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ABSTRACT

This paper investigates the fundamental regression task of learning k neurons
(a.k.a. teachers) from Gaussian input, using two-layer ReLU neural networks
with width m (a.k.a. students) and m, k = O(1), trained via gradient descent
under proper initialization and a small step-size. Our analysis follows a three-
phase structure: alignment after weak recovery, tangential growth, and local
convergence, providing deeper insights into the learning dynamics of gradient
descent (GD). We prove the global convergence at the rate of O(T−3) for the zero
loss of excess risk. Additionally, our results show that GD automatically groups
and balances student neurons, revealing an implicit bias toward achieving the
minimum “balanced” ℓ2-norm in the solution. Our work extends beyond previous
studies in exact-parameterization setting (m = k = 1, (Yehudai and Ohad, 2020))
and single-neuron setting (m ≥ k = 1, (Xu and Du, 2023)). The key technical
challenge lies in handling the interactions between multiple teachers and students
during training, which we address by refining the alignment analysis in Phase 1 and
introducing a new dynamic system analysis for tangential components in Phase 2.
Our results pave the way for further research on optimizing neural network training
dynamics and understanding implicit biases in more complex architectures.

1 INTRODUCTION

Learning a target function f⋆ : Rd → R via neural networks through gradient descent or flow has
received significant attention in machine learning theory. Research in this area primarily focuses on
understanding the learnability and dynamics, aiming to theoretically explain the advantage of feature
learning in neural networks. This problem is often studied under various assumptions about f⋆. For
instance, f⋆ is frequently (implicitly) assumed to be smooth in a kernel regime (Jacot et al., 2018;
Allen-Zhu et al., 2019; Arora et al., 2019). Additionally, f⋆ might possess further structures, such as
being located on a low-dimensional subspace (Mousavi-Hosseini et al., 2023) or a manifold (Arora
et al., 2022). A typical example is assuming f⋆ is a sparse polynomial (Abbe et al., 2022). In this
setting, the separation between kernel methods and neural networks is well studied through metrics
like the information exponent (Arous et al., 2021), leap complexity (Abbe et al., 2023), and generative
exponent (Damian et al., 2024).

In contrast to smooth functions, another research direction focuses on non-smooth target functions,
such as ReLU. This non-smoothness naturally highlights the difference between kernel methods and
neural networks in terms of approximation ability (Bach, 2017). As a result, researchers have turned
their attention to studying the learning dynamics to gain a deeper understanding of convergence. For
instance, they investigate learning with a single ReLU neuron (Wu et al., 2023; Xu and Du, 2023) or
multiple ReLU neurons (Zhou et al., 2021; Akiyama and Suzuki, 2023).

We consider the problem of learning one-hidden-layer ReLU networks under the Gaussian measure.
The target function f⋆ is a sum of multiple ReLU neurons f⋆(x) :=

∑k
l=1 ϕ(⟨vl,x⟩)1 with the

parameters {vl}kl=1, which can be learned from n i.i.d. samples {(xi, f
⋆(xi))}ni=1 via a two-layer

neural network with m (student) neurons with random Gaussian initialization {wi}mi=1 ∼ N (0, σ2Id)

1We assume that teacher neurons are positive. However, if both the student and teacher networks contain
at least one negative ReLU neuron, our proof techniques can address such cases with minor modifications,
requiring no significant changes to the overall analysis.
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under the expected squared loss:

L(W ) =
1

2
Ex∼N (0,Id)

(
m∑
i=1

ϕ(w⊤
i x)− f⋆(x)

)2

, (1)

which aims to find a good approximation of f⋆ from the student network. To ensure learning
performance, m ≥ k is needed.

This problem is identified as an additive model in statistics (Stone, 1985; Hastie and Tibshirani, 1987),
and it receives great attention in theoretical computer science (Chen et al., 2023) and machine learning
theory, especially on sample/time complexity as well as training dynamics (Boursier and Flammarion,
2024; Bietti et al., 2023). However, understanding how gradient-based training algorithms recover
the teacher network and analyzing the entire training dynamics are still challenging. Therefore, most
current analyses are limited to non-gradient-based algorithms (Chen et al., 2023), or local analysis
for gradient-based algorithms, which assumes that the loss has already been minimized below a
very small threshold, or the angles between teacher neurons and their nearest student neurons are
already small (called strong recovery), e.g., (Zhou et al., 2021). If we go beyond the local analysis,
previous result on GD training can only handle specific cases, such as (Yehudai and Ohad, 2020)
for m = k = 1,(Wu et al., 2018) for m = k = 2, and(Xu and Du, 2023; Chistikov et al., 2023) for
m ≥ k = 1. In fact, studying more general cases, such as m, k = O(1), remains unresolved, even in
local analysis. Accordingly, we aim to address the following question:

How can gradient-based algorithms recover teacher neurons and learn useful features beyond
the local analysis?

To better understand the learning dynamics in the above question, we follow the “align then fit”
framework (Maennel et al., 2018; Boursier and Flammarion, 2024), which also helps to explain the
implicit bias of the learned solution. In this study, we run the gradient descent (GD) over Eq. (1).
Since analyzing the entire training dynamics is still challenging and is an open problem, so we assume
the weak recovery, where for each student neuron, exactly one teacher neuron exists that is not nearly
perpendicular to it. Note that the weak recovery condition is still much weaker than the condition
with local analysis and strong recovery that will be proved in our analysis. An informal version of
our theoretical results is given as below.
Theorem 1 (Global Convergence after Weak Recovery: Informal). Under proper assumptions
(e.g., teacher neurons are with same length ∥v∥, and orthogonal to each other), sufficiently small
initialization with σ = o(poly(d−

1
2 )), and trained via gradient descent with sufficiently small step-size

η = o(1) to minimize Eq. (1), after time T ⋆ = Ω( 1η ), for any T ∈ N, we have:

L(W (T ⋆ + T )) ≤ O

(
∥v∥2

η3T 3

)
, and ∥wi(T

⋆ + T )∥ = Θ

(
k ∥v∥
m

)
∀i ∈ [m] , w.h.p .

Our result demonstrates that the Eq. (1) can be solved by GD in the polynomial time to find the
global minima and achieves the global convergence rate at O(1/T 3). We admit that the derived
sample/time complexity2 is not optimal, but to our knowledge, this is the first polynomial-time result
of GD training beyond the local analysis for Eq. (1) with m, k = O(1). Besides, our results also
indicate that the obtained solution will converge to a minimum “balanced” ℓ2 solution, where the
“balanced” is determined by student neurons and their respective nearest teacher neurons.

Technical challenges. We employ the similar proof framework of Xu and Du (2023) on m ≥ k = 1.
The main challenge of this paper is how to address the coupling of different teacher neurons’ influences
on the student neurons, even though the teacher neurons are orthogonal to each other. For instance:

• In phase 1, single teacher neuron (k = 1) (Xu and Du, 2023) allows for monotonic convergence
on the angular difference between the teacher and student neurons. However, this does not hold
for k > 1. In this case, we use approximations of sine and cosine values for decoupling when the
angle is very small or near perpendicular. Hence we can simplify the training dynamics and prove
that the sine of the minimum angle converges linearly to a tiny neighborhood.

2In our setting, the number of training iterations T corresponds to the sample size n, and the sample
complexity to achieve an ϵ expected risk is O(ϵ−1/3poly(m, k)).
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• In phase 2, during the analysis of neuron growth, the tangential components of the student neurons
at each teacher neuron (and for more teacher neurons) are quite complex. Classical recursive
relationship in (Xu and Du, 2023) can not handle this. Instead, we develop a new technical tool by
building a dynamical system: we formulate the matrix iteration form, estimate the eigenvalues of
the transition matrix, and establish the upper and lower bounds of such a dynamical system.

2 RELATED WORK

Dynamics of gradient descent in the teacher-student setting: Li and Yuan (2017) studied the
exact-parameterized setting and proved convergence for SGD with initialization near identity. The
separation between kernel methods and two-layer neural networks is further described in Li et al.
(2020). To further understand the convergence and generalization of regression tasks using non-linear
networks, it is essential to thoroughly analyze the dynamics throughout gradient-based training,
commonly described as "align then fit" (Maennel et al., 2018; Boursier and Flammarion, 2024) in a
three-phase analysis framework. Xu and Du (2023) provide a global convergence of learning with a
single ReLU neuron, where the proof for the local convergence (i.e., the third phase) is given by Zhou
et al. (2021). This analysis framework is also used in various settings, e.g., binary classification (Min
et al., 2023) and matrix sensing (Xiong et al., 2024). Additionally, Zhou and Ge (2024) propose
an algorithm combining gradient descent with convex optimization, achieving strong recovery in a
single gradient step through specific initialization. Our work also analyzes the dynamics from weak
recovery to strong recovery.

Besides, our problem can be cast as a special case of learning with multi-index model (Bietti et al.,
2023) where the link function (i.e., the activation function used in this work) is unknown. However,
the techniques are different and our three-phase analysis framework allows for a better understanding
of global convergence. Some statistical physics studies work have explored related topics but differ
from our work (Goldt et al., 2020; Arnaboldi et al., 2023) by focusing on generalization errors without
providing convergence rates or detailed analyses of training dynamics and convergence phases.

Implicit bias: Recent studies suggest that gradient descent is implicitly biased towards a low-rank
hidden weight matrix or a sparse number of directions represented by the neurons (Safran et al.,
2022; Shevchenko et al., 2022; Chizat and Bach, 2020). This implicit bias is often characterized by
the minimal norm interpolator, which is closely related to sparsely represented directions (Lyu and
Li, 2020). These findings indicate that the early alignment phase enforces the alignment of weights
towards a small number of directions, even with omnidirectional initialization, leading to implicit
regularization at convergence (Boursier and Flammarion, 2023).

3 NOTATIONS, PROBLEM SETTING, AND ASSUMPTIONS

In this section, we give notations that are needed in this paper and then introduce our problem setting
as well as the required assumptions in our proof.

3.1 NOTATIONS

Basic notations: We use the shorthand [n] := {1, 2, . . . , n} for a positive integer n. We denote by
a(n) ≳ b(n): the inequality a(n) ≥ cb(n) that hides a positive constant c that is independent of n.
Vectors (matrices) are denoted by boldface, lower-case (upper-case) letters. The used norm ∥ · ∥ in
this paper is ℓ2 norm if we do not specify. We follow the standard Bachmann–Landau notation in
complexity theory e.g., O, o, Ω, and Θ for order notation.

Notations on angle: The angle between any two non-zero vectors w and v is denoted as ∠(w,v) :=

cos−1 ⟨w,v⟩
∥w∥∥v∥ . Then we use the following notations for any i, j ∈ [m], l ∈ [k]

• θil ≜ ∠(wi,vl): the angle between a student neuron wi and a teacher neuron vl.

• φij ≜ ∠(wi,wj): the angle between two neurons wi and wj for student model.

• τi ≜ argminj ∠(wi(0),vj(0)): the index of the teacher neuron with the smallest angle to
the wi at initialization, in which the smallest angle is denoted as θi⋆ ≜ θiτi = ∠(wi,vτi).

• rj ≜
∑

i:τi=l wi − vl: the difference of the teacher neuron vl and the sum of the student
neurons around vl.

3
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For notational simplicity, by denoting ā ≜ a
∥a∥ , we denote the tangential part hil ≜ ⟨wi, v̄l⟩ as the

projection of wi along with the direction of vl; and a similar notation for hi⋆ ≜ ⟨wi, v̄τi⟩. Besides,
we denote wi(t) as the vector wi at time t, which also adapts to θij(t), etc.

Notations on loss: The standard Gaussian distribution is N (0, 1) with zero-mean and unit variance.
We denote Ex∼N (0,1) by Ex for simplicity. By defining the residuals of the neural network as:

R(x) :=

m∑
i=1

ϕ(⟨wi,x⟩)−
k∑

i=1

ϕ(⟨vi,x⟩) ,

then the loss can be written as L(W ) = 1
2ExR(x)2.

3.2 CLOSED FORM EXPRESSIONS OF GRADIENT OF LOSS: ∇L

To make our paper self-contained, we present the closed-form expressions for ∇L when the input data
follows a Gaussian distribution, as given by Safran and Shamir (2018), see the details in Appendix D.
We denote ∇i ≜

∂L(W )
∂wi

as the gradient of loss to the wi, when wi ̸= 0. Then for any i ∈ [m], the
loss function is differentiable with gradient given by:

∇i =
1

2

m∑
j=1

wj−
1

2

k∑
l=1

vl+
1

2π

[
wi

∥wi∥
( m∑
j=1,j ̸=i

sinφij ∥wj∥−
k∑

l=1

sin θil ∥v∥
)
−

m∑
j=1,j ̸=i

φijwj+

k∑
l=1

θilvl

]
.

(2)
We use random Gaussian initialization for neural network training, i.e., ∀i ∈ [m],wi(0) ∼
N (0, σ2Id) with the variance σ2. Then we can prove that ∥wi∥ has bounded norm with high
probability if the dimension d is not small, see Lemma 1 in Appendix D.

3.3 ASSUMPTIONS

We state the used assumptions in this paper.
Assumption 1 (Weak recovery). Regarding the angle θij(0) defined before for any i ∈ [m], j ∈ [k],
at initialization, denote θi⋆(0) as the smallest angle between wi and its closet teacher neuron. The
weak recovery assumes θi⋆(0) ≪ θij(0) with j ∈ [k] and j ̸= τi. We mathematically formulate this
as below.

• θi⋆(0) is acute: 0 < π
2 − θi⋆(0) ≜ ζi = Θ(1), and ζi ∈ (0, π

2 ].

• θij(0) is close to orthogonal:
∣∣π
2 − θij(0)

∣∣ ≤ ζ = o(1) with j ∈ [k] and j ̸= τi.

Remark: The weak recovery assumption requires that a student neuron is not orthogonal to its closet
teacher neuron but is nearly orthogonal to the remaining teacher neurons (Dandi et al., 2024). If
we focus on the single ReLU case like Xu and Du (2023), this assumption can be directly removed
because there is only one teacher neuron. With only one teacher neuron, there are no competing
neurons for alignment, and thus the angle between the student and teacher neuron is naturally the
smallest.
Assumption 2 (Orthogonal and same norm for teacher neurons). The teacher neurons are given by
{vi}ki=1, and are assumed to be orthogonal to each other with the same norm, i.e., ⟨vi,vj⟩ = 0 and
∥vi∥ = ∥vj∥ = ∥v∥ , ∀i ̸= j, i, j ∈ [m]. Clearly, we have k ≤ d due to the orthogonality of k
teacher neurons.

Remark: This assumption requires all teacher neurons pointing to different (orthogonal) directions,
which is important for identifiability or recovery. It aligns with practical considerations by allowing
diverse tasks such that the target feature directions do not significantly overlap. This assumption
as well as its variant (e.g., separation among teacher neurons) has been widely used in previous
theoretical results,e.g., (Zhou et al., 2021; Oko et al., 2024; Simsek et al., 2023). We can relax this
assumption where the teacher neurons are nearly orthogonal and have similar norms. However, such
relaxation would require additional computations in our analysis. On the other hand, extending the
analysis to the fully non-orthogonal case (arbitrary angles between teacher neurons) remains an open
problem under our setting and would likely require new techniques. To avoid unnecessary complexity
and focus on the core analysis, we concentrate on the basic assumptions.

