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Abstract

In this work we design graph neural network architectures that capture optimal1

approximation algorithms for a large class of combinatorial optimization problems2

using powerful algorithmic tools from semidefinite programming (SDP). Con-3

cretely, we prove that polynomial-sized message passing algorithms can represent4

the most powerful polynomial time algorithms for Max Constraint Satisfaction5

Problems assuming the Unique Games Conjecture. We leverage this result to6

construct an efficient graph neural network architecture called OptGNN, that ob-7

tains high-quality approximate solutions on landmark combinatorial optimization8

problems such as Max Cut and Minimum Vertex Cover. Finally, we take advantage9

of OptGNN’s ability to capture convex relaxations to design an algorithm for10

producing dual certificates of optimality (bounds on the optimal solution) from the11

learned embeddings of OptGNN.12

1 Introduction13

The emerging field at the intersection of machine learning (ML) and combinatorial optimization (CO)14

has led to novel algorithms with promising empirical results for several CO problems. However,15

similar to classical approaches to CO, ML pipelines have to manage a tradeoff between efficiency16

and optimality. Indeed, prominent works in this line of research forego optimality and focus on17

efficiently obtaining solutions by parametrizing heuristics (Li et al., 2018; Khalil et al., 2017; Yolcu18

& Póczos, 2019; Chen & Tian, 2019) or by employing specialized models (Zhang et al., 2023; Nazari19

et al., 2018; Toenshoff et al., 2019; Xu et al., 2021; Min et al., 2022) and task-specific loss functions20

(Amizadeh et al., 2018; Karalias & Loukas, 2020; Wang et al., 2022; Karalias et al., 2022; Sun21

et al., 2022). On the other hand, most prominent exact ML solvers that can guarantee optimality22

often leverage general techniques like branch and bound (Gasse et al., 2019; Paulus et al., 2022)23

and constraint programming (Parjadis et al., 2021; Cappart et al., 2019), which offer the additional24

benefit of providing approximate solutions together with a bound on the distance to the optimal25

solution. Unfortunately, securing solution quality guarantees with those methods comes at the cost of26

exponential worst-case time complexity. This leads us to the central question that our work aims to27

answer:28

Can we design neural architectures for general combinatorial optimization that can efficiently29

learn to adapt to a data distribution over instances yet capture algorithms with optimal worst-case30

approximation guarantees?31

To answer this question, we build on the extensive literature on approximation algorithms and32

semidefinite programming. Convex relaxations of CO problems via semidefinite programming are the33

fundamental building block for breakthrough results in the design of efficient algorithms for NP-Hard34

combinatorial problems (e.g., Goemans & Williamson (1995) and Lovász (1979); Grötschel et al.35

(1981)). In fact, it is known that if the Unique Games Conjecture is true, then the approximation36
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guarantees obtained through a general SDP-based algorithm are indeed the best that can be achieved37

for several important problems (Raghavendra, 2008; Barak & Steurer, 2014). We will leverage these38

results to provide an affirmative answer to our question. By designing neural network architectures39

that capture this optimal algorithm for the large class of maximum constraint satisfaction problems.40

2 Solving CO problems with message passing41

To motivate our approach to optimal architecture design and build intuition for our main result, it will42

be instructive to look at the canonical CO example of finding the maximum cut in a graph. Given a43

graph G = (V,E) with vertices V , |V | = N and edge set E, in the Max Cut problem we are looking44

to find a set of nodes in G that maximize the number of edges with exactly one endpoint in that45

set. Formally, this means solving the following nonconvex quadratic integer program over variables46

x = (x1, x2, ..., xN ).47

max
x

∑
(i,j)∈E

1
2 (1− xixj) (1)

subject to: x2i = 1 ∀i ∈ [N ]

A typical approach to solving nonconvex optimization problems is to employ a continuous relaxation.48

We can solve the following (non-convex) vector optimization problem where we replace variables xi49

with vectors vi ∈ Rr,50

min
v1,v2,...,vN

−
∑

(i,j)∈E

1
2 (1− ⟨vi, vj⟩) (2)

subject to: ∥vi∥ = 1 ∀i ∈ [N ].

Solving for r = N is equivalent to solving a semidefinite program (SDP) (Boyd & Vandenberghe,51

2004). For r = Ω(
√
N) the global optimum of this optimization is equivalent to the standard SDP52

optimum with no rank constraint Barvinok (1995) Pataki (1998). Burer & Monteiro (2003) proposed53

a fast iterative algorithm for descending this loss. The landscape of this nonconvex optimization is54

benign in that all local minima are approximately global minima Ge et al. (2016) and variations on55

stochastic gradient descent converge to its optimum Bhojanapalli et al. (2018)Jin et al. (2017) under a56

variety of smoothness and compactness assumptions.57

In iteration t (and for T iterations), projected gradient descent updates vector vi in v as58

v̂i
t+1 = vti − η

∑
j∈N(i)

vtj (3)

vt+1
i =

v̂i
t+1

∥v̂it+1∥
, (4)

where η ∈ R+ is an adjustable step size and we let N(i) denote the neighborhood of node i. The59

gradient updates to the vectors are local, i.e., each vector is updated by aggregating information from60

its neighboring vectors, so we can interpret this projected gradient iteration as a message-passing61

iteration.62

2.1 An overparametrized message passing algorithm for CO63

Our approach can be viewed as a generalized version of the gradient descent updates in equations64

3 and 4. Let {M1,t}t∈[T ] ∈ Rr×r and {M2,t}t∈[T ] ∈ Rr×r each be sets of T learnable matrices65

corresponding to T layers of a neural network. Then for layer t in max iterations T , for embedding66

vi in v, we define the following iterative procedure67

v̂i
t+1 :=M1,tv

t
i −M2,t

∑
j∈N(i)

vtj + bt (5)

vt+1
i :=

v̂i
t+1

∥v̂it+1∥
, (6)
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where {bt}t∈[T ] is a learnable affine shift. More generally, we can write our dynamics as68

v̂i
t+1 := UPDATE(M1,tv

t
i ,AGGREGATE(M2,t, {vtj}j∈N(i)), bt) (7)

vt+1
i := NONLINEAR(v̂it+1), (8)

for efficiently computable functions UPDATE : R3r → Rr and AGGREGATE : Rr×r ×Rr|N(i)| →69

Rr and NONLINEAR : Rr → Rr. This approach can be generalized to several problems (see70

appendix A for Vertex Cover and Max Clique examples).71

3 Designing optimal neural network architectures72

Our main contribution is to utilize the approach presented in the previous section in order to create73

optimal approximation algorithms for several combinatorial optimization problems. Our result74

focuses on an important class of CO problems called maximum constraint satisfaction problems75

(max-CSPs).76

Given a set of constraints over variables, Max-CSP asks to find a variable assignment that maximizes77

the number of satisfied constraints. Max-CSP includes Max Cut, boolean satisfiability, etc. Formally,78

a constraint satisfaction problem Λ = (V,P, q) consists of a set of N variables V := {xi}i∈[N ] each79

taking values in an alphabet [q] and a set of predicates P := {Pz}z⊂V where each predicate is a80

payoff function over k variables denoted Xz = {xi1 , xi2 , ..., xik}. Here we refer to k as the arity81

of the Max-k-CSP. We adopt the normalization that each predicate Pz returns outputs in [0, 1]. We82

index each predicate Pz by its domain z. The goal of Max-k-CSP is to maximize the payoff of the83

predicates.84

OPT := max
(x1,...,xN )∈[q]N

1

|P|
∑

Pz∈P
Pz(Xz), (9)

where we normalize by the number of constraints so that the total payoff is in [0, 1]. Therefore we can85

unambiguously define an ϵ-approximate assignment as an assignment achieving a payoff of OPT − ϵ.86

In order to arrive at our main result we will need the concept of a constraint graph. Formally, given87

a Max-k-CSP instance Λ = (V,P, q) a constraint graph GΛ = (V,E) is comprised of vertices88

V = {vϕ,ζ} for every subset of variables ϕ ⊆ z for every predicate Pz ∈ P and every assignment89

ζ ∈ [q]k to the variables in z. The edges E are between any pair of vectors vϕ,ζ and vϕ′,ζ′ such that90

the variables in ϕ and ϕ′ appear in a predicate together.91

3.1 A message passing algorithm for constraint satisfaction problems92

The first important component for our result is SDP 1 which is a reformulation of the SDP presented93

in Raghavendra (2008). Assuming the UGC, this achieves the optimal integrality gap for Max-k-CSP.94

For Max-k-CSP we define the approximation ratio to be95

Approximation Ratio := min
Λ∈Max-k-CSP

OPT (Λ)

SDP (Λ)
,

where the minimization is being taken over all instances Λ with arity k. The approximation ratio is96

always smaller than one. Similarly the integrality gap is defined to be the inverse of the approximation97

ratio and is always greater than one. There is no polynomial time algorithm that can achieve a superior98

(larger) approximation ratio assuming the truth of the conjecture. Furthermore, there is a polynomial99

time rounding algorithm (Raghavendra & Steurer, 2009) that achieves the integrality gap of the SDP100

of (Raghavendra, 2008) and therefore outputs an integral solution with the optimal approximation101

ratio. Our main theoretical result is a polynomial time message passing algorithm that solves the102

