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ABSTRACT

Semi-supervised learning (SSL), exemplified by FixMatch (Sohn et al., 2020), has
shown significant generalization advantages over supervised learning (SL), particu-
larly in the context of deep neural networks (DNNs). However, it is still unclear,
from a theoretical standpoint, why FixMatch-like SSL algorithms generalize better
than SL on DNNs. In this work, we present the first theoretical justification for the
enhanced test accuracy observed in FixMatch-like SSL applied to DNNs by taking
convolutional neural networks (CNNs) on classification tasks as an example. Our
theoretical analysis reveals that the semantic feature learning processes in FixMatch
and SL are rather different. In particular, FixMatch learns all the discriminative
features of each semantic class, while SL only randomly captures a subset of fea-
tures due to the well-known lottery ticket hypothesis. Furthermore, we show that
our analysis framework can be applied to other FixMatch-like SSL methods, e.g.,
FlexMatch, FreeMatch, Dash, and SoftMatch. Inspired by our theoretical analysis,
we develop an improved variant of FixMatch, termed Semantic-Aware FixMatch
(SA-FixMatch). Experimental results corroborate our theoretical findings and the
enhanced generalization capability of SA-FixMatch.

1 INTRODUCTION

Deep learning has made significant strides in various domains, including computer vision and natural
language modeling (He et al., 2016; Vaswani et al., 2017; Radford et al., 2018; Dosovitskiy et al.,
2020; Ho et al., 2020; Mildenhall et al., 2021; Ouyang et al., 2022; Schick et al., 2023). These
advancements largely stem from scalable supervised learning, where increasing both network size
and labeled dataset size typically enhances performance. However, in real-world scenarios, labeled
data are often scarce. The benefits of larger datasets come at a high cost, as labeling requires human
effort and can be prohibitively expensive, particularly in domains that rely on expert annotation (Sohn
et al., 2020; Ouali et al., 2020; Zhou et al., 2020; Zhang et al., 2021a; Pan et al., 2022).

To address this challenge, semi-supervised learning (SSL) (Berthelot et al., 2019b; Sohn et al., 2020;
Zhang et al., 2021a) has emerged as a promising solution, demonstrating effectiveness across various
tasks. The methodology of SSL involves training a network on both labeled and unlabeled data,
where pseudo-labels for the unlabeled data are generated during training. As a leading SSL approach,
FixMatch (Sohn et al., 2020) first generates a pseudo-label using the current model’s prediction
on a weakly augmented unlabeled image. It then selects the highly-confident pseudo-label as the
training label of the strongly-augmented version of the same image, and trains the model together
with the vanilla labeled data. By accessing large amount of cheap unlabeled data with minimal
human effort, FixMatch has effortlessly and greatly improved supervised learning. Moreover, thanks
to its effectiveness and simplicity, FixMatch has inspired many SoTA FixMatch-like SSL works,
e.g., FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and
SoftMatch (Chen et al., 2023), and is seeing increasing applications across many deep learning
tasks (Xie et al., 2020; Xu et al., 2021; Schmutz et al., 2022; Wang et al., 2022b; Chen et al., 2023).

Despite FixMatch’s practical success, its theoretical foundations lag behind its applications. Specif-
ically, it remains unclear how FixMatch and its SL counterpart perform on deep neural networks,
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despite strong interest. Moreover, few theoretical studies investigate why SSL outperforms SL in test
performance on networks, let alone FixMatch. Most existing works (He et al., 2022; Ţifrea et al.,
2023) analyze oversimplified models, such as linear learners, which differ significantly from the
highly nonlinear and non-convex networks used in real-world SSL. Consequently, these studies fail
to capture FixMatch’s learning mechanism. Other works (Rigollet, 2007; Van Engelen & Hoos, 2020;
Guo et al., 2020) treat models as black-box functions under restrictive conditions, offering insights
that do not account for the CNN dependencies crucial to FixMatch’s superiority.

Contributions. To address these issues, we theoretically justify the superior test performance of
FixMatch-like SSL over SL in classification tasks, using FixMatch as a case study. We analyze the
semantic feature learning processes in FixMatch and SL, explaining their test performance differences
and inspiring an improved FixMatch variant. Our key contributions are summarized as follows:

Firstly, we prove that FixMatch achieves superior test accuracy over SL on a three-layer CNN. Specif-
ically, under the widely acknowledged multi-view data assumption (Allen-Zhu & Li, 2023), where
multiple/single semantic features exist in multi/single-view data, FixMatch consistently achieves zero
training and test classification errors on both multi-view and single-view data. In contrast, while SL
achieves zero test classification error on multi-view data, it suffers up to 50% test error on single-view
data, showcasing FixMatch’s superior generalization capacity compared to SL.

Secondly, our analysis highlights distinct feature learning processes between FixMatch and SL,
directly affecting their test performance. We show that FixMatch comprehensively captures all
semantic features within each class, virtually eliminating test classification errors. But SL learns only
a partial set of these semantic features, and often fails on single-view samples due to the unlearned
features, explaining its poor test classification accuracy on single-view data.

Finally, inspired by these insights, we introduce an improved version of FixMatch termed Semantic-
Aware FixMatch (SA-FixMatch). This variant enhances FixMatch by masking learned semantics in
unlabeled data, compelling the network to learn the remaining features missed by the current network.
Our experimental evaluations confirm that SA-FixMatch achieves better generalization performance
than FixMatch across various classification benchmarks.

2 RELATED WORKS

Modern Deep SSL Algorithms. Pseudo-labeling (Scudder, 1965; McLachlan, 1975) and consis-
tency regularization (Bachman et al., 2014; Sajjadi et al., 2016; Laine & Aila, 2016) are the two
important principles responsible for the success of modern deep SSL algorithms (Berthelot et al.,
2019b;a; Xie et al., 2020; Zhang et al., 2021a; Xu et al., 2021; Wang et al., 2022b; Chen et al., 2023).
FixMatch (Sohn et al., 2020), as a remarkable deep SSL algorithm, combines these principles with
weak and strong data augmentations, achieving competitive results especially when labeled data
is limited. Following FixMatch, several works, e.g., FlexMatch (Zhang et al., 2021a), Dash (Xu
et al., 2021), FreeMatch (Wang et al., 2022b), and SoftMatch (Chen et al., 2023), try to improve
FixMatch by adopting a flexible confidence threshold rather than the hard and fixed threshold adopted
by FixMatch. These modern deep SSL algorithms can achieve remarkable test accuracy even trained
with one labeled sample per semantic class (Sohn et al., 2020; Zhang et al., 2021a; Chen et al., 2023).

SSL Generalization Error. Previous works on generalization capacity of SSL focus on a general
machine learning setting (Rigollet, 2007; Singh et al., 2008; Van Engelen & Hoos, 2020; Wei et al.,
2020; Guo et al., 2020; Mey & Loog, 2022). In particular, the authors here view the model as a
black-box function under certain assumptions which does not reveal the dependence on model design.
Some recent works (He et al., 2022; Ţifrea et al., 2023) analyze the generalization performance of SSL
under the binary Gaussian mixture data distribution for linear learning models. The over-simplified
model is significantly different from the highly nonlinear and non-convex neural networks.

Feature Learning. Prior works on feature learning has shed light on how neural networks learn
and represent data (Wen & Li, 2021; 2022; Allen-Zhu & Li, 2022; 2023). For instance, Allen-Zhu &
Li (2023) explored how ensemble methods and knowledge distillation enhance generalization, while
Wen & Li (2021) explained how contrastive learning captures sparse features and avoids spurious
dense ones. Empirically, Park et al. (2018) proposed adversarial dropout to adapt neural networks
based on their learning status, improving test performance. Despite these advances, to the best of our
knowledge, this work is the first to analyze feature learning of neural networks in semi-supervised
settings, with our theory-inspired SA-FixMatch achieving superior generalization performance.
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Figure 1: Visualization of pretrained ResNet-50 (He et al., 2016) using Grad-CAM. ResNet-50
locates different regions for different car images, e.g., wheel, rearview mirror, front light, and door.

3 PROBLEM SETUP

Here we first introduce the necessary multi-view data assumption used in this work, and then present
FixMatch, a popular and classic SSL approach, to train a three-layered CNN on a k-class classification
problem. For brevity, we use O(·),Ω(·),Θ(·) to hide constants w.r.t. k and use Õ(·), Ω̃(·), Θ̃(·) to
hide polylogarithmic factors. Let poly(k) and polylog(k) respectively denote Θ(kC) and Θ(logC k)
with a constant C > 0. We use [n] to denote the set of {1, 2, . . . , n}.

3.1 MULTI-VIEW DATA DISTRIBUTION

Following Allen-Zhu & Li (2023), we adopt the multi-view data assumption, which posits that each
semantic class comprises multiple distinct semantic features—such as car lights and wheels—that can
independently facilitate correct classification. To empirically validate this, we use Grad-CAM (Sel-
varaju et al., 2017) to identify class-specific regions in images. As shown in Figure 1, Grad-CAM
highlights distinct, non-overlapping regions, such as different parts of a car, that contribute to recog-
nition. These results support the findings of Allen-Zhu & Li (2023), confirming the existence of
multiple independent semantic features within each class.

Now we introduce the multi-view data assumption in Allen-Zhu & Li (2023), which considers a
dataset with k semantic classes. Let each sample pair (X, y) consists of the sample X , which is
comprised of a set of P patches {xp ∈ Rd}Pp=1, and y ∈ [k] as the class label. We assume each
class i has two semantic features, vi,1 and vi,2 in Rd, capable of independently ensuring correct
classification. While this analysis focuses on two features per class, the methodology extends to
multiple features. Below we define V as the set of all semantic features across the k classes:

V={vi,1, vi,2 | ∥vi,1∥2 = ∥vi,2∥2 = 1, vi,l ⊥ vi′,l′ if (i, l) ̸= (i′, l′)}ki=1 . (1)
The conditions ensure the distinction of each class and its semantic features. Accordingly, we define
the multi-view and singe-view distributions Dm and Ds, where data from Dm has two semantic
features, and those from Ds have only one. Set sparsity parameter s = polylog(k) and constant Cp.
Definition 1 (Informal, Data distribution (Allen-Zhu & Li, 2023)). The data distribution D contains
data from the multi-view data distribution Dm with probability 1− µ, and data from the single-view
data distribution Ds with probability µ = 1

poly(k) . We define (X, y) ∼ D by randomly uniformly
selecting a label y∈ [k] and generate data X accordingly as follows.

(a) Sample a set of noisy features V ′ uniformly at random from {vi,1, vi,2}i ̸=y , each with probability
s/k. Then the whole feature set of X is V(X) = V ′ ∪ {vy,1, vy,2}, i.e., the noisy feature set V ′ plus
the main features {vy,1, vy,2}.

(b) For each v ∈ V(X), pick Cp disjoint patches in [P ] and denote them as Pv(X). For a patch
p ∈ Pv(X), we set xp = zpv + “noises” ∈ Rd, where the coefficients zp ≥ 0 satisfy:
(b1) For “multi-view" data (X, y) ∈ Dm,

∑
p∈Pv(X) zp ∈ [1, O(1)] when v ∈ {vy,1, vy,2} and∑

p∈Pv(X) zp ∈ [Ω(1), 0.4] when v ∈ V(X) \ {vy,1, vy,2}.

(b2) For “single-view" data (X, y) ∈ Ds, pick a value l̂ ∈ [2] randomly uniformly as the index of the
main feature. Then

∑
p∈Pv(X) zp ∈ [1, O(1)] when v = vy,l̂,

∑
p∈Pv(X) zp ∈ [ρ,O(ρ)] (ρ = k−0.01)

when v = vy,3−l̂, and
∑

p∈Pv(X) zp = 1
polylog(k) when v ∈ V(X) \ {vy,1, vy,2}.

(c) For each purely noisy patch p ∈ [P ] \ ∪v∈VPv(X), we set xp = “noises”.

For the details of Def. 1, please see Def. 7 in Appendix A, and also see more explanations in
Appendix L. According to the definition, a multi-view sample (X, y) ∈ Dm has patches with two
semantic features vy,1 and vy,2 plus some noises, while a single-view sample (X, y) ∈ Ds has
patches with only one semantic feature vy,1 or vy,2 plus noises.
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3.2 FIXMATCH FOR TRAINING NEURAL NETWORKS

Here we introduce the representative SSL approach, FixMatch and its variants, on a k-class classifica-
tion problem, the most popular task in SSL.
Neural Network For the network, we assume it as a three-layer CNN which has mk convolutional
kernels {wi,r}i∈[k],r∈[m]. Its classification probability logiti(F,X) on class i ∈ [k] is defined as

logiti(F,X) = exp(Fi(X))/
∑

j∈[k]
exp(Fj(X)), (2)

where F (X) = (F1(X), · · · , Fk(X)) ∈ Rk is defined as

Fi(X) =
∑

r∈[m]

∑
p∈[P ]

ReLU(⟨wi,r, xp⟩), ∀i ∈ [k]. (3)

Here ReLU (Allen-Zhu & Li, 2023) is a smoothed ReLU that outputs zero for negative values, reduces
small positive values to diminish noises, and maintains a linear relationship for larger inputs. This
ensures ReLU to focus on important features while filtering out noises. See details in Appendix A.

This three-layer network, comprising linear mapping, activation, and a softmax layer, captures
essential neural network components, offering valuable insights into SSL training. Notably, many
theoretical studies also use shallow networks (e.g., two-layer models) to gain insights into deep
networks (Li & Yuan, 2017; Arora et al., 2019; Zhang et al., 2021b). Moreover, this setup matches
the architecture in Allen-Zhu & Li (2023), enabling direct comparisons between our FixMatch results
and their SL findings in Sec. 4.2.
SSL Training For FixMatch-like SSLs, at t-th iteration, it has two types of losses: 1) a supervised
one L(t)

s on labeled data, and 2) an unsupervised one L(t)
u on unlabeled data. For L(t)

s , it is cross-
entropy loss on labeled dataset Zl:

L(t)
s =E(Xl,y)∼Zl

L(t)
s (Xl, y) = E(Xl,y)∼Zl

[− log logity(F
(t), α(Xl))], (4)

where α(X) is a weak augmentation applied to input X . In practice, α(X) typically consists of a
random horizontal flip and a random crop that retains most region of the image (Sohn et al., 2020;
Zhang et al., 2021a), which often do not alter the semantic features. Hence, we treat the weak
augmentation as an identity map to simplify our analysis. Additionally, experiments in Appendix K.2
confirm that weak augmentation has minimal impact on SSL training.