4
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Assumption 3 (Balance condition at initialization). At initialization, we record the number of student
neurons wi with τi = l as ml. Then we assume m

3k ≤ ml ≤ 3m
k ,∀l ∈ [k].

Remark: This is a balance condition such that the number of merged student neurons among each
teacher neuron is not extremely small or large. It is motivated by Boursier et al. (2022, Assumption
3) and (Wojtowytsch, 2020) that requires the student neurons to cover all directions of the teacher
neurons. Our assumption requires student neurons coincide with teacher neurons in a balanced way.

4 MAIN RESULTS

In this section, we will provide the main theoretical results. First, in Section 4.1, we provide the
primary result on global convergence. Then, in Section 4.2, we summarize the training dynamics
across the three phases, highlighting their durations, key processes, and contributions to global
convergence in a unified framework. Then, in the following subsections, we discuss the training
dynamics of the three phases and provide proof sketches. In Section 4.3.1, we provide the main
dynamics and final state results of the alignment process in the first phase. In Section 4.3.2, we
provide the main dynamics and final state results of the tangential growth process in the second phase.
In Section 4.3.3, we provide the results of the local convergence in the third phase and then achieve
the final global convergence result.

4.1 MAIN THEOREM

Theorem 2. Assume d = Ω(log(m/δ)) with δ ∈ (0, 1), under Assumptions 1 2 and 3, let
σ = o(poly(m−k2

, d−
1
2 )) = o(poly(d−

1
2 )), and trained via gradient descent with step-size, η =

o(poly(m−k2

)) = o(poly(1)) to minimize Eq. (1), then there exists a T ⋆ = Ω(k log k logm
mη ) = Ω( 1η )

such that with probability at least 1− δ over the initialization, for any T ∈ N, we have:

L(W (T ⋆ + T )) ≤ O

(
k12 ∥v∥2

η3T 3

)
, and

∥v∥
4mτi

≤ ∥wi(T
⋆ + T )∥ ≤ 4 ∥v∥

mτi

∀i ∈ [m] .

Remark: Theorem 2 provides a convergence rate of T−3, which is consistent with previous results
(Xu and Du, 2023). Moreover, it indicates that the more teacher neurons and the larger their norms,
the slower the convergence rate. This aligns with our intuition that when the initialization is very
small, a larger norm and more teacher neurons require student neurons to take more time to align
and converge to the teacher neurons. Unlike (Xu and Du, 2023), we present a stronger bound that
is independent of the number of student neurons and does not deteriorate as the number of student
neurons increases. Furthermore, our results indicate that the student neurons will implicitly converge
to a specific teacher neuron and maintain a balance among themselves.

4.2 SUMMARY OF MAIN RESULTS WITH PHASE ANALYSIS

We summarize the three training phases and associated dynamics in a unified framework to provide
a clear overview of our findings. This structure highlights the processes that occur in each phase,
their respective contributions to the global convergence result, and key observations. For a concise
summary of the duration and key results, see Table 1 at the end of this section:

• Phase 1 - Alignment: In this phase, each student neuron aligns with a specific teacher neuron
by minimizing the angle between their vectors. This process depends on the initialization
scale (σ) and the learning rate (η). By the end of this phase, the angle between student and
teacher neurons is reduced to O(ϵ1), ensuring proper alignment while maintaining bounded
norms.

• Phase 2 - Tangential Growth: Following alignment, the student neurons grow tangentially
along the direction of their aligned teacher neurons. During this phase, the projection
strength between student neurons and teacher neurons balances, leading to a linear decrease
in the loss. This phase ensures that the norms of student neurons become comparable to
those of teacher neurons.

• Phase 3 - Local Convergence: In the final phase, the training achieves global convergence
as the loss becomes sufficiently small. The loss decreases at a rate of O(T−3), and the

5
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student neurons converge implicitly to the directions of their corresponding teacher neurons.
This phase solidifies the final convergence result.

Table 1: Summary of Training Phases and Dynamics

Phase Duration Key Results

Phase 1: Alignment T1 = Θ

(
ϵ21
η

)
Angle reduced to O(ϵ1); norms remain bounded.

Phase 2: Tangential Growth T2 = Θ
(

1
η

ln
(

1
ϵ2

))
Projection strength balanced; loss decreases linearly.

Phase 3: Local Convergence T3 = O(T−3) Loss decreases at O(T−3); neurons converge to teacher directions.

4.3 PROOF OVERVIEW

In this section, we provide a sketch of the Theorem 2. The complete proof can be found in the
appendix. Our proof is primarily divided into three phases: alignment (Section 4.3.1), tangential
growth (Section 4.3.2), and global convergence (Section 4.3.3). Finally we can summarize the results
in these three phases for the main result.

4.3.1 PHASE 1 - ALIGNMENT

During this phase, each student neuron individually aligns with a specific teacher neuron. The
outcomes of this section are divided into two main parts: i) the upper and lower bounds on the
lengths of the student neurons, as well as the angle between student and teacher neurons during the
time Theorem 3. ii) the upper bound on the angle between student and teacher neurons at the end of
phase 1, as well as the balance of projection strength from different student neurons onto the teacher
neuron Corollary 1. The detailed derivation can be found in Appendix F.
Theorem 3 (Phase 1: Alignment Process). Assume d = Ω(log(m/δ)) with δ ∈ (0, 1), for any ϵ1 > 0,
under Assumption 1 with 10kζ ≤ϵ21 = o(1) and Assumptions 2, 3 such that σ = o( poly(ϵ1)∥v∥√

d
) in

our random Gaussian initialization, and the stepsize satisfies η = o(
σ
√
dϵ21

∥v∥ ), then there exist a

T1 = Θ(
ϵ21
η ), for 0 ≤ t ≤ T1, the following statements hold with probability at least 1− δ:

s1 ≤ ∥wi(t)∥ ≤ s2 + 2kη ∥v∥ t , ∀i ∈ [m], with s1 :=
1

2
σ
√
d, s2 := 2σ

√
d , (3)

and

sin2
(
θi⋆(t)

2

)
− ϵ21 ≤

(
1 +

ηk ∥v∥ t
s2

)− 1
8k
(
sin2

(
θi⋆(0)

2

)
− ϵ21

)
, ∀i ∈ [m] . (4)

Remark: Our theorem implies that, during phase 1 of the training, the norm of each student
neuron always has an immutable lower bound, while the upper bound increases linearly over time.
Additionally, for each student neuron, the angle with its nearest teacher neuron converges linearly
within an error range of ϵ21. Compared to the results of Xu and Du (2023), the upper bound of our
neuron norm increases k times faster because we have k different teacher neurons, which naturally
leads to this outcome. Taking k = 1, our convergence rate is faster by a constant factor compared to
the results of Xu and Du (2023), and our condition for σ is weaker. When the same σ is selected, the
total duration of phase 1, denoted as T1, they are the same.

Then, we briefly introduce our proof technique, due to the presence of multiple teacher neurons, the
gradient expression in Eq. (15) contains 2(k − 1) cross terms including θil with detailed interactions,
which do not exist in Xu and Du (2023). To handle this challenge, we provide additional analysis on
alignment related to these cross terms in phase 1. Specifically, we prove these results by induction.

Proof of Eq. (3): This formula provides the upper and lower bounds of ∥w∥ during the training. For
the lower bound, based on the gradient expression ∇i in Eq. (2), we prove ⟨wi(t),∇i(t)⟩ ≤ 0, which
ensures that the norm ∥w∥ increases monotonically such that ∥wi(t)∥ ≥ s1. For the upper bound,
we need to bound the norm of gradient using Eq. (2). Then, applying the triangle inequality, we can
obtain the desired result.

Proof of Eq. (4): This formula illustrates the angle dynamics (i.e., the alignment process) between
the student neuron and its closest teacher neuron during phase 1. For larger θi⋆ , it is easy to prove

6
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that the θi⋆ decreases monotonically. However, when θi⋆ is very small, we cannot guarantee the
monotonic decreasing property of θi⋆ . To this end, we build the connection between sin2(θi⋆(t)/2)
and the following angle difference

cos(θi⋆(t+1))− cos(θi⋆(t)) := I2+ I3 , the first-order term I2 and the second-order term I3 .

By estimating I2 and I3, we can track the dynamics of the angle difference and then prove that sin θi⋆
converges linearly to a very small neighborhood (i.e., ϵ21).

At the end of phase 1, we conclude the following result:

Corollary 1 (Final State of Phase 1). Under the same conditions as Theorem 3, at time T1, the
following statements hold with probability at least 1− δ:

θi⋆(T1) ≤ 4ϵ1 , and hi⋆(T1) ≤ 2hj⋆(T1) , ∀i, j ∈ [m] . (5)

Remark: By the end of phase 1, each student neuron will align with its nearest teacher neuron with
the residual angle at the order of O(ϵ1). Additionally, the projection lengths of these student neurons
in the direction of their corresponding teacher neurons are relatively balanced, with a rough upper
bound of 2.

Proof of Eq. (5): For the first part, substituting the parameters from Theorem 3 into Eq. (4) will yield
the result. For the second part, firstly, we derive the upper and lower bounds for hi⋆(t+ 1)− hi⋆(t)
and then accumulate these bounds. Next, we prove that before a certain time (e.g., t := T1/50),
the upper bound of hi⋆(t) is relatively small compared to this accumulated value. This allows us to
establish the upper and lower bounds for all hi⋆(T1) and thereby determine the maximum ratio of
hi⋆(T1) among different student neurons.

4.3.2 PHASE 2 - TANGENTIAL GROWTH

In this section, we present the results of the second phase, in which each student neuron grows along
the tangential direction of the teacher neuron aligned in phase 1 as below.The detailed derivation can
be found in Appendix G.

Theorem 4 (Phase 2: Tangential Growth Process). Assume d = Ω(log(m/δ)) with δ ∈ (0, 1),
for any ϵ1 > 0, ϵ2 > 0, under Assumption 1 with ϵ2 = o(1), ϵ21 = o(poly(ϵ2)), Assumptions 2, 3
such that σ = o( poly(ϵ1)∥v∥√

d
) in our random Gaussian initialization, and the stepsize satisfies η =

o(
σ
√
dϵ21

∥v∥ ), then by setting there exist a T2 = T1 + Θ( 1η ln
(

1
ϵ2

)
), then ∀T1 ≤ t ≤ T2, we define

Hl(t) := ∥v∥ −
∑m

i=1 Iτi=lhi⋆(t) for l ∈ [k], the following statements hold with probability at least
1− δ:

hi⋆(t) ≤ 2hj⋆(t), and
2 ∥v∥
mτi

≥ hi⋆(t) ≥
s1
2
, ∀i, j ∈ [m] and τi = τj . (6)

(
1−ηm

9k

)t−T1

∥v∥+8πϵ2 ∥v∥ ≥ Hl(t) ≥
2

3
∥v∥

(
1−3ηm

2k

)t−T1

−8πϵ2 ∥v∥ ≥ 24πϵ2 ∥v∥ , ∀l ∈ [k] ,

(7)
and

θi⋆(t) ≤ ϵ2,∀i ∈ [m] . (8)

Remark: This theorem tells us that during phase 2:

1). The norm of student neurons close to the same teacher neuron remains relatively balanced, with
each neuron having strict upper and lower bounds (Eq. (6)). It is worth noting that, unlike in phase
one, see Eq. (5), this balance is not maintained for all neurons.

2). The projections of the student neurons near each teacher neuron will gradually increase, and the
difference from ∥v∥ will approach zero at a linear convergence rate (Eq. (7)). This result implies that
as training progresses, the loss gradually decreases. We will further prove that by the end of phase 2,
the loss has decreased to a sufficiently small value.

3). The angle between each student neuron and its nearest teacher neuron stays within a small range
(Eq. (8)). However, the angle is slightly larger than that of Phase 1 because additional cost/movement
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is required to handle the convergence for tangential difference and the decrease of loss. For example,
we have ∥∇i(t)∥ ≤ 2k∥v∥ in Phase 1 but it changes to ∥∇i(t)∥ ≤ 15k∥v∥ in Phase 2.

4). Taking k = 1, our condition for ϵ2 is similar to that of Xu and Du (2023), but we have relaxed the
learning rate condition by a factor of m. And the total duration of phase 2, is reduced by a constant
factor of 1

2 .

Then, we briefly introduce our proof technique. Compared to one teacher setting (Xu and Du,
2023), the tangential analysis requires a new dynamical system analysis regarding the dynamics
of {Hl(t)}kl=1 due to the coupling tangential components among student/teacher neurons. Besides,
the loss function becomes more complex Eq. (14) and we have to control the loss below a certain
threshold in the presence of these interactions, which requires additional quantities to estimate.
Specifically, we prove these results by induction.

Proof of Eq. (6): For the first part, we follow the proof of Eq. (5) to build the connection between
hi⋆(t + 1) − hi⋆(t) and Hl in a weighted sum relationship, with an additional constant term Qi.
For two different student neurons close to the same teacher neuron, these weights are the same. By
studying the changes of θi⋆ and θil during this phase, |Qi(t)| will be bounded by a small quantity.
Then we conclude the result by summing and combining the results with Eq. (5). For the second
part, based on Eq. (7), we can derive Hl ≥ 0 and finish the upper bound by combining the results
from the first part. For the lower bound, we derive hi⋆(t+ 1)− hi⋆(t) ≥ 0, which implies that hi⋆ is
monotonic increasing. Combining this with Eqs. (3) and (5), the proof is complete.

Proof of Eq. (7): Using the above analysis about hi⋆(t + 1) − hi⋆(t) ≥ 0 and the relationship
between hi⋆ and Hτi , we can establish a recursive relationship between H(t+ 1) and H(t) as well.
Note that there is a coupling between different H and interference from small quantities Qi, so we
express the iterative formula in matrix form. To be specific, by denoting H := {Hl}kl=1 (we write it
in a matrix formulation), it admits the following recursive relationship:

H(t+ 1) = AH(t) +Q(t) for a certain transition matrix A and Q(t) depends on Qi(t) .

By analyzing the eigenvalues of the transition matrix A, we estimate the upper and lower bounds
of such a dynamic system. For the small quantities Qi, we adopt the same approach used in
proving Eq. (4). Finally, we prove that H converges to a small value at a linear convergence rate.

Proof of Eq. (8): The proof here is similar to Eq. (4), as it also analyzes the dynamics of cos θi⋆ .
However, the difficulty lies in that at this phase, the influence of w in the gradient is no longer
negligible compared to v, making the iterative relationship between angles more complex. First, by
proving

∥wi(t)∥
∥wj(t)∥

= Θ(1) ,∀i, j ∈ [m], T1 ≤ t ≤ T2 ,

we are able to analyse the dynamics of cos θi⋆ (i.e., I2 and I3 in Eq. (4)) based on two cases
τi = (̸=)τj . First, we use some properties of trigonometric functions to decouple this relationship so
that it only involves the coupling between each student neuron and its nearest teacher neuron. Then,

we estimate the difference sin2
(

θi⋆ (t+1)
2

)
− sin2

(
θi⋆ (t)

2

)
for the final sin θi⋆(t). Unlike in phase

1, here we obtain an upper bound for the linear growth of the angle θi⋆ . However, we can still prove
that within the range of T2, the angle remains small.