Unique Games optimal SDP, i.e., for SDP 1 we can show the following.103

Theorem 3.1. (Informal) Given a Max-k-CSP instance Λ, there exists a message passing Algo-104

rithm 1 on constraint graph GΛ with a per iteration update time of poly(|P|, qk) that computes in105

poly( 1ϵ , |P|, q
k, log(δ−1)) iterations an ϵ-approximate solution to SDP 1 with probability 1− δ. That106

is to say, Algorithm 1 computes a set of vectors v satisfying constraints of SDP 1 to error ϵ with107

objective value denoted OBJ(v) satisfying |OBJ(v)− SDP (Λ)| ≤ ϵ.108

For the formal theorem and proof see Theorem B.1. Our algorithm is remarkably simple: perform109

gradient descent on the quadratically penalized objective of the reformulated SDP 1. Similar to the110
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Max Cut example in equations 3 and equation 4, we observe that the gradient takes the form of a111

message passing algorithm. The updates on each vector only depend on the vectors appearing in112

the same predicates. This message-passing form allows us to define a natural GNN generalization113

(OptGNN) that captures the gradient iteration of Algorithm 1.114

3.2 OptGNN: An optimal graph neural network115

Definition (OptGNN). Given a Max-k-CSP instance Λ, an OptGNN(T,r,GΛ)(v) is a T layer, dimen-116

sion r, neural network over constraint graph GΛ with learnable matrices {M1,t}t∈[T ], {M2,t}t∈[T ],117

and affine shift {bt}t∈[T ] that generalizes the gradient iteration equation 31 of Algorithm 1 with an118

embedding v ∈ v for every node in GΛ with updates of the form119

vt+1
w = UPDATE(M1,tv

t
w,AGGREGATE(M2,t, {vtj}j∈N(w), v

t
w), bt)

120

vt+1
w = NONLINEAR(vt+1

w )

For arbitrary polynomial time computable functions UPDATE : R3r → Rr, AGGREGATE : Rr×r×121

Rr(|N(w)|+1) → Rr, and NONLINEAR : Rr → Rr. Here by ’generalize’ we mean there exists122

an instantiation of the learnable parameters {M1,t}t∈[T ] and {M2,t}t∈[T ] such that OptGNN is123

equivalent to equation 31.124

Corollary 1. Given a Max-k-CSP instance Λ, there is an OptGNN(T,r,GΛ)(v) with T =125

poly(δ−1, ϵ−1, |P|qk) layers, r = |P|qk dimensional embeddings, with learnable parameters126

{M1,t}t∈[T ] and {M2,t}t∈[T ] that outputs a set of vectors v satisfying the constraints of SDP 1127

and approximating its objective, OBJSDP(Λ), to error ϵ with probability 1− δ.128

We can also conclude that the rounding of Raghavendra & Steurer (2009) achieves the integrality129

gap of SDP 1, and any OptGNN that approximates its solution. For completeness, we discuss the130

implications of the rounding. Let the integrality gap curve SΛ(c) be defined as131

SΛ(c) := inf
Λ∈Max-k-CSP
OBJSDP(Λ)=c

OPT (Λ),

which leads us to the following statement about rounding.132

Corollary 2. The OptGNN of Corollary 3 , which by construction is equivalent to Algorithm 1,133

outputs a set of embeddings v such that the rounding of Raghavendra & Steurer (2009) outputs an134

integral assignment V with a Max-k-CSP objective OBJ(V) satisfyingOBJ(V) ≥ SΛ(OBJSDP(Λ)−135

ϵ) − ϵ in time exp(exp(poly(kqϵ ))) which approximately dominates the Unique Games optimal136

approximation ratio.137

We defer the proofs of the corollaries to subsection B.2138

3.3 Certificates of optimality and experiments139

In Appendix B.1 we provide a neural certification scheme that produces optimality certificates based140

on the learned representations of the neural network. We show how to use the learned representations141

to compute a lower bound on the optimal solution of the primal SDP through the dual, which in turn142

can be used to bound the optimal solution. Our neural bounds closely track the bounds obtained143

by an SDP solver. Finally, we report the performance of the OptGNN approach on two NP-Hard144

combinatorial optimization problems, Maximum Cut and Minimum Vertex Cover on several datasets.145

The results as well as additional experiments and details about the experimental setup can be found146

in Appendix C.147

4 Conclusion148

We have presented OptGNN, a graph neural network architecture that can be shown to be optimal for149

several CO problems, assuming the Unique Games Conjecture. To the best of our knowledge, this is150

the first neural network approximation algorithm that achieves optimal approximation guarantees.151

Our hope is that this work draws attention to the interesting connections between representation152

learning and semidefinite programming, and inspires the development of new neural approximation153

algorithms that can flexibly adapt to real-world data.154
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A Vertex Cover and Max Clique260

Minimum Vertex Cover can be written as the following integer program261

min
x1,x2,...,xn

VertexCover(x) :=
∑
i∈[N ]

1 + xi
2

(10)

subject to: (1− xi)(1− xj) = 0 ∀(i, j) ∈ E (11)

x2i = 1 ∀i ∈ [N ] (12)

To deal with the constraint on the edges (1 − xi)(1 − xj) = 0, we add a quadratic penalty to the262

objective with a penalty parameter ρ > 0 yielding263

min
x1,x2,...,xn

VertexCover(x) :=
∑
i∈[N ]

1 + xi
2

+ ρ
∑

(i,j)∈E

(1− xi − xj + xixj)
2 (13)

subject to: x2i = 1 ∀i ∈ [N ] (14)

Analogously to Max Cut, we introduce a natural low rank vector formulation LiftVertexCoverr(v)264

for vectors v = {vi}i∈[N ] in r dimensions.265

min
v1,v2,...,vn

LiftVertexCoverr(v) :=
∑
i∈[N ]

1 + ⟨vi, e1⟩
2

+ ρ
∑

(i,j)∈E

(1− ⟨vi, e1⟩ − ⟨vj , e1⟩+ ⟨vi, vj⟩)2

(15)
subject to: ∥vi∥ = 1 vi ∈ Rr ∀i ∈ [N ] (16)

Now we can design a simple projected gradient descent scheme as follows. For iteration t in max266

iterations T , and for vector vi in v we perform the following update.267

v̂i
t+1 := vti − η

(
e1 + 2ρ

∑
j∈N(i)

(1− ⟨vti , e1⟩ − ⟨vtj , e1⟩+ ⟨vti , vtj⟩)(−e1 + vtj)
)

(17)

268

vt+1
i :=

v̂t+1
i

∥v̂t+1
i ∥

(18)

We can then define a OptGNN-VertexCoverr(v) analogously with learnable matrices {M1,t}t∈[T ] ∈269

Rr×r and {M2,t}t∈[T ] ∈ Rr×r which are each sets of T learnable matrices corresponding to T layers270

of neural network. Then for layer t in max iterations T , for vi in v, we have271

v̂i
t+1 :=M1,tv

t
i +M2,t

(
e1 + 2ρ

∑
j∈N(i)

(1− ⟨vti , e1⟩ − ⟨vtj , e1⟩+ ⟨vti , vtj⟩)(−e1 + vtj)
)
+ bt (19)
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272

vt+1
i :=

v̂t+1
i

∥v̂t+1
i ∥

(20)

Here we added an affine shift {bt}t∈[T ] for completeness. Once again we see equation 19 is captured273

by the dynamic274

v̂i
t+1 = UPDATE(M1,t, v

t
i ,AGGREGATE(M2,t, v

t
i , {vtj}j∈N(i)), bt) (21)

vt+1
i = NONLINEAR(v̂it+1) (22)

For functions UPDATE : Rr×r×Rr×Rr×Rr → Rr and AGGREGATE : Rr×r×Rr|N(i)|×Rr →275

Rr and NONLINEAR : Rr → Rr. Max Clique is computed by flipping the vertices of a min Vertex276

Cover on the complement graph.277

B Optimality of Message Passing for Max-CSP278

Our primary theoretical result is that a polynomial time message passing algorithm on an appropriately279

defined constraint graph computes the approximate optimum of SDP 1 which is notable for being an280

SDP that achieves the Unique Games optimal integrality gap.281

Our proof roadmap is simple. First, we design an SDP relaxation SDP 1 for Max-k-CSP that282

is provably equivalent to the SDP of Raghavendra (2008) and therefore inherits its complexity283

theoretic optimality. Finally, we design a message passing algorithm to approximately solve SDP 1284

in polynomial time to polynomial precision. Our message passing algorithm has the advantage of285

being formulated on an appropriately defined constraint graph. For a Max-k-CSP instance Λ with N286

variables, |P| predicates, over an alphabet of size q, it takes |P|qk space to represent the Max-CSP.287

Our message passing algorithm achieves an additive ϵ approximation in time poly(ϵ−1, N, |P|qk)288

which is then polynomial in the size of the CSP and inverse polynomial in the precision.289

Here we briefly reiterate the definition of Max-k-CSP. A Max-k-CSP instance Λ = (V,P, q) con-290

sists of a set of N variables V := {xi}i∈[N ] each taking values in an alphabet [q] and a set of291

predicates P := {Pz}z⊂V where each predicate is a payoff function over k variables denoted292

z = {xi1 , xi2 , ..., xik}. Here we refer to k as the arity of the Max-k-CSP, and we adopt the normal-293

ization that each predicate Pz returns outputs in [0, 1]. We index each predicate Pz by its domain z294

and we will use the notation S(P ) to denote the domain of a predicate P . The goal of Max-k-CSP is295

to maximize the payoff of the predicates.296

max
(x1,...,xN )∈[q]N

1

|P|
∑
Pz∈P

Pz(Xz) (23)