For the unsupervised loss L(t)
u (Xu), a weakly-augmented unlabeled sample α(Xu) is fed into the net-

work to obtain classification probabilities logiti(F
(t), α(Xu)) for i ∈ [k]. If the maximal probability

exceeds a confidence threshold Tt ∈ (0, 1], i.e., maxi logiti(F
(t), α(Xu)) ≥ Tt, FixMatch-like

SSLs use it as the pseudo-label to supervise the corresponding strongly augmented sample A(Xu):

L(t)
u =EXu∼Zu

L(t)
u (Xu) = EXu∼Zu

[−I{logitb(F (t),α(Xu))≥Tt} log logitb(F
(t),A(Xu))], (5)

where b is the pseudo-label b = argmaxi∈[k]{logiti(F (t), α(Xu))}. Here, FixMatch-like SSLs use
pseudo-labels generated from weakly-augmented samples to supervise the corresponding strongly-
augmented ones, enforcing consistency regularization on model predictions, which we will show in
Sec. 4.2 is crucial for the superior generalization performance of SSL compared to SL. For threshold
Tt, FixMatch (Sohn et al., 2020) sets it as a constant threshold Tt = τ (e.g. 0.95) for high pseudo-label
quality. Current SoTA SSLs, e.g., FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al., 2022b),
Dash (Xu et al., 2021), and SoftMatch (Schick et al., 2023), follow FixMatch framework, and often
design their own confidence threshold Tt in Eq. (5). This decides the applicability of our theoretical
results on FixMatch in Sec. 4 to these FixMatch-like SSLs. See details in Appendix G.

For strong augmentation A(·), it often uses CutOut (DeVries & Taylor, 2017) and RandAugment
(Cubuk et al., 2020). CutOut randomly masks a large square region of the input image, potentially
removing partial semantic features. Experimental results in Appendix K.1 confirm the significant
impact of CutOut on image semantics and model performance. RandAugment includes various trans-
formations, e.g., rotation, translation, solarization. Appendix K.1 reveals that those augmentations
that may remove data semantics also have a large impact on model performance. Based on these
findings, we model the probabilistic feature removal effect of A(·) for our analysis in Sec. 4.1.

Now given the training loss L(t) = L
(t)
s + λL

(t)
u at the t-th iteration, we adopt the widely used

gradient descent (GD) to update the model parameters {wi,r}i∈[k],r∈[m] in the network:

w
(t+1)
i,r = w

(t)
i,r − η∇wi,rL

(t)
s − λη∇wi,rL

(t)
u , (6)
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where η ≥ 0 is a learning rate, and λ > 0 is the weight to balance the two losses. According to the
common practice (Sohn et al., 2020; Zhang et al., 2021a; Xu et al., 2021; Wang et al., 2022b; Chen
et al., 2023), we set λ = 1 in both our theoretical analysis and experiments.

4 MAIN RESULTS

In this section, we first prove the superior generalization performance of FixMatch compared with
SL. Next we analyze the intrinsic reasons for its superiority over SL via revealing and comparing
the semantic feature learning process. Finally, inspired by our theoretical insights, we propose a
Semantic-Aware FixMatch (SA-FixMatch) to better learn the semantic features.

4.1 RESULTS ON TEST PERFORMANCE

Here we analyze the performance of FixMatch, and compare it with its SL counterpart, whose
implementation is simply setting the weight λ = 0 for the unsupervised loss in Eq. (6).

As discussed in Sec. 3.1, we assume the training dataset Z follows the multi-view distribution D
(Def. 1), with multi-view and single-view sample ratios of 1 − µ and µ, respectively. Each class
i ∈ [k] has two i.i.d. semantic features vi,1 and vi,2, both of which are capable of predicting label i.
Multi-view samples contain both features, while single-view samples have only one. For clarity, we
denote the labeled multi-view and single-view subsets as Zl,m and Zl,s, and the unlabeled subsets as
Zu,m and Zu,s. Below, we outline the necessary assumptions on the dataset and model initialization.
Assumption 2. (a) The training dataset Z follows the distribution D, and the size of the unlabeled
data satisfies Nu = |Zu,m ∪ Zu,s| = |Zl,m ∪ Zl,s| · poly(k).
(b) Each convolution kernelw(0)

i,r (i ∈ [k], r ∈ [m]) is initialized by a Gaussian distribution N (0, σ2
0I),

where σq−2
0 = 1/k and q ≥ 3 is given in the definition of ReLU.

Assumption 2(a) indicates that number of unlabeled data significantly exceeds that of the labeled data,
a common scenario given the lower cost of acquiring unlabeled versus labeled data. The Gaussian
initialization in Assumption 2(b) accords with the standard initialization in practice, and is mild.
Moreover, we also need assumptions on the strong augmentation A(·) to formulate the effect of
consistency regularization in unsupervised loss Eq. (5).
Assumption 3. Suppose for a given image, strong augmentation A(·) randomly removes its semantic
patches and noisy patches with probabilities π2 and 1− π2, respectively.
1) For a single-view image, the sole semantic feature is removed with probability π2.
2) For a multi-view image, either of the two features, vi,1 or vi,2, is removed with probabilities π1π2
and (1− π1)π2, respectively. We define strong augmentation A(·) for multi-view data: for p ∈ [P ],

A(xp)=


max(ϵ1, ϵ2)xp, if vy,1 is in the patch xp,
max(1− ϵ1, ϵ2)xp, if vy,2 is in the patch xp,
(1− ϵ2)xp, otherwise (noisy patch),

(7)

where ϵ1 and ϵ2 are i.i.d. Bernoulli variables, respectively equaling to 0 with probabilities π1 and π2.

As discussed in Sec. 3, for strong augmentation A(·), we focus on its probabilistic feature removal
effect on the input image, caused by techniques like CutOut and certain operations in RandAugment,
such as solarization. The use of the max function ensures that ϵ1 is active when ϵ2 = 0, indicating
that A(·) removes one feature at a time. Further details are provided in Appendix A.

Based on the above assumptions, we analyze the training and test performance of FixMatch, and
summarize our main results in Theorem 4 with its proof in Appendix F.
Theorem 4. Suppose Assumptions 2, 3 hold. For sufficiently large k and m = polylog(k), setting
η ≤ 1/poly(k) and running FixMatch for T = poly(k)/η iterations ensures:

(a) Training performance is good. For all training samples (X, y) ∈ Z , with probability at least
1− e−Ω(log2 k), we have

F (T )
y (X) ≥ maxj ̸=y F

(T )
j (X) + Ω(log k).

(b) Test performance is good. With probability at least 1 − e−Ω(log2 k) over the selection of any
multi-view test sample (X, y) ∼ Dm and single-view test sample (X, y) ∼ Ds, we have

F (T )
y (X)≥maxj ̸=yF

(T )
j (X)+Ω(log k).
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Theorem 4(a) shows that after T = poly(k)/η training iterations, the network F (T ) trained by
FixMatch can well fit the training dataset Z , achieving zero classification error. Specifically, for any
training sample (X, y) ∈ Z , the predicted value Fy(X) for the true label y consistently exceeds the
predictions Fj(X) for all j ̸= y, ensuring correct classification. More importantly, Theorem 4(b)
establishes that the trained network F (T ) can also accurately classify test samples (X, y) ∼ Dm∪Ds,
validating FixMatch’s strong generalization performance.

Now we compare FixMatch with SL (i.e. λ = 0 in Eq. (6)) under the same data distribution and the
same network. According to Allen-Zhu & Li (2023), under the same assumption of Theorem 4, after
running standard SL for T = poly(k)/η iterations, SL can achieve good training performance as in
Theorem 4(a). However, SL exhibits inferior test performance compared to FixMatch. Specifically,
both methods achieve zero classification error on multi-view samples (X, y) ∼ Dm, while on single-
view data (X, y) ∼ Ds, SL achieves only about 50% classification accuracy, significantly lower than
FixMatch’s nearly 100% accuracy. See Appendix B for more details on SL.

For other FixMatch-like SSLs such as FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al.,
2022b), Dash (Xu et al., 2021), and SoftMatch (Chen et al., 2023), our theoretical results in Theorem 4
and the comparison with SL are also broadly applicable. Due to space limitations, we defer the
discussions to Appendix G. These theoretical results justify the superiority of FixMatch-like SSLs
over SL, aligning with empirical evidence from several studies (Sohn et al., 2020; Zhang et al., 2021a;
Wang et al., 2022b; Xu et al., 2021; Chen et al., 2023).

4.2 RESULTS ON FEATURE LEARNING PROCESS

Here we analyze the feature learning process in FixMatch and SL, and explain their rather different
test performance as shown in Sec. 4.1. To monitor the feature learning process, we define

Φ
(t)
i,l :=

∑
r∈[m]

[⟨w(t)
i,r , vi,l⟩]

+, i ∈ [k], l ∈ [2]

as an indicator of feature learning for vi,l in class i. It represents the total positive correlation between
feature vi,l and all m convolution kernels wi,r (r ∈ [m]) at iteration t. A larger Φ(t)

i,l indicates better
capture and utilization of vi,l for classification. See Appendix D for further discussion.

Next, FixMatch applies a confidence threshold (τ ) to regulate the unsupervised loss in Eq. (5),
dividing its feature learning process into Phase I and Phase II. In Phase I, the network relies primarily
on supervised loss, as it cannot yet generate confident pseudo-labels. As training progresses, the
network learns partial features, improving its ability to predict confident pseudo-labels for unlabeled
data. This transition marks the start of Phase II, where the unsupervised loss plays a larger role,
driven by consistency regularization between weakly and strongly augmented samples.

Now we are ready to present the feature learning process of FixMatch and SL in Theorem 5.
Theorem 5. Suppose Assumptions 2, 3 hold. For sufficiently large k and m = polylog(k), setting
η ≤ 1/poly(k) and τ = 1− Õ(1/s2) ensures that, with probability at least 1− e−Ω(log2 k):

(a) FixMatch. At the end of Phase I, which runs for T1 = poly(k)/η iterations,

Φ
(T1)
i,l ≥ Ω(log k), Φ

(T1)
i,3−l ≤ 1/polylog(k), ∀i ∈ [k],∃l ∈ [2]. (8)

After Phase II, which runs for another T2 = poly(k)/η iterations,

Φ
(T1+T2)
i,l ≥ Ω(log k), ∀i ∈ [k],∀l ∈ [2]. (9)

(b) Supervised Learning. After T ≥ poly(k)/η iterations, Eq. (8) always holds.

See its proof in Appendix F. Theorem 5(a) indicates that Phase I in FixMatch continues for T1 =
poly(k)/η iterations. During this phase, the network learns only one of the two semantic features per
class. Specifically, in Eq. (8), for any class i ∈ [k], there exists an index l ∈ [2] so that the correlation
score Φ

(T1)
i,l exceeds Ω(log k), showing feature vi,l is captured; and the score Φ

(T1)
i,3−l remains low,

indicating failure of learning vi,3−l. Then we analyze classification performance when Eq. (8) holds.
Corollary 6. Under the same conditions as Theorem 5. Assume Eq. (8) holds for the trained network
F (T ). For any sample X from class i containing the feature vi,l, the network F (T ) can correctly
predict label i. Conversely, if X contains only the feature vi,3−l, F (T ) would misclassify X .

6



Published as a conference paper at ICLR 2025

See its proof in Appendix D. According to Corollary 6, after Phase I, the network can correctly
classify multi-view samples, as each contains two semantic features and the network learns at least
one of them. However, for single-view samples, which contain only one semantic feature, the
classification accuracy is around 50% since the network may not learn the specific feature present.
Then by running another T2 iterations in Phase II, Theorem 5(a) shows that FixMatch enables the
network to capture both semantic features vi,1 and vi,2 for each class i ∈ [k]. As indicated by
Eq. (9), all features achieve large correlation scores Φ(T1+T2)

i,l for all i ∈ [k], l ∈ [2]. Therefore, by
Corollary 6, the network trained by FixMatch can correctly classify all training and test samples with
high probability, explaining the strong generalization performance observed in Theorem 4.

For Phase II of FixMatch, the reason for it to learn the semantic features missed in Phase I is as follows.
Having learned one semantic feature per class in Phase I, the network is capable of generating highly
confident pseudo-labels for weakly-augmented multi-view samples. As the confidence threshold
τ = 1 − Õ(1/s2) is close to 1 (e.g., τ = 0.95), it ensures the correctness of these pseudo-labels.
Then, FixMatch uses these correct pseudo-labels to supervise the corresponding strongly-augmented
samples via consistency regularization. As shown in Eq. (7), strong augmentation A(·) randomly
removes the learned features in unlabeled multi-view samples with probabilities π1π2 or (1− π1)π2,
effectively converting these samples into single-view data containing the unlearned feature. Given
the large volume of unlabeled data as specified in Assumption 2, these transformed single-view
samples are significant in their size. Accordingly, they dominate the unsupervised loss, since the rest
samples containing the learned feature are already correctly classified by the network after Phase
I and contribute minimally to the training loss. Consequently, the unsupervised loss enforces the
network to learn the unlearned feature in Phase II.

For SL, Theorem 5(b) shows that with high probability, SL learns only one of the two features for
each class, consistent with Phase I in FixMatch. By Corollary 6, SL can correctly classify multi-view
data using the single learned feature but achieves only about 50% test accuracy on single-view data
due to the unlearned feature, aligning with Sec. 4.1. In contrast, FixMatch achieves nearly 100% test
accuracy on both multi-view and single-view data, as it learns both semantic features for each class.

The key difference between FixMatch and SL lies in the additional unsupervised loss, which es-
sentially serves as consistency regularization. Beyond SSL, consistency regularization also plays a
crucial role in other learning paradigms. For example, in self-supervised learning, it promotes the
acquisition of richer semantic features during pretraining. Our theoretical analysis offers valuable
insights into these broader settings, and we leave the exploration as future work.