At the end of phase 2, we can draw the following results:
Corollary 2 (Final state of Phase 2). Under the same conditions as Theorem 4, at time T2, the
following statements hold with probability at least 1− δ:

∥v∥
3mτi

≤ ∥wi(T2)∥ ≤ 3 ∥v∥
mτi

, ∀i ∈ [m] , and L(W (T2)) ≤
1

2
k2ϵ0.052 ∥v∥2 . (9)

Remark: After phase 2, the norms of each student neuron have balanced, and the loss has decreased
to a very small value. This provides the foundation for proving local convergence in phase three.

Proof of first part of Eq. (9): We use the results in Theorem 4 to prove this result. For the lower
bound, we first observe from Eq. (7) that Hl is very small at time T2, meaning the sum of h among
student neurons near each teacher neuron is close to ∥v∥, i.e., Hl(T2) ≤ ∥v∥

3 . Using the balance

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

of them in Eq. (6), we can then establish a lower bound for hi⋆(∥wi∥ cos θi⋆), which further allows
us to derive a lower bound for ∥wi∥. Similarly, for the upper bound, we first observe from Eq. (7)
that at time T2, the sum of h among student neurons near each teacher neuron is close to but still
less than ∥v∥. Using the balance of them in Eq. (6), we can then establish an upper bound for
hi⋆(∥wi∥ cos θi⋆). Given that the angle between each student neuron and its nearest teacher neuron
is very small (second part in Eq. (8)), we can further derive a lower bound for ∥wi∥.

Proof of second part of Eq. (9): The key point of this proof involves introducing an auxiliary function
g to help decompose the L. The loss L can be expressed in the summation of g, see Appendix D for
details. First, based on the upper bound of the angle in phase 2 (second part in Eq. (8)), we know that
there are two scenarios for the angle in the closed form of the loss: close to 0 and nearly orthogonal.
We discuss the upper and lower bounds of auxiliary function g in these two cases. Then, according
to Eq. (7), we find that at time T2, the sum of the norms of the student neurons near each teacher
neuron close to the norm of teacher neurons, i.e.

∑m
i=1 Iτi=lhi⋆(T2) ≥

(
1− o(1)

)
∥v∥. Combining

these two results, we can derive an upper bound for the loss L.

4.3.3 PHASE 3 - LOCAL CONVERGENCE

In this section, we present the results of phase 3 - local convergence. Specifically, we show that when
the loss is already small enough, the loss function converges to zero at a rate of O( 1

T 3 ) Theorem 5.
Our results build upon the previous works of Xu and Du (2023); Zhou et al. (2021); Safran et al.
(2021). The detailed derivation can be found in Appendix H.
Theorem 5 (Local convergence). Suppose the initial condition in Lemma 1 and Assumption 1 2 and 3
holds. If we set ϵ2 = o(poly(1)) and η = o(1) in Theorem 4, then ∀T ∈ N, the following statements
hold with probability at least 1− δ:

L(W (T + T2)) ≤
1(

L(W (T2))−
1
3 +Ω

(
k−4 ∥v∥−

2
3

)
ηT

)3 , (10)

and
∥v∥
4mτi

≤ ∥wi(T + T2)∥ ≤ 4 ∥v∥
mτi

∀i ∈ [m] . (11)

Remark: This theorem shows that, under the condition that the loss is less than a very small value and
the neurons remain balanced at the end of phase two, GD training can achieve the global minimum
with a convergence rate of 1

T 3 . This result is consistent with the previous result in Xu and Du (2023)
and is superior to 1

T in Zhou et al. (2021). Furthermore, this result also indicates that, without using
regularization during training, every student neuron will implicitly converge to the directions of
specific teacher neurons, and there is a balance among student neurons that converge to the direction
of the same teacher neuron.

Proof of Eq. (10): The proof framework of Theorem 5 is standard based on the local convergence
analysis, e.g., (Zhou et al., 2021; Xu and Du, 2023). The key point is utilizing the result of classic
optimization in Appendix H.4 and the lower bound of the gradient to satisfy the conditions of (Xu
and Du, 2023, Lemma 24). First, we follow (Zhou et al., 2021) to derive several lemmas related
to the properties of the loss function. Based on these lemmas, we can obtain the lower bound of
the gradient in terms of the loss. Then, similar to Safran et al. (2021), we deduce that when the
neurons maintain a certain balance, the loss is locally smooth. This allows us to directly apply
the classic optimization theory conclusion regarding the relationship between adjacent iterations of
gradient descent Appendix H.4. Finally, we build the final convergence result by Xu and Du (2023,
Lemma 24). Additionally, our proof requires that the balance condition of the neurons is consistently
maintained Eq. (11), which can be proven using induction and convergence results alternately.

Finally, by combining results from Sections 4.3.1 to 4.3.3 with the hyper-parameter selection in Ap-
pendix B, we obtain the global convergence result in Theorem 2.

When k = 1, compared to the results of Xu and Du (2023), our paper needs stronger requirements on
σ, η and time. This is due to the upper bound of the loss after phase 2 in Eq. (9) and its relationship
with ϵ2. Due to multiple teacher neurons, the number of student neurons converging to each teacher
neuron directions are different. This leads to different norms for the student neurons, which makes a
looser upper bound. However, in the case of k = 1, such handling is not necessary. Therefore, our
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Figure 1: Convergence curves for different m and k.

results can cover the results of Xu and Du (2023) with only minor modifications and have a better
constant factor in phase 1 discussed before.

5 NUMERICAL VALIDATION

In this section, we empirically validate our theoretical results by plotting the convergence curves
under the following setting: we set ∥v∥ = 5, data dimension d = 100, batch size of 512, and a total of
5000 batches. The total number of training samples (equivalent to the previously mentioned T ⋆ + T )
is 2.56× 106. Besides, we have added a 1/T 3 reference line in the log-log plot for better comparison.
We selected four sets of parameters k and m: k = 2,m = 20, k = 4,m = 12, k = 4,m = 20, and
k = 4,m = 40 with initialization variance σ = 10−6 and learning rate η = 5× 10−4. The plots in
Fig. 1 show the cosine of the angle and norm convergence during training (top row) and the log-log
plot of the loss during training (bottom row) for different values of k and m. The results show that
larger k values lead to longer t1 and t2 and slower convergence rates, while larger m values result in
shorter t1 and t2 but have little effect on the convergence rate. This matches our theoretical results
such that using more (student) neurons decreases the time for alignment. We admit that learning more
(teacher) neurons generally requires more time but this is given under the same initialization strategy.
Instead, our initialization strategy depends on m and k, leading to different learning dynamics.

Regarding the timescale experiments, we divided the training dynamics into three phases for analysis.
We can observe the clear “align then fit” phenomena where in phases 1 and 2, the angle aligns
and the tangential grows until the norm of neurons’ weights is unchanged. In phase 3, the loss
function decreases for fitting data. The phase transition from Phase 1 to 2 is not very clear in the
experiments but can still be observed with a distinct difference in that Phase 2 finishes later than
Phase 1. Nonetheless, we have marked the figure’s approximate endpoints of the first and second
phases.

6 CONCLUSION

Our three-phase analysis framework provides a comprehensive analysis on global convergence, i.e.,
1) alignment: the angle decreases θi⋆(T1) ≤ O(ϵ1) satisfying the balance condition but the norm
of student neuron gradually increases with T1; 2) tangential growth: the projection of the student
neurons near teacher neurons gradually increases. The angle is still small but slightly larger than
that of phase 1 due to the additional cost of handling the convergence of tangential difference; 3)
local convergence: the loss is close to zero and the neurons are still well-balanced thus achieving the
global convergence at the rate of O(T−3).

One potential drawback of this work is the weak recovery which simplifies the analysis. However,
without weak recovery, the analysis will be quite complex, remaining unsolved, and thus we leave it
as future work.
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APPENDIX INTRODUCTION

The Appendix is organized as follows:

• In Appendix A, we provide a comprehensive introduction to the notations used in this paper.

• In Appendix B, we discuss the selection of hyperparameters in this paper.

• In Appendix C, we provide some additional numerical results.

• In Appendix D, we provide a detailed explanation of the closed-form expression for the loss
and its gradient as mentioned in the main text.

• In Appendix E, we provide a detailed analysis of Assumption 1.

• In Appendix F, we present the main results of phase 1 along with detailed proofs.

• In Appendix G, we present the main results of phase 2 along with detailed proofs.

• In Appendix H, we present the main results of phase 3 along with detailed proofs.

A SYMBOLS AND NOTATION

Table 2: Core symbols and notations used in this paper.

Symbol Dimension(s) Definition

N (µ, σ2) - Gaussian distribution with mean µ and variance σ2

[n] - Shorthand for {1, 2, . . . , n}
O, o,Ω,Θ - Bachmann–Landau asymptotic notation

∥v∥2 - Euclidean norm of vector v
∥M∥2 - Spectral norm of matrix M
∥M∥F - Frobenius norm of matrix M
vi Rd Weight vector of the i-th teacher neuron
wi Rd Weight vector of the i-th student neuron

⟨u,v⟩ - Dot product of vectors u and v

T, T1, T2 - Total training time and durations of different phases
ā Rd Normalized vector: ā = a

∥a∥
hil R Projection of wi in the direction of vl

ϕ(·) - ReLU activation function
∇i Rd Gradient of loss with respect to wi

τi - Index of teacher neuron closest to wi at initialization
ζi - Angular offset between wi and nearest teacher neuron
ζ - Angular offset between wi and other teacher neurons

R(x) R Residual of the network output
ml - Number of student neurons close to teacher neuron vl

rj Rd Difference between vj and sum of nearby student neurons
θil - Angle between wi and vl

φij - Angle between wi and wj

L(W ) - Loss function: L(W ) = 1
2
ExR(x)2

d - Input dimension of the data
m - Number of student neurons
k - Number of teacher neurons
η - Learning rate for gradient descent
σ - Initialization variance of student neurons

B SELECTION OF HYPER-PARAMETERS

• We set ϵ2 = o(m−60k−100) = o(poly(1)) in Theorem 4 as required by Theorem 5.

• We set ϵ21 = o(ϵ
Θ(k)
2 /m) = o(poly(ϵ2)) in Theorem 3 as required by Theorem 4.
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Figure 2: Convergence curves for different σ and η.

• We set σ ≤ ϵ16k+2
1 ∥v∥

10000m
√
d
= o(

poly(ϵ21)∥v∥√
d

) in Theorem 3 as required by Theorems 3 and 4.

• We set η = o

(
mϵ21s

2
1

k2∥v∥2

)
≤ o

(
ϵ32k+6
1

mk

)
= o(poly(ϵ21)) in Theorem 3 as required by Theo-

rem 4.

• We set T1 :=
ϵ21

100ηkm = Θ(
ϵ21
η ) in Theorem 3.

• We set T2 = T1 +
k

2ηm ln
(

1
48πϵ2

)
= Θ( 1η ln ϵ−1

2 ) = Ω( 1η ) in Theorem 4.

C ADDITIONAL NUMERICAL VALIDATION

In this section, we selected four sets of parameters σ and η: σ = 10−4, η = 5×10−4, σ = 10−5, η =
5× 10−4, σ = 10−6, η = 5× 10−4, σ = 10−7, η = 5× 10−4 and σ = 10−8, η = 10−3 with k = 4
and m = 20. The plots in Fig. 2 show the cosine of the angle and norm convergence during training
(top row) and the log-log plot of the loss during training (bottom row) for different values of σ and η.

The results demonstrate that smaller initialization variances are crucial for ensuring the training
dynamics in the first two phases align with theoretical predictions, thereby facilitating faster and more
predictable convergence in the third phase. In contrast, larger initialization variances, while potentially
shortening the duration of the first two phases, disrupt the balance of the student neuron norms by the
end of the second phase, leading to slower convergence rates in the third phase. This underscores
the importance of adopting smaller initialization variances and stepsizes to maintain stable training
dynamics across all phases and achieve consistency with the predicted T−3 convergence rate.

D EXPRESSION OF LOSS L AND ITS GRADIENT ∇L

In this section, we provide a detailed explanation of the closed-form expression for the loss and
its gradient as mentioned in the main text. The main content of this section follows (Safran and
Shamir, 2018, Section 4.1.1). Besides, the bounded norm of ∥wi∥ for any i ∈ [m] is also given in
this subsection. We include these results here just for completeness.
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For notational simplicity, we introduce the following auxiliary function:

g(a, b) := Ex[ϕ(a
⊤x)ϕ(b⊤x)] =

∥a∥ ∥b∥
2π

(
sin∠(a, b) + (π − ∠(a, b)) cos∠(a, b)

)
, (12)

which implies that

• if a and b are orthogonal, i.e., ⟨a, b⟩ = 0, then g(a, b) = ∥a∥∥b∥
2π .

• If a = b, then g(a, b) = 1
2 ∥a∥ ∥b∥ = 1

2 ∥a∥
2
= 1

2 ∥b∥
2.

Then we can derive that the gradient for g(a, b) w.r.t a as follows:

g′(a, b) =
∂g(a, b)

∂a
=

1

2π

(
∥b∥ sin∠(a, b) a

∥a∥
+ (π − ∠(a, b))b

)
. (13)

Using this auxiliary function, we can rewrite the loss function in Eq. (1) as the following form:

L(W ) =
1

2
Ex∼N (0,1)

( m∑
i=1

ϕ(w⊤
i x)−

k∑
i=1

ϕ(v⊤
i x)

)2

=
1

2

m∑
i=1

m∑
j=1

g(wi,wj) +
1

2

k∑
i=1

k∑
j=1

g(vi,vj)−
m∑
i=1

k∑
j=1

g(wi,vj) .

(14)

Accordingly, when wi ̸= 0. for ∀i ∈ [n], the loss function is differentiable with gradient given by:

∇i :=
∂L(W )

∂wi

=

m∑
j=1,j ̸=i

∂g(wi,wj)

∂wi
+

1

2

∂g(wi,wi)

∂wi
−

k∑
l=1

∂g(wi,vl)

∂wi

=
wi

2
+

1

2π

m∑
j=1,j ̸=i

(
∥wj∥ sinφij

wi

∥wi∥
+ (π − φij)wj

)
− 1

2π

k∑
l=1

(
∥v∥ sin θil

wi

∥wi∥
+ (π − θil)vl

)

=
1

2

m∑
j=1

wj −
1

2

k∑
l=1

vl +
1

2π

[
wi

∥wi∥
( m∑
j=1,j ̸=i

sinφij ∥wj∥ −
k∑

l=1

sin θil ∥v∥
)
−

m∑
j=1,j ̸=i

φijwj +

k∑
l=1

θilvl

]
.

(15)

The bounded norm ∥wi∥ at initialization can be given as below.

Lemma 1 (Adapted from Lemma 3 in (Xu and Du, 2023)). Let s1 := 1
2σ

√
d. s2 := 2σ

√
d, if

d = Ω(log(m/δ)), with probability at least 1− δ, the following properties hold at the initialization:

s1 ≤ ∥wi(0)∥ ≤ s2 , ∀i ∈ [m] .

Remark: This is a standard fact in high-dimensional statistics, and on this basis, our result only
involves this randomness. In the rest of the analysis in this paper is deterministic.