Where Xz denotes the assignment of variables {xi}i∈z .297

There is an SDP relaxation of equation 23 that is the "qualitatively most powerful assuming the298

Unique Games conjecture" Raghavendra (2008). More specifically, the integrality gap of the SDP299

achieves the Unique Games optimal approximation ratio. Furthermore, there exists a rounding that300

achieves its integrality gap.301

SDP Reformulation: Next we will introduce the SDP formulation we adopt in this paper. For302

the sake of exposition and notational simplicity, we will work with binary Max-k-CSP’s where303

q = {0, 1}. The extension to general q is straightforward and detailed in the appendix.304

We will adopt the standard pseudoexpectation and pseudodistribution formalism in describing our305

SDP. Let Ẽµ[X] be a matrix in dimension R(N+1)d/2×(N+1)d/2 of optimization variables defined as306

follows307

Ẽµ[X] := Ẽµ[(1, x1, x2, ..., xN )⊗d/2
(
(1, x1, x2, ..., xN )⊗d/2

)T
] (24)

Where we use ⊗ to denote tensor product. It is convenient to think of Ẽµ[X] as a matrix of variables308

denoting the up to d multilinear moments of a distribution µ over the variables V . A multilinear309
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polynomial is a polynomial of the form Xϕ :=
∏

i∈ϕ xi for some subset of the variables ϕ ⊆ V . We310

index the variables of the matrix Ẽµ[X] by the multilinear moment that it represents. Notice that this311

creates repeat copies as their are multiple entries representing the same monomial. This is dealt with312

by constraining the repeated copies to be equal with linear equality constraints.313

Specifically, let z be a subset of the CSP variables z ⊂ {xi}i∈[N ] of size k. Let Xz denote the314

multilinear moment Xz :=
∏

i∈z xi. Then Ẽµ[Xz] denotes the SDP variable corresponding to315

the multilinear moment Eµ[Xz]. Of course optimizing over the space of distributions µ over V is316

intractable, and so we opt for optimizing over the space of low degree pseudodistributions and their317

associated pseudoexpecation functionals. See Barak & Steurer (2014) for references therein.318

In particular, for any subset of variables Xz := {xi1 , ..., xik} ∈ V we let Ẽµ[X]
∣∣
z,d

denote the matrix319

of the up to degree up to d multilinear moments of the variables in z.320

Ẽµ[X]
∣∣
z
:= Ẽµ[(1, xi1 , xi2 , ..., xik)

⊗d/2
(
(1, xi1 , xi2 , ..., xik)

⊗d/2
)T

] (25)

We refer to the above matrix as a degree d pseudoexpectation funcitonal over Xz . Subsequently, we321

describe a pseudoexpectation formulation of our SDP followed by a vector formulation.322

Multilinear Formulation: A predicate for a boolean Max-k-CSP Pz(Xz) can be written as a323

multilinear polynomial324

Pz(Xz) :=
∑

τ=(τ1,...,τk)∈{−1,1}k

wz,τ

∏
xi∈z

1 + τixi
2

:=
∑
s⊆z

ysXs (26)

For some real valued weights wz,τ and ys which are simply the fourier coefficients of the function325

Pz . Then the pseudoexpectation formulation of our SDP is as follows326

max
Ẽµ[X]

∑
Pz∈P

Ẽµ[Pz(Xz)] (27)

subject to the following constraints327

1. Unit: Ẽµ[1] = 1, Ẽµ[x
2
i ] = 1 for all xi ∈ V , and Ẽµ[

∏
i∈s x

2
i

∏
j∈s′ xj ] = Ẽµ[

∏
j∈s′ xj ]328

for all s, s′ ⊆ S(P ) for every predicate P ∈ P such that 2s+ s′ ≤ k. In expectation, the329

squares of all multilinear polynomials are equal to 1.330

2. Positive Semidefinite: Ẽµ[X]|V,2 ⪰ 0 i.e the degree two pseudoexpectation is positive331

semidefinite. Ẽµ[X]
∣∣
z,2k
⪰ 0 for all z = S(P ) for all P ∈ P . The moment matrix for the332

multilinear polynomials corresponding to every predicate is positive semidefinite.333

Equivalently we can view the SDP in terms of the vectors in the cholesky decomposition of Ẽµ[X].334

We rewrite the above SDP accordingly. For this purpose it is useful to introduce the notation335

ζ(A,B) := A ∪ B/A ∩ B. It is also useful to introduce the notation C(s) for the size of the set336

{g, g′ ⊆ s : ζ(g, g′) = s}.337

Lemma B.1. For Max-k-CSP instance Λ, The SDP of SDP 1 is at least as tight as the SDP of338

Raghavendra (2008).339

Proof. The SDP of Raghavendra (2008) is a based degree 2 SoS SDP augmented with k-local340

distributions for every predicate P ∈ P . By using the vectors of the cholesky decomposition and341

constraining them to be unit vectors we automatically capture degree 2 SoS. To capture k local342

distributions we simply enforce degree 2k SoS on the boolean hypercube for the domain of every343

predicate. This can be done with the standard vector formulation written in SDP 1. See Barak &344

Steurer (2014) for background and references.345
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SDP 1 SDP for Max-k-CSP (Equivalent to UGC-optimal)
SDP Vector Formulation Λ = (V,P, {0, 1}). Multilinear formulation of objective.

min
x1,x2,...,xN

∑
Pz⊂P

Ẽµ[−Pz(Xz)] :=
∑
Pz∈P

∑
s⊆z

ws
1

|C(s)|
∑

g,g′⊆s:ζ(g,g′)=s

⟨vg, vg′⟩ (28)

subject to: ∥vs∥2 = 1 ∀s ⊆ S(P ), ∀P ∈ P (29)

Ẽµ[Xζ(g,g′)] := ⟨vg, vg′⟩
= ⟨vh, vh′⟩ ∀ζ(g, g′) = ζ(h, h′) s.t g ∪ g′ ⊆ S(P ), ∀P ∈ P (30)

First constraint is the square of multilinear polynomials are unit.
Second constraint are degree 2k SoS constraints for products of multilinear polynomials.

Algorithm 1 Message Passing for Max-CSP
1: procedure MESSAGE PASSING(Λ = (V,P, {0, 1}))
2: n← |P|2k log(δ−1)
3: η, ψ, σ ← n−100 ▷ Initialize step size, noise threshold, and noise variance
4: v0 = {vs}s⊆z:Pz∈P ← Uniform(Sn−1) ▷ Initialize vectors to uniform on the unit sphere
5: for t ∈ [poly(ϵ−1, |P|, 2k, log(δ−1))] do
6: for vtw ∈ vt do ▷ Iterate over vectors
7:

v̂t+1
q ← vtw − η

∑
Pz∈P

s.t w⊆z

∑
s⊆z

s.t w⊆s

ys
1

|C(s)|
∑
w′⊆s

s.t ζ(w,w′)=s

vtw′ (31)

+2ρ

[ ∑
Pz∈P

s.t w⊆z

∑
w′,h,h′⊆s

s.t ζ(w,w′)=ζ(h,h′)

(
⟨vtw, vtw′⟩ − ⟨vth, vth′⟩

)
v′tw (32)

+(∥vtw∥2 − 1)vtw

]
(33)

▷ Update each vector with neighboring vectors in constraint graph
8:
9: if ∥vt+1

w − vtw∥ ≤ ψ then
10: ζ ← N(0, σI)
11: else
12: ζ ← 0
13: end if
14: vt+1

w ← vt+1
w + ζ ▷ Add perturbed noise if gradient smaller than threshold

15: end for
16: end for
17: return vt ▷ Returns the vectors corresponding to solution to SDP 1
18: end procedure

Theorem B.1. Algorithm 1 computes in poly(ϵ−1, |P|, 2k, log(δ−1)) iterations a set of vectors346

v := {v̂s} for all s ⊆ S(P ) for all P ∈ P that satisfy the constraints of SDP 1 to error ϵ and347

approximates the optimum of SDP 1 to error ϵ with probability 1− δ348 ∣∣ ∑
Pz∈P

Ẽµ̂[Pz(Xz)]−OPTSDP (Λ)
∣∣ ≤ ϵ

where OPTSDP (Λ) is the optimum of SDP 1.349

Proof. We begin by writing down the objective penalized by a quadratic on the constraints.350
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Lρ(v) :=
∑
Pz∈P

Ẽµ[Pz(Xz)]

+ ρ

[ ∑
Pz∈P

∑
g,g′,h,h′⊆z

s.t ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩ − ⟨vh, vh′⟩

)2
+

∑
vs∈v

(∥vs∥2 − 1)2

]
(34)

For any monomial Xs =
∏

i∈s xi in Pz(Xz) we write351

Ẽµ[Xs] :=
1

|C(s)|
∑

g,g′⊆s
s.t ζ(g,g′)=s

⟨vg, vg′⟩ (35)

Where C(s) is the size of the set {g, g′ ⊆ s : ζ(g, g′) = s}. In a small abuse of notation, we regard352

this as the definition of Ẽµ[Xs] but realize that we’re referring to the iterates of the algorithm before353

they’ve converged to a pseudoexpectation. Now recall equation 26, we can expand the polynomial354

Pz(Xz) along its standard monomial basis355

Pz(Xz) =
∑
s⊆z

ysXs (36)

where we have defined coefficients ys for every monomial in Pz(Xz). Plugging equation 35 and356

equation 36 into equation 34 we obtain357

(34) =
∑
Pz∈P

∑
s⊆z

ys
1

|C(s)|
∑

g,g′⊆s
s.t ζ(g,g′)=s

⟨vg, vg′⟩

+ ρ

[ ∑
Pz∈P

∑
g,g′,h,h′⊆z

s.t ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩ − ⟨vh, vh′⟩

)2

+
∑
vs∈v

(∥vs∥2 − 1)2

]
(37)