Comparison to Other SSL Analysis. This work differs from previous works from two key aspects.
(a) Our work provides the first analysis for FixMatch-like SSLs on CNNs. In contrast, many other
works (He et al., 2022; Ţifrea et al., 2023) analyze over-simplified models, e.g., linear learning
models, that differs substantially from the highly nonlinear and non-convex networks used in SSL.
Some other works (Rigollet, 2007; Singh et al., 2008; Van Engelen & Hoos, 2020) view the model as
a black-box function and do not reveal insights to model design. (b) This work is also the first one to
reveal the feature learning process of SSL, deepening the understanding to SSL and unveiling the
intrinsic reasons of the superiority of SSL over its SL counterpart.

4.3 SEMANTIC-AWARE FIXMATCH

The analysis of feature learning Phase II in Sec. 4.2 shows the crucial role of strong augmentation A(·)
via consistency regularization in Eq. (5) to learn the features missed in Phase I. However, according to
Eq. (7), A(·) only removes the learned feature with probabilities π1π2 or (1−π1)π2. This means given
Nu,m unlabeled multi-view samples, A(·) can generate at most NA = max(π1π2, (1− π1)π2)Nu,m

samples containing only the missed features to enforce the network to learn them in Phase II. So
FixMatch does not fully utilize unlabeled data in Phase II to learn comprehensive features, especially
when π2 is small, which usually happens when semantics only occupy a small portion of the image
so that strong augmentation A(·) like CutOut (DeVries & Taylor, 2017) and RandAugment has small
probability to remove semantics (e.g., in ImageNet, see Appendix K.6).

Motivated by this finding, we propose Semantic-Aware FixMatch (SA-FixMatch) to improve the
probability of removing learned features by replacing random CutOut in FixMatch’s strong augmen-
tation A(·) with Semantic-Aware CutOut (SA-CutOut). Specifically, if the unlabeled sample X has
highly confident pseudo-label, SA-CutOut first performs Grad-CAM (Selvaraju et al., 2017) on the
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network F to localize the learned semantic regions which contribute to the network’s class prediction
and can be regarded as features. Then for each semantic region, SA-CutOut finds its region center,
i.e., the point with highest attention score in the region, and then averages attention score within a q×q
bounding box centered at this point (e.g., q=16). Finally, SA-CutOut selects one semantic region
with the highest average score for masking. Here masking semantic region with the highest score can
enforce the network to learn the remaining features that are not well learned or missed in Phase I,
as they will not be detected by Grad-CAM or detected with relatively low attention scores. In this
way, SA-FixMatch can enhance vanilla FixMatch to better use unlabeled data to learn comprehensive
semantic features. For analysis, see our formulation of A(·) with SA-CutOut in Appendix E.

In Theorem 13 of Appendix A, we prove that SA-FixMatch enjoys the same good training and
test accuracy in Theorem 4, but reduces the required number of unlabeled data samples Nu in
vanilla FixMatch to Nc =max{π1π2, (1 − π1)π2}Nu, where Nu is given in Assumption 2. This
data efficiency stems from SA-FixMatch’s use of SA-CutOut, which selectively removes the well-
learned features, thereby compelling the network to focus on learning previously missed or unlearned
features. Detailed theoretical discussions and proofs are presented in Appendix E, illustrating how
SA-FixMatch outperforms vanilla FixMatch in terms of data efficiency and better test performance.

Moreover, our analysis of SA-FixMatch remains valid even when the labeled and unlabeled datasets
contain the same images, as SA-CutOut deterministically removes the learned features. This ensures
the network continues to learn new semantic features in Phase II even with the same images as
unlabeled data. Experiments in Sec. 5.4 further confirm that SA-FixMatch outperforms FixMatch
and SL in this setting, validating the effectiveness of SA-CutOut in enhancing feature learning.

As discussed in Sec. 3.2, SoTA deep SSLs, including FlexMatch (Zhang et al., 2021a),
FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and SoftMatch (Chen et al., 2023), of-
ten build upon FixMatch, and only modify the confidence threshold Tt in Eq. (5). Hence, SA-CutOut
is also applicable to these FixMatch-like SSLs to enhance performance. Experimental results in
Sec. 5.3 validates the effectiveness and compatibility of SA-CutOut.

5 EXPERIMENTS

To corroborate our theoretical results, we evaluate SL, FixMatch, and SA-FixMatch on CIFAR-
100 (Krizhevsky et al., 2009), STL-10 (Coates et al., 2011), Imagewoof (Howard & Gugger, 2020),
and ImageNet (Deng et al., 2009). Following standard SSL evaluation protocols (Sohn et al., 2020;
Zhang et al., 2021a; Wang et al., 2022a), we use WRN-28-8 (Zagoruyko & Komodakis, 2016) for
CIFAR-100, WRN-37-2 (Zhou et al., 2020) for STL-10 and Imagewoof, and ResNet-50 (He et al.,
2016) for ImageNet. We also apply SA-CutOut to other FixMatch-like SSL methods and compare
their performance against the originals. All experiments are repeated three times, reporting the mean
and standard deviation. Further experimental details are provided in Appendix K.4 and K.5.

5.1 CLASSIFICATION RESULTS

Here we evaluate the generalization performance of SL, FixMatch, and SA-FixMatch under varying
amounts of labeled data. Following standard SSL benchmarks (Sohn et al., 2020; Zhang et al., 2021a;
Chen et al., 2023), we use the entire training dataset as unlabeled dataset.

Table 1 shows that on STL-10, FixMatch and SA-FixMatch outperform SL by over 28% in test
accuracy across all settings. Similar substantial improvements are observed on other datasets, such as
13%+ on CIFAR-100 and Imagewoof, and 6%+ on ImageNet. These results highlight the superiority
of SSL methods over conventional SL and align with our theoretical findings in Sec. 4.1.

Meanwhile, Table 1 shows that SA-FixMatch outperforms vanilla FixMatch across all datasets. On
Imagewoof, it improves average test accuracy by over 1.5%, while on ImageNet, it achieves a 1.38%
gain. On CIFAR-100 and STL-10, SA-FixMatch also consistently surpasses FixMatch, though with
a smaller margin. This variation arises because, in CIFAR-100 and STL-10, the semantic subject
occupies most of the image (see Appendix K.6), allowing a random square mask in CutOut to
effectively remove partial semantic features with high probability, producing similar masking effects
as SA-CutOut. However, reducing the CutOut mask size lowers the likelihood of masking semantic
features, leading to performance degradation (Table 4). In contrast, on Imagewoof and ImageNet,
where the semantic subject occupies less than a quarter of the image (see Appendix K.6), a random
square mask in CutOut is less likely to remove semantic features, making SA-CutOut significantly
more effective and resulting in SA-FixMatch achieving much better test performance than FixMatch.
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Table 1: Comparison of Test Accuracy (%) using the entire training dataset as unlabeled data.
Dataset CIFAR-100 STL-10 Imagewoof ImageNet
Label Amount 400 2500 10000 40 250 1000 250 1000 2000 100K

SL 11.45 ± 0.12 40.45 ± 0.50 63.77 ± 0.29 23.61 ± 1.62 38.83 ± 1.12 64.08 ± 0.47 25.94 ± 1.54 42.04 ± 0.90 60.77 ± 1.04 44.62 ± 1.16
FixMatch 55.16 ± 0.63 71.36 ± 0.44 77.25 ± 0.22 70.00 ± 4.02 88.73 ± 0.92 93.45 ± 0.19 43.00 ± 1.46 64.91 ± 1.18 74.05 ± 0.15 50.80 ± 0.73
SA-FixMatch 55.57 ± 0.43 72.12 ± 0.20 77.46 ± 0.16 71.81 ± 4.23 89.45 ± 1.19 94.04 ± 0.19 46.73 ± 1.36 67.76 ± 1.29 75.62 ± 0.13 52.18 ± 0.32

Figure 2: Visualization of WRN-28-8 via Grad-CAM on CIFAR-100. Each group of three images
corresponds to models trained with SL (left), FixMatch (middle), and SA-FixMatch (right).

The superior test accuracy of SA-FixMatch over FixMatch aligns with our theoretical analysis in
Sec. 4.3. To achieve strong test performance in Theorem 4, Phase II of SSL must effectively remove
well-learned features to enforce learning of missed semantic features from Phase I. While FixMatch
relies on CutOut to randomly mask learned features, SA-FixMatch consistently masks them using
SA-CutOut (Sec. 4.3). As a result, with a fixed unlabeled dataset size, SA-FixMatch utilizes unlabeled
data more effectively for feature learning, leading to better test performance.

5.2 SEMANTIC FEATURE LEARNING

To visualize the semantic features learned by networks trained by SL, FixMatch, and SA-FixMatch,
we use Grad-CAM (Selvaraju et al., 2017) to highlight regions of input images that contribute to the
model’s class-specific predictions. For SL, FixMatch, and SA-FixMatch, we follow the default setting
of Grad-CAM, and apply it to the last convolutional layer of the WRN-28-8 network on CIFAR-100.

Figure 2 shows that the network trained by SL often captures a single semantic feature since Grad-
CAM only localizes one small image region, e.g., bicycle front wheel. Differently, networks trained
by FixMatch can often grab multiple features for some classes, e.g., bicycle front and back wheels, but
still misses some features for certain classes, e.g., bus compartment. By comparison, networks trained
by SA-FixMatch reveals better semantic feature learning performance, since it often captures multiple
semantic features, e.g., bicycle front and back wheels, bus front and compartment. The reason
behind these phenomena is that as theoretically analyzed in Sec. 4.2, for classes which have multiple
semantic features, SL can only learn a single semantic feature, while FixMatch and SA-FixMatch
are capable of learning all the semantic features via the two-phase (supervised and unsupervised)
learning process. Moreover, as shown in Sec. 4.3, compared with FixMatch, SA-FixMatch can more
effectively use unlabeled data as it better removes well-learned features for enforcing network to
learn missed features in data. Thus, SA-FixMatch is more likely to capture all semantic features of
the data in practice with a fix number of unlabeled training data as observed in Figure 2.

5.3 SA-CUTOUT ON FIXMATCH VARIANTS

SA-CutOut is compatible with other deep SSL methods, such as FlexMatch (Zhang et al., 2021a),
FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and SoftMatch (Chen et al., 2023), since as
discussed in Sec. 3.2, the main difference between these deep SSL methods and FixMatch is their
choice of confidence threshold Tt. Here we apply SA-CutOut to these algorithms and compare their
test accuracies with the original methods on STL-10 and CIFAR-100 dataset. From Table 2, one can
observe that on STL-10, application of SA-CutOut increases the test accuracies of FlexMatch and
FreeMatch by 2.6%+, and the test accuracies of Dash and SoftMatch by 5.4%+. On CIFAR-100, SA-
CutOut increases the test accuracies of FreeMatch and Dash by 0.65%+, SoftMatch and FlexMatch
by 0.5%+. This validates our analysis in Sec. 4.3 that SA-CutOut can more effectively use unlabeled
data to learn comprehensive semantic features and thereby achieve higher test accuracy.

5.4 ABLATION STUDY

Same Training Dataset We evaluate (SA-)FixMatch and SL under the same training dataset setting,
as described in Sec. 4.3. As shown in Table 3, SA-FixMatch significantly outperforms SL, reaffirming
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Table 2: Comparison of Test accuracy (%) of SSL algorithms with CutOut and SA-CutOut on STL-10
with 40 labeled data and CIFAR-100 with 400 labeled data.

Dataset STL-10 CIFAR-100

Algorithm FlexMatch FreeMatch Dash SoftMatch FlexMatch FreeMatch Dash SoftMatch

CutOut 72.13 ± 5.66 75.29 ± 1.29 67.51 ± 1.47 78.55 ± 2.90 59.65 ± 1.14 58.44 ± 1.92 48.56 ± 2.16 60.16 ± 2.22
SA-CutOut 75.91 ± 5.59 77.91 ± 2.01 78.41 ± 1.91 84.04 ± 4.67 60.16 ± 1.06 59.12 ± 1.69 50.24 ± 1.82 60.69 ± 1.95

Table 3: Comparison of Test Accuracy (%) using the
same training dataset for (SA-)FixMatch and SL.

Dataset STL-10 CIFAR-100 ImageNet
Data Amount 40 250 1000 400 2500 10000 100K

SL 19.93 44.06 67.29 9.87 40.98 63.48 41.82
FixMatch 38.88 64.70 79.15 18.58 47.20 67.94 43.34
SA-FixMatch 40.25 65.85 79.74 19.72 47.71 68.30 44.88

Table 4: Effect of (SA-)CutOut mask
size on test accuracy (%) on CIFAR-100
with 400 labeled data.

Mask Size 4 8 12 16

FixMatch 48.65 50.11 53.48 55.23
SA-FixMatch 52.71 52.95 55.37 55.78

the superiority of SSL over SL and further validating our theoretical insights in Sec. 4.3. Moreover,
SA-FixMatch surpasses FixMatch, demonstrating the effectiveness of our proposed method.

Maske Size Here we investigate the effect of the mask size in (SA-)CutOut on the performance of
(SA-)FixMatch. For CIFAR-100 whose image size is 32× 32, we set the mask size in (SA-)CutOut
as 4, 8, 12, and 16 to train the WRN-28-8 network. Table 4 shows that 1) as mask size grows, both
the test accuracy of FixMatch and SA-FixMatch improves; 2) when mask size is small, SA-FixMatch
makes significant improvement over FixMatch, e.g., 4%+ when using a mask size of 4; 3) as mask
size grows, the improvement of SA-FixMatch over FixMatch becomes reduced, e.g., 0.55% when
using a mask size of 16. For 1), as mask size in (SA-)CutOut increases, the learned features in the
image are more likely to be removed, which is the key for (SA-)FixMatch to learn comprehensive
semantics in Phase II as analyzed in Sec. 4.2. This explains the better performance of FixMatch and
SA-FixMatch when their mask sizes increase. For 2), when using small masks, a random mask in
CutOut has much lower probability to remove learned features compared with SA-CutOut. Thus,
SA-FixMatch has much better performance than FixMatch. For 3), as mask size grows, a random
mask in CutOut also has large probability to mask learned features in the image. This explains the
reduced gap between SA-FixMatch and FixMatch.