E DETAILED ANALYSIS FOR ASSUMPTION 1

Here we prove the following lemma:

Lemma 2. When d = Ω( log(mk/δ))
ζ2 with ζ = o(poly(m−k2

, k−k2

)), then with probability at least
1− δ, the following property hold at the initialization:

π

2
− ζ ≤ θij(0) ≤

π

2
+ ζ . ∀i ∈ [m], j ∈ [k] .
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Proof. According to Lemma 1, we have for ∀i ∈ [m], j ∈ [k], we have:

|⟨wi(0), v̄j⟩| ≤
ζ

4
σ
√
d ∧ ∥wi(0)∥ ≥ 1

2
σ
√
d ⇒ |cos θij(0)| ≤

ζ

2
⇒ π

2
− ζ ≤ θij(0) ≤

π

2
+ ζ .

By concentration inequality of Gaussian, we have:

P
(
|⟨wi(0), v̄j⟩| ≥

ζ

4
σ
√
d

)
≤ 2 exp

(
−

( ζ4σ
√
d)2

2σ2

)
≤ δ

3mk
.

Then:

P
(
θij(0) ≥

π

2
+ ζ ∨ θij(0) ≤

π

2
− ζ∀j ∈ [k]

)
≤ δ

3mk
∗ k +

δ

3m
=

2δ

3m
.

Applying the union bound for ∀i ∈ [m], which finishes the proof.

F GLOBAL CONVERGENCE: PHASE 1 (ALIGNMENT)

In Phase 1, we are interested in the dynamics of θi⋆ as well as the angle difference between the student
neuron and its closest teacher neuron. The theorem we prove below is a combination of Theorem 3
and Corollary 1 from the main text.
Theorem 6 (Phase 1: Alignment). Assume d = Ω(log(m/δ)) with δ ∈ (0, 1), for any ϵ1 > 0, under

Assumption 1 with 10kζ ≤ ϵ21 = o(ζ3i ) and Assumptions 2, 3 such that σ ≤ ϵ16k+2
1 ∥v∥

10000m
√
d

in our random

Gaussian initialization, and the stepsize satisfies η ≤ σ
√
dϵ21

100k2∥v∥ , then by setting T1 :=
ϵ21

100ηkm , for
0 ≤ t ≤ T1, the following statements hold with probability at least 1− δ:

s1 ≤ ∥wi(t)∥ ≤ s2 + 2kη ∥v∥ t , ∀i ∈ [m], with s1 :=
1

2
σ
√
d, s2 := 2σ

√
d , (16)

and

sin2
(
θi⋆(t)

2

)
− ϵ21 ≤

(
1 +

ηk ∥v∥ t
s2

)− 1
8k
(
sin2

(
θi⋆(0)

2

)
− ϵ21

)
, ∀i ∈ [m] . (17)

After Phase 1, we have:
θi⋆(T1) ≤ 4ϵ1 , ∀i ∈ [m] . (18)

and
hi⋆(T1) ≤ 2hj⋆(T1) , ∀i, j ∈ [m] . (19)

Proof. The proof is given by induction. We firstly prove Eqs. (16) and (17) and then Eqs. (18)
and (19).

At the initialization time t = 0, Eq. (16) and Eq. (17) directly hold according to Lemma 1. Note
that the probability in this work only relates to the random initialization as given by Lemma 1. For
description simplicity, we do not include this probability during the derivation but just mention it in
our theorem.

Before proving Eqs. (16) and (17), we first analyse the learning dynamics of θi⋆ . For any ∀i ∈ [m]
and 0 < t < T1, according to the inductive hypothesis, we have:

sin2
(
θi⋆(t)

2

)
≤ max

{
sin2

(
θi⋆(0)

2

)
, ϵ21

}
= sin2

(
θi⋆(0)

2

)
= sin2

(
π

4
− ζi

2

)
,

where the right part of the above inequality is given by the following fact with Assumption 1:

sin2
(
θi⋆(0)

2

)
= sin2

(
π

4
− ζi

2

)
=

1

2
+

1

2
sin(ζi) = Θ(1) ≥ ϵ21 = o(ζ3i ) = o(1) ,

which means:
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θi⋆(t) ≤
π

2
− ζi . (20)

Then we assume Eqs. (16) and (17) hold for any 0 < t < T1 to prove Eqs. (16) and (17) for t+ 1.

Proof of right part of Eq. (16):

According to the inductive hypothesis and s2 := 2σ
√
d in Lemma 1, we have:

∥wi(t)∥ ≤ s2 + 2kη ∥v∥T1 ≤ ϵ16k+2
1 ∥v∥
50m

+
ϵ21 ∥v∥
50m

≤ ϵ21 ∥v∥
48m

= o

(
∥v∥
m

)
≤ ∥v∥

3m
, ∀i ∈ [m] .

(21)
That means the teacher neuron’s norm controls all of the student neurons’ norm at t ∈ [0, T1]. Then
by triangle inequality and Eq. (21), the gradient norm can be upper bounded by

∥∇i(t)∥

≤

∥∥∥∥∥∥12
m∑
j=1

wj(t)

∥∥∥∥∥∥+
∥∥∥∥∥12

k∑
l=1

vl

∥∥∥∥∥
+

∥∥∥∥∥∥ 1

2π

[
wi(t)

∥wi(t)∥

( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)wj(t) +

k∑
l=1

θil(t)vl(t)

]∥∥∥∥∥∥
≤m

2
× ∥v∥

3m
+

k

2
∥v∥+ 1

2π

(
m× ∥v∥

3m
+ k ∥v∥+mπ × ∥v∥

3m
+ kπ ∥v∥

)
<2k ∥v∥ , ∀i ∈ [m] .

(22)

One can see that, the gradient norm is upper bounded by all of the teacher neuron’s norm. Accordingly,
based on the gradient iteration, by the above results, we have:

∥wi(t+ 1)∥ = ∥wi(t)− η∇i(t)∥ ≤ ∥wi(t)∥+ ∥η∇i(t)∥ ≤ s2 + 2kη ∥v∥ (t+ 1), ∀i ∈ [m] ,
(23)

which concludes the proof.

Proof of left part of Eq. (16):

Here we need to prove the lower bound, we have:

∥wi(t+ 1)∥ ≥ ∥wi(t)∥ ≥ s1 , ∀i ∈ [m] .

According to the gradient iteration:

∥wi(t+ 1)∥2−∥wi(t)∥2 = ∥wi(t)− η∇i(t)∥2−∥wi(t)∥2 = −2η ⟨wi(t),∇i(t)⟩+η2 ∥∇i(t)∥2 , ∀i ∈ [m] ,

we only need to prove ∀i ∈ [m], ⟨wi(t),∇i(t)⟩ ≤ 0. To be specific, we split ⟨wi(t),∇i(t)⟩ into two
parts:
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⟨wi(t),∇i(t)⟩

=

〈
wi(t),

1

2

m∑
j=1

wj(t)−
1

2

k∑
l=1

vl

〉

+

〈
wi(t),

1

2π

[
wi(t)

∥wi(t)∥

( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)wj(t) +

k∑
l=1

θil(t)vl

]〉

=
1

2

m∑
j=1

⟨wi(t),wj(t)⟩ −
1

2

k∑
l=1

⟨wi(t),vl⟩

+
1

2π
∥wi(t)∥

m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
1

2π
∥wi(t)∥

k∑
l=1

sin θil(t) ∥v∥

− 1

2π

m∑
j=1,j ̸=i

φij(t) ⟨wi(t),wj(t)⟩+
1

2π

k∑
l=1

θil(t) ⟨wi(t),vl⟩

=
1

2
∥wi(t)∥

( m∑
j=1

∥wj(t)∥ cosφij(t)−
k∑

l=1

∥v∥ cos θil(t)

+
1

π

m∑
j=1,j ̸=i

∥wj(t)∥ sinφij(t)−
1

π

k∑
l=1

∥v∥ sin θil(t)

− 1

π

m∑
j=1,j ̸=i

∥wj(t)∥ cosφij(t)φij(t) +
1

π

k∑
l=1

∥v∥ cos θil(t)θil(t)
)

=
1

2π
∥wi(t)∥ ∥v∥

k∑
l=1

(
−π cos θil(t)− sin θil(t) + cos θil(t)θil(t)︸ ︷︷ ︸

I1

)

+
1

2π
∥wi(t)∥

m∑
j=1

∥wj(t)∥
(
π cosφij(t) + sinφij(t)− cosφij(t)φij(t)︸ ︷︷ ︸

Ĩ1

)
,

where the last equality holds by including the additional term related to φii = 0 for any i ∈ [m].

One hand, for I1, by Eq. (17), I1 is a monotonically increase function of θil(t) on the interval [0, π].
Then by Eq. (20), we have θil(t) ≤ θi⋆(t) +

π
2 ≤ π − ζi, which implies that:

I1 = −π cos θil(t)− sin θil(t) + cos θil(t)θil(t)

≤ −π cos(π − ζi)− sin(π − ζi) + cos(π − ζi)(π − ζi)

= ζi cos(ζi)− sin(ζi)

≤ −ζ3i
4

,

where the last inequality holds by the fact that ζi cos(ζi) − sin(ζi) ≤ − ζ3
i

4 is always true on the
interval [0, π

2 ].

On the other hand, to estimate Ĩ1, recall ∥wi(t)∥ ≤ ϵ21∥v∥
48m = o(1) in Eq. (21) and the fact |Ĩ1| ≤ π,

we have:

1

2π
∥wi(t)∥

m∑
j=1

∥wj(t)∥ Ĩ1 ≤ 1

2π
∥wi(t)∥

m∑
j=1

∥wj(t)∥ |Ĩ1| ≤
1

96
∥wi(t)∥∥v∥ϵ21 .
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Accordingly, combining the above derivation over I1 and Ĩ1, we have:

⟨wi(t),∇i(t)⟩ ≤
1

2π
∥wi(t)∥ ∥v∥

(
− kζ3i

4
+ Θ(ϵ21)

)
≤ 0 ,

due to ϵ21 = o(ζ3i ), we conclude that ∥wi(t+ 1)∥ ≥ ∥wi(t)∥ ≥ s1 and finish the proof for Eq. (16).

Proof of Eq. (17):

We analyze the learning dynamics of cos θi⋆ by splitting it into two parts (first-order term and the
second-order term) as follows:

cos θi⋆(t+ 1)− cos θi⋆(t)

=
⟨wi(t+ 1),vτi⟩
∥wi(t+ 1)∥ ∥v∥

− ⟨wi(t),vτi⟩
∥wi(t)∥ ∥v∥

=
∥wi(t)∥ ⟨wi(t+ 1),vτi⟩ − ∥wi(t+ 1)∥ ⟨wi(t),vτi⟩

∥wi(t+ 1)∥ ∥wi(t)∥ ∥v∥

=
∥wi(t)∥ ⟨wi(t)− η∇i(t),vτi⟩ − ∥wi(t+ 1)∥ ⟨wi(t),vτi⟩

∥wi(t+ 1)∥ ∥wi(t)∥ ∥v∥

=
(∥wi(t)∥ − ∥wi(t+ 1)∥) ⟨wi(t),vτi⟩ − ∥wi(t)∥ ⟨η∇i(t),vτi⟩

∥wi(t+ 1)∥ ∥wi(t)∥ ∥v∥

=

(∥wi(t)∥2−∥wi(t+1)∥2

∥wi(t)∥+∥wi(t+1)∥
)
⟨wi(t),vτi⟩ − ∥wi(t)∥ ⟨η∇i(t),vτi⟩

∥wi(t+ 1)∥ ∥wi(t)∥ ∥v∥

=

( 2η⟨wi(t),∇i(t)⟩−η2∥∇i(t)∥2

∥wi(t)∥+∥wi(t+1)∥
)
⟨wi(t),vτi⟩ − η ∥wi(t)∥ ⟨∇i(t),vτi⟩

∥wi(t+ 1)∥ ∥wi(t)∥ ∥v∥

=
η

∥wi(t+ 1)∥
⟨⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,∇i(t)⟩︸ ︷︷ ︸

I2

+
η ⟨w̄i(t), v̄τi⟩
∥wi(t+ 1)∥

(
⟨w̄i(t),∇i(t)⟩ (∥wi(t)∥ − ∥wi(t+ 1)∥)− η ∥∇i(t)∥2

∥wi(t+ 1)∥+ ∥wi(t)∥

)
︸ ︷︷ ︸

I3

.

(24)

One can see that we need to estimate the respective two parts I2 and I3. For term I2, note that
⟨⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,wi(t)⟩ = 0, then we have:
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I2 =
η

∥wi(t+ 1)∥
⟨⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,∇i(t)⟩

=
η

∥wi(t+ 1)∥

(〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

1

2

m∑
j=1

wj(t)−
1

2

k∑
l=1

vl

〉

+

〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

1

2π

[
−

m∑
j=1,j ̸=i

φij(t)wj(t) +

k∑
l=1

θil(t)vl

]〉)

=
η

∥wi(t+ 1)∥

(
1

2

〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

m∑
j=1

wj(t)

〉
− 1

2

〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

k∑
l=1

vl

〉

− 1

2π

〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

m∑
j=1,j ̸=i

φij(t)wj(t)

〉
+

1

2π

〈
⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,

k∑
l=1

θij(t)vl

〉)

=
η

2π ∥wi(t+ 1)∥

(〈
cos θi⋆(t)w̄i(t)− v̄τi ,

m∑
j=1

(π − φij(t))wj(t)

〉
−

〈
cos θi⋆(t)w̄i(t)− v̄τi ,

k∑
l=1

(π − θil(t))vl

〉)

=
η

2π ∥wi(t+ 1)∥

(〈
cos θi⋆(t)w̄i(t),

m∑
j=1

(π − φij(t))wj(t)

〉
−

〈
v̄τi ,

m∑
j=1

(π − φij(t))wj(t)

〉

−

〈
cos θi⋆(t)w̄i(t),

k∑
l=1

(π − θil(t))vl

〉
+

〈
v̄τi ,

k∑
l=1

(π − θil(t))vl

〉)

=
η

2π ∥wi(t+ 1)∥

( m∑
j=1

(
∥wj(t)∥ (π − φij(t)) cos θi⋆(t) cosφij(t)

)
−

m∑
j=1

(
∥wj(t)∥ (π − φij(t)) cos θjτi(t)

)
−

k∑
l=1,l ̸=τi

(
∥v∥ (π − θil(t)) cos θi⋆(t) cos θil(t)

)
+ ∥v∥ sin2 θi⋆(t)(π − θi⋆(t))

)

≥ η ∥v∥
2π ∥wi(t+ 1)∥

(
sin2 θi⋆(t)(π − θi⋆(t))−

k∑
l=1,l ̸=τi

(
(π − θil(t)) cos θi⋆(t) cos θil(t)

)
− π

12
ϵ21

)
[Eq. (21)]

≥ η ∥v∥
2π ∥wi(t+ 1)∥

(
π

2
sin2 θi⋆(t)− 2kπζ − π

12
ϵ21

)
≥ η ∥v∥

4 ∥wi(t+ 1)∥

(
sin2 θi⋆(t)−

17

30
ϵ21

)
,

(25)

which builds the connection between I2 and sin2 θi⋆(t). For term I3:

I3 =
η ⟨w̄i(t), v̄τi⟩
∥wi(t+ 1)∥

(
⟨w̄i(t),∇i(t)⟩ (∥wi(t)∥ − ∥wi(t+ 1)∥)− η ∥∇i(t)∥2

∥wi(t+ 1)∥+ ∥wi(t)∥

)
≥ − η

∥wi(t+ 1)∥

(
∥∇i(t)∥ ∥η∇i(t)∥+ η ∥∇i(t)∥2

∥wi(t+ 1)∥+ ∥wi(t)∥

)
[using Eq. (23)]

≥ − η

∥wi(t+ 1)∥

(
∥∇i(t)∥ ∥η∇i(t)∥+ η ∥∇i(t)∥2

2s1

)
[using Eq. (16)]

= − η2 ∥∇i(t)∥2

s1 ∥wi(t+ 1)∥

≥ − 4k2η2 ∥v∥2

s1 ∥wi(t+ 1)∥
. [using Eq. (22)]

(26)
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Take Eq. (25) and Eq. (26) into Eq. (24), we have:

cos θi⋆(t+ 1)− cos θi⋆(t) = I2 + I3

≥ η ∥v∥
4 ∥wi(t+ 1)∥

(
sin2 θi⋆(t)−

17

30
ϵ21 −

16k2η ∥v∥
s1

)
≥ η ∥v∥

4 ∥wi(t+ 1)∥

(
sin2 θi⋆(t)−

133

150
ϵ21

)
≥ η ∥v∥

4 ∥wi(t+ 1)∥

(
sin2 θi⋆(t)− ϵ21

)
.