Taking the derivative with respect to any vw ∈ v we obtain358

∂Lρ(v)
∂vw

=
∑
Pz∈P

s.t w⊆z

∑
s⊆z

s.t w⊆s

ys
1

|C(s)|
∑
w′⊆s

s.t ζ(w,w′)=s

vw′

+ 2ρ

[ ∑
Pz∈P

s.t w⊆z

∑
w′,h,h′⊆s

s.t ζ(w,w′)=ζ(h,h′)

(
⟨vw, vw′⟩ − ⟨vh, vh′⟩

)
v′w

+ (∥vw∥2 − 1)vw

]
(38)

The gradient update is then what is detailed in Algorithm 1359

vt+1
w = vtw − η

∂Lρ(v)
∂vw

(39)

Thus far we have established the form of the gradient. To prove the gradient iteration converges360

we reference the literature on convergence of perturbed gradient descent (Jin et al., 2017) which361

we rewrite in Theorem B.2. First we note that the SDP equation ?? has ℓ smooth gradient for362

ℓ ≤ poly(ρ, |P|, 2k) and has γ lipschitz Hessian for γ = poly(ρ, |P|, 2k) which we arrive at by363
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bounding the size of every matrix involved in the objective and constraints of SDP 1. Then by364

Theorem B.2 the iteration converges to an (ϵ′, γ2)-SOSP Definition B.2 in no more than Õ( 1
ϵ′2 )365

iterations with probability 1 − δ. It remains to show that (ϵ′, γ2)-SOSP are approximately global366

optimum.367

Thus far we have worked with the vector version of the SDP which is overparameterized and368

nonconvex. For subsequent analysis we need to define the penalized loss which we denoteHρ(Ẽ[X])369

in terms of the SDP moment matrix Ẽ[X].370

Hρ(Ẽ[X]) :=
∑
Pz∈P

Ẽµ̂[Pz(Xz)]

+ ρ

[ ∑
Pz∈P

∑
g,g′,h,h′⊆z

s.t ζ(g,g′)=ζ(h,h′)

(
Ẽµ̂[Xζ(g,g′)]− Ẽµ̂[Xζ(h,h′)]

)2
+

∑
Xs s.t s⊂S(P )
|s|≤k,∀P∈P

(Ẽµ̂[X
2
s ]− 1)2

]
(40)

Here we use the notation Ẽµ̂[Xζ(g,g′)] and Ẽµ̂[Xζ(h,h′)] to denote ⟨vg, v′g⟩ and ⟨vh, v′h⟩ respectively.371

Note that although by definitionHρ(Ẽ[X]) = Lρ(v) , their gradients and hessians are distinct because372

Lρ(v) is overparameterized.373

For SDP 1 we are working with a global optimum clearly exists which we denote Ẽµ̃[X̃] with a374

cholesky decomposition ṽ. Let v̂ be the set of vectors outputted by Algorithm 1 with associated375

pseudoexpectation Ẽµ̂[X̂]. Then, we can bound376

Lρ(v̂)− Lρ(ṽ) = Hρ(Ẽ[X̂])−Hρ(Ẽ[X̃]) ≤
〈
∇Hρ(Ẽ[X̂]), Ẽ[X̂]− Ẽ[X̃]

〉
(41)

Here the first equality is by definition, and the inequality is by the convexity of Hρ. Moving on,377

observe that ∇2Lρ(v̂) ⪰ −γ
√
ϵ′ implies λmin(∇Hρ(Ẽ[X̂])) ≥ −γ

√
ϵ′. This fact is folklore, and it378

follows from inspecting the form of the hessian Lρ(v̂) and can be found in multiple references such379

as Bhojanapalli et al. (2018) lemma 3. Subsequently, we adapt the lines of their argument in lemma 3380

most relevant to our analysis which we detail here for the sake of completeness.381

equation 41 ≤ −λmin(∇Hρ(Ẽ[X̂])) Tr(Ẽ[X̂])−
〈
∇Hρ(Ẽ[X̂]), Ẽ[X̃]

〉
≤ −λmin(∇Hρ(Ẽ[X̂])) Tr(Ẽ[X̂]) + ∥∇Hρ(Ẽ[X̂])∥F ∥Ẽ[X̃]∥F
≤ γ
√
ϵ′ Tr(Ẽ[X]) + ϵ′∥ṽ∥F ≤ γ

√
ϵ′|P|2k + ϵ′|P|2k ≤ ϵ

(42)

Here the first inequality follows by a standard inequality of frobenius inner product, the second382

inequality follows by Cauchy-Schwarz, the third inequality follows by the (ϵ′, γ2)-SOSP conditions383

on both the min eigenvalue of the hessian and the norm of the gradient, the final two inequalities384

follow from knowing the main diagonal of Ẽ[X̂] is the identity and that every vector in ṽ is a385

unit vector up to inverse polynomial error poly(ρ−1, |P|, 2k). For this last point see the proof in386

Lemma B.2. Therefore if we set ϵ′ = poly(ϵ, |P|−1, 2−k) we arrive at any ϵ error. Therefore we have387

established our estimate v̂ is approximates the global optimum of the quadratically penalized objective388

i.eHρ(Ẽ[X̂])−Hρ(Ẽ[X̃]) ≤ ϵ. To finish our proof, we have to bound the distance between the global389

optimum of the quadratically penalized objectiveHρ(Ẽ[X̃]) and OPTSDP(Λ) the optimum of SDP 1.390

This is established for ρ a sufficiently large poly(ϵ−1, |P|, 2k) in Lemma B.2. This concludes our391

proof that the iterates of Algorithm 1 converge to the solution of the SDP SDP 1.392

The following Lemma B.2 establishes that for a sufficiently large penalty parameter ρ =393

poly(ϵ−1, |P|, 2k) the optimum of the penalized problem and the exact solution to SDP 1 are close.394

Lemma B.2. Let Λ be a Max-k-CSP instance, and let OPTSDP(Λ) be the optimum of SDP 1. Let395

Lρ(v) be the quadratically penalized objective396
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Lρ(v) :=
∑
Pz∈P

∑
s⊆z

ys
1

|C(s)|
∑

g,g′⊆s
s.t ζ(g,g′)=s

⟨vg, vg′⟩

+ ρ

[ ∑
Pz∈P

∑
g,g′,h,h′⊆z

ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩ − ⟨vh, vh′⟩

)2

+
∑
vs∈v

(∥vs∥2 − 1)2

]
(43)

Let ṽ be the argmin of the unconstrained minimization397

ṽ := argmin
v∈R|P|2(22k)

Lρ(v)

Then we have398

Lρ(ṽ)− OPTSDP(Λ) ≤ ϵ
for ρ = poly(ϵ−1, |P|, 2k)399

Proof. We begin the analysis with the generic equality constrained semidefinite program of the form400

min ⟨C,X⟩ (44)
subject to: ⟨Ai, X⟩ = bi ∀i ∈ F (45)

X ⪰ 0 (46)

X ∈ Rd×d (47)

For an objective matrix C and constraint matrices {Ai}i∈F in some constraint set F . We will invoke401

specific properties of SDP 1 to enable our analysis. First we define the penalized objective in this402

generic form403

Hρ(X) := ⟨C,X⟩+ ρ
∑
i∈F

(⟨Ai, X⟩ − bi)2

Let X̃ be the minimizer of the penalized problem.404

X̃ := argmin
X∈Rd×d

Lρ(X)

Let X∗ be the minimizer of the constrained problem equation 60. Let τi be the error X̃ has in405

satisfying constraint ⟨Ai, X̃⟩ = bi.406

τi := |⟨Ai, X̃⟩ − bi|

We will show that τi scales inversely with ρ. That is, τi ≤ poly(|P|, 2k, ρ−1).407

Notice that the quadratic penalty on the violated constraints must be smaller than the decrease in the408

objective for having violated the constraints. So long as the objective is not too sensitive ’robust’ to409

perturbations in the constraint violations the quadratic penalty should overwhelm the decrease in the410

objective. To carry out this intuition, we begin with the fact that the constrained minimum is larger411

than the penalized minimum.412

Hρ(X
∗)−Hρ(X̃) ≤ 0 (48)

This implies413

⟨C,X∗⟩ − (⟨C, X̃⟩+ ρ
∑
i∈F

τ2i ) ≤ 0 (49)

Rearranging LHS and RHS we obtain414

ρ
∑
i∈F

τ2i ≤ ⟨C, X̃ −X∗⟩ (50)
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We know the RHS is upper bounded415

ρ
∑
i∈F

τ2i ≤ ⟨C, X̃ −X∗⟩ ≤
∑
i∈F

τipoly(k, q) (51)

The last line follows from the robustness theorem of Raghavendra & Steurer (2009) restated in the416

appendix Theorem B.3 which states that an SDP solution that violates the constraints by a small417

perturbation changes the objective by a small amount. Then taking Cauchy-Schwarz of the RHS we418

further bound by419

ρ
∑
i∈F

τ2i ≤
√
|F|

∑
i∈F

τ2i poly(k, q)

Rearranging left and right hand sides we obtain420 ∑
i∈F

τ2i ≤ ρ−1poly(k, q)|F|

which implies ∥τ∥ = poly(|P|, 2k, ρ−1). Moving on, consider the dual feasibility condition421