6 CONCLUSION

By examining the classical FixMatch, we first provide theoretical justifications for the superior test
performance of SSL over SL on neural networks. Then we uncover the differences in the feature
learning processes between FixMatch and SL, explaining their distinct test performances. Inspired by
theoretical insights, a practical enhancement called SA-FixMatch is proposed and validated through
experiments, showcasing the potential for our newly developed theoretical understanding to inform
improved SSL methodologies. Apart from FixMatch-like SSL, there are also other effective SSL
frameworks whose analyses and comparisons are left as our future work.

Limitations. (a) Apart from FixMatch-like SSLs, we did not analyze other SSL frameworks, like
MeanTeacher (Tarvainen & Valpola, 2017) and MixMatch (Berthelot et al., 2019b). However,
current SoTA deep SSLs like FlexMatch, FreeMatch, Dash, and SoftMatch all follow the FixMatch
framework, indicating the generalizability of our theoretical analysis on them. See details in Sec. 3.2
and Appendix G. (b) Due to limited GPU resources, we use small datasets, e.g. STL-10 and CIFAR-
100, instead of large datasets like ImageNet to test SA-CutOut on other SoTA SSLs. Future work
involves testing SA-CutOut on other SSLs methods (other than FixMatch) and on larger datasets.
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A THEOREM STATEMENT

In this section, we formally state the relevant data assumptions and theorems. Building on the proof
framework of Allen-Zhu & Li (2023), our results extend their findings from supervised learning (SL)
to semi-supervised learning (SSL). To maintain consistency, we adopt their notation throughout our
proof. Specifically, we follow their data distribution assumptions and extend their analysis from SL
to SSL through a two-phase learning process.

To formally define the data distribution, we set global constantCp, sparsity parameter s = polylog(k),
feature noise parameter γ = 1

poly(k) , and random noise parameter σp = 1√
d polylog(k)

to control
noises in data. Here, feature noise implies that a sample from class i primarily exhibits feature
vi,l (with l ∈ [2]), but also includes minor scaled features vj,l (with j ̸= i) from other classes.
Each sample pair (X, y) consists of the sample X , which is comprised of a set of P = k2 patches
{xi ∈ Rd}Pi=1, and y ∈ [k] as the class label. The following describes the data generation process.

Definition 7 (data distributions for single-view Ds and multi-view data Dm (Allen-Zhu & Li, 2023)).
Data distribution D consists of data from multi-view data Dm with probability 1−µ and from
single-view data Ds with probability µ = 1/poly(k). We define (X, y)∼D by randomly uniformly
selecting a label y∈ [k] and generating data X as follows.

1) Sample a set of noisy features V ′ uniformly at random from {vi,1, vi,2}i ̸=y each with
probability s/k.

2) Denote V(X) = V ′ ∪ {vy,1, vy,2} as the set of feature vectors used in data X .

3) For each v ∈ V(X), pick Cp disjoint patches in [P ] and denote it as Pv(X) (the distribution
of these patches can be arbitrary). We denote P(X) = ∪v∈V(X)Pv(X).

4) If D = Ds is the single-view distribution, pick a value l̂ = l̂(X) ∈ [2] uniformly at random.

5) For each p ∈ Pv(X) for some v ∈ V(X), given feature noise αp,v′ ∈ [0, γ], we set

xp = zpv +
∑

v′∈V
αp,v′v′ + ξp,

where ξp ∈ N (0, σ2
pI) is an independent random Gaussian noise. The coefficients zp ≥ 0

satisfy

– For “multi-view” data (X, y) ∈ Dm, when v ∈ {vy,1, vy,2},
∑

p∈Pv(X) zp ∈ [1, O(1)]

and
∑

p∈Pv(X) z
q
p ∈ [1, O(1)] for an integer q ≥ 3, and the marginal distribution of∑

p∈Pv(X) zp is left-close. When v ∈ V(X)\{vy,1, vy,2},
∑

p∈Pv(X) zp ∈ [Ω(1), 0.4],
and the marginal distribution of

∑
p∈Pv(X) zp is right-close.

– For “single-view” data (X, y) ∈ Ds, when v = vy,l̂,
∑

p∈Pv(X) zp ∈ [1, O(1)] for
the integer q ≥ 3. When v = vy,3−l̂,

∑
p∈Pv(X) zp ∈ [ρ,O(ρ)] (we set ρ = k−0.01

for simplicity). When v ∈ V(X) \ {vy,1, vy,2},
∑

p∈Pv(X) zp ∈ [Ω(Γ),Γ], where
Γ = 1/polylog(k), and the marginal distribution of

∑
p∈Pv(X) zp is right-close.

6) For each p ∈ [P ]\P(X), with an independent random Gaussian noise ξp ∼ N (0, γ
2k2

d I),

xp =
∑

v′∈V
αp,v′v′ + ξp,

where each αp,v′ ∈ [0, γ] is the feature noise.

Based on the definition of data distribution D, we define the training dataset Z as follows.

Definition 8. Assume the distribution D consists of samples from Dm w.p. 1− µ and from Ds w.p.
µ. We are given Nl labeled training samples and Nu unlabeled training samples from D, where
typically Nu ≫ Nl. The training dataset is denoted as Z = Zl,m ∪Zl,s ∪Zu,m ∪Zu,s, where Zl,m

and Zl,s represent the multi-view and single-view labeled data, respectively, and Zu,m and Zu,s

represent the multi-view and single-view unlabeled data, respectively. We denote (X, y) ∼ Z as a
pair (X, y) sampled uniformly at random from the empirical training dataset Z .
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Then, we introduce the smoothed ReLU function ReLU (Allen-Zhu & Li, 2023) in detail: for an
integer q ≥ 3 and a threshold ϱ = 1

polylog(k) ,ReLU(z) = 0 if z ≤ 0,ReLU(z) = zq

(qϱq−1) if
z ∈ [0, ϱ] and ReLU(z) = z − (1− 1

q )ϱ if z ≥ ϱ. This configuration ensures a linear relationship
for large z values while significantly reducing the impact of low-magnitude noises for small z values,
thereby enhancing the separation of true features from noises.

We also introduce our assumption on FixMatch’s strong augmentation A(·), which is composed by
CutOut (DeVries & Taylor, 2017) and RandAugment (Cubuk et al., 2020). As discussed in Sec. 3.2
and Appendix K.1, we focus on its probabilistic feature removal effect.

Assumption 9. Suppose that for a given image, strong augmentation A(·) randomly removes its
semantic patches and noisy patches with probabilities π2 and 1− π2, respectively. For a single-view
image, the sole semantic feature is removed with probability π2. For a multi-view image, either of the
two features, vi,1 or vi,2, is removed with probabilities π1π2 and (1− π1)π2, respectively. We define
the strong augmentation A(·) for multi-view data as follows: for p ∈ [P ],

A(xp)=


max(ϵ1, ϵ2)xp, if vy,1 is in the patch xp,
max(1− ϵ1, ϵ2)xp, if vy,2 is in the patch xp,
(1− ϵ2)xp, otherwise (noisy patch),

(10)

where ϵ1 and ϵ2 are independent Bernoulli random variables, each equal to 0 with probabilities π1
and π2, respectively.

Here we use the "max" function to ensure ϵ1 is active when ϵ2 = 0, which implies that A(·) selects
one feature to remove at a time. The reason behind this assumption is that as we can observe from
Figure 1 and 2, different semantic features in a multi-view image are spatially distinct. Consequently,
the likelihood of a square patch from random CutOut and transformations from RandAugment to
remove both features is substantially lower than removing just one. To simplify our theoretical
analysis, we therefore assume that A(·) targets a single feature for removal in each instance.

Then we introduce the parameter assumption necessary to the proof. As we follow the proof
framework of Allen-Zhu & Li (2023), the assumptions on most of the parameters are similar.

Parameter Assumption 10. We assume that

• q ≥ 3 and σq−2
0 = 1/k, where σ0 gives the initialization magnitude.

• γ ≤ Õ(σ0

k ) and γq ≤ Θ̃( 1
kq−1mP ), where γ controls the feature noise.

• The size of single-view labeled training data Nl,s = õ(k/ρ) and Nl,s ≤ k2

s ρ
q−1.

• Nl ≥ Nl,s · poly(k), ηT1 ≥ Nl · poly(k), and
√
d ≥ ηT1 · poly(k).

• The weight for unsupervised loss λ = 1 and the confidence threshold τ = 1− Õ( 1
s2 ).

• The number of unlabeled data for FixMatch Nu ≥ ηT2 · poly(k) with ηT2 ≥ poly(k), and
the ratio of single-view unlabeled data Nu,s

Nu
≤ k2

ηsT2
.

Here the first four parameter assumptions are followed from Allen-Zhu & Li (2023) for supervised
learning Phase I, and the last two parameter assumptions are specific to the unsupervised loss Eq. (5)
in learning Phase II. Define Φ

(t)
i,l :=

∑
r∈[m][⟨w

(t)
i,r , vi,l⟩]+ and Φ

(t)
i :=

∑
l∈[2] Φ

(t)
i,l . We have the

following theorem for vanilla FixMatch under CutOut:

Theorem 11 (Peformance on FixMatch). For sufficiently large k > 0, for everym = polylog(k), η ≤
1

poly(k) , setting T = T1 + T2 with T1 = poly(k)
η and T2 = poly(k)

η , when Parameter Assumption 10

is satisfied, with probability at least 1− e−Ω(log2 k),

• (training accuracy is perfect) for every (X, y) ∈ Z:

∀i ̸= y : F (T )
y (X) ≥ F

(T )
i (X) + Ω(log k).
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• (multi-view testing is good) for every i, j ∈ [k], we have Õ(1) ≥ Φ
(T )
i ≥ 0.4Φ

(T )
j +Ω(log k),

and thus

Pr
(X,y)∈Dm

[
F (T )
y (X) ≥ max

j ̸=y
F

(T )
j (X) + Ω(log k)

]
≥ 1− e−Ω(log2 k).

• (single-view testing is good) for every i ∈ [k] and l ∈ [2], we have Φ
(T )
i,l ≥ Ω(log k), and

thus

Pr
(X,y)∈Ds

[
F (T )
y (X) ≥ max

j ̸=y
F

(T )
j (X) + Ω(log k)

]
≥ 1− e−Ω(log2 k).

For Semantic-Aware FixMatch (SA-FixMatch), we denote the number of unlabeled data in this case
as Nc. Then we have the following assumption on Nc.
Parameter Assumption 12. Nc = max{π1π2, (1− π1)π2}Nu.

Here π1 ∈ (0, 1) and π2 ∈ (0, 1) are the probabilities defined in Assumption 9, where π2 is typically
small (1/poly(k)), as explained in Appendix H. From Parameter Assumption 12, we observe that the
requirement for the number of unlabeled samples in SA-FixMatch is significantly smaller compared
to that in FixMatch.

Under Parameter Assumptions 10 and 12, SA-FixMatch achieves the same performance results as
Theorem 11, but with a reduced requirement for the number of unlabeled data, decreasing from Nu

to Nc. Thus, we state the following theorem regarding the performance of SA-FixMatch.
Theorem 13 (Performance on SA-FixMatch). Under Parameter Assumption 10 and 12, SA-FixMatch
can achieve the same training and test performance as FixMatch in Theorem 11.

Our main proof of Theorem 11 and Theorem 13 for FixMatch and SA-FixMatch includes analyses on
a two-phase learning process. In Phase I, the network relies primarily on the supervised loss due to
its inability to generate highly confident pseudo-labels and the large confidence threshold τ in Eq. (5).
According to the results in Allen-Zhu & Li (2023), partial features are learned during the supervised
learning Phase I. We review the results on supervised training in Appendix B.

Then in Phase II, the network predicts highly confident pseudo-labels for weakly-augmented samples
and uses these correct pseudo-labels to supervise the corresponding strongly-augmented samples via
consistency regularization. To theoretically analyze the learning process in Phase II, we build on the
proof framework of Allen-Zhu & Li (2023) and demonstrate how the network learns the unlearned
features while preserving the learned features during Phase II. Specifically, we present the induction
hypothesis for Phase II in Appendix C, along with gradient calculations and function approximations
for the unsupervised loss Eq. (5) in Appendix D. We then provide a detailed proof of SA-FixMatch
in Appendix E and extend the results to FixMatch in Appendix F. Finally, we generalize our proof to
other FixMatch-like SSL methods in Appendix G.

B RESULTS ON SUPERVISED LEARNING

In this section, we first recall the results in SL that were derived in Allen-Zhu & Li (2023). Before
showing their main results, we first introduce some necessary notations. For every i ∈ [k], define
Φ

(t)
i,l :=

∑
r∈[m][⟨w

(t)
i,r , vi,l⟩]+ and Φ

(t)
i :=

∑
l∈[2] Φ

(t)
i,l . Define

Λ
(t)
i := max

r∈[m],l∈[2]
[⟨w(t)

i,r , vi,l⟩]
+ and Λ

(t)
i,l := max

r∈[m]
[⟨w(t)

i,r , vi,l⟩]
+,

where Λi,l indicates the largest correlation between the feature vector vi,l and all neurons wi,r

(r ∈ [m]) from class i. Then we define the "view lottery winning" set:

M :=

{
(i, l∗) ∈ [k]× [2]

∣∣∣∣Λ(0)
i,l∗ ≥ Λ

(0)
i,3−l∗

(
1 +

2

log2m

)}
.

The intuition behind M is that, subject to model initialization, if (i, l) ∈ M, then the feature vi,l will
be learned by the model during supervised learning process and the feature vi,3−l will be missed.
The set M satisfies the following property (refer to the Proposition C.2. of Allen-Zhu & Li (2023)):
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Proposition 14. Supposem ≤ poly(k). For every i ∈ [k], Pr[(i, 1) ∈ M or (i, 2) ∈ M] ≥ 1−o(1).