Accordingly, we transform the dynamics analysis on θi⋆ from cos to sin, which allows for estimat-
ing Eq. (17) as below. Recall cos 2x = 1− 2 sin2 x, the above inequality implies:

sin2
(
θi⋆(t)

2

)
− sin2

(
θi⋆(t+ 1)

2

)
=
cos θi⋆(t+ 1)− cos θi⋆(t)

2

≥ η ∥v∥
8 ∥wi(t+ 1)∥

(
sin2 θi⋆(t)− ϵ21

)
=

η ∥v∥
8 ∥wi(t+ 1)∥

(
4 sin2

(θi⋆(t)
2

)
cos2

(θi⋆(t)
2

)
− ϵ21

)
≥ η ∥v∥
4 ∥wi(t+ 1)∥

(
sin2

(θi⋆(t)
2

)
− ϵ21

)
,

(27)

which implies:

sin2
(
θi⋆(t+ 1)

2

)
− ϵ21 ≤

(
1− η ∥v∥

4 ∥wi(t+ 1)∥

)(
sin2

(θi⋆(t)
2

)
− ϵ21

)
≤
(
1− η ∥v∥

4(s2 + 2ηk ∥v∥ (t+ 1))

)(
sin2

(θi⋆(t)
2

)
− ϵ21

)
[using Eq. (16)]

≤
t+1∏
u=1

(
1− η ∥v∥

4(s2 + 2ηk ∥v∥u)

)(
sin2

(θi⋆(0)
2

)
− ϵ21

)
≤ exp

(∫ t+2

u=1

− η ∥v∥
4(s2 + 2ηk ∥v∥u)

du

)(
sin2

(θi⋆(0)
2

)
− ϵ21

)
[using 1− x ≤ e−x]

= exp

(
− 1

8k
ln

(
s2 + 2ηk ∥v∥ (t+ 2)

s2 + 2ηk ∥v∥

))(
sin2

(θi⋆(0)
2

)
− ϵ21

)
≤
(
1 +

ηk ∥v∥ (t+ 1)

s2

)− 1
8k
(
sin2

(θi⋆(0)
2

)
− ϵ21

)
.

Accordingly, we finish the proof of Eq. (17).

Proof of Eq. (18):

Let t0 := T
50 ∈ N, for any t ∈ [t0, T1], using Eq. (17) and definitions of s2, σ, we have:
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sin2
(
θi⋆(t)

2

)
− ϵ21 ≤

(
1 +

ηk ∥v∥ t
s2

)− 1
8k
(
sin2

(θi⋆(0)
2

)
− ϵ21

)
≤
(
1 +

ηk ∥v∥ t
s2

)− 1
8k

≤
(
ηk ∥v∥ t0

s2

)− 1
8k

=

(
ηk ∥v∥T1

100σ
√
d

)− 1
8k

≤
(

∥v∥ ϵ21
10000mσ

√
d

)− 1
8k

≤ ϵ21 .

That means: sin2
(

θi⋆ (t))
2

)
≤ 2ϵ21. So ∀t ∈ [T1

50 , T1] and ∀i ∈ [m], we have θi⋆(t) ≤ 4ϵ1.

Consequently, each student neuron has aligned to a teacher neuron by the end of phase 1.

Proof of Eq. (19): For any t ∈ [T1/50, T1], we study the dynamics of hi⋆ (i.e., the inner product
between the projection of gradient and teacher neuron) admitting the following formulation:

hi⋆(t+ 1)− hi⋆(t)

= ⟨wi(t+ 1), v̄τi⟩ − ⟨wi(t), v̄τi⟩
=− η ⟨∇i(t), v̄τi⟩

=− η

2

〈
m∑
j=1

wj(t)− vτi , v̄τi

〉

− η

2π

〈
wi(t)

∥wi(t)∥
( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)wj(t) + θi⋆(t)vτi , v̄τi

〉

=
η

2

(
∥v∥ −

m∑
j=1

hjτi(t)

)

− η

2π

(
cos θi⋆(t)

( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)hjτi(t) + θi⋆(t) ∥v∥
)
.

(28)

To analyse this dynamics, we need to study the sin θil(t) at first. According to Assumption 2, we
have:

π

2
− θi⋆(t) ≤ θil(t) ≤

π

2
+ θi⋆(t) , ∀i ∈ [m], τi ̸= l ∈ [k] .

So we have:

−θi⋆(t) ≤
π

2
− θil(t) ≤ θi⋆(t) , ∀i ∈ [m], τi ̸= l ∈ [k] .

That is:

1 ≥ sin θil(t) = cos

(
π

2
− θil(t)

)
≥ cos θi⋆(t) ≥ cos(4ϵ1) ≥ 1− 8ϵ21 , ∀i ∈ [m], τi ̸= l ∈ [k] .
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Then taking it back to Eq. (28), we have:

hi⋆(t+ 1)− hi⋆(t) ≤
η

2
∥v∥ − η

2π

(
cos θi⋆(t)

(
−

k∑
l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)hjτi(t)

)

≤η

2
∥v∥+ η

2π

( k∑
l=1

sin θil(t) ∥v∥+
m∑

j=1,j ̸=i

φij(t) ∥wj(t)∥
)
[using cos θi⋆(t) ≤ 1]

≤η

2
∥v∥+ η

2π

(
k ∥v∥+ (m− 1)π

ϵ21 ∥v∥
48m

)
[using Eq. (21) and φij < π]

≤k + π − 0.5

2π
η ∥v∥ , ∀i ∈ [m] .

Similarly, we can derive that:

hi⋆(t+ 1)− hi⋆(t) ≥
k + π − 1.5

2π
η ∥v∥ , ∀i ∈ [m] .

Then, we accumulate over the time:

49(k + π − 1.5)

100π
ηT1 ∥v∥ ≤ hi⋆(T1)− hi⋆

(T1

50

)
≤ 49(k + π − 0.5)

100π
ηT1 ∥v∥ , ∀i ∈ [m] . (29)

The remaining thing left is to bound hi⋆(
T1

50 ):∣∣∣∣hi⋆
(T1

50

)∣∣∣∣ ≤ ∥∥∥∥wi

(T1

50

)∥∥∥∥ ≤ s2 + 2kη ∥v∥ T1

50
≤ k

20
ηT1 ∥v∥ , ∀i ∈ [m] . (30)

Combine Eqs. (29) and (30), we have:

49k + 49π − 5πk − 73.5

100π
ηT1 ∥v∥ ≤ hi⋆(T1) ≤

49k + 49π + 5πk − 24.5

100π
ηT1 ∥v∥ , ∀i ∈ [m] .

(31)
Hence we finish the proof of Eq. (19).

G GLOBAL CONVERGENCE: PHASE 2 (BEHAVIORS ON THE TANGENTIAL
GROWTH)

In Phase 2, we are interested in the dynamics of h⋆
i as well as the tangential difference between the

student neuron and its closest teacher neuron.

G.1 GLOBAL CONVERGENCE: PHASE 2 (TANGENTIAL GROWTH PROCESS)

In this section, we will restate and prove Theorem 4.

Theorem 7 (Phase 2: Tangential Growth, restate version of Theorem 4). Assume d = Ω(log(m/δ))
with δ ∈ (0, 1), for any ϵ1 > 0, ϵ2 > 0, under Assumption 1 with 10kζ ≤ ϵ21 = o(ζ3i ) =

o(ϵ
Θ(k)
2 /m), ϵ2 = o(1), Assumptions 2, 3 such that σ ≤ ϵ16k+2

1 ∥v∥
10000m

√
d

in our random Gaussian initial-

ization, and the stepsize satisfies η = o

(
mϵ21s

2
1

k2∥v∥2

)
≤ σ

√
dϵ21

100k2∥v∥ , then by setting T1 :=
ϵ21

100ηkm and

T2 = T1 +
k

2ηm ln
(

1
48πϵ2

)
, then ∀T1 ≤ t ≤ T2, we define Hl(t) := ∥v∥ −

∑m
i=1 Iτi=lhi⋆(t) for

l ∈ [k], the following statements hold with probability at least 1− δ:
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hi⋆(t) ≤ 2hj⋆(t),∀i, j ∈ [m] and τi = τj . (32)

(
1−ηm

9k

)t−T1

∥v∥+8πϵ2 ∥v∥ ≥ Hl(t) ≥
2

3
∥v∥

(
1−3ηm

2k

)t−T1

−8πϵ2 ∥v∥ ≥ 24πϵ2 ∥v∥ , ∀l ∈ [k] .

(33)

2 ∥v∥
mτi

≥ hi⋆(t) ≥
s1
2
,∀i ∈ [m] , (34)

and

θi⋆(t) ≤ ϵ2,∀i ∈ [m] . (35)

Proof. We use induction to prove this theorem.

First, for t = T1, according to Eq. (19) and Eq. (18), we have Eq. (32) and Eq. (35) hold directly.

For Eq. (33), by Eq. (21), we have:

∥v∥ ≥ Hl(T1) = ∥v∥ −
m∑
i=1

Iτi=lhi⋆(t) ≥
2

3
∥v∥ , ∀l ∈ [k] . (36)

For Eq. (34), for the left part, by Eq. (21) we have:

hi⋆(T1) ≤ ∥wi(T1)∥ ≤ 2 ∥v∥
m

≤ 2 ∥v∥
mj

,∀i ∈ [m] ,

and for the right part, by Eq. (18) and Lemma 1, we have:

hi⋆(T1) = ∥wi(T1)∥ cos θi⋆(T1) ≥ (1− 8ϵ21) ∥wi(T1)∥ ≥ s1
2
,∀i ∈ [m] .

Next step, we assume Eqs. (32) to (35) hold for T1, T1 + 1, . . . , t for any T1 < t < T2, and then
prove Eqs. (32) to (35) for t+ 1.

Proof of Eq. (32):

By Eq. (28), for any i ∈ [m], we decompose the tangential difference hi⋆(t+ 1)− hi⋆(t) as below:
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hi⋆(t+ 1)− hi⋆(t)

=
η

2

(
∥v∥ −

m∑
j=1

hjτi(t)

)

− η

2π

(
cos θi⋆(t)

( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)hjτi(t) + θi⋆(t) ∥v∥
)

=
η

2

(
Hτi(t)−

m∑
j=1

Iτj ̸=τihjτi(t)

)

− η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l sinφij(t) ∥wj(t)∥ − sin θil(t) ∥v∥
)

− η

2π
cos θi⋆(t)

( m∑
j=1

Iτj=τi sinφij(t) ∥wj(t)∥ − sin θi⋆(t) ∥v∥
)

+
η

2π

( m∑
j=1,j ̸=i

φij(t)hjτi(t) + θi⋆(t) ∥v∥
)

=
η

2

(
Hτi(t)−

m∑
j=1

Iτj ̸=τihjτi(t)

)
+

η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

(
sin θil(t)Hl(t)

)

− η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l ∥wj(t)∥
[
sinφij(t)− cos θjl(t) sin θil(t)

])

− η

2π
cos θi⋆(t)

( m∑
j=1

Iτj=τi sinφij(t) ∥wj(t)∥ − sin θi⋆(t) ∥v∥
)

+
η

2π

( m∑
j=1,j ̸=i

φij(t)hjτi(t) + θi⋆(t) ∥v∥
)

=
η

2
Hτi(t) +

η

2π

k∑
l=1,l ̸=τi

Hl(t)

−η

2

m∑
j=1

Iτj ̸=τihjτi(t) +
η

2π

k∑
l=1,l ̸=τi

([
cos θi⋆(t) sin θil(t)− 1

]
Hl(t)

)

− η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l ∥wj(t)∥
[
sinφij(t)− cos θjl(t) sin θil(t)

])

− η

2π
cos θi⋆(t)

( m∑
j=1

Iτj=τi sinφij(t) ∥wj(t)∥ − sin θi⋆(t) ∥v∥
)

+
η

2π

( m∑
j=1

Iτi ̸=τjφij(t)hjτi(t) +

m∑
j=1

Iτi=τjφij(t)hjτi(t) + θi⋆(t) ∥v∥
)

:=
η

2
Hτi(t) +

η

2π

k∑
l=1,l ̸=τi

Hl(t) +Qi(t) ,

(37)

where the Qi(t) is defined as:
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Qi(t) := −η

2

m∑
j=1

Iτj ̸=τihjτi(t) +
η

2π

k∑
l=1,l ̸=τi

([
cos θi⋆(t) sin θil(t)− 1

]
Hl(t)

)

− η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l ∥wj(t)∥
[
sinφij(t)− cos θjl(t) sin θil(t)

])

− η

2π
cos θi⋆(t)

( m∑
j=1

Iτj=τi sinφij(t) ∥wj(t)∥ − sin θi⋆(t) ∥v∥
)

+
η

2π

( m∑
j=1

Iτi ̸=τjφij(t)hjτi(t) +

m∑
j=1

Iτi=τjφij(t)hjτi(t) + θi⋆(t) ∥v∥
)
.

To bound Qi, we need to estimate φij and θil at first. By Eq. (35) and Assumption 2, we have that
for τj = l and τi ̸= l:

π

2
− 2ϵ2 ≤ π

2
− θi⋆(t)− θj⋆(t) ≤ φij(t) ≤

π

2
+ θi⋆(t) + θj⋆(t) ≤

π

2
+ 2ϵ2 .

And for a similar reason, we have:

π

2
− ϵ2 ≤ θil(t) ≤

π

2
+ ϵ2, and − ϵ2 ≤ θjl(t) ≤ ϵ2 ,

which implies that for a sufficient small ϵ2:

sinφij(t)− cos θjl(t) sin θil(t) ≤ |sinφij(t)− 1|+ |1− cos θjl(t) sin θil(t)|

=

(
1− cos

(
π

2
− φij(t)

))
+

(
1− cos θjl(t) cos

(
π

2
− θil(t)

))
∼= (1− cos 2ϵ2) + (1− cos2 ϵ2)

≤ 2ϵ22 + ϵ22

= 3ϵ22 .