C = Q+
∑
i∈F

λiAi

for some Q ⪰ 0. Then we have422

⟨C,X∗ − X̃⟩ = ⟨Q,X∗⟩ − ⟨Q, X̃⟩+
∑
i∈F

λi⟨Ai, X
∗ − X̃⟩

By complementary slackness ⟨Q,X∗⟩ = 0 so we obtain423

= −⟨Q, X̃⟩+
∑
i∈F

λi⟨Ai, X
∗ − X̃⟩

By PSD’ness of both Q and X̃ we upper bound by424

≤
∑
i∈F

λi⟨Ai, X
∗ − X̃⟩ =

∑
i∈F

λi(bi − ⟨Ai, X̃⟩) ≤
√∑

i∈F
λ2i ∥τ∥

Where in the first equality we used the fact that ⟨Ai, X̃⟩ = bi, and the second inequality is Cauchy-425

Schwarz. Since we’ve already established that ∥τ∥ ∝ ρ−1 we must simply bound the size of the dual426

variables λi. To bound the size of λi, we separate the constraints Ai into the diagonal constraints427

{Fi}i∈W and equality constraints {Gi}i∈R where428

⟨Fi, X⟩ = 1 ∀i ∈ W ⟨Gi, X⟩ = 0 ∀i ∈ R

The dual takes on the following form for δ, η ∈ R429

max
∑
i∈W

δi (52)

430

subject to: C −
∑
i∈W

δiFi −
∑
i∈R

ηiGi ⪰ 0 (53)

Where we’ve split the dual variables {λi}i∈F into two sets {δi}i∈W and {ηi}i∈R. Note that the δi431

are polynomially bounded i.e |δi| ≤ poly(|P|, 2k). Assume the contrary, if δi > poly(|P|, 2k) then432

the objective is polynomially unbounded which contradicts dual objective being smaller than primal433

objective. If δi < −poly(P, 2k) then the i′th diagonal coordinate of equation 53 is polynomially434

unbounded and then ei is a negative eigenvalue of equation 53 which is a contradiction of PSD’ness.435

Therefore, the δi are polynomially bounded. To demonstrate the {ηi}i∈R are polynomially bounded,436

note that because of linear independence of the constraints plus the minimum singular value being437

greater than a constant, there exists a setting of the η that is polynomially bounded such that the dual438

feasibility constraint is satisfied. Since the η do not appear in the objective, finding a setting that439

satisfies equation 53 suffices.440
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Constraint matrix is well conditioned. The smallest singular value of {Ai}i∈F is a constant.441

This is a technical observation the {Ai}i∈F matrices which are collections of vectors of the form442

{e1 + ej}j∈[2,T ] where we let ei denote the i′th standard basis vector. Any unit vector v satisfies443

∥
∑

j vj(e1 + ej)∥ = (
∑

j vj)
2 +

∑
j v

2
j ≥ 1.444

Finally we show it’s not hard to generalize our algorithm to alphabets of size [q].445

Notation for General Alphabet. For any predicate P ∈ P , let D(P ) be the set of all variable446

assignment tuples indexed by a set of variables s ⊆ S(P ) and an assignment τ ∈ [q]|s|. Let x(i,a)447

denote an assignment of value a ∈ [q] to variable xi.448

SDP 2 SDP Vector Formulation for Max-k-CSP General Alphabet (Equivalent to UGC optimal)
SDP Vector Formulation General Alphabet Λ = (V,P, q).
Pseudoexpectation formulation of the objective.

min
x1,x2,...,xN

∑
Pz⊂P

Ẽµ[−Pz(Xz)] (54)

subject to: Ẽµ[(x
2
(i,a) − x(i,a))

∏
(j,b)∈ϕ

x(j,b)] = 0 ∀i ∈ V , ∀a ∈ [q], ∀ϕ ⊆ D(P ), ∀P ∈ P

(55)

Ẽµ[(
∑
a∈[q]

xia − 1)
∏

(j,b)∈ϕ

x(j,b)] = 0 ∀i ∈ V , ∀ϕ ⊆ D(P ), ∀P ∈ P (56)

Ẽµ[x(i,a)x(i,a′)

∏
(j,b)∈ϕ

x(j,b)] = 0 ∀i ∈ V , ∀a ̸= a′ ∈ [q], ∀ϕ ⊆ D(P ), ∀P ∈ P

(57)

Ẽ[SoS2kq(Xϕ)] ≥ 0 ∀ϕ ⊆ D(P ), ∀P ∈ P (58)

Ẽ[SoS2(X)] ≥ 0 (59)

First constraint corresponds to booleanity of each value in the alphabet.
Second constraint corresponds to a variable taking on only one value in the alphabet.
Third constraint corresponds to a variable taking on only one value in the alphabet.
Fourth constraint corresponds to local distribution on the variables in each predicate.
Fifth constraint correpsonds to the positivity of every degree two sum of squares of polynomials.

Lemma B.3. There exists a message passing algorithm that computes in poly(ϵ−1, |P|, 2k, log(δ−1))449

iterations a set of vectors v := {v̂(i,a)} for all (i, a) ∈ ϕ, for all ϕ ⊆ D(P ), for all P ∈ P that satisfy450

the constraints of Algorithm 2 to error ϵ and approximates the optimum of Algorithm 2 to error ϵ451

with probability 1− δ452 ∣∣ ∑
Pz∈P

Ẽµ̂[Pz(Xz)]−OPTSDP (Λ)
∣∣ ≤ ϵ

where OPTSDP (Λ) is the optimum of Algorithm 2.453

Proof. The proof is entirely parallel to the proof of Theorem B.1. We can write Algorithm 2 entirely454

in terms of the vector of its cholesky decomposition where once again we take advantage of the455

fact that SoS degree 2kq distributions are actual distributions over subsets of kq variables over each456

predicate. Given the overparameterized vector formulation, we observe that once again we are faced457

with equality constraints that can be added to the objective with a quadratic penalty. Perturbed458

gradient descent induces a message passing algorithm over the constraint graph GΛ, and in no more459

than poly(ϵ−1, |P |, qk) iterations reaches an (ϵ, γ)-SOSP. The analysis of optimality goes along the460

same lines as Lemma B.2. For sufficiently large penalty ρ = poly(ϵ−1, |P |, qk) the error in satisfying461

the constraints is ϵ and the objective is robust to small perturbations in satisfying the constraint. That462

concludes our discussion of generalizing to general alphabets.463
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B.1 Neural Certification Scheme464

An intriguing aspect of OptGNN is that the embeddings can be interpreted as the solution to a465

low-rank SDP which leaves open the possibility that the embeddings can be used to generate a dual466

certificate i.e., a lower bound on the optimal value of the SDP, which can be used as a solution quality467

certificate. First, we define the primal problem468

Minimize: ⟨C,X⟩ (60)
Subject to: ⟨Ai, X⟩ = bi ∀i ∈ [F ] (61)

X ⪰ 0. (62)

Lemma B.4. Let OPT be the minimizer of the SDP equation 60. Then for any X̃ ∈ RN×N ⪰ 0 and469

any λ∗ ∈ R|F|, we define Fλ∗(X) to be470

Fλ∗(X̃) := ⟨C, X̃⟩+
∑
i∈F

λ∗i (⟨Ai, X̃⟩ − bi)

We require SDP to satisfy a bound on its trace Tr(X) ≤ Y for some Y ∈ R+. Then the following is471

a lower bound on OPT.472

OPT ≥ Fλ∗(X̃)− ⟨∇Fλ∗(X̃), X̃⟩+ λmin(∇Fλ∗(X̃))Y

Proof. Next we introduce lagrange multipliers λ ∈ Rk and Q ⪰ 0 to form the lagrangian473

L(λ,Q,X) = ⟨C,X⟩+
∑
i∈F

λi(⟨Ai, X⟩ − bi)− ⟨Q,X⟩

We lower bound the optimum of OPT defined to be the minimizer of equation 60474

OPT := min
X⪰0

max
λ∈R,Q⪰0

L(λ,Q,X)

≥ min
V ∈RN×N

max
λ
⟨C, V V T ⟩+

∑
i∈F

λi(⟨Ai, V V
T ⟩ − bi)

≥ max
λ

min
V ∈RN×N

⟨C, V V T ⟩+
∑
i∈F

λi(⟨Ai, V V
T ⟩ − bi) (63)

475

≥ min
V ∈RN×N

⟨C, V V T ⟩+
∑
i∈F

λ∗i (⟨Ai, V V
T ⟩ − bi) (64)

Where in the first inequality we replaced X ⪰ 0 with V V T which is a lower bound as every psd476

matrix admits a cholesky decomposition. In the second inequality we flipped the order of min and477

max, and in the final inequality we chose a specific set of dual variables λ∗ ∈ R|F| which lower478

bounds the maximization over dual variables. The key is to find a good setting for λ∗.479

Next we establish that for any choice of λ∗ we can compute a lower bound on equation 64 as follows.480

Let Fλ∗(V V T ) be defined as the funciton in the RHS of equation 64.481

Fλ∗(V V T ) := ⟨C,X⟩+
∑
i∈F

λ∗i (⟨Ai, X⟩ − bi)

Then equation 64 can be rewritten as482

OPT ≥ min
V ∈RN×N

Fλ∗(V V T ) := ⟨C,X⟩+
∑
i∈F

λ∗i (⟨Ai, X⟩ − bi)