Based on Theorem 1 of Allen-Zhu & Li (2023), after training for T iterations with the supervised
training loss L(t)

s = E(X,y)∼Zl

[
− log logity(F

(t), X)
]
, the training accuracy on labeled samples is

perfect and L(T )
s approaches zero, i.e., for every (X, y) ∈ Zl,

∀i ̸= y : F (T )
y (X) ≥ F

(T )
i (X) + Ω(log k),

and we have L(T )
s ≤ 1

poly(k) . Besides, it satisfies that 0.4Φ(T )
i − Φ

(T )
j ≤ −Ω(log k) for every pair

i, j ∈ [k]. This means that at least one of Φ(T )
i,1 or Φ(T )

i,2 for all i ∈ [k] increase to a large scale of
Θ(log(k)), which means at least one of vi,1 and vi,2 for all i ∈ [k] is learned after supervised training
for T iterations. Thus, all multi-view training data are classified correctly. For single-view training
data without the learned features, they are classified correctly by memorizing the noises in the data
during the supervised training process. Then for the test accuracy, for the multi-view data point
(X, y) ∼ Dm, with the probability at least 1− e−Ω(log2 k), it has

logity(F
(T ), X) ≥ 1− Õ

(
1

s2

)
,

and

Pr
(X,y)∼Dm

[
F (T )
y (X) ≥ max

j ̸=y
F

(T )
j (X) + Ω(log k)

]
≥ 1− e−Ω(log2 k).

This means that the test accuracy of multi-view data is good. However, for the single-view data
(X, y) ∼ Ds, whenever (i, l∗) ∈ M, we have Φ

(T )
i,3−l∗ ≪ 1

polylog(k) and

Pr
(X,y)∼Ds

[
F (T )
y (X) ≥ max

j ̸=y
F

(T )
j (X)− 1

polylog(k)

]
≤ 1

2
(1 + o(1)),

which means that the test accuracy on single-view data is nearly 50%.

The results in Allen-Zhu & Li (2023) fully indicate the feature learning process of SL. The main
reason for the imperfect performance of SL is that, due to "lottery winning", it only captures one
of the two semantic features for each class during the supervised training process. Therefore, for
single-view data without this feature, it has low test accuracy.

In the following, we will consider the effect of loss L(t)
u on unlabeled data for training:

L(t)
u = E(X,y)∼Zu

[
I{maxi logiti(F

(t),α(X))≥τ} · − log logitb(F
(t),A(X))

]
.

where b = argmaxi∈[k] logiti(F
(t), α(X)), τ is the confidence threshold and α,A are the weak and

strong augmentations, respectively. For the simplicity of proof, we set α to be identity mapping. In the
following, we will prove Theorem 11. By setting τ = 1− Õ(1/s2), we will show that after training
the supervised network F (T1) with the unsupervised loss L(t)

u for an additional T2 = poly(k)
η epochs,

the FixMatch-trained network F (T ) learns complete semantic features for all classes, achieving
perfect test performance on both multi-view and single-view data.

C INDUCTION HYPOTHESIS

In this section, to prove our theorem, similar to Allen-Zhu & Li (2023), we present an induction
hypothesis for every training iteration t in Phase II. We first show the loss function in Phase II.

Loss Function. Recall logiti(F,X) := eFi(X)∑
j∈[k] e

Fj(X) . In learning Phase I, before the network

learned partial features to make confident prediction, only the supervised loss L(t)
s takes effect

L(t)
s = E(X,y)∼Zl

[
− log logity(F

(t), X)
]
.
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In Phase II, after we train the network F for T1 = poly(k)
η epochs using L(t)

s in the Phase I, according
to the results in Appendix B, one of the features in each class is captured. Then we consider to
optimize the network F (T1) using the following combination of losses:

L(t) =E(X,y)∼Zl

[
− log logity(F

(t), X)
]

+ λEX∼Zu

[
I{maxi logiti(F

(t),α(X))≥τ} · − log logitb(F
(t),A(X))

]
,

where b = argmaxi∈[k] logiti(F
(t), α(X)). Recall τ = 1− Õ(1/s2), when t ≥ T1 and we use F (t)

to classify the unlabeled data X ∼ Zu, we will get a correct pseudo-label with high probability, i.e.,
b = y, where y denotes the ground truth label of X . This means that for X ∼ Zu,m, with probability
at least 1− e−Ω(log2 k), logity(F

(t), X) ≥ τ and for X ∼ Zu,s, when (y, l∗) ∈ M and l̂(X) = l∗,
with the probability at least 1− e−Ω(log2 k), logity(F

(t), X) ≥ τ . We denote the samples in Zu that
satisfy logity(F

(t), X) ≥ τ as Z̃u and let Ñu = |Z̃u|. In this way, we can further simplify the loss
as

L(t) =L(t)
s + λL(t)

u

=E(X,y)∼Zl

[
− log logity(F

(t), X)
]
+ λEX∼Z̃u

[
− log logitb(F

(t),A(X))
]
.

(11)

We introduce the following induction hypothesis:

Induction Hypothesis 15. During Phase II (t ≥ T1), for every l ∈ [2], for every r ∈ [m], for every
X ∈ Z̃u and i ∈ [k],

(a) For every p ∈ Pvi,l(X), we have: ⟨w(t)
i,r , xp⟩ = ⟨w(t)

i,r , vi,l⟩zp ± õ(σ0).

(b) For every p ∈ P(X) \ (Pvi,1(X) ∪ Pvi,2(X)), we have: |⟨w(t)
i,r , xp⟩| ≤ Õ(σ0).

(c) For every p ∈ [P ] \ P(X), we have |⟨w(t)
i,r , xp⟩| ≤ Õ(σ0γk).

Moreover, we have for every i ∈ [k], every l ∈ [2],

(d) Φ
(t)
i,l ≥ Ω̃(σ0) and Φ

(t)
i,l ≤ Õ(1).

(e) for every r ∈ [m], it holds that ⟨w(t)
i,r , vi,l⟩ ≥ −Õ(σ0).

Recall that Φ(t)
i,l :=

∑
r∈[m][⟨w

(t)
i,r , vi,l⟩]+ and Φ

(t)
i :=

∑
l∈[2] Φ

(t)
i,l .

The intuition behind Induction Hypothesis 15 is that training with semi-supervised loss Eq. (11)
filters out feature noises and background noises for both multi-view data and single-view data. This
can be seen in comparison with Induction Hypothesis C.3 of Allen-Zhu & Li (2023). With the help
of Induction Hypothesis 15, we can prove that the correlations between wi,r and learned features
in Phase I are retained in Phase II, and the correlations between wi,r and unlearned features will
increase to a large scale (log(k)) in the end of learning Phase II.

D GRADIENT CALCULATIONS AND FUNCTION APPROXIMATION

Gradient Calculation. We present the gradient calculations for the cross-entropy loss
Lu(F ;X, y) = − log logity(F,A(X)) on unlabeled data X with correctly predicted pseudo-label
y. With a slight abuse of notation, we use (X, y) ∼ Z̃u to denote unlabeled data X ∼ Z̃u along with
its corresponding ground truth label y.
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Fact 16. Given data point (X, y) ∼ Z̃u, for every i ∈ [k], r ∈ [m],

−∇wi,rLu(F ;X, y) = (1− logiti(F,A(X)))
∑
p∈[P ]

ReLU
′
(⟨wi,r,A(xp)⟩)A(xp), when i = y,

(12)

−∇wi,rLu(F ;X, y) = −logiti(F,A(X))
∑
p∈[P ]

ReLU
′
(⟨wi,r,A(xp)⟩)A(xp), when i ̸= y.

(13)

Definition 17. For each data point X , we define a value Vi,r,l(X) as

Vi,r,l(X) := Ivi,l∈V(X)

∑
p∈Pvi,l

(X)

ReLU
′
(⟨wi,r,A(xp)⟩)A(zp).

Definition 18. We also define small error terms which will be frequently used:

E1 := Õ(σq−1
0 )γs E2,i,r(X) := O(γ(Vi,r,1(X) + Vi,r,2(X)))

E3 := Õ(σ0γk)
q−1γP E4,j,l(X) := Õ(σq−1

0 )Ivj,l∈V(X).

Then we have the following bounds for positive gradients, i.e., when i = y:
Claim 19 (positive gradients). Suppose Induction Hypothesis 15 holds at iteration t. For every
(X, y) ∈ Z̃u, every r ∈ [m], every l ∈ [2], and i = y, we have

(a) ⟨−∇wi,rLu(F
(t);X, y), vi,l⟩ ≥

(
Vi,r,l(X)− Õ(σpP )

) (
1− logiti(F

(t),A(X))
)
.

(b) ⟨−∇wi,r
Lu(F

(t);X, y), vi,l⟩ ≤ (Vi,r,l(X) + E1 + E3) (1− logiti(F
(t),A(X))).

(c) For every j ∈ [k] \ {i},

|⟨−∇wi,r
Lu(F

(t);X, y), vj,l⟩| ≤ (E1 + E2,i,r(X) + E3 + E4,j,l(X)) (1− logiti(F
(t),A(X))).

We also have the following claim about the negative gradients (i.e., i ̸= y). The proof of positive and
negative gradients is identical to the proof in Allen-Zhu & Li (2023), except that in our case, we have
the augmentation operations on the data patches.
Claim 20 (negative gradients). Suppose Induction Hypothesis 15 holds at iteration t. For every
(X, y) ∼ Z̃u, every r ∈ [m], every l ∈ [2], and i ∈ [k] \ {y}, we have

(a) ⟨−∇wi,r
Lu(F

(t);X, y), vi,l⟩ ≥ −logiti(F
(t),A(X)) (E1 + E3 + Vi,r,l(X)) .

(b) For every j ∈ [k]: ⟨−∇wi,r
Lu(F

(t);X, y), vj,l⟩ ≤ logiti(F
(t),A(X))Õ(σpP ).

(c) For every j ∈ [k] \ {i}:⟨−∇wi,r
Lu(F

(t);X, y), vj,l⟩ ≥
−logiti(F

(t),A(X)) (E1 + E3 + E4,j,l(X)) .

Function Approximation. Let us denote Z(t)
i,l (X) := Ivi,l∈V(X)

(∑
p∈Pvi,l

(X) A(zp)
)

, we can
easily derive the following result on function approximation.
Claim 21 (function approximation). Suppose Induction Hypothesis 15 holds at iteration t and
suppose s ≤ Õ( 1

σq
0m

) and γ ≤ Õ( 1
σ0k(mP )1/q

), we have:

• for every t, every (X, y) ∈ Z̃u and i ∈ [k], we have

F
(t)
i (X) =

∑
l∈[2]

(
Φ

(t)
i,l × Z

(t)
i,l (X)

)
±O(

1

polylog(k)
).

• for every (X, y) ∼ D, with probability at least 1− e−Ω(log2 k), it satisfies for every i ∈ [k],

F
(t)
i (X) =

∑
l∈[2]

(
Φ

(t)
i,l × Z

(t)
i,l (X)

)
±O(

1

polylog(k)
).
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Claim 22 (classification test performance). Suppose Parameter Assumption 10 holds. Assume for
∀i ∈ [k],∃l ∈ [2] such that Φi,l≥Ω(log k) and Φi,3−l ≤ 1

polylog(k) in the trained network F . Then

the following statements hold with probability at least 1− e−Ω(log2 k):

• For any (X, y) ∼ D which contains vy,l as the main semantic feature, network F can
correctly predict the label y of X .

• For any (X, y) ∼ D only with vy,3−l as the main semantic feature, the network F would
mistakenly predict the label of X .

Proof. Based on our definition of multi-view and single-view data, for any multi-view data (X, y) ∼
Dm, when we have Φi≥Ω(log k) (∀i ∈ [k]), according to Claim 21 and Claim D.16 in Allen-Zhu &
Li (2023), we have 0.4Φi − Φj ≤ −Ω(log k), which means Fy(X) ≥ maxj ̸=y Fj(X) + Ω(log k).
For any single-view data (X, y) ∼ Ds with vy,l as the main semantic feature, according to Claim 21,
Fy(X) ≥ Ω(log k) and for i ̸= y, Fi(X) ≤ O(Γ). Thus, we have Fy(X) ≥ maxj ̸=y Fj(X) +
Ω(log k). In the above two cases, the network F can correctly predict the label y of X .

For any single-view data (X, y) ∼ Ds with vy,3−l as the main semantic feature, according to
Claim 21, Fy(X) ≤ Õ(ρ) + 1

polylog(k) and with probability at least 1 − e−Ω(log2 k) there exists

i ∈ [k] and i ̸= y such that Fi(X) ≥ Ω̃(Γ). This means that Fy(X) ≤ maxi ̸=y Fi(X)− 1
polylog(k) .

In this case, the network F will mistakenly predict the label of X .

E PROOF FOR SEMANTIC-AWARE FIXMATCH

Here we consider to prove the SA-FixMatch case first. SA-FixMatch replaces CutOut operation
in strong augmentation of FixMatch with SA-CutOut, which deterministically removes the learned
features in Phase I. This helps to reduce the number of unlabeled samples needed during the Phase
II training as shown in Assumption 12. Since the learned features of Phase I are deterministically
removed in SA-FixMatch, for the simplicity of theoretical analysis, we first prove the results under
SA-FixMatch and then we can easily generalize the results to FixMatch.

For theoretical proof, we assume that Grad-CAM in SA-CutOut can correctly identify the learned
feature after the first stage. In this case, the formulation of strong augmentation A(·) with SA-CutOut
for X ∼ Z̃u and (i, l∗) ∈ M∩ V(X) (l∗ varies depending on i) is

A(xp) =

{
0, if p ∈ Pvi,l∗ (X),

xp, otherwise.
(14)

In the following, we will begin to prove Theorem 13. We first introduce some useful claims as
consequences of the Induction Hypothesis 15.

E.1 USEFUL CLAIMS

Based on the results from Allen-Zhu & Li (2023), at the end of learning Phase I, for (i, l∗) ∈ M,
we have Φ(T1)

i,l∗ ≥ Ω(log k) while Φ(T1)
i,3−l∗ ≤ 1/polylog(k). Below the first claim addresses the initial

growth of the correlations between wi,r and the unlearned feature (Φ(t)
i,3−l∗) in learning Phase II,

and the second claim asserts that the correlations between wi,r and the learned feature (Φ(t)
i,l∗) are

preserved during learning Phase II. Here we first give a naive bound on the logit function based on
function approximation result Claim 21.

Claim 23 (approximation of logits). Suppose Induction Hypothesis 15 holds at iteration t, and
suppose s ≤ Õ( 1

σq
0m

) and γ ≤ Õ( 1
σ0k(mP )1/q

), then

• for every (X, y) ∼ Z̃u,m and (i, l∗) ∈ M: logiti(F
(t),A(X)) = O

(
e
O(Φi,3−l∗ )

e
O(Φi,3−l∗ )

+k

)
.