Then using this result as well as Eqs. (34) and (35) to bound |Qi(t)|, for ∀i ∈ [m], we have:
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|Qi(t)| ≤
η

2

m∑
j=1

Iτj ̸=τi

2 ∥v∥ sin θj⋆(t)
mτj cos θj⋆(t)

+
η

2π
(k − 1) sin2 θi⋆(t) ∥v∥

+
η

2π
cos θi⋆(t)

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l
2 ∥v∥

mτj cos θj⋆(t)
3ϵ22

)

+
η

2π
cos θi⋆(t)

m∑
j=1

Iτj=τi

2 ∥v∥ sinφij(t)

mτi cos θj⋆(t)
+

η

2π

sin 2θi⋆(t)

2
∥v∥

+
η

2π

m∑
j=1

Iτi ̸=τj (
π

2
+ 2ϵ2)

2 ∥v∥ sin θj⋆(t)
mτj cos θj⋆(t)

+
η

2π

m∑
j=1

Iτj=τi2ϵ2
2 ∥v∥
mτj

+
η

2π
θi⋆(t) ∥v∥

≤η

m∑
j=1

Iτj ̸=τi

∥v∥ ϵ2(1 + ϵ22)

mτj

+
η

2π
kϵ22 ∥v∥

+
η

2π

k∑
l=1,l ̸=τi

( m∑
j=1

Iτj=l
2 ∥v∥ (1 + ϵ22)

mτj

3ϵ22

)

+
η

2π

m∑
j=1

Iτj=τi

2 ∥v∥ 2ϵ2(1 + ϵ22)

mτi

+
η

2π

2ϵ2
2

∥v∥

+
η

2π

m∑
j=1

Iτi ̸=τj (
π

2
+ 2ϵ2)

2 ∥v∥ ϵ2(1 + ϵ22)

mτj

+
η

2π

m∑
j=1

Iτj=τi2ϵ2
2 ∥v∥
mτj

+
η

2π
ϵ2 ∥v∥

≤1.1ηkϵ2 ∥v∥+ ηkϵ22 ∥v∥+ 2ηkϵ22 ∥v∥+ 0.7ηϵ2 ∥v∥+ 0.2ηϵ2 ∥v∥+ 0.6ηkϵ2 ∥v∥+ 0.7ηϵ2 ∥v∥+ 0.2ηϵ2 ∥v∥
≤4ηkϵ2 ∥v∥

≤1

3

(
η

2
Hτi(t) +

η

2π

k∑
l=1,l ̸=τi

Hl(t)

)
,

(38)

where the last inequality use Eq. (33).

Then ∀i, j ∈ [m] and τi = τj , we have:

hi⋆(t+ 1) =hi⋆(t) +
η

2
Hτi(t) +

η

2π

k∑
l=1,l ̸=τi

Hl(t) +Qi(t)

≤2hj⋆(t) + 2

(
η

2
Hτj (t) +

η

2π

k∑
l=1,l ̸=τj

Hl(t) +Qj(t)

)
≤2hj⋆(t+ 1) ,

which finishes the proof of Eq. (32).

Proof of Eq. (33):

Then we derive the dynamics of Hl(t), for any l ∈ [k], we have:
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Hl(t+ 1) = Hl(t)−
m∑
i=1

Iτi=l

(
hi⋆(t+ 1)− hi⋆(t)

)

= Hl(t)−
m∑
i=1

Iτi=l

(
η

2
Hτi(t) +

η

2π

k∑
j=1,j ̸=l

Hj(t) +Qi(t)

)

=

(
1− mlη

2

)
Hl(t)−

mlη

2π

k∑
j=1,j ̸=τi

Hj(t) +

m∑
i=1

Iτi=lQi(t) .

For ease of description, we write the recursive iteration in a matrix form

H(t+ 1) =

(
I − η

2π
Diag(m)

(
11⊤ + (π − 1)I

))
H(t) +Q(t) .

by defining the following quantities

H(t) := [H1(t), H2(t), . . . ,Hk(t)]
⊤ ∈ Rk,

Diag(m) := Diag(m1,m2, . . . ,mk) ∈ Rk×k,

Q(t) := [
∑m

i=1 Iτi=1Qi(t),
∑m

i=1 Iτi=2Qi(t), . . . ,
∑m

i=1 Iτi=kQi(t)]
⊤ ∈ Rk .

In the next, we aim to derive the upper and lower bound of H(t + 1). Denote A :=

[ 8πkϵ2∥v∥π+k−1 , 8πkϵ2∥v∥
π+k−1 , . . . , 8πkϵ2∥v∥

π+k−1 ]⊤ ∈ Rk, according to Eq. (38) and Assumption 3, we have:

H(t+ 1)−A ≼

(
I − η

2π
Diag(m)

(
11⊤ + (π − 1)I

))
H(t) + 4ηkϵ2 ∥v∥Diag(m)1−A .

=

(
I − η

2π
Diag(m)

(
11⊤ + (π − 1)I

))(
H(t)−A

)
≼

(
I − η

2π

m

3k
(π − 1)I

)
H(t)

≼

(
1− ηm(π − 1)

6πk

)
H(t) .

Here ≼ means that all elements of the previous vector are smaller than the following vector. Then for
l ∈ [k], we have:

Hl(t+ 1) ≤
(
1− ηm(π − 1)

6πk

)t+1−T1

Hl(T1) +
8πkϵ2 ∥v∥
π + k − 1

≤
(
1− ηm(π − 1)

6πk

)t+1−T1

∥v∥+ 8πkϵ2 ∥v∥
π + k − 1

≤
(
1− ηm

9k

)t+1−T1

∥v∥+ 8πϵ2 ∥v∥ .

Similarly, we have

H(t+ 1) +A ≽

(
I − η

2π

3m

k

(
11⊤ + (π − 1)I

))(
H(t) +A

)
≽

(
I − 3ηm

2πk

(
11⊤ + (π − 1)I

))
H(t) .

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Here ≽ means that all elements of the previous vector are greater than the following vector. The
eigenvalues of matrix I − 3ηm

2πk

(
11⊤ + (π − 1)I

)
is calculated to be one 1− 3ηm(k+π−1)

2πk and the
rest k − 1 are 1− 3ηm(π−1)

2πk . Then according to Eq. (36),for l ∈ [k], we have:

Hl(t+ 1) ≥ 2

3
∥v∥

(
1− 3ηm(k + π − 1 + (k − 1)(π − 1))

2πk2

)t+1−T1

− 8πϵ2 ∥v∥

=
2

3
∥v∥

(
1− 3ηm

2k

)t+1−T1

− 8πϵ2 ∥v∥ .

Based on the above results, for l ∈ [k], we have:

(
1− ηm

9k

)t+1−T1

∥v∥+ 8πϵ2 ∥v∥ ≥ Hl(t) ≥
2

3
∥v∥

(
1− 3ηm

2k

)t+1−T1

− 8πϵ2 ∥v∥ . (39)

Due to ηm ≪ 1, we have (1− x) ≥ exp(−1.5x) with x := ηm. Using this fact, for any t ≤ T2, the
last inequality can be further lower bounded by:

2

3
∥v∥

(
1− 3ηm

2k

)t−T1

− 8πϵ2

≥2

3
∥v∥ exp

(
− 2ηm

k

k

2ηm
ln
( 1

48πϵ2

))
− 8πϵ2 ∥v∥

=24πϵ2 ∥v∥ .

Proof of Eq. (34):

To prove the left part, by Eq. (33), we have: Hl(t+ 1) = ∥v∥ −
∑m

i=1 Iτi=lhi⋆(t+ 1) ≥ 0. Then
we have:

∥v∥ ≥
m∑
i=1

Iτi=lhi⋆(t+ 1) ≥ mτi

2
hi⋆(t+ 1), ∀i ∈ [m] .

For the right part, we have:

hi⋆(t+ 1)− hi⋆(t) =
η

2
Hτi(t) +

η

2π

k∑
l=1,l ̸=τi

Hl(t) +Qi(t) ≥
ηk

2π
24πϵ2 ∥v∥ − 4ηkϵ2 ∥v∥ ≥ 0 .

So we have hi⋆(t+ 1) ≥ hi⋆(t) ≥ hi⋆(T1) ≥ s1
2 .

Proof of Eq. (35):

First, we prove that for ∀i, j ∈ [m], T1 ≤ t ≤ T2, we have ∥wi(t)∥
∥wj(t)∥ = Θ(1).

When t = T1, according to Eq. (31) we have:

1

2
≤ hi⋆(T1)

hj⋆(T1)
≤ 2 , ∀i, j ∈ [m] ,

which implies:
∥wi(T1)∥
∥wj(T1)∥

=
hi⋆(t) cos θi⋆(T1)

hj⋆(t) cos θj⋆(T1)
= Θ(1) , ∀i, j ∈ [m] . (40)

Then by defining ts = 9k ln(2)
ηm + T1, when T1 ≤ t ≤ ts, according to Eq. (33), for any l ∈ [k], we

have:
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Hl(t) ≥
2

3
∥v∥

(
1− 3ηm

2k

)t−T1

− 8πϵ2 ∥v∥

≥ 2

3
∥v∥ exp

(
− 2ηm

k

9k ln(2)

ηm

)
− 8πϵ2 ∥v∥

≥ 2

3

(
1

2

)18

∥v∥ − 8πϵ2 ∥v∥ .

So for ∀l1, l2 ∈ [k], we have Hl1
(t)

Hl2
(t) = Θ(1).

Then for ∀i, j ∈ [m], according to Eq. (37), for T1 ≤ t0 < t, we have hi⋆ (t0+1)−hi⋆ (t0)
hj⋆ (t0+1)−hj⋆ (t0)

= Θ(1).

Then consider Eq. (31), we have hi⋆ (t)
hj⋆ (t)

= Θ(1).

That means for ∀i, j ∈ [m], when T1 ≤ t ≤ ts, we have:

∥wi(t)∥
∥wj(t)∥

=
hi⋆(t) cos θi⋆(t)

hj⋆(t) cos θj⋆(t)
= Θ(1) . (41)

When ts ≤ t ≤ T2, according to Eq. (33), for ∀l ∈ [k], we have:

Hl(t) ≤
(
1− ηm

9k

)t−T1

∥v∥+ 8πϵ2 ∥v∥

≤ exp

(
− ηm

9k

9k ln(2)

ηm

)
∥v∥+ 8πϵ2 ∥v∥ [using (1− x) ≤ exp(−x),∀x ≥ 0]

=
1

2
∥v∥+ 8πϵ2 ∥v∥ .

Then we have:

m∑
i=1

Iτi=lhi⋆(t) = ∥v∥ −Hl(t) ≥
1

2
∥v∥ − 8πϵ2 ∥v∥ ≥ 1

3
∥v∥ .

Then for ∀i, j ∈ [m], we have:

hi⋆(t) ≥
∑m

l=i Iτi=τlhl⋆(t)

2mτi

≥ ∥v∥
6mτi

≥
∑m

l=i Iτj=τlhl⋆(t)

6mτi

≥
mτjhj⋆(t)

12mτi

≥ hj⋆(t)

108
.

That means for ∀i, j ∈ [m], when ts ≤ t ≤ T2, we have:

∥wi(t)∥
∥wj(t)∥

=
hi⋆(t) cos θi⋆(t)

hj⋆(t) cos θj⋆(t)
= Θ(1) . (42)
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So combine Eqs. (40) to (42), for ∀i, j ∈ [m], when T1 ≤ t ≤ T2, we have:

∥wi(t)∥
∥wj(t)∥

=
hi⋆(t) cos θi⋆(t)

hj⋆(t) cos θj⋆(t)
= Θ(1) . (43)

Then, we analyze the change in angle, recall the dynamics of cos θi⋆ in Eq. (24) is given by:

cos θi⋆(t+ 1)− cos θi⋆(t) =: I2 + I3 .

For I2, we have:

I2 =
η

∥wi(t+ 1)∥
⟨⟨w̄i(t), v̄τi⟩ w̄i(t)− v̄τi ,∇i(t)⟩

=
η

2π ∥wi(t+ 1)∥

( m∑
j=1

(
∥wj(t)∥ (π − φij(t))(cos θi⋆(t) cosφij(t)− cos θjτi(t))

)
−

k∑
l=1,l ̸=τi

(
∥v∥ (π − θil(t)) cos θi⋆(t) cos θil(t)

)
+ ∥v∥ sin2 θi⋆(t)(π − θi⋆(t))

)
.

To bound I2, we need handle cos θi⋆(t) cosφij(t)− cos θjτi(t) at first. For τi ̸= τj , without loss of
generality, we assume that: v̄τi = [1, 0, 0, . . . , 0]⊤ ∈ Rd and v̄τj = [0, 1, 0, 0, . . . , 0]⊤ ∈ Rd. Let
w̄i = [wi1, wi2, . . . , wid]

⊤ ∈ Rd and w̄j = [wj1, wj2, . . . , wjd]
⊤ ∈ Rd, then we have:

cos θi⋆(t) cosφij(t)− cos θjτi(t)

= ⟨w̄i, v̄τi⟩ ⟨w̄i, w̄j⟩ − ⟨w̄j , v̄τi⟩

=wi1(t)

d∑
l=1

wil(t)wjl(t)− wj1(t)

=wi1(t)

(
wi1(t)wj1(t) + wi2(t)wj2(t) +

d∑
l=3

wil(t)wjl(t)

)
− wj1(t)

=wi1(t)

(
wi2(t)wj2(t) +

d∑
l=3

wil(t)wjl(t)

)
− sin2 θi⋆(t)wj1(t)

≥−

∣∣∣∣∣wi2(t)wj2(t) +

d∑
l=3

wil(t)wjl(t)

∣∣∣∣∣− sin2 θi⋆(t) |wj1(t)|

≥ − |wi2(t)wj2(t)| −

∣∣∣∣∣
d∑

l=3

wil(t)wjl(t)

∣∣∣∣∣− sin2 θi⋆(t) |wj1(t)|

≥ − |wi2(t)wj2(t)| −

∣∣∣∣∣
( d∑

l=3

wil(t)
2

) 1
2
( d∑

l=3

wjl(t)
2

) 1
2

∣∣∣∣∣− sin2 θi⋆(t) |wj1(t)| [Cauchy–Schwarz inequality]

≥− |wi2(t)wj2(t)| − sin θi⋆(t) sin θj⋆(t)− sin2 θi⋆(t) |wj1(t)|
≥ − sin θi⋆(t) sin θj⋆(t)− 2ζ .

For τi = τj , without loss of generality, we assume that: v̄τi = v̄τj = [1, 0, 0, . . . , 0]⊤ ∈ Rd. Then,
we let w̄i = [wi1, wi2, . . . , wid]

⊤ ∈ Rd and w̄j = [wj1, wj2, . . . , wjd]
⊤ ∈ Rd. Then we have:

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

cos θi⋆(t) cosφij(t)− cos θjτi(t)

= ⟨w̄i, v̄τi⟩ ⟨w̄i, w̄j⟩ − ⟨w̄j , v̄τi⟩

=wi1(t)

d∑
l=1

wil(t)wjl(t)− wj1(t)

=wi1(t)

(
wi1(t)wj1(t) +

d∑
l=2

wil(t)wjl(t)

)
− wj1(t)

=wi1(t)

( d∑
l=2

wil(t)wjl(t)

)
− sin2 θi⋆(t)wj1(t)

= cos θi⋆(t)

( d∑
l=2

wil(t)wjl(t)

)
− sin2 θi⋆(t) cos θjτi(t)

≥−
( d∑

l=2

wil(t)
2

) 1
2
( d∑

l=2

wjl(t)
2

) 1
2

− sin2 θi⋆(t) [Cauchy–Schwarz inequality]

=− sin θi⋆(t) sin θj⋆(t)− sin2 θi⋆(t) .