Now let V ∗ be the minimizer of equation 64 and let X∗ = V ∗(V ∗)T . We have by convexity that483

Fλ∗(X)− Fλ∗(X∗) ≤ ⟨∇Fλ∗(X), X −X∗⟩ = ⟨∇Fλ∗(X), X⟩+ ⟨−∇Fλ∗(X), X∗⟩ (65)
≤ ⟨∇Fλ∗(X), X⟩ − λmin(∇Fλ∗(X))Tr(X∗) (66)

≤ ⟨∇Fλ∗(X), X⟩ − λmin(∇Fλ∗(X))N (67)
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In the first inequality we apply the convexity of Fλ∗ . In the second inequality we apply a standard484

inequality of frobenius inner product. In the last inequality we use the fact that Tr(X∗) = N .485

Rearranging we obtain for any X486

OPT ≥ Fλ(X
∗) ≥ Fλ∗(X)− ⟨∇Fλ∗(X), X⟩+ λmin(∇Fλ∗(X))N (68)

Therefore it suffices to upper bound the two terms above ⟨∇Fλ∗(X), X⟩ and λmin(∇Fλ∗(X)) which487

is an expression that holds for any X . Given the output embeddings Ṽ of OptGNN (or indeed any set488

of vectors Ṽ ) let X̃ = Ṽ Ṽ T . Then we have concluded489

OPT ≥ Fλ(X
∗) ≥ Fλ∗(X̃)− ⟨∇Fλ∗(X̃), X̃⟩+ λmin(∇Fλ∗(X̃))N (69)

as desired.490

Up to this point, every manipulation is formal proof. Subsequently we detail how to make an educated491

’guess’ of the dual variables λ∗. Although any guess will produce a bound, it won’t produce a tight492

bound. To be clear, solving for the optimal λ∗ would be the same as building an SDP solver which493

would bring us back into the expensive primal dual procedures that are involved in solving SDP’s.494

We are designing quick and cheap ways to output a dual certificate that may be somewhat looser. Our495

scheme is simply to set λ∗ such that ∥∇Fλ∗(X̃)∥ is minimized, ideally equal to zero. The intuition is496

that if (X̃, λ∗) were a primal dual pair, then the lagrangian would have a derivative with respect to X497

evaluated at X̃ would be equal to zero. Let Hλ(V ) be defined as follows498

Hλ∗(Ṽ ) := ⟨C, Ṽ Ṽ T ⟩+
∑
i∈F

λ∗i (⟨Ai, Ṽ Ṽ
T ⟩ − bi)

We know the gradient of Hλ(Ṽ )499

∇Hλ(Ṽ ) = 2(C +
∑
i∈F

λ∗iAi)Ṽ = 2∇Fλ(Ṽ Ṽ
T )Ṽ

Therefore it suffices to find a setting of λ∗ such that ∥∇Fλ(X̃)Ṽ ∥ is small, ideally zero. This would500

be a simple task, indeed a regression, if not for the unfortunate fact that OptGNN explicitly projects501

the vectors in Ṽ to be unit vectors. This creates numerical problems such that minimizing the norm502

of ∥∇Fλ(X̃)Ṽ ∥ does not produce a∇Fλ(X̃) with a large minimum eigenvalue.503

To fix this issue, let Rη,ρ(V ) denote the penalized lagrangian with quadratic penalties for constraints504

of the form ⟨Ai, X⟩ = bi and linear penalty ηi for constraints along the main diagonal of X of the505

form ⟨eieTi , X⟩ = 1.506

Rη,ρ(V ) := ⟨C, V V T ⟩+
∑
i∈J

ρ(⟨Ai, V V
T ⟩ − bi)2 +

N∑
i=1

ηi(⟨eieTi , V V T ⟩ − 1)

Taking the gradient of Rη,ρ(V ) we obtain507

∇Rη,ρ(V ) := 2CV +
∑
i∈J

2ρ(⟨Ai, V V
T ⟩ − bi)AiV +

N∑
i=1

2ηieie
T
i V

Our rule for setting dual variables δi for i ∈ J is508

δi := 2ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)

our rule for setting dual variables ηj for j ∈ [N ] is509

ηj :=
1

2
∥eTj (C +

∑
i∈F

2ρ(⟨Ai, V V
T ⟩ − bi)Ai)V ∥

Then our full set of dual variables λ∗ is simply the concatenation (δ, η). Writing out everything510

explicitly we obtain the following matrix for∇Fλ∗(Ṽ Ṽ T )511
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∇Fλ(Ṽ Ṽ
T ) = C +

∑
i∈F

ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)Ai +

∑
j∈[N ]

1

2
∥eTj (C +

∑
i∈F

2ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)Ai)Ṽ ∥eieTi

Plugging this expression into Lemma B.4 the final bound we evaluate in our code is512

OPT ≥ ⟨C, Ṽ Ṽ T ⟩+
∑
i∈F

2ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)2

−
〈
C+

∑
i∈F

ρ(⟨Ai, Ṽ Ṽ
T ⟩− bi)Ai+

∑
j∈[N ]

1

2
∥eTj (C+

∑
i∈F

2ρ(⟨Ai, Ṽ Ṽ
T ⟩− bi)Ai)Ṽ ∥eieTi , Ṽ Ṽ T

〉
+λmin

(
C+

∑
i∈F

ρ(⟨Ai, Ṽ Ṽ
T ⟩−bi)Ai+

∑
j∈[N ]

1

2
∥eTj (C+

∑
i∈F

2ρ(⟨Ai, Ṽ Ṽ
T ⟩−bi)Ai)Ṽ ∥eieTi

)
N

(70)

Which is entirely computed in terms of Ṽ the output embeddings of OptGNN. The resulting plot is513

as follows.514

Figure 1: N=50 p=0.1 SDP vs Opt-GNN Dual Certificate

Note: The reason for splitting the set of dual variables is because the projection operator onto the515

unit ball is hard coded into the architecture of the lift network. Satisfying the constraint set via516

projection is different from the soft quadratic penalties on the remaining constraints and require517

separate handling.518

Max Cut Certificate For Max Cut our dual variables are particularly simple as there are no519

constraints ⟨Ai, X⟩ = bi for bi ̸= 0. The dual variables for Max Cut take on the form for all i ∈ [N ]520

λ∗i =
1

2
∥

∑
j∈N(i)

wijvj∥

It’s certainly possible to come up with tighter certification schemes which we leave to future work.521

Intuition: Near global optimality one step of the augmented method of lagrange multipliers ought to522

closely approximate the dual variables. After obtaining a guess for the penalized lagrange multipliers523

we estimate the lagrange multipliers for the norm constraint by approximating ∇Rλ(V ) = 0. The524

alternative would have been to solve the linear system for all the lagrange multipliers at once but this525

runs into numerical issues and degeneracies.526
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Figure 2: N=100 p=0.1 SDP vs Opt-GNN Dual Certificate

Certificate Experiment: We run our certification procedure which we name Opt-GNN-cert and527

compare it to the SDP certificate. Note, that mathematically we will always produce a larger (i.e528

inferior) dual certificate in comparison to the SDP because we are bounding the distance to the529

SDP optimum with error in the gradients and hessians of the output embeddings of OptGNN. Our530

advantage is in the speed of the procedure. Without having to go through a primal dual solver, the531

entire time of producing Opt-GNN-cert is in the time required to feedforward through Opt-GNN. In532

this case we train an Opt-GNN-MaxCut with 10 layers, on 1000 Erdos-Renyi graphs, with N = 100533

nodes and edge density p = 0.1. We plot the Opt-GNN Max Cut value (an actual integer cut) on the534

x-axis and in the y-axis we plot the dual certificate value on the same graph where we compare the535

SDP certificate with the Opt-GNN-cert. See 1 for the N = 50 graphs and 2 for the N = 100 graphs.536

Note of course the dual certificate for any technique must be larger than the cut value outputted by537

Opt-GNN so the scatter plot must be above the x = y axis of the plot. We see as is mathematically538

necessary, the Opt-GNN-cert is not as tight as the SDP certificate but certainly competitive and more539

importantly it is arrived at dramatically faster. Without any attempt at optimizing the runtime, the540

Opt-GNN feedforward and certification takes no more than 0.02 seconds whereas the SDP takes 0.5541

seconds on N = 100 node graphs.542

B.2 Miscellaneous Lemmas543

Theorem B.2 (perturbed-gd Jin et al. (2017)). Let f be ℓ-smooth (that is, it’s gradient is ℓ-Lipschitz)544

and have a γ-Lipschitz Hessian. There exists an absolute constant cmax such that for any δ ∈545

(0, 1), ϵ ≤ ℓ2

γ ,∆f ≥ f(X0)− f∗, and constant c ≤ cmax, PGD(X0, ℓ, γ, ϵ, c, δ,∆f ) applied to the546

cost fucntion f outputs a (γ2, ϵ) SOSP with probability at least 1− δ in547

O
( (f(X0)− f∗)ℓ

ϵ2
log4

(nkℓ∆f

ϵ2δ

))
iterations.548

Definition. [(γ, ϵ)-second order stationary point] A (γ, ϵ) second order stationary point of a function549

f is a point x satisfying550

∥∇f(x)∥ ≤ ϵ

19



λmin(∇2f(x)) ≥ −√γϵ
Theorem B.3. (Robustness Theorem 4.6 (Raghavendra & Steurer, 2009) rephrased) Let v be a set of551

vectors satisfying the constraints of SDP 1 to additive error ϵ with objective OBJ(v), then552