• for every (X, y) ∼ Z̃u,s and every i ∈ [k]: logiti(F
(t),A(X)) = O

(
1
k

)
.
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Proof. Recall F (t)
i (A(X)) =

∑
r∈[m]

∑
p∈[P ] ReLU(⟨wi,r,A(xp)⟩). According to Claim 21, data

distribution Def. 7 and data augmentation defined in Eq. (14), we have that for (X, y) ∼ Z̃u,m and
(i, l∗) ∈ M (l∗ varies depending on i),

0 ≤ F (t)
y (A(X)) ≤ Φ

(t)
y,3−l∗ ·O(1) +O(

1

polylog(k)
),

and for i ∈ [k] \ {y},

0 ≤ F
(t)
i (A(X)) ≤ Φ

(t)
i,3−l∗ · 0.4 +O(

1

polylog(k)
).

Thus, combining the above results, for every (X, y) ∼ Z̃u,m and (i, l∗) ∈ M, we have for every
i ∈ [k],

logiti(F
(t),A(X)) = O

(
eO(Φ

(t)

i,3−l∗ )

eO(Φ
(t)

i,3−l∗ ) + k

)
.

On the other hand, for the single-view data in Z̃u,s, as the only class-specific semantic feature is
removed after we conduct strong augmentation, only noisy unlearned features and background noises
remain. Thus, for (X, y) ∼ Z̃u,s and (i, l∗) ∈ M, we have for i ̸= y,

0 ≤ F (t)
y (A(X)) ≤ O(1) and 0 ≤ F

(t)
i (A(X)) ≤ Φ

(t)
i,3−l∗ ·O(Γ) +O(

1

polylog(k)
) ≤ O(1),

and thus we have for every i ∈ [k],

logiti(F
(t),A(X)) = O

(
1

k

)
.

Now we are ready to prove the following claim on the initial growth of Φ(t)
i,3−l∗ with (i, l∗) ∈ M.

Claim 24 (initial growth). Suppose Induction Hypothesis 15 holds at iteration t, then for every
i ∈ [k] with (i, l∗) ∈ M, suppose Φ

(t)
i,3−l∗ ≤ O(1), then it satisfies

Φ
(t+1)
i,3−l∗ = Φ

(t)
i,3−l∗ + Θ̃

(η
k

)
ReLU

′
(Φ

(t)
i,3−l∗).

Proof. For any wi,r and vi,3−l∗ (i ∈ [k], r ∈ [m]), we have

⟨w(t+1)
i,r , vi,3−l∗⟩ = ⟨w(t)

i,r , vi,3−l∗⟩ − ηE(X,y)∼Zl
[⟨∇wi,rLs(F

(t);X, y), vi,3−l∗⟩]

− ηE(X,y)∼Z̃u
[⟨∇wi,rLu(F

(t);X, y), vi,3−l∗⟩].

For the loss term on Zl, we have

− E(X,y)∼Zl
[⟨∇wi,r

Ls(F
(t);X, y), vi,3−l∗⟩]

=E(X,y)∼Zl

[
Ii=y(1− logiti(F,X))

∑
p∈[P ]

ReLU
′
(⟨wi,r, xp⟩)⟨xp, vi,3−l∗⟩−

Ii ̸=ylogiti(F,X)
∑

p∈[P ]
ReLU

′
(⟨wi,r, xp⟩)⟨xp, vi,3−l∗⟩

]
.

Based on the results from Allen-Zhu & Li (2023), when t ≥ T1, we have

E(X,y)∼Zl

[
(1− logity(F,X))

]
≤ 1

poly(k)
and E(X,y)∼Zl

[
Ii̸=ylogiti(F,X)

]
≤ 1

poly(k)
,

which means

−E(X,y)∼Zl
[⟨∇wi,r

Ls(F
(t);X, y), vi,3−l∗⟩] ≤

1

poly(k)
,

i.e., the supervised loss is fully minimized in Phase I and contributes little in Phase II.
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Then, from Claim 19 and Claim 20, we know

⟨w(t+1)
i,r , vi,3−l∗⟩ ≥⟨w(t)

i,r , vi,3−l∗⟩+ ηE(X,y)∼Z̃u
[Iy=i(Vi,r,3−l∗(X)− Õ(σpP ))(1− logiti(F

(t),A(X)))

− Iy ̸=i(E1 + E3 + Ivi,3−l∗∈P(X)Vi,r,3−l∗(X))logiti(F
(t),A(X))].

Consider r = argmaxr∈[m]{⟨w
(t)
i,r , vi,3−l∗⟩}, then as m = polylog(k), we know ⟨w(t)

i,r , vi,3−l∗⟩ ≥
Ω̃(Φ

(t)
i,3−l∗). Recall Vi,r,3−l∗(X) := Ivi,3−l∗∈V(X)

∑
p∈Pvi,3−l∗ (X) ReLU

′
(⟨w(t)

i,r ,A(xp)⟩)A(zp),
according to Induction Hypothesis 15(a) and definition in Eq. (14), we have

Vi,r,3−l∗(X) = Ivi,3−l∗∈V(X)

∑
p∈Pvi,3−l∗ (X)

ReLU
′
(⟨w(t)

i,r , vi,3−l∗⟩zp + õ(σ0))zp.

• When i = y, at least for (X, y) ∼ Z̃u,m, we have
∑

p∈Pvi,3−l∗ (X) zp ≥ 1, and together

with |Pvi,3−l∗ | ≤ Cp, we know Vi,r,3−l∗ ≥ Ω(1) · ReLU′
(⟨w(t)

i,r , vi,3−l∗⟩).

• When i ̸= y and when vi,3−l∗ ∈ P(X), we can use
∑

p∈Pvi,3−l∗ (X) zp ≤ 0.4 to derive that

Vi,r,3−l∗ ≤ 0.4 · ReLU′
(⟨w(t)

i,r , vi,3−l∗⟩).

Moreover, when Φ
(t)
i,3−l∗ ≤ O(1), by Claim 23, we have logiti(F

(t),A(X)) ≤ O( 1k ). Then we can
derive that

⟨w(t+1)
i,r , vi,3−l∗⟩ ≥⟨w(t)

i,r , vi,l⟩+ ηE(X,y)∼Z̃u
[Iy=i · Ω(1)−O(1) · Iy ̸=iIvi,3−l∗∈P(X) ·

1

k
]

· ReLU′⟨w(t)
i,r , vi,3−l∗⟩ − ηÕ(

σpP + E1 + E3
k

).

Finally, recall that Pr(vi,3−l∗ ∈ P(X)|i ̸= y) = s
k ≪ o(1), we have that

⟨w(t+1)
i,r , vi,3−l∗⟩ ≥ ⟨w(t)

i,r , vi,3−l∗⟩+ Ω̃
(η
k

)
ReLU

′
(⟨w(t)

i,r , vi,3−l∗⟩).

Similarly, using Claim 19 and 20, we can derive:

⟨w(t+1)
i,r , vi,3−l∗⟩ ≤ ⟨w(t)

i,r , vi,3−l∗⟩+ ηE(X,y)∼Z̃u

[
Iy=i(Vi,r,3−l∗(X) + E1 + E3)(1− logiti(F

(t), X))

− Iy ̸=iÕ(σpP )logiti(F
(t), X)

]
.

With similar analyses to the upper bound, we can derive the lower bound

⟨w(t+1)
i,r , vi,3−l∗⟩ ≤ ⟨w(t)

i,r , vi,3−l∗⟩+ Õ
(η
k

)
ReLU

′
(⟨w(t)

i,r , vi,3−l∗⟩).

With initial growth analysis in Claim 24, similar to Claim D.11 in Allen-Zhu & Li (2023), we can
obtain the following result:

Claim 25. Define iteration threshold T0 := Θ̃
(

k

ησq−2
0

)
, then for every i ∈ [k], (i, l∗) ∈ M and

t ≥ T1 + T0, it satisfies that Φ(t)
i,3−l∗ = Θ(1).

As we stated in Claim 23, model prediction for the augmented single-view data in Z̃u,s are kept to
the scale of O

(
1
k

)
, since after strong augmentation there remains only noises. Now we present the

convergence of multi-view data in Z̃u,m from T1 + T0 till the end.
Claim 26 (multi-view error till the end). Suppose that the Induction Hypothesis 15 holds for every
iteration T1 < t ≤ T1 + T2, and suppose Ñc,s

Ñc
≤ k2

ηsT2
, then

T1+T2∑
t=T1+T0

E(X,y)∼Z̃u,m
[1− logity(F

(t),A(X))] ≤ Õ

(
k

η

)
.
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Proof. For any wi,r and vi,3−l∗ (i ∈ [k], r ∈ [m]), we have

⟨w(t+1)
i,r , vi,3−l∗⟩ = ⟨w(t)

i,r , vi,3−l∗⟩ − ηE(X,y)∼Zl
[⟨∇wi,rLs(F

(t);X, y), vi,3−l∗⟩]

− ηE(X,y)∼Z̃u
[⟨∇wi,rLu(F

(t);X, y), vi,3−l∗⟩].
For the loss term on Zl, as discussed above, we have

−E(X,y)∼Zl
[⟨∇wi,r

Ls(F
(t);X, y), vi,3−l∗⟩] ≤

1

poly(k)
.

Again, by Claim 19 and Claim 20, we know

⟨w(t+1)
i,r , vi,3−l∗⟩ ≥⟨w(t)

i,r , vi,3−l∗⟩+ ηE(X,y)∼Z̃u
[Iy=i(Vi,r,3−l∗(X)− Õ(σpP ))(1− logiti(F

(t),A(X)))

− Iy ̸=i(E1 + E3 + Ivi,3−l∗∈P(X)Vi,r,3−l∗(X))logiti(F
(t),A(X))].

Take r = argmaxr∈[m]{⟨w
(t)
i,r , vi,3−l∗⟩}, then by m = polylog(k) we know ⟨w(t)

i,r , vi,3−l∗⟩ ≥
Ω̃(Φ

(t)
i,3−l∗) = Ω̃(1) for t ≥ T1 + T0.

Recall Vi,r,3−l∗(X) := Ivi,3−l∗∈V(X)

∑
p∈Pvi,3−l∗ (X) ReLU

′
(⟨w(t)

i,r ,A(xp)⟩)A(zp) and our defini-

tion of A, using the Induction Hypothesis 15, we have that for (X, y) ∼ Z̃u,m, it satisfies

Vi,r,3−l∗(X) =
∑

p∈Pvi,3−l∗ (X)
ReLU

′
(⟨w(t)

i,r , vi,3−l∗⟩zp ± õ(σ0))zp.

Since we have ⟨w(t)
i,r , vi,3−l∗⟩ ≥ Ω̃(1) ≫ ϱ and |Pvi,3−l∗ (X)| ≤ O(1), for most of p ∈ Pvi,3−l∗ , we

have alreadly in the linear regime of ReLU so

0.9
∑

p∈Pvi,3−l∗ (X)
zp ≤ Vi,r,3−l∗(X) ≤

∑
p∈Pvi,3−l∗ (X)

zp.

Thus, when (X, y) ∼ Z̃u,m and y = i, we have Vi,r,3−l∗(X) ≥ 0.9; when (X, y) ∼ Z̃u,m, y ̸= i

and vi,3−l∗ ∈ P(X), we have Vi,r,3−l∗(X) ≤ 0.4. When (X, y) ∼ Z̃u,s and y = i, we have
Vi,r,3−l∗(X) ≥ 0; when (X, y) ∼ Z̃u,s, y ̸= i and vi,3−l∗ ∈ P(X), we have Vi,r,3−l∗(X) ≤
O(Γ) ≪ o(1). Then we can derive that

⟨w(t+1)
i,r ,vi,3−l∗⟩

≥ ⟨w(t)
i,r , vi,3−l∗⟩+ ηE(X,y)∼Z̃u,m

[
0.89 · Iy=i(1− logiti(F

(t),A(X)))
]

− ηE(X,y)∼Z̃u,m

[
Iy ̸=i(E1 + E3 + 0.4Ivi,3−l∗∈P(X))logiti(F

(t),A(X))
]

−O

(
ηÑc,s

Ñc

)
E(X,y)∼Z̃u,s

[
Õ(σpP )Iy=i(1− logiti(F

(t),A(X)))
]

−O

(
ηÑc,s

Ñc

)
E(X,y)∼Z̃u,s

[
Iy ̸=i(E1 + E3 + Ivi,3−l∗∈P(X))logiti(F

(t),A(X))
]

≥ ⟨w(t)
i,r , vi,3−l∗⟩+Ω

(η
k

)
E(X,y)∼Z̃u,m

[
(1− logity(F

(t),A(X)))
]
−O

(
ηsÑc,s

k2Ñc

)
,

where the last step is based on Claim 23 and the fact that Pr(vi,l ∈ P(X)|i ̸= y) = s
k ≪ o(1). Thus,

when summing up all r ∈ [m], and telescoping from T1 + T0 to T1 + T2, we have

Φ
(T1+T2)
i,3−l∗ ≥ Φ

(T1+T0)
i,3−l∗ + Ω̃

(η
k

) T1+T2∑
t=T1+T0

E(X,y)∼Z̃u,m

[
(1− logity(F

(t),A(X)))
]
− Õ

(
T2ηsÑc,s

k2Ñc

)
.

Then combining that Φ(t)
i,3−l∗ ≤ Õ(1) from the Induction Hypothesis 15(d), we have:

T1+T2∑
t=T1+T0

E(X,y)∼Z̃u,m

[
(1− logiti(F

(t),A(X)))
]
≤ Õ

(
k

η

)
+ Õ

(
T2sÑc,s

kÑc

)
≤ Õ

(
k

η

)
.
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Now we are ready to prove the following claim on the correlations between model kernels and the
learned feature Φ

(t)
i,l∗ is retained during learning Phase II.

Claim 27 (learned is retained). Suppose that the Induction Hypothesis 15 holds for every iteration
T1 < t ≤ T1 + T2, under Parameter Assumption 10 and 12, we have for every iteration T1 < t ≤
T1 + T2:

∀(i, l∗) ∈ M, Φ
(t)
i,l∗ ≥ Ω(log(k)).