Then we have:

I2 =
η

2π ∥wi(t+ 1)∥

( m∑
j=1

(
∥wj(t)∥ (π − φij(t))(cos θi⋆(t) cosφij(t)− cos θjτi(t))

)
−

k∑
l=1,l ̸=τi

(
∥v∥ (π − θil(t)) cos θi⋆(t) cos θil(t)

)
+ ∥v∥ sin2 θi⋆(t)(π − θi⋆(t))

)

≥ − η

∥wi(t+ 1)∥

( m∑
j=1

[
∥wj(t)∥

(
2ζ + sin θi⋆(t) sin θj⋆(t)

)]
+

m∑
j=1

Iτj=τi

(
∥wj(t)∥ sin2 θi⋆(t)

)
+ (k − 1) ∥v∥πζ − (π − θi⋆(t)) ∥v∥ sin2 θi⋆(t)

)
≥ −C⋆η sin θi⋆(t)

m∑
j=1

sin θj⋆(t)−
6kηζ ∥v∥

∥wi(t+ 1)∥
[Eq. (43)]

≥ −C⋆η sin θi⋆(t)

m∑
j=1

sin θj⋆(t)−
12kηζ ∥v∥

s1
[Eq. (34)] .

(44)

In the next, we aim to bound I3, which requires the estimation of the gradient. Similar to Eq. (22),
we have:
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∥∇i(t)∥

≤

∥∥∥∥∥∥12
m∑
j=1

wj(t)

∥∥∥∥∥∥+
∥∥∥∥∥12

k∑
l=1

vl

∥∥∥∥∥
+

∥∥∥∥∥∥ 1

2π

[
wi(t)

∥wi(t)∥

( m∑
j=1,j ̸=i

sinφij(t) ∥wj(t)∥ −
k∑

l=1

sin θil(t) ∥v∥
)
−

m∑
j=1,j ̸=i

φij(t)wj(t) +

k∑
l=1

θil(t)vl(t)

]∥∥∥∥∥∥
≤m

2
× 9k ∥v∥

m
+

k

2
∥v∥+ 1

2π

(
m× 9k ∥v∥

m
+ k ∥v∥+mπ × 9k ∥v∥

m
+ kπ ∥v∥

)
<15k ∥v∥ .

(45)
Combining with this result, we can derive the lower bound for I3:

I3 =
η ⟨w̄i(t), v̄τi⟩
∥wi(t+ 1)∥

(
⟨w̄i(t),∇i(t)⟩ (∥wi(t)∥ − ∥wi(t+ 1)∥)− η ∥∇i(t)∥2

∥wi(t+ 1)∥+ ∥wi(t)∥

)
≥ − η

∥wi(t+ 1)∥

(
∥∇i(t)∥ ∥η∇i(t)∥+ η ∥∇i(t)∥2

s1

)
= −4η2 ∥∇i(t)∥2

s21

≥ −900k2η2 ∥v∥2

s21
.

(46)

Subsequently, we need to estimate the difference sin2
(

θi⋆ (t+1)
2

)
− sin2

(
θi⋆ (t)

2

)
for our final

estimation for sin θi⋆ . Hence, similar to Eq. (27), combining Eq. (44), for ∀i ∈ [m], we have:

sin2
(
θi⋆(t+ 1)

2

)
− sin2

(
θi⋆(t)

2

)
=− 1

2

(
cos θi⋆(t+ 1)− cos θi⋆(t)

)
≤− 1

2

(
− C⋆η sin θi⋆(t)

m∑
j=1

sin θj⋆(t)−
12kηζ ∥v∥

s1
− 900k2η2 ∥v∥2

s21

)
[using Eq. (44) and Eq. (46)]

≤2C⋆η sin

(
θi⋆(t)

2

) m∑
j=1

sin

(
θj⋆(t)

2

)
+

6kηζ ∥v∥
s1

+
450k2η2 ∥v∥2

s21
.

Summing over all student neurons yields:

m∑
i=1

sin2
(
θi⋆(t+ 1)

2

)
−

m∑
i=1

sin2
(
θi⋆(t)

2

)

≤
m∑
i=1

[
2C⋆η sin

(
θi⋆(t)

2

) m∑
j=1

sin

(
θj⋆(t)

2

)
+

6kζη ∥v∥
s1

+
450k2η2 ∥v∥2

s21

]

=2C⋆η

m∑
i=1

sin

(
θi⋆(t)

2

) m∑
j=1

sin

(
θj⋆(t)

2

)
+

6kmζη ∥v∥
s1

+
450k2mη2 ∥v∥2

s21

≤2C⋆ηm

m∑
i=1

sin2
(
θi⋆(t)

2

)
+

6kmζη ∥v∥
s1

+
450k2mη2 ∥v∥2

s21
. [using AM-GM ineuqality]

(47)
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Then we have:

m∑
i=1

sin2
(
θi⋆(t+ 1)

2

)

≤
m∑
i=1

sin2
(
θi⋆(t+ 1)

2

)
+

3kζ ∥v∥
C⋆s1

+
225k2η ∥v∥2

C⋆s21

≤(1 + 2C⋆ηm)

( m∑
i=1

sin2
(
θi⋆(t)

2

)
+

3kζ ∥v∥
C⋆s1

+
225k2η ∥v∥2

C⋆s21

)
[Eq. (47)]

≤(1 + 2C⋆ηm)t+1−T1

( m∑
i=1

sin2
(
θi⋆(T1)

2

)
+

3kζ ∥v∥
C⋆s1

+
225k2η ∥v∥2

C⋆s21

)
≤(1 + 2C⋆ηm)t+1−T14mϵ21 [by Assumption 1, choosing ζ = o

(
mϵ21s1
k ∥v∥

)
]

≤ exp

(
2C⋆ηm

k

2ηm
ln
( 1

48πϵ2

))
4mϵ21 [using 1 + x ≤ exp(x)]

≤ 4mϵ21
(48πϵ2)C

⋆k

≤ ϵ22
16

,

where the last inequality needs ϵ21 ≤ (48πϵ2)
C⋆kϵ22

64m .

Finally we finish the proof for Eq. (35), i.e.,

θi⋆(t+ 1) ≤ ϵ2 , ∀i ∈ [m] .

which finishes the proof.

G.2 GLOBAL CONVERGENCE: PHASE 2 (FINAL STATE)

Here we prove the bounds on the student neurons and the loss function at the end of phase 2.

Lemma 3 (Final state of Phase 2, restate version of Corollary 2). Under the same conditions
as Theorem 7, at time T2, we have the following statements hold with probability at least 1− δ:

∥v∥
3mτi

≤ ∥wi(T2)∥ ≤ 3 ∥v∥
mτi

, ∀i ∈ [m] ,

and

L(W (T2)) ≤
1

2
k2ϵ0.052 ∥v∥2 .

Proof. Firstly we derive the bound for the ∥wi(T2)∥. By Eq. (33) in Theorem 7, for any l ∈ [k], we
have:
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Hl(T2) ≤
(
1− ηm

9k

)T2−T1

∥v∥+ 8πϵ2 ∥v∥

≤ exp

(
− ηm

9k
(T2 − T1)

)
∥v∥+ 8πϵ2 ∥v∥

= (48πϵ2)
1
18 ∥v∥+ 8πϵ2 ∥v∥

≤ (49πϵ2)
1
18 ∥v∥

≤ 1

3
∥v∥ ,

which implies

2

3
∥v∥ ≤ ∥v∥ −Hτi(T2) =

m∑
j=1

Iτj=τihj⋆(T2) ≤ 2mτihi⋆(T2) , ∀i ∈ [m] .

So we have the lower bound ∥wi(T2)∥ ≥ hi⋆(T2) ≥ ∥v∥
3mτi

. For the upper bound, for any i ∈ [m],
we have Hτi(T2) ≥ 0:

∥v∥ ≥
m∑
j=1

Iτj=τihj⋆(T2) ≥
1

2
mτihi⋆(T2) =

1

2
mτi ∥wi(T2)∥ cos θi⋆(T2) ≥

1

3
mτi ∥wi(T2)∥ ,

which implies ∥wi(T2)∥ ≤ 3∥v∥
mτi

and the following estimation which is used for estimating the loss.
To be specific, for any l ∈ [k], we have:

m∑
i=1

Iτi=l ∥wi(T2)∥ =

m∑
i=1

Iτi=l
hi⋆(T2)

cos θi⋆(T2)
≤ (1 + ϵ22)

m∑
i=1

Iτi=lhi⋆(T2) ≤ (1 + ϵ22) ∥v∥ ,

and

m∑
i=1

Iτi=l ∥wi(T2)∥ ≥
m∑
i=1

Iτi=lhi⋆(T2) ≥
(
1− (49πϵ2)

1
18

)
∥v∥ ≥

(
1− ϵ0.052

)
∥v∥ .

Combine the lower and upper bound, we have:

(
1− ϵ0.052

)
∥v∥ ≤

m∑
i=1

Iτi=l ∥wi(T2)∥ ≤ (1 + ϵ22) ∥v∥ . (48)

Before we bound the loss, we need to analyze g(a, b) defined in Eq. (12). If ∠(a, b) ≤ 2ϵ2 we have:

π − 2ϵ2
2π

∥a∥ ∥b∥ ≤ g(a, b) =
∥a∥ ∥b∥

2π

(
sin∠(a, b)+ (π−∠(a, b)) cos∠(a, b)

)
≤ 1

2
∥a∥ ∥b∥ ,

(49)
Besides, if −2ϵ2 ≤ π

2 − ∠(a, b) ≤ 2ϵ2, we have:

1− 4ϵ2
2π

∥a∥ ∥b∥ ≤ g(a, b) ≤ 1 + 4ϵ2
2π

∥a∥ ∥b∥ . (50)

According to Eq. (35) in Theorem 7, then when τi = τj , we have φij ≤ 2ϵ2 and when τi ̸= τj , we
have −2ϵ2 ≤ π

2 − φij ≤ 2ϵ2.

Then, according to Eqs. (48) to (50), we have:
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L(W (T2)) =
1

2

m∑
i=1

m∑
j=1

g(wi(T2),wj(T2)) +
1

2

k∑
i=1

k∑
j=1

g(vi,vj)−
m∑
i=1

k∑
j=1

g(wi(T2),vj)

≤ 1

2

k∑
l=1

m∑
i=1

Iτi=l

m∑
j=1

Iτj=l
1

2
∥wi(T2)∥ ∥wj(T2)∥+

1

2

m∑
i=1

m∑
j=1

Iτi ̸=τl

1 + 4ϵ2
2π

∥wi(T2)∥ ∥wj(T2)∥

+
k

2

∥v∥2

2
+

k(k − 1)

2

∥v∥2

2π

−
k∑

l=1

m∑
i=1

Iτi=l
π − 2ϵ2

2π
∥wi(T2)∥ ∥vl∥ −

k∑
l=1

Iτi ̸=l
1− 4ϵ2
2π

∥wi(T2)∥ ∥vl∥

=
1

2

k∑
l=1

m∑
i=1

Iτi=l

m∑
j=1

Iτj=l
1

2
∥wi(T2)∥ ∥wj(T2)∥+

1

2

m∑
i=1

m∑
j=1

Iτi ̸=τj

1

2π
∥wi(T2)∥ ∥wj(T2)∥

+
k ∥v∥2

4
+

k(k − 1) ∥v∥2

4π
−

k∑
l=1

m∑
i=1

Iτi=l
1

2
∥wi(T2)∥ ∥vl∥ −

k∑
l=1

m∑
i=1

Iτi ̸=l
1

2π
∥wi(T2)∥ ∥vl∥

+

m∑
i=1

m∑
j=1

Iτi ̸=τj

ϵ2
π

∥wi(T2)∥ ∥wj(T2)∥+
k∑

l=1

m∑
i=1

Iτi=l
ϵ2
π

∥wi(T2)∥ ∥vl∥

+

k∑
l=1

m∑
i=1

Iτi ̸=l
2ϵ2
π

∥wi(T2)∥ ∥vl∥ [ Eqs. (49) and (50)]

≤ k(1 + ϵ22)
2 ∥v∥2

4
+

k(k − 1)(1 + ϵ22)
2 ∥v∥2

4π
+

k ∥v∥2

4
+

k(k − 1) ∥v∥2

4π

− k(1− ϵ0.052 ) ∥v∥2

2
− k(k − 1)(1− ϵ0.052 ) ∥v∥2

2π

+
k(k − 1)(1 + ϵ22)

2ϵ2 ∥v∥2

π
+

k(1 + ϵ22)ϵ2 ∥v∥
2

π
+

2k(k − 1)(1 + ϵ22)ϵ2 ∥v∥
2

π
[ Eq. (48)]

≤ 1

2
k2ϵ0.052 ∥v∥2 ,

(51)

which concludes the proof.

H GLOBAL CONVERGENCE: PHASE 3 (LOCAL CONVERGENCE)

In phase 3, we focus on the local convergence of the network when the loss function has an upper
bound. First, we introduce some structural lemmas related to the loss function of neural network.

H.1 STRUCTURAL LEMMAS

Lemma 4. We define that w⋆
i := hi⋆∑m

j=1 Iτj=τi
hj⋆

vτi , and θmax := maxi∈[m] θi⋆ , then we have:

m∑
i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉
≥ 2L(W )−O(kθ2max

k∑
l=1

∥rl∥ ∥v∥) .

Proof. First, we decomposes the residual function R(x) into two terms:
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R(x) :=

m∑
i=1

ϕ(w⊤
i x)−

k∑
l=1

ϕ(v⊤
l x)

=

m∑
i=1

(w⊤
i x)ϕ

′(w⊤
i x)−

k∑
l=1

(v⊤
l x)ϕ

′(v⊤
l x) [using ReLU property: ϕ(x) = xϕ′(x)]

=

m∑
i=1

(w⊤
i x)ϕ

′(w⊤
i x)−

k∑
l=1

((

m∑
i=1

Iτi=lwi − rl)
⊤x)ϕ′(v⊤

l x) [using definition of rl]

=

m∑
i=1

(w⊤
i x)ϕ

′(w⊤
i x)−

k∑
l=1

((

m∑
i=1

Iτi=lwi)
⊤x)ϕ′(v⊤

l x) +

k∑
l=1

(r⊤l x)ϕ
′(v⊤

l x)

:=

k∑
l=1

m∑
i=1

Iτi=l(w
⊤
i x)

(
ϕ′(w⊤

i x)− ϕ′(v⊤
l x)

)
︸ ︷︷ ︸

R1(x)

+

k∑
l=1

(r⊤l x)ϕ
′(v⊤

l x)︸ ︷︷ ︸
R2(x)

.