OBJSDP (Λ) ≥ OBJ(v)−
√
ϵpoly(kq)

Corollary 3. Given a Max-k-CSP instance Λ, there is an OptGNN(T,r,GΛ)(v) with T =553

poly(δ−1, ϵ−1, |P|qk) layers, r = |P|qk dimensional embeddings, with learnable parameters554

{M1,t}t∈[T ] and {M2,t}t∈[T ] that outputs a set of vectors v satisfying the constraints of SDP 1555

and approximating its objective, OBJSDP (Λ), to error ϵ with probability 1− δ.556

Proof. The proof is by inspecting the definition of OptGNN in the context of Theorem 3.1.557

Corollary 4. The OptGNN of Corollary 3 , which by construction is equivalent to Algorithm 1, out-558

puts a set of embeddings v such that the rounding of Raghavendra & Steurer (2009) outputs an integral559

assignment V with a Max-k-CSP objective OBJ(V) satisfyingOBJ(V) ≥ SΛ(OBJSDP (Λ)−ϵ)−ϵ560

in time exp(exp(poly(kqϵ ))) which approximately dominates the Unique Games optimal approxima-561

tion ratio.562

Proof. The proof follows from the robustness theorem of Raghavendra & Steurer (2009) which states563

that any solution to the SDP that satisfies the constraints approximately does not change the objective564

substantially Theorem B.3.565

C Experiments566

C.1 Methods567

Datasets Our experiments span a variety of randomly generated and real-world datasets. Our568

randomly generated datasets contain graphs from several random graph models, in particular Erdős-569

Rényi (with p = 0.15), Barabási–Albert (with m = 4), Holme-Kim (with m = 4 and p = 0.25), and570

Watts-Strogatz (with k = 4 and p = 0.25). Our real-world datasets are ENZYMES, PROTEINS,571

MUTAG, IMDB-BINARY, COLLAB (which we will together call TU-small), and REDDIT-BINARY,572

REDDIT-MULTI-5K, and REDDIT-MULTI-12K (which we will call TU-REDDIT).573

We abbreviate the generated datasets using their initials and the range of vertex counts. For example,574

by ER (50,100) we denote Erdős-Rényi random graphs with a vertex count drawn uniformly at575

random from [50, 100]. In tables, we mark generated datasets with superscript a, TU-small with b,576

and TU-REDDIT with c.577

Baselines We compare the performance of our approach against classical and neural baselines. In578

terms of classical baselines, we run Gurobi with varying timeouts and include SDP results on smaller579

datasets. SDP scales extremely poorly with graph size so we omit the results for datasets with larger580

graphs. For minimum Vertex Cover, we include the classical baseline KaMIS, a maximum indepen-581

dent set solver. We also include a greedy baseline, which is the function one_exchange (for Maxi-582

mum Cut) or min_weighted_vertex_cover (for minimum Vertex Cover) from networkx (Hag-583

berg et al., 2008). Our neural baselines include LwD (Ahn et al., 2020) and DGL-TREESEARCH (Li584

et al., 2018; Böther et al., 2022).585

Validation and test splits For each dataset we hold out a validation and test slice for evaluation. In586

our generated graph experiments we set aside 1000 graphs each for validation and testing. Each step587

of training ran on randomly generated graphs. For TU-small, we used a train/validation/test split of588

0.8/0.1/0.1. For TU-REDDIT, we set aside 100 graphs each for validation and testing.589

Scoring To measure a model’s score on a graph, we first run the model on the graph to generate590

an SDP output, and then round this output to an integral solution using 1,000 random hyperplanes.591

We ran validation periodically during each training run and retained the model that achieved the592

highest validation score. Then for each model and dataset, we selected the hyperparameter setting593

that achieved the highest validation score, and we report the average score measured on the test slice.594

Please see subsection C.5 for further details on the hyperparameter ranges used.595
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Dataset OptGNN Greedy Gurobi
0.1s 1.0s 8.0s

BAa (50,100) 351.49 (18) 200.10 351.87 352.12 352.12
BAa (100,200) 717.19 (20) 407.98 719.41 719.72 720.17
BAa (400,500) 2197.99 (66) 1255.22 2208.11 2208.11 2212.49

ERa (50,100) 528.95 (18) 298.55 529.93 530.03 530.16
ERa (100,200) 1995.05 (24) 1097.26 2002.88 2002.88 2002.93
ERa (400,500) 16387.46 (225) 8622.34 16476.72 16491.60 16495.31

HKa (50,100) 345.74 (18) 196.23 346.18 346.42 346.42
HKa (100,200) 709.39 (23) 402.54 711.68 712.26 712.88
HKa (400,500) 2159.90 (61) 1230.98 2169.46 2169.46 2173.88

WCa (50,100) 198.29 (18) 116.65 198.74 198.74 198.74
WCa (100,200) 389.83 (24) 229.43 390.96 392.07 392.07
WCa (400,500) 1166.47 (78) 690.19 1173.45 1175.97 1179.86

MUTAGb 27.95 (9) 16.95 27.95 27.95 27.95
ENZYMESb 81.37 (14) 48.53 81.45 81.45 81.45
PROTEINSb 102.15 (12) 60.74 102.28 102.36 102.36
IMDB-BINb 97.47 (11) 51.85 97.50 97.50 97.50
COLLABb 2622.41 (22) 1345.70 2624.32 2624.57 2624.62

REDDIT-BINc 693.33 (186) 439.79 693.02 694.10 694.14
REDDIT-M-12Kc 568.00 (89) 358.40 567.71 568.91 568.94
REDDIT-M-5Kc 786.09 (133) 495.02 785.44 787.48 787.92

Table 1: Performance of OptGNN, Greedy, and Gurobi 0.1s, 1s, and 8s on Maximum Cut. For each
approach and dataset, we report the average cut size measured on the test slice. Here, higher score is
better. In parentheses, we include the average runtime in milliseconds for OptGNN.

Dataset OptGNN Greedy Gurobi
0.1s 1.0s 8.0s

BAa (50,100) 42.88 (27) 51.92 42.82 42.82 42.82
BAa (100,200) 83.43 (25) 101.42 83.19 83.19 83.19
BAa (400,500) 248.74 (27) 302.53 256.33 246.49 246.46

ERa (50,100) 55.25 (21) 68.85 55.06 54.67 54.67
ERa (100,200) 126.52 (18) 143.51 127.83 123.47 122.76
ERa (400,500) 420.70 (41) 442.84 423.07 423.07 415.52

HKa (50,100) 43.06 (25) 51.38 42.98 42.98 42.98
HKa (100,200) 84.38 (25) 100.87 84.07 84.07 84.07
HKa (400,500) 249.26 (27) 298.98 247.90 247.57 247.57

WCa (50,100) 46.38 (26) 72.55 45.74 45.74 45.74
WCa (100,200) 91.28 (21) 143.70 89.80 89.80 89.80
WCa (400,500) 274.21 (31) 434.52 269.58 269.39 269.39

MUTAGb 7.79 (18) 12.84 7.74 7.74 7.74
ENZYMESb 20.00 (24) 27.35 20.00 20.00 20.00
PROTEINSb 25.29 (18) 33.93 24.96 24.96 24.96
IMDB-BINb 16.78 (18) 17.24 16.76 16.76 16.76
COLLABb 67.50 (23) 71.74 67.47 67.46 67.46

REDDIT-BINc 82.85 (38) 117.16 82.81 82.81 82.81
REDDIT-M-12Kc 81.55 (25) 115.72 81.57 81.52 81.52
REDDIT-M-5Kc 107.36 (33) 153.24 108.73 107.32 107.32

Table 2: Performance of OptGNN, Greedy, and Gurobi 0.1s, 1s, and 8s on Minimum Vertex Cover.
For each approach and dataset, we report the average Vertex Cover size measured on the test slice.
Here, lower score is better. In parentheses, we include the average runtime in milliseconds for
OptGNN.
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C.2 Performance596

Table 1 presents the average integral cut value achieved by OptGNN and classical baselines on a597

variety of datasets. We note that Greedy achieves poor performance compared to OptGNN and598

Gurobi on every dataset, indicating that for these datasets, finding Maximum Cut is not trivial. On599

the worst case, WS (400, 500), OptGNN achieves a cut value within 1.1% on average of Gurobi with600

an 8s time limit. On other datasets, OptGNN is typically within a fraction of a percent. Notably,601

OptGNN is within 0.1% of Gurobi 8s on all the TU datasets.602

Table 2 presents the average size of the Vertex Cover achieved by OptGNN and classical baselines on603

our datasets. For this problem OptGNN also performs nearly as well as Gurobi 8s, remaining within604

1% on the TU datasets and 3.1% on the worst case, ER (100, 200).605

Dataset GAT GCNN GIN GatedGCNN OptGNN

ERa (50,100) 525.92 (25) 500.94 (17) 498.82 (14) 526.78 (14) 528.95 (18)
ERa (100,200) 1979.45 (20) 1890.10 (26) 1893.23 (23) 1978.78 (21) 1995.05 (24)
ERa (400,500) 16317.69 (208) 15692.12 (233) 15818.42 (212) 16188.85 (210) 16387.46 (225)

MUTAGb 27.84 (19) 27.11 (12) 27.16 (13) 27.95 (14) 27.95 (9)
ENZYMESb 80.73 (17) 74.03 (12) 73.85 (16) 81.35 (9) 81.37 (14)
PROTEINSb 100.94 (14) 92.01 (19) 92.62 (17) 101.68 (10) 102.15 (12)
IMDB-BINb 81.89 (18) 70.56 (21) 81.50 (10) 97.11 (9) 97.47 (11)
COLLABb 2611.83 (22) 2109.81 (21) 2430.20 (23) 2318.19 (18) 2622.41 (22)

Table 3: Performance of various model architectures for selected datasets on Maximum Cut. Here,
higher is better. GAT is the Graph Attention network (Veličković et al., 2018)

, GIN is the Graph Isomorphism Network (Xu et al., 2019), GCNN is the Graph Convolutional Neural Network
(Morris et al., 2019), and GatedGCNN is the gated version (Li et al., 2015).

