptGNN.

C. 4 Hardware

Our training runs used 20 cores of an Intel Xeon Gold 6248 (for data loading and random graph generation) and a NVIDIA Tesla V100 GPU. Our Gurobi runs use 8 threads on a Intel Xeon Platinum 8260. Our KaMIS runs use an Intel Core i9-13900H. Our LwD and Dgl-TreeSearch runs use an Intel Core i9-13900H and an RTX 4060.

Parameter	Generated	TU-small	TU-REDDIT
Gradient steps	20,000	100,000	100,000
Validation freq	1,000	1,000	2,000
Batch size	16	16	16
Ranks	$4,8,16,32$	$4,8,16,32$	$4,8,16,32$
Layer counts	8,16	8,16	8,16
Positional encodings	RW	LE, RW	RW
Run count	8	16	8

Table 4: Hyperparameter range explored for each group of datasets. For each NN architecture, when training on a dataset, we explored every listed hyperparameter combination in the corresponding column.

C. 5 Hyperparameters

We ran each experiment on a range of hyperparameters. See Table 4for the hyperparameter listing. For all training runs, we used the Adam optimizer Kingma \& Ba (2014) with a learning rate of 0.001. We used Laplacian eigenvector Dwivedi et al. (2020) (LE) or random walk Dwivedi et al. (2021) (RW) positional encoding with dimensionality of half the rank, except for rank 32 where we used 8 dimensions.

Dataset	OptGNN
BA $^{\mathrm{a}}(50,100)$	0.998 ± 0.002
BA $^{\mathrm{a}}(100,200)$	0.996 ± 0.003
BA $^{\mathrm{a}}(400,500)$	0.993 ± 0.003
ER $^{\mathrm{a}}(50,100)$	0.998 ± 0.002
ER $^{\mathrm{a}}(100,200)$	0.996 ± 0.002
ER $^{\mathrm{a}}(400,500)$	0.993 ± 0.001
HK $^{\mathrm{a}}(50,100)$	0.998 ± 0.002
HK $^{\mathrm{a}}(100,200)$	0.995 ± 0.003
HK $^{\mathrm{a}}(400,500)$	0.994 ± 0.003
WC $^{\mathrm{a}}(50,100)$	0.998 ± 0.003
WC $^{\mathrm{a}}(100,200)$	0.995 ± 0.003
WC $^{\mathrm{a}}(400,500)$	0.989 ± 0.003
MUTAG $^{\mathrm{b}}$	1.000 ± 0.000
ENZYMES $^{\mathrm{b}}$	0.999 ± 0.003
PROTEINS $^{\mathrm{b}}$	1.000 ± 0.002
IMDB-BIN $^{\mathrm{b}}$	1.000 ± 0.001
COLLAB $^{\mathrm{b}}$	0.999 ± 0.002
REDDIT-BIN $^{\mathrm{c}}$	1.000 ± 0.001
REDDIT-M-12K $^{\mathrm{c}}$	0.999 ± 0.002
REDDIT-M-5K	0.999 ± 0.002

Dataset	OptGNN
BA $^{\mathrm{a}}(50,100)$	1.001 ± 0.005
BA $^{\mathrm{a}}(100,200)$	1.003 ± 0.005
BA $^{\mathrm{a}}(400,500)$	1.008 ± 0.011
ER $^{\mathrm{a}}(50,100)$	1.010 ± 0.015
ER $^{\mathrm{a}}$ (100,200)	1.031 ± 0.012
ER $^{\mathrm{a}}(400,500)$	1.013 ± 0.006
HK $^{\mathrm{a}}(50,100)$	1.002 ± 0.007
HK $^{\mathrm{a}}(100,200)$	1.004 ± 0.013
HK $^{\mathrm{a}}(400,500)$	1.007 ± 0.011
WC $^{\mathrm{a}}(50,100)$	1.014 ± 0.016
WC $^{\mathrm{a}}(100,200)$	1.016 ± 0.013
WC $^{\mathrm{a}}(400,500)$	1.018 ± 0.007
MUTAG $^{\mathrm{b}}$	1.009 ± 0.027
ENZYMES $^{\mathrm{b}}$	1.000 ± 0.000
PROTEINS $^{\mathrm{b}}$	1.010 ± 0.021
IMDB-BIN $^{\mathrm{b}}$	1.002 ± 0.016
COLLAB	

Table 5: Performance of OptGNN compared to Gurobi running under an 8 second time limit, expressed as a ratio. For each dataset, we take the ratio of the integral values achieved by OptGNN and Gurobi 8s on each of the graphs in the test slice. We present the average and standard deviation of these ratios. Here, higher is better. This table demonstrates that OptGNN achieves nearly the same performance, missing on average 1.1% of the cut value in the worst measured case.

Table 6: Performance of OptGNN compared to Gurobi running under an 8 second time limit, expressed as a ratio. For each dataset, we take the ratio of the integral values achieved by OptGNN and Gurobi 8s on each of the graphs in the test slice. We present the average and standard deviation of these ratios. Here, lower is better. This table demonstrates that OptGNN achieves nearly the same performance, producing a cover on average 3.1% larger than Gurobi 8s in the worst measured case.