Proof. For any wi,r and vi,l∗ (i ∈ [k], r ∈ [m]), we have

⟨w(t+1)
i,r , vi,l∗⟩ = ⟨w(t)

i,r , vi,l∗⟩ − ηE(X,y)∼Zl
[⟨∇wi,rLs(F

(t);X, y), vi,l∗⟩]

− ηE(X,y)∼Z̃u
[⟨∇wi,rLu(F

(t);X, y), vi,l∗⟩].

For the loss term on Zl, as discussed in Claim 24, we have

−E(X,y)∼Zl
[⟨∇wi,r

Ls(F
(t);X, y), vi,l∗⟩] ≤

1

poly(k)
.

Again, by Claim 19 and Claim 20, we know

⟨w(t+1)
i,r , vi,l∗⟩ ≥⟨w(t)

i,r , vi,l∗⟩+ ηE(X,y)∼Z̃u
[Iy=i(Vi,r,l∗(X)− Õ(σpP ))(1− logiti(F

(t),A(X)))

− Iy ̸=i(E1 + E3 + Ivi,l∗∈P(X)Vi,r,l∗(X))logiti(F
(t),A(X))].

Recall Vi,r,l∗(X) := Ivi,l∗∈V(X)

∑
p∈Pvi,l∗ (X) ReLU

′
(⟨w(t)

i,r ,A(xp)⟩)A(zp) and our definition of

strong augmentation in Eq. (14), we have Vi,r,l∗(X) = 0, so we have by Claim 23 that

⟨w(t+1)
i,r , vi,l∗⟩ ≥⟨w(t)

i,r , vi,l∗⟩ − Õ

(
ησpP

k

)
E(X,y)∼Z̃u

[1− logiti(F
(t),A(X))]−O

(
η(E1 + E3)

k

)
.

Summing up all r ∈ [m] and using m = polylog(k), we have

Φ
(t+1)
i,l∗ ≥Φ

(t−1)
i,l∗ − Õ

(
ησpP

k

)
E(X,y)∼Z̃u

[1− logiti(F
(t),A(X))]− Õ

(
ηγ(σq−1

0 s+ (σ0γk)
q−1P )

k

)
.

In the following, we separate the process into T1 < t ≤ T1 + T0 and t ≥ T1 + T0.

When T1 < t ≤ T1+T0. Recall at the end of learning Phase I, we have Φ(T1)
i,l∗ ≥ Ω(log(k)). Using

T0 = Θ̃
(

k

ησq−2
0

)
and our Parameter Assumption 10, we have Φ

(t)
i,l∗ ≥ Ω(log(k)) for every iteration

of T1 < t ≤ T1 + T0.

When T1 + T0 < t ≤ T1 + T2. By the upper bound on multi-view error in Claim 26, we know
Φ

(t)
i,l∗ ≥ Ω(log(k)) for every iteration of T1 + T0 < t ≤ T1 + T2.

Next, we present our last claim on individual error similar to Claim D.16 in Allen-Zhu & Li (2023).
It states that when training error on Z̃u,m is small enough, the model has high probability to correctly
classify any individual data.

Claim 28 (individual error). When E(X,y)∼Z̃u,m

[
1− logity

(
F (t), X

)]
≤ 1

k4 is sufficiently small,
we have for any (i, 3− l), (j, 3− l′) /∈ M,

0.4Φ
(t)
i,3−l − Φ

(t)
j,3−l′ ≤ −Ω(log(k)), Φ

(t)
i,3−l,Φ

(t)
j,3−l′ ≥ Ω(log(k)),

and therefore for every (X, y) ∈ Z (and every (X, y) ∈ D w.p. 1− e−Ω(log2(k))),

F (t)
y (X) ≥ max

j ̸=y
F

(t)
j (X) + Ω(log k).
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Proof. Denote by Z̃∗
u,m for the sample (X, y) ∈ Z̃u,m such that

∑
p∈Pvy,3−l∗ (X) zp ≤ 1+ 1

100 log(k)

where (y, l∗) ∈ M. For a sample (X, y) ∈ Z̃∗
u,m, denote by H(X) as the set of all i ∈ [k] \ {y}

such that
∑

p∈Pvi,3−l
(X) zp ≥ 0.4− 1

100 log(k) where (i, l) ∈ M.

Now, suppose 1− logity(F
(t), X) = E(X), with min(1, β) ≤ 2(1− 1

1+β ), we have

min(1,
∑

i∈[k]\{y}
eF

(t)
i (X)−F (t)

y (X)) ≤ 2E(X)

By Claim 21 and our definition of H(X), this implies that

min(1,
∑

i∈H(X)
e0.4Φ

(t)
i,3−l−Φ

(t)

y,3−l∗ ) ≤ 4E(X).

If we denote by ψ = E(X,y)∼Z̃u,m
[1− logity

(
F (t), X

)
], then

E(X,y)∼Z̃u,m

[
min(1,

∑
i∈H(X)

e0.4Φ
(t)
i,3−l−Φ

(t)

y,3−l∗ )

]
≤ O(ψ),

=⇒ E(X,y)∼Z̃u,m

[∑
i∈H(X)

min(
1

k
, e0.4Φ

(t)
i,3−l−Φ

(t)

y,3−l∗ )

]
≤ O(ψ).

Notice that we can rewrite the LHS so that

E(X,y)∼Z̃u,m

[∑
j∈[k]

Ij=y

∑
i∈[k]

Ii∈H(X) min(
1

k
, e

0.4Φ
(t)
i,3−l−Φ

(t)

j,3−l′ )

]
≤ O(ψ),

=⇒
∑

j∈[k]

∑
i∈[k]

Ii ̸=yE(X,y)∼Z̃u,m

[
Ij=yIi∈H(X)

]
min(

1

k
, e

0.4Φ
(t)
i,3−l−Φ

(t)

j,3−l′ ) ≤ O(ψ),

where (j, l′) ∈ M. Note for every the probability for every i ̸= j ∈ [k], the probability of generating
a sample (X, y) ∈ Z̃∗

u,m with y = j and i ∈ H(X) is at least Ω̃( 1k · s2

k2 ). This implies∑
i∈[k]\{j}

min(
1

k
, e

0.4Φ
(t)
i,3−l−Φ

(t)

j,3−l′ ) ≤ Õ

(
k3

s2
ψ

)
.

Then, with 1− 1
1+β ≤ min(1, β), we have for every (X, y) ∈ Z̃u,m,

1− logity(F
(t), X) ≤min(1,

∑
i∈[k]\{y}

2e0.4Φ
(t)
i,3−l−Φ

(t)

y,3−l∗ )

≤k ·
∑

i∈[k]\{y}
min(

1

k
, e0.4Φ

(t)
i,3−l−Φ

(t)

y,3−l∗ ) ≤ Õ

(
k4

s2
ψ

)
.

(15)

Thus, we can see that when ψ ≤ 1
k4 is sufficiently small, we have for any i ∈ [k] \ {y}

e0.4Φ
(t)
i,3−l−Φ

(t)

y,3−l∗ ≤ 1

k
=⇒ 0.4Φ

(t)
i,3−l − Φ

(t)
y,3−l∗ ≤ −Ω(log(k)).

By symmetry and non-negativity of Φ(t)
i,3−l, we know for any (i, 3− l), (j, 3− l′) /∈ M, we have:

0.4Φ
(t)
i,3−l − Φ

(t)
j,3−l′ ≤ −Ω(log(k)), Φ

(t)
i,3−l,Φ

(t)
j,3−l′ ≥ Ω(log(k)). (16)

Since Eq. (16) holds for any (i, 3 − l), (j, 3 − l′) /∈ M at iteration t such that
E(X,y)∼Z̃m

[
1− logity

(
F (t), X

)]
≤ 1

k4 , and from Claim D.16 in Allen-Zhu & Li (2023) we
know Eq. (16) also holds for Φi,l,Φj,l′ for any (i, l), (j, l′) ∈ M during learning Phase II, so we
have

• for every (X, y) ∼ Zm, by Claim 21 we have

F (t)
y (X) ≥ 1 · Φy −O(

1

polylog(k)
) ≥ 0.4max

j ̸=y
Φj +Ω(log(k)) ≥ max

j ̸=y
F

(t)
j (X) + Ω(log k).
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• for every (X, y) ∼ Zs, suppose vy,l is its only semantic feature, by Claim 21 we have

F (t)
y (X) ≥ 1 · Φy,l −O(

1

polylog(k)
) ≥ Ω(log(k)),

F
(t)
j (X) ≤ O(Γ) · Φj,l +O(

1

polylog(k)
) ≤ O(1) for j ̸= y.

Therefore, we have

F (t)
y (X) ≥ max

j ̸=y
F

(t)
j (X) + Ω(log k).

Let T1 + T ′
0 be the first iteration that E(X,y)∼Z̃u,m

[
1− logity

(
F (t), X

)]
≤ 1

k4 , then we know for

t ≥ T1+T
′
0 Eq. (16) always holds, since the objective L(t) = L

(t)
s +λL

(t)
u (λ = 1) isO(1)-Lipschitz

smooth and we are using full gradient descent, which means the objective value is monotonically
non-increasing. Since in Phase II, L(t)

s is kept at a small value, L(t)
u is monotonically non-increasing.

E.2 MAIN LEMMAS TO PROVE THE INDUCTION HYPOTHESIS 15

In this section, we show lemmas that when combined together, shall prove the Induction Hypothesis 15
holds for every iteration.

E.2.1 CORRELATION GROWTH

Lemma 29. Suppose Parameter 10 holds and suppose Induction Hypothesis 15 holds for all iteration
< t starting from T1. Then, letting Φ

(t)
i,l :=

∑
r∈[m][⟨w

(t)
i,r , vi,l⟩]+, we have for every i ∈ [k], l ∈ [2],

Φ
(t)
i,l ≤ Õ(1).

Proof. For every i ∈ [k] and every (i, l) ∈ M, after the Phase I, we have Φ
(T1)
i,l ≤ Õ(1). In Phase II,

as in SA-CutOut, the learned features (i, l) are removed and so the correlations between gradients
and learned features are kept small. This means that Φ(t)

i,l ≤ Õ(1) holds true in learning Phase II for
T1 < t ≤ T1 + T2.

Then for the unlearned feature (i, 3− l), we suppose t > T1 + T ′
0 is some iteration so that Φ(t)

i,3−l ≥
polylog(k). We will prove that if we continue from iteration t for at most T2 iterations, we still have
Φ

(t)
i,3−l ≤ Õ(1). Based on Claim 19, we have that

⟨w(t+1)
i,r ,vi,3−l⟩

≤ ⟨w(t)
i,r , vi,3−l⟩+ ηE(X,y)∼Z̃u

[
Ii=y(E1 + E3 + Vi,r,3−l)(1− logiti(F

(t),A(X)))
]

≤ ⟨w(t)
i,r , vi,3−l⟩+O(η)E(X,y)∼Z̃u,m

[
Ii=y(1− logiti(F

(t),A(X)))
]
+O

(
ηρÑc,s

kÑc

)
.

This is because that when (X, y) ∼ Z̃u,m, we have Vi,r,3−l ≤ O(1) and when (X, y) ∼ Z̃u,s, we
have Vi,r,3−l ≤ O(ρ). For every (X, y) ∼ Z̃u,m, when y = i, we have

F
(t)
i (A(X)) ≥ Φ

(t)
i,3−l ·

∑
p∈Pvi,3−l

zp −O(
1

polylog(k)
) ≥ Φ

(t)
i,3−l −O(

1

polylog(k)
).

Then when j ̸= y and (j, l′) ∈ M, we have

F
(t)
j (A(X)) ≤ Φ

(t)
j,3−l′ ·

∑
p∈Pv

j,3−l′
zp +O(

1

polylog(k)
) ≤ 0.4Φ

(t)
j,3−l′ +O(

1

polylog(k)
).

27



Published as a conference paper at ICLR 2025

So by Eq. (16), we have

1− logity(F ;A(X), y) ≤ 1

kΩ(log k)
.

Summing up over all r ∈ [m], we have

Φ
(t+1)
i,3−l ≤ Φ

(t)
i,3−l +

ηm

kΩ(log k)
+ Õ

(
ηρÑc,s

kÑc

)
.

Therefore, if we continue for T2 iterations, we still have Φ
(T1+T2)
i,3−l∗ ≤ Õ(1).

E.2.2 OFF-DIAGONAL CORRELATIONS ARE SMALL

Lemma 30. Suppose Parameter 10 holds and suppose Induction Hypothesis 15 holds for all iteration
< t starting from T1. Then,

∀i ∈ [k],∀r ∈ [m],∀j ∈ [k] \ {i}, |⟨w(t)
i,r , vj,l⟩| ≤ Õ(σ0).

Proof. In Phase I when t ≤ T1, from Lemma D.22 in Allen-Zhu & Li (2023), we have
|⟨w(t)

i,r , vj,l⟩| ≤ Õ(σ0). Now we consider Phase II when t > T1, and denote by R
(t)
i :=

maxr∈[m],j∈[k]\{i} |⟨w
(t)
i,r , vj,l⟩|. According to Claim 19 and Claim 20, we have

R
(t+1)
i ≤R(t)

i + ηE(X,y)∼Z̃u

[
Iy=i(E2,i,r(X) + E1 + E3 + E4,j,l(X))(1− logiti(F

(t), X))
]

+ ηE(X,y)∼Z̃u

[
Iy ̸=i (E1 + E3 + E4,j,l(X)) logiti(F

(t), X)
]
.

For single-view data (X, y) ∼ Z̃u,s, by Claim 23, we have logiti(F
(t),A(X)) = O

(
1
k

)
for every

i ∈ [k]. In the following, we separate the process into T1 < t ≤ T1 +T0 and T1 +T0 < t ≤ T1 +T2.