Then we can derive the lower bound for
∑m

i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉
that:

m∑
i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉

=

m∑
i=1

Ex

(
R(x)ϕ′(w⊤

i x)x
⊤(wi −w⋆

i )

)

=Ex

[
R(x)

m∑
i=1

(
ϕ(w⊤

i x)− ϕ′(w⊤
i x)x

⊤w⋆
i

)]

=2L(W ) + Ex

[
R(x)

( m∑
i=1

(
ϕ(w⊤

i x)− ϕ′(w⊤
i x)x

⊤w⋆
i

)
−R(x)

)]
[using L(W ) =

1

2
ExR(x)2]

=2L(W ) + Ex

[
R(x)

( k∑
l=1

ϕ(v⊤
l x)−

m∑
i=1

(
ϕ′(w⊤

i x)x
⊤w⋆

i

))]
[using definition of R(x)]

=2L(W ) + Ex

[
R(x)

( m∑
i=1

(
ϕ′(x⊤w⋆

i )x
⊤w⋆

i

)
−

m∑
i=1

(
ϕ′(w⊤

i x)x
⊤w⋆

i

))]
[using definition of R(w⋆

i )]

=2L(W ) + Ex

[
R(x)

m∑
i=1

(x⊤w⋆
i )

(
ϕ′(x⊤w⋆

i )− ϕ′(w⊤
i x)

)]

:=2L(W ) + Ex

[
R1(x)

m∑
i=1

(x⊤w⋆
i )

(
ϕ′(x⊤w⋆

i )− ϕ′(w⊤
i x)

)]
︸ ︷︷ ︸

I4

+Ex

[
R2(x)

m∑
i=1

(x⊤w⋆
i )

(
ϕ′(x⊤w⋆

i )− ϕ′(w⊤
i x)

)]
︸ ︷︷ ︸

I5

.

For term I4, note that for ∀i ∈ [m], when w⊤
i x ≥ 0, we have ϕ′(w⊤

i x) = 1, which means

ϕ′(w⊤
i x)−ϕ′(v⊤

l x) ≥ 0. Then we have R1(x) ≥ 0. Similar, we have
∑m

i=1(x
⊤w⋆

i )

(
ϕ′(x⊤w⋆

i )−

ϕ′(w⊤
i x)

)
≥ 0. So we have I4 ≥ 0.
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For term I5, we have:

I5 = Ex

k∑
l=1

(r⊤l x)ϕ
′(v⊤

l x)

m∑
i=1

(x⊤w⋆
i )

(
ϕ′(x⊤w⋆

i )− ϕ′(w⊤
i x)

)

=

k∑
l=1

m∑
i=1

Ex(r
⊤
l x)ϕ

′(v⊤
l x)(x

⊤w⋆
i )

(
ϕ′(x⊤w⋆

i )− ϕ′(w⊤
i x)

)

≥ −
k∑

l=1

m∑
i=1

O(∥rl∥ θ2i⋆ ∥w⋆
i ∥) ,

where the last inequality is from the proof of Xu and Du (2023, Lemma 8).

Thus we have:

m∑
i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉
= 2L(W ) + I4 + I5

≥ 2L(W )−
k∑

l=1

m∑
i=1

O(∥rl∥ θ2i⋆ ∥w⋆
i ∥)

≥ 2L(W )−O(kθ2max

k∑
l=1

∥rl∥ ∥v∥) ,

which finishes the proof.

Lemma 5 (Bounds of θi⋆ and ∥r∥). Given that ∥v∥
3mτi

≤ ∥wi∥ ≤ 3∥v∥
mτi

and L(W ) = o(∥v∥2 k10),
then we have:

∥rl∥ ≤ O(k
11
4 ∥v∥

1
4 L

3
8 (W )) , ∀l ∈ [l] . (52)

∥v∥2 θ3i⋆ = Θ(k3L(W )) , ∀i ∈ [m] . (53)

Proof. The proof technique here heavily depends on (Zhou et al., 2021), so we simplify our proof
here. To be specific, using the same proof method as (Zhou et al., 2021, Lemma C.6), we have:

m∑
i=1

∥wi∥2 θ2i⋆ = O(L
1
2 (W )) .

Similarly, following (Zhou et al., 2021, Lemma 12), we have:

ExR1(x)
2 = O

(
k

5
2 ∥v∥

1
2 L

3
4 (W )

)
Based on Zhou et al. (2021, Lemma 11), we can derive that:

ExR2(x)
2 = Ω

(
∥rl∥2

k3

)
, ∀l ∈ [k] .

Combine the previous results, for any l ∈ [k], the upper bound of ∥rl∥ is:
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∥rl∥
k

3
2

= O(ExR2(x))

≤ O(ExR(x) + ExR1(x))

= O
(
L

1
2 (W ) + k

5
4 ∥v∥

1
4 L

3
8 (W )

)
≤ O

(
k

5
4 ∥v∥

1
4 L

3
8 (W )

)
[using L(W ) = O(k10 ∥v∥2)] .

Accordingly, we finish the proof of Eq. (52). Based on this, using the same proof method as Zhou
et al. (2021, Lemma 9), we can directly obtain Eq. (53).

Lemma 6 (Bound of ∥wi −w⋆
i ∥). Given that ∥v∥

3mτi
≤ ∥wi∥ ≤ 3∥v∥

mτi
and L(W ) = o(∥v∥

2

k
22
3
), then

for ∀i ∈ [m], we have:

∥wi −w⋆
i ∥ ≤ O

(
k

2
3m

2
3L

1
3 (W )

∥v∥
2
3

)
∥wi∥ .

Proof. By Lemma 5, we have θi⋆ = O
(

kL
1
3 (W )

∥v∥
2
3

)
and |Hl| = |⟨rl, v̄l⟩| = ∥rl∥ ≤

O(k
11
4 ∥v∥

1
4 L

3
8 (W )) = o(∥v∥). Then we have:

∥wi −w⋆
i ∥ ≤ ∥wi − hi⋆ v̄τi∥+ ∥hi⋆ v̄τi −w⋆

i ∥

= ∥wi − hi⋆ v̄τi∥+

∣∣∣∣∣hi⋆

(
1− ∥v∥∑m

j=1 Iτj=τihi⋆

)∣∣∣∣∣
= ∥wi∥ sin θi⋆ +

hi⋆ |Hl|
∥v∥ − |Hl|

[using definition of Hl]

≤ ∥wi∥O
(
kL

1
3 (W )

∥v∥
2
3

)
+

∥wi∥O(k
11
4 ∥v∥

1
4 L

3
8 (W ))

)
∥v∥

≤ O
(
kL

1
3W )

∥v∥
2
3

)
∥wi∥+O

(
k

11
4 L

3
8 (W )

∥v∥
3
4

)
∥wi∥

≤ O
(
kL

1
3 (W )

∥v∥
2
3

)
∥wi∥ [using L(W ) = O(

∥v∥2

k
7
2

)] .

H.2 GRADIENT LOWER BOUND

In this subsection, we use the structural lemmas in Appendix H.1 to derive the local gradient lower
bound.

Theorem 8. Given that ∥v∥
3mτi

≤ ∥wi∥ ≤ 3∥v∥
mτi

for ∀i ∈ [m] and L(W ) = o(∥v∥
2

k162 ), then we have:

∥∥∥∥∂L(W )

∂W

∥∥∥∥ ≥ Ω

(
L

2
3 (W )

k2 ∥v∥
1
3

)
.

Proof. According to Lemmas 4 and 5, we have:
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m∑
i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉
≥ 2L(W )−O(kθ2max

k∑
l=1

∥rl∥ ∥v∥)

≥ 2L(W )−O
((

kL
1
3 (W )

∥v∥
2
3

)2

k2(k
11
4 ∥v∥

1
4 L

3
8 (W )) ∥v∥

)

≥ 2L(W )−O
(
L

25
24 (W )k

27
4

∥v∥
1
12

)

≥ L(W ) [using L(W ) = O(
∥v∥2

k162
)] .

Then according to Lemma 6, we have:

L(W ) ≤
m∑
i=1

〈
∂

∂wi
L(W ),wi −w⋆

i

〉

≤
m∑
i=1

∥∥∥∥ ∂

∂wi
L(W )

∥∥∥∥ ∥wi −w⋆
i ∥

≤
∥∥∥∥ ∂

∂W
L(W )

∥∥∥∥O(kL
1
3 (W )

∥v∥
2
3

) m∑
i=1

∥wi∥

= O
(
k2L

1
3 (W ) ∥v∥

1
3

)∥∥∥∥∂L(W )

∂W

∥∥∥∥ ,

which concludes the proof.

H.3 LOCAL CONDITIONAL SMOOTHNESS OF LOSS

In this subsection, we deal with the non-smoothness of L. We will prove the smoothness of L when
the student neuron has upper and lower bounds

Lemma 7 (Local Conditional Smoothness of L). Given that ∥v∥
5mτi

≤ ∥wi∥ ≤ 5∥v∥
mτi

for any i ∈ [m],

define the Hessian matrix of L as Λ = ∂2L(W )
∂W 2 , then we have ∥Λ∥2 ≤ O(m2).

Proof. According to Safran et al. (2021), we have that L is twice differentiable and the closed-form
expression of Hessian Λ = ∂2L(W )

∂W 2 ∈ Rmd×md can be write as:

Λ =

Λ1,1 · · · Λ1,m

...
. . .

...
Λm,1 · · · Λ1,m

 ,

where Λi,j ∈ Rd×d,∀i, j ∈ [m], we will discuss below.

For diagonal elements:

Λi,i =
1

2
I +

m∑
j=1,j ̸=i

Λ1(wi,wj)−
k∑

l=1

Λ1(wi,vl), ∀i ∈ [m] ,

and by defining nw,v = v̄ − cos∠(w,v)w̄, Λ1 can be rewritten as:

Λ1(w,v) =
sin∠(w,v) ∥v∥

2π ∥w∥

(
I − w̄w̄⊤ + n̄w,vn̄

⊤
w,v

)
.
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We can bound that

∥Λ1(w,v)∥ ≤ ∥v∥
∥w∥

.

Then we have:

∥Λi,i∥ ≤
∥∥∥∥12I

∥∥∥∥+ m∑
j=1,j ̸=i

∥Λ1(wi,wj)∥+
k∑

l=1

∥Λ1(wi,vl)∥

= O(1) +mO(1) + kO
(
m

k

)
= O(m), ∀i ∈ [m] .

And non−diagonal elements satisfy that:

Λi,j =
1

2π

(
(π − ∠(wi,wj))I + n̄wi,wj

w̄⊤
j + n̄wj ,wi

w̄⊤
i

)
, ∀i, j ∈ [m], and i ̸= j .

So we have:

∥Λi,j∥ ≤ 1

2π
(π + 1 + 1) ≤ 1, ∀i, j ∈ [m], and i ̸= j .

Combining the above results, we have:

∥Λ∥ ≤
m∑
i=1

m∑
j=1

∥Λi,j∥ ≤ m(m− 1) +mO(m) = O(m2) .

H.4 GENERALIZATION ERROR BOUND

In this subsection, we prove the final convergence result, which is also the generalization error bound.
Theorem 9. Suppose the initial condition in Lemma 1 and Assumption 1 2 and 3 holds. If we set
ϵ2 = o(m−60k−100) and η = o( 1

m ) in Theorem 7, then ∀T ∈ N, we have the following statements
hold with probability at least 1− δ:

L(W (T + T2)) ≤
1(

L(W (T2))−
1
3 +Ω

(
k−4 ∥v∥−

2
3

)
ηT

)3 , (54)

and

∥v∥
4mτi

≤ ∥wi(T + T2)∥ ≤ 4 ∥v∥
mτi

∀i ∈ [m] . (55)

Proof. We prove Eqs. (54) and (55) together inductively.

For T = 0,Eq. (54) directly hold and by Lemma 3 we have Eq. (55) holds.

Then we assume Eqs. (54) and (55) hold for 0, 1, . . . , t for any 0 < t < T1 to prove Eqs. (54) and (55)
for t+ 1.

Proof of Eq. (54):
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For ∀i ∈ [m], similar to Eq. (45), we have ∥∇i(t)∥ = O(k ∥v∥). Then for ∀ι ∈ [0, 1], we have:

∥wi(t)− ιη∇i(t)∥ ≥ ∥wi(t)∥ − η ∥∇i(t)∥ ≥ ∥v∥
4mτi

− ηO(k ∥v∥) ≥ ∥v∥
5mτi

,

and

∥wi(t)− ιη∇i(t)∥ ≤ ∥wi(t)∥+ η ∥∇i(t)∥ ≤ 4 ∥v∥
mτi

+ ηO(k ∥v∥) ≤ 5 ∥v∥
mτi

.

Then, we can use Lemma 7 for W (t)− ιη∇W (t) in the following proof.

For T2 ≤ t ≤ T + T2 − 1, according to the classic analysis of gradient descent in Nesterov et al.
(2018), we have:

L(W (t+ 1)) = L(W (t)) + ⟨∇W (t),−η∇W (t)⟩

+

∫ 1

ι=0

(1− ι)(−η∇W (t))⊤
∂2L

∂W 2
(W (t)− ιη∇W (t))(−η∇W (t))dι

≤ L(W (t))− η ∥∇W (t)∥2 +
∫ 1

ι=0

(1− ι)η2 ∥∇W (t)∥2 O(m2)dι [Lemma 7] .

Then we have:

L(W (t))− L(W (t+ 1)) ≥ η ∥∇W (t)∥2 −
∫ 1

ι=0

(1− ι)η2 ∥∇W (t)∥2 O(m2)dι

= η ∥∇W (t)∥2 − 1

2
η2 ∥∇W (t)∥2 O(m2)

≥ 1

2
η ∥∇W (t)∥2

≥ Ω

(
ηL

4
3 (W (t))

k4 ∥v∥
2
3

)
.

According to Xu and Du (2023, Lemma 24), let Cs = Ω

(
k−4 ∥v∥−

2
3

)
, then we have:

L(W (T + T2)) ≤
1(

L− 1
3 (W (T2)) + Ω

(
k−4 ∥v∥−

2
3

)
ηT

)3 .

Proof of Eq. (55): According to Lemma 3, we have L(W (T2)) ≤ 1
2k

2ϵ0.052 ∥v∥2 = o( ∥v∥2

m3k3 ).

Then for ∀i ∈ [m], according to (Xu and Du, 2023, Lemma 24), we have:
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∥wi(T + T2)∥ ≥ ∥wi(T2)∥ −
T−1∑
t=0

η ∥∇W (t+ T2)∥

≥ ∥v∥
3mτi

− 8C
− 1

2
s o

(
∥v∥2

m3k3

) 1
3

≥ ∥v∥
3mτi

− 8O
(
k−4 ∥v∥−

2
3

)− 1
2

o

(
∥v∥2

m3k3

) 1
3

≥ ∥v∥
3mτi

− o

(
k ∥v∥
m

)
≥ ∥v∥

4mτi

,

and

∥wi(T + T2)∥ ≤ ∥wi(T2)∥+
T−1∑
t=0

η ∥∇W (t+ T2)∥

≤ 3 ∥v∥
mτi

+ 8C
− 1

2
s o

(
∥v∥2

m3k3

) 1
3

≤ 3 ∥v∥
mτi

+ 8O
(
k−4 ∥v∥−

2
3

)− 1
2

o

(
∥v∥2

m3k3

) 1
3

≤ 3 ∥v∥
mτi

+ o

(
k ∥v∥
m

)
≤ 4 ∥v∥

mτi

,

which finishes the proof.
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