In Table 5 and Table 6 we supply the performance of OptGNN as a ratio against the integral value achieved by Gurobi running with a time limit of 8 seconds. These tables include the standard deviation in the ratio. We note that for Maximum Cut, OptGNN comes within 1.1% of the Gurobi 8 s value, and for minimum Vertex Cover, OptGNN comes within 3.1\%.

Dataset	GAT	GCNN	GIN	GatedGCNN	OptGNN
ER $^{\mathrm{a}}(50,100)$	$58.78(20)$	$64.42(23)$	$64.18(20)$	$56.17(14)$	$\mathbf{5 5 . 2 5}(21)$
ER $^{\mathrm{a}}(100,200)$	$129.47(20)$	$141.94(17)$	$140.06(20)$	$130.32(20)$	$\mathbf{1 2 6 . 5 2}(18)$
ER $^{\mathrm{a}}(400,500)$	$443.93(43)$	$444.12(33)$	$442.11(31)$	$440.90(28)$	$\mathbf{4 2 0 . 7 0}(41)$
MUTAG $^{\mathrm{b}}$	$\mathbf{7 . 7 9}(19)$	$8.11(16)$	$7.95(20)$	$\mathbf{7 . 7 9}(17)$	$\mathbf{7 . 7 9}(18)$
ENZYMES $^{\mathrm{b}}$	$21.93(24)$	$25.42(18)$	$25.80(28)$	$20.28(14)$	$\mathbf{2 0 . 0 0}(24)$
PROTEINS $^{\mathrm{b}}$	$28.19(23)$	$31.07(19)$	$32.28(21)$	$\mathbf{2 5 . 2 5}(19)$	$25.29(18)$
IMDB-BIN $^{\mathrm{b}}$	$17.62(21)$	$19.22(19)$	$19.03(23)$	$16.79(15)$	$\mathbf{1 6 . 7 8}(18)$
COLLAB $^{\mathrm{b}}$	$68.23(23)$	$73.32(17)$	$73.82(26)$	$72.92(13)$	$\mathbf{6 7 . 5 0}(23)$

Table 7: Performance of various model architectures compared to OptGNN for selected datasets on Minimum Vertex Cover. Here, lower is better.

C. 7 Vertex cover alternative architectures

Table 7 presents the performance of alternative neural network architectures on minimum vertex cover.
C. 8 Effects of hyperparameters on performance

Figure 3, Figure 4, Figure 5, and Figure 6 present overall trends in model performance across hyperparameters.

Train Dataset	MUTAG	ENZYMES	PROTEINS	IMDB-BIN	COLLAB
BA (50,100)	7.74	20.12	27.66	17.57	74.15
BA (100,200)	7.74	20.35	26.03	16.86	69.29
BA (400,500)	8.05	21.00	26.54	17.34	70.17
ER (50,100)	7.74	20.37	28.17	16.86	69.07
ER (100,200)	8.05	21.52	27.72	16.89	68.83
ER (400,500)	7.79	21.55	28.60	16.78	68.74
HK (50,100)	7.74	20.42	25.60	17.05	69.17
HK (100,200)	7.84	20.43	27.30	17.01	70.20
HK (400,500)	7.95	20.63	26.30	17.15	69.91
WC (50,100)	7.89	$\mathbf{2 0 . 1 3}$	25.46	17.38	70.14
WC (100,200)	7.79	20.30	25.45	17.91	71.16
WC (400,500)	8.05	20.48	25.79	17.12	70.16
MUTAG	7.74	20.83	26.76	16.92	70.09
ENZYMES	7.74	20.60	28.29	16.79	68.40
PROTEINS	7.89	20.22	$\mathbf{2 5 . 2 9}$	16.77	70.26
IMDB-BIN	7.95	20.97	27.06	$\mathbf{1 6 . 7 6}$	68.03
COLLAB	7.89	20.35	26.13	$\mathbf{1 6 . 7 6}$	$\mathbf{6 7 . 5 2}$

Table 8: Models for Vertex Cover trained on "dataset" were tested on a selection of the TU datasets (ENZYMES, PROTEINS, MUTAG, IMDB-BINARY, and COLLAB). We observe that the performance of the models generalizes well even when they are taken out of their training context.

Figure 3: Trends in model performance with respect to the number of layers, hidden size, and positional encoding of the models.

C. 9 Generalizability

Models trained on one dataset work quite well on other datasets, suggesting that models have good ability to generalize to examples outside their training distribution. Please see Table 8

Figure 4: Trends in model performance with respect to the number of layers, hidden size, and positional encoding of the models.

Figure 5: Trends in model performance with respect to the number of layers, hidden size, and positional encoding of the models.

Figure 6: Trends in model performance with respect to the number of layers, hidden size, and positional encoding of the models.