C.3 Ablation606

Our approach of training on the SDP objective generalizes to neural network architectures other607

than OptGNN. We trained several architectures besides OptGNN on a subset of our datasets for608

both maximum cut and minimum vertex cover. We present the comparison of their performance to609

OptGNN for maximum cut in Table 3; please see subsection C.7 for the analogous table for minimum610

vertex cover. On the datasets we used, OptGNN outperforms the other architectures we tested. We611

note that compared to OptGNN, many other models performed fairly well; for instance, GatedGCNN612

achieves average cut values within a few percent of OptGNN on nearly all the datasets (excluding613

COLLAB). An interesting question for future investigation is what architectures may perform better614

than OptGNN.615

C.4 Hardware616

Our training runs used 20 cores of an Intel Xeon Gold 6248 (for data loading and random graph617

generation) and a NVIDIA Tesla V100 GPU. Our Gurobi runs use 8 threads on a Intel Xeon Platinum618

8260. Our KaMIS runs use an Intel Core i9-13900H. Our LwD and DGL-TREESEARCH runs use an619

Intel Core i9-13900H and an RTX 4060.620

Parameter Generated TU-small TU-REDDIT
Gradient steps 20,000 100,000 100,000
Validation freq 1,000 1,000 2,000
Batch size 16 16 16
Ranks 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32
Layer counts 8, 16 8, 16 8, 16
Positional encodings RW LE, RW RW

Run count 8 16 8

Table 4: Hyperparameter
range explored for each
group of datasets. For
each NN architecture, when
training on a dataset, we ex-
plored every listed hyperpa-
rameter combination in the
corresponding column.
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C.5 Hyperparameters621

We ran each experiment on a range of hyperparameters. See Table 4 for the hyperparameter listing.622

For all training runs, we used the Adam optimizer Kingma & Ba (2014) with a learning rate of 0.001.623

We used Laplacian eigenvector Dwivedi et al. (2020) (LE) or random walk Dwivedi et al. (2021)624

(RW) positional encoding with dimensionality of half the rank, except for rank 32 where we used 8625

dimensions.626

Dataset OptGNN

BAa (50,100) 0.998 ± 0.002
BAa (100,200) 0.996 ± 0.003
BAa (400,500) 0.993 ± 0.003

ERa (50,100) 0.998 ± 0.002
ERa (100,200) 0.996 ± 0.002
ERa (400,500) 0.993 ± 0.001

HKa (50,100) 0.998 ± 0.002
HKa (100,200) 0.995 ± 0.003
HKa (400,500) 0.994 ± 0.003

WCa (50,100) 0.998 ± 0.003
WCa (100,200) 0.995 ± 0.003
WCa (400,500) 0.989 ± 0.003

MUTAGb 1.000 ± 0.000
ENZYMESb 0.999 ± 0.003
PROTEINSb 1.000 ± 0.002
IMDB-BINb 1.000 ± 0.001
COLLABb 0.999 ± 0.002

REDDIT-BINc 1.000 ± 0.001
REDDIT-M-12Kc 0.999 ± 0.002
REDDIT-M-5Kc 0.999 ± 0.002

Table 5: Performance of OptGNN
compared to Gurobi running under
an 8 second time limit, expressed as
a ratio. For each dataset, we take the
ratio of the integral values achieved
by OptGNN and Gurobi 8s on each
of the graphs in the test slice. We
present the average and standard de-
viation of these ratios. Here, higher
is better. This table demonstrates
that OptGNN achieves nearly the
same performance, missing on av-
erage 1.1% of the cut value in the
worst measured case.

Dataset OptGNN

BAa (50,100) 1.001 ± 0.005
BAa (100,200) 1.003 ± 0.005
BAa (400,500) 1.008 ± 0.011

ERa (50,100) 1.010 ± 0.015
ERa (100,200) 1.031 ± 0.012
ERa (400,500) 1.013 ± 0.006

HKa (50,100) 1.002 ± 0.007
HKa (100,200) 1.004 ± 0.013
HKa (400,500) 1.007 ± 0.011

WCa (50,100) 1.014 ± 0.016
WCa (100,200) 1.016 ± 0.013
WCa (400,500) 1.018 ± 0.007

MUTAGb 1.009 ± 0.027
ENZYMESb 1.000 ± 0.000
PROTEINSb 1.010 ± 0.021
IMDB-BINb 1.002 ± 0.016
COLLABb 1.001 ± 0.003

REDDIT-BINc 1.000 ± 0.002
REDDIT-M-12Kc 1.000 ± 0.001
REDDIT-M-5Kc 1.000 ± 0.001

Table 6: Performance of OptGNN
compared to Gurobi running under
an 8 second time limit, expressed as
a ratio. For each dataset, we take the
ratio of the integral values achieved
by OptGNN and Gurobi 8s on each
of the graphs in the test slice. We
present the average and standard de-
viation of these ratios. Here, lower is
better. This table demonstrates that
OptGNN achieves nearly the same
performance, producing a cover on
average 3.1% larger than Gurobi 8s
in the worst measured case.
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C.6 Ratio tables627

In Table 5 and Table 6 we supply the performance of OptGNN as a ratio against the integral value628

achieved by Gurobi running with a time limit of 8 seconds. These tables include the standard deviation629

in the ratio. We note that for Maximum Cut, OptGNN comes within 1.1% of the Gurobi 8s value,630

and for minimum Vertex Cover, OptGNN comes within 3.1%.631

Dataset GAT GCNN GIN GatedGCNN OptGNN

ERa (50,100) 58.78 (20) 64.42 (23) 64.18 (20) 56.17 (14) 55.25 (21)
ERa (100,200) 129.47 (20) 141.94 (17) 140.06 (20) 130.32 (20) 126.52 (18)
ERa (400,500) 443.93 (43) 444.12 (33) 442.11 (31) 440.90 (28) 420.70 (41)

MUTAGb 7.79 (19) 8.11 (16) 7.95 (20) 7.79 (17) 7.79 (18)
ENZYMESb 21.93 (24) 25.42 (18) 25.80 (28) 20.28 (14) 20.00 (24)
PROTEINSb 28.19 (23) 31.07 (19) 32.28 (21) 25.25 (19) 25.29 (18)
IMDB-BINb 17.62 (21) 19.22 (19) 19.03 (23) 16.79 (15) 16.78 (18)
COLLABb 68.23 (23) 73.32 (17) 73.82 (26) 72.92 (13) 67.50 (23)

Table 7: Performance of various model architectures compared to OptGNN for selected datasets on
Minimum Vertex Cover. Here, lower is better.

C.7 Vertex cover alternative architectures632

Table 7 presents the performance of alternative neural network architectures on minimum vertex633

cover.634

C.8 Effects of hyperparameters on performance635

Figure 3, Figure 4, Figure 5, and Figure 6 present overall trends in model performance across636

hyperparameters.637

Train Dataset MUTAG ENZYMES PROTEINS IMDB-BIN COLLAB

BA (50,100) 7.74 20.12 27.66 17.57 74.15
BA (100,200) 7.74 20.35 26.03 16.86 69.29
BA (400,500) 8.05 21.00 26.54 17.34 70.17

ER (50,100) 7.74 20.37 28.17 16.86 69.07
ER (100,200) 8.05 21.52 27.72 16.89 68.83
ER (400,500) 7.79 21.55 28.60 16.78 68.74

HK (50,100) 7.74 20.42 25.60 17.05 69.17
HK (100,200) 7.84 20.43 27.30 17.01 70.20
HK (400,500) 7.95 20.63 26.30 17.15 69.91

WC (50,100) 7.89 20.13 25.46 17.38 70.14
WC (100,200) 7.79 20.30 25.45 17.91 71.16
WC (400,500) 8.05 20.48 25.79 17.12 70.16

MUTAG 7.74 20.83 26.76 16.92 70.09
ENZYMES 7.74 20.60 28.29 16.79 68.40
PROTEINS 7.89 20.22 25.29 16.77 70.26
IMDB-BIN 7.95 20.97 27.06 16.76 68.03
COLLAB 7.89 20.35 26.13 16.76 67.52

Table 8: Models for Vertex Cover trained on "dataset" were tested on a selection of the TU datasets
(ENZYMES, PROTEINS, MUTAG, IMDB-BINARY, and COLLAB). We observe that the perfor-
mance of the models generalizes well even when they are taken out of their training context.
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Figure 3: Trends in model performance with respect to the number of layers, hidden size, and
positional encoding of the models.

C.9 Generalizability638

Models trained on one dataset work quite well on other datasets, suggesting that models have good639

ability to generalize to examples outside their training distribution. Please see Table 8.640
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Figure 4: Trends in model performance with respect to the number of layers, hidden size, and
positional encoding of the models.

Figure 5: Trends in model performance with respect to the number of layers, hidden size, and
positional encoding of the models.
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Figure 6: Trends in model performance with respect to the number of layers, hidden size, and
positional encoding of the models.
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