When T1 < t ≤ T1 + T0. During this stage, by Claim 23 we know logiti(F
(t), X) = O( 1k )

(∀i ∈ [k]) for any (X, y) ∼ Z̃u. We also have E2,i,r(X) ≤ Õ(γ(Φ
(t)
i,3−l∗)

q−1) with (i, l∗) ∈
M, and have E4,j,l(X) ≤ Õ(σ0)

q−1Ivj,l∈V(X) by definition. Recall when T1 < t ≤ T1 + T0, by

Claim 24, we have Φ(t+1)
i,3−l∗ = Φ

(t)
i,3−l∗ + Θ̃

(
η
k

)
ReLU

′
(Φ

(t)
i,3−l∗), so

∑
T1<t≤T1+T0

η(Φ
(t)
i,3−l∗)

q−1 ≤
Õ(k). Also, Pr(vi,3−l∗ ∈ P(X)|i ̸= y) = s

k . Therefore, for every T1 < t ≤ T1 + T0 with
T0 = Θ̃( k

ησq−2
0

), we have

R
(t)
i ≤ R

(T1)
i + Õ(σ0) + Õ

(η
k
T0

)(
(σq−1

0 )γs+ (σ0γk)
q−1γP + (σ0)

q−1 s

k

)
≤ Õ(σ0).

When T1 + T0 < t ≤ T1 + T2. During this stage, we have the naive bound on E2,i,r(X) ≤ γ, so
again by Claim 19 and Claim 20, we have

R
(t+1)
i ≤ R

(t)
i +

η

k
E(X,y)∼Z̃u

[
(γ + (σq−1

0 )γs+ (σ0γk)
q−1γP + (σ0)

q−1 s

k
)(1− logiti(F

(t), X))
]
.

Therefore, by the upper bound on multi-view error in Claim 26 and Ñc,s

Ñc
≤ k2

ηsT2
, we know R

(t)
i ≤

Õ(σ0) for T1 + T0 < t ≤ T1 + T2.

E.2.3 NOISE CORRELATION IS SMALL

Lemma 31. Suppose Parameter 10 holds and suppose Induction Hypothesis 15 holds for all iteration
< t starting from T1. For every l ∈ [2], for every r ∈ [m], for every (X, y) ∈ Z̃u and i ∈ [k]:

(a) For every p ∈ Pvi,l(X), we have: |⟨w(t)
i,r , ξp⟩| ≤ õ(σ0).

(b) For every p ∈ P(X) \ (Pvi,1(X) ∪ Pvi,2(X)), we have: |⟨w(t)
i,r , ξp⟩| ≤ Õ(σ0).
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(c) For every p ∈ [P ] \ P(X), we have: |⟨w(t)
i,r , ξp⟩| ≤ Õ(σ0γk).

Proof. Based on gradient calculation Fact 16 and |⟨x′p′ , ξp⟩| ≤ Õ(σp) ≤ o( 1√
d
) ifX ′ ̸= X or p′ ̸= p,

we have that for every (X, y) ∼ Z̃u and p ∈ [P ], if i = y

⟨w(t+1)
i,r , ξp⟩ = ⟨w(t)

i,r , ξp⟩+ Θ̃(
η

Ñc

)ReLU
′
(⟨w(t)

i,r , xp⟩)(1− logiti(F
(t), X))± η√

d
.

Else if i ̸= y,

⟨w(t+1)
i,r , ξp⟩ = ⟨w(t)

i,r , ξp⟩ − Θ̃(
η

Ñc

)ReLU
′
(⟨w(t)

i,r , xp⟩)logiti(F
(t), X)± η√

d
.

Suppose that it satisfies that |⟨w(t)
i,r , xp⟩| ≤ A for every t < t0 where t0 is any iteration T1 ≤ t0 ≤

T1 + T2. When T1 ≤ t ≤ T1 + T0, we have that

⟨w(t)
i,r , ξp⟩ ≤ ⟨w(T1)

i,r , ξp⟩+ Õ

(
T0ηA

q−1

Ñc

)
+
T0η√
d

≤ õ(σ0) + Õ

(
kAq−1

Ñcσ
q−2
0

)
+
T0η√
d
,

where the last step is because T0 = Θ̃( k

ησq−2
0

). When T1 + T0 ≤ t ≤ T1 + T2, for multi-view data

(X, y) ∼ Z̃u,m, based on (15) in Claim 28, we can obtain that

⟨w(t)
i,r , ξp⟩ ≤ ⟨w(T1+T0)

i,r , ξp⟩+ Õ

(
k5Aq−1

s2Ñc

)
+

(T2 − T0)η√
d

≤ Õ

(
kAq−1

Ñcσ
q−2
0

+
k5Aq−1

s2Ñc

)
+
T2η√
d
.

For single-view data (X, y) ∼ Z̃u,s, we have that

⟨w(t)
i,r , ξp⟩ ≤ ⟨w(T1+T0)

i,r , ξp⟩+ Õ

(
T2ηA

q−1

Ñc

)
+

(T2 − T0)η√
d

≤ Õ

(
kAq−1

Ñcσ
q−2
0

+
T2ηA

q−1

Ñc

)
+
T2η√
d
.

When p ∈ Pvi,l(X), we have |⟨w(t)
i,r , xp⟩| ≤ Õ(1) from Induction Hypothesis 15. Then plugging in

A = Õ(1), Ñc ≥ Ω̃
(

k

σq−1
0

)
, Ñc ≥ Ω̃

(
k5

σ0

)
and Ñc ≥ ηT2poly(k), we can obtain that |⟨w(t)

i,r , ξp⟩| ≤
õ(σ0).

When p ∈ P(X) \ (Pvi,1(X) ∪ Pvi,2(X)), we have |⟨w(t)
i,r , xp⟩| ≤ Õ(σ0) from the Induction

Hypothesis 15. Then plugging in A = Õ(σ0), Ñc ≥ k5 and Ñc ≥ ηT2poly(k), we can obtain that
|⟨w(t)

i,r , ξp⟩| ≤ Õ(σ0).

When p ∈ [P ] \ P(X), we have |⟨w(t)
i,r , xp⟩| ≤ Õ(σ0γk) from Induction Hypothesis 15. Then

plugging in A = Õ(σ0γk), Ñc ≥ k5 and Ñc ≥ ηT2poly(k), we can obtain that |⟨w(t)
i,r , ξp⟩| ≤

Õ(σ0γk).

E.2.4 DIAGONAL CORRELATIONS ARE NEARLY NON-NEGATIVE

Lemma 32. Suppose Parameter Assumption 10 holds and suppose Induction Hypothesis 15 holds
for all iteration < t starting from T1. Then,

∀i ∈ [k], ∀r ∈ [m], ∀l ∈ [2], ⟨w(t)
i,r , vi,l⟩ ≥ −Õ(σ0).
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Proof. From Lemma D.27 in Allen-Zhu & Li (2023), we know ⟨w(t)
i,r , vi,l⟩ ≥ −Õ(σ0) for every

iteration t ≤ T1. Now we consider any iteration t > T1 so that ⟨w(t)
i,r , vi,l⟩ ≤ −Ω̃(σ0). We start from

this iteration to see how negative the next iterations can be. Without loss of generality, we consider
the case when ⟨w(t′)

i,r , vi,l⟩ ≤ −Ω̃(σ0) holds for every t′ ≥ t. By Claim 19 and Claim 20,

⟨w(t+1)
i,r , vi,l⟩ ≥⟨w(t)

i,r , vi,l⟩+ ηE(X,y)∼Z̃u

[
Iy=i(Vi,r,l(X)− Õ(σpP ))(1− logiti(F

(t), X))

− Iy ̸=i

(
E1 + E3 + Ivi,l∈P(X)Vi,r,l(X)

)
logiti(F

(t), X)
]

Recall by Induction Hypothesis 15(a),

Vi,r,l(X) =
∑

p∈Pvi,l
(X)

ReLU
′
(⟨w(t)

i,r , xp⟩)zp =
∑

p∈Pvi,l
(X)

ReLU
′
(⟨wi,r, vi,l⟩zp ± õ(σ0)) zp.

Since we have assumed ⟨w(t)
i,r , vi,l⟩ ≤ −Ω̃(σ0), so Vi,r,l(X) = 0, and we have

⟨w(t+1)
i,r , vi,l⟩ ≥⟨w(t)

i,r , vi,l⟩ − ηE(X,y)∼Z̃u

[
Iy=iÕ(σpP )(1− logiti(F

(t), X))

+ Iy ̸=i (E1 + E3) logiti(F (t), X)
]
.

(17)

We first consider every t ≤ T1 + T0. Using Claim 23 we have logiti(F
(t), X) = O

(
1
k

)
, which

implies

⟨w(t)
i,r , vi,l⟩ ≥ −Õ(σ0)−O

(
ηT0
k

)
(E1 + E3) ≥ −Õ(σ0).

As for t > T1+T0, combining with Claim 26 and the fact that logiti(F
(t), X) ≤ 1−logity(F

(t), X)
for i ̸= y, we have

⟨w(t)
i,r , vi,l⟩ ≥ ⟨w(T0)

i,r , vi,l⟩ − Õ(k)(E1 + E3) ≥ ⟨w(T0)
i,r , vi,l⟩ − Õ (σ0) ≥ −Õ(σ0).

E.2.5 PROOF OF INDUCTION HYPOTHESIS 15

Now we are ready to prove our Induction Induction Hypothesis 15, the proof is similar to Theorem
D.2 in Allen-Zhu & Li (2023).

Lemma 33. Under Parameter Assumption 10, for any m = polylog(k) and sufficiently small
η ≤ 1

poly(k) , our Induction Hypothesis 15 holds for all iterations t = T1, T1 + 1, . . . , T1 + T2.

Proof. At iteration t, we first calculate

∀p ∈ Pvj,l(X) : ⟨w(t)
i,r , xp⟩ = ⟨w(t)

i,r , vj,l⟩zp +
∑
v′∈V

αp,v′⟨w(t)
i,r , v

′⟩+ ⟨w(t)
i,r , ξp⟩, (18)

∀p ∈ [P ] \ P (X) : ⟨w(t)
i,r , xp⟩ =

∑
v′∈V

αp,v′⟨w(t)
i,r , v

′⟩+ ⟨w(t)
i,r , ξp⟩. (19)

By Allen-Zhu & Li (2023) we already know Induction Hypothesis 15 holds at iteration t = T1.
Suppose Induction Hypothesis 15 holds for all iterations < t starting from T1. We have established
several lemmas:

Lemma 29 =⇒ ∀i ∈ [k],∀r ∈ [m],∀l ∈ [2] : ⟨w(t)
i,r , vi,l⟩ ≤ Õ(1), (20)

Lemma 30 =⇒ ∀i ∈ [k],∀r ∈ [m],∀j ∈ [k] \ {i} : |⟨w(t)
i,r , vj,l⟩| ≤ Õ(σ0), (21)

Lemma 32 =⇒ ∀i ∈ [k],∀r ∈ [m],∀l ∈ [2] : ⟨w(t)
i,r , vi,l⟩ ≥ −Õ(σ0). (22)

• To prove Induction Hypothesis 15(a), it suffices to plug Eq. (21), Eq. (22) into Eq. (18), use
αp,v′ ∈ [0, γ], use |V| = 2k, and use |⟨w(t)

i,r , ξp⟩| ≤ õ(σ0) from Lemma 31.
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• To prove Induction Hypothesis 15(b), it suffices to plug Eq. (20), Eq. (21) into Eq. (18), use
αp,v′ ∈ [0, γ], use |V| = 2k, and use |⟨w(t)

i,r , ξp⟩| ≤ Õ(σ0) from Lemma 31.

• To prove Induction Hypothesis 15(c), it suffices to plug Eq. (20), Eq. (21) into Eq. (19), use
αp,v′ ∈ [0, γ], use |V| = 2k, and use |⟨w(t)

i,r , ξp⟩| ≤ Õ(σ0γk) from Lemma 31.

• To prove Induction Hypothesis 15(d), it suffices to note that Eq. (20) implies Φ(t)
i,l ≤ Õ(1),

and note that Claim 24 implies Φ(t)
i,l ≥ Ω(Φ

(0)
i,l ) ≥ Ω̃(σ0).

• To prove Induction Hypothesis 15(e), it suffices to invoke Eq. (22).

E.3 PROOF OF THEOREM 13

Recall our training objective is

L(t) = L(t)
s + λL(t)

u = E(X,y)∼Zl
[− log logity(F

(t), X)] + EX∼Z̃u
[− log logitb(F

(t),A(X))].

From Allen-Zhu & Li (2023) we know E(X,y)∼Zl
[− log logity(F

(T1), X)] ≤ 1
poly(k) holds at the

end of learning Phase I, and according to Claim 27 we now this continues to hold true during learning
Phase II. For EX∼Z̃u

[− log logitb(F
(t),A(X))], since we have for every data (X, y) ∼ Z̃u (y = b):

• if logity(F
(t),A(X)) ≥ 1

2 , then we know − log logity(F
(t),A(X)) ≤

O
(
1− logity(F

(t),A(X))
)
;

• if logity(F
(t),A(X)) ≤ 1

2 , this cannot happen for too many tuples (X, y, t) thanks to
Claim 26, and when this happens we have a naive bound − log logity(F

(t),A(X)) ∈
[0, Õ(1)] using Claim 23.

Therefore, by Claim 26, we know when T2 ≥ poly(k)
η ,

1

T2

∑T1+T2

t=T1+T0

E(X,y)∼Z̃u

[
− log logity(F

(t), X)
]
≤ 1

poly(k)
.

Moreover, since we are using full gradient descent and the objective function is O(1)-Lipschitz
continuous, the objective value decreases monotonically. Specifically, this implies that

E(X,y)∼Z̃u
[1− logity(F

(T ),A(X))] ≤ E(X,y)∼Z̃u
[− log logity(F

(T ),A(X))] ≤ 1

poly(k)

for the last iteration T = T1 + T2, which directly implies that the training accuracy is perfect.

As for the test accuracy, from Claim 28 and Claim D.16 in Allen-Zhu & Li (2023), we have for every
i, j ∈ [k],

Φ
(T )
i − 0.4Φ

(T )
j ≥ Ω(log(k)), Φ

(T )
i,1 ,Φ

(T )
i,2 ,Φ

(T )
j,1 ,Φ

(T )
j,2 ≥ Ω(log(k)).

This combined with the function approximation Claim 21 shows that with high probability
F

(T )
y (X) ≥ maxj ̸=y F

(T )
j (X) + Ω(log k) for every (X, y) ∈ Dm,Ds, which implies that the

test accuracy on both multi-view data and single-view data is perfect.

F PROOF FOR FIXMATCH

In this section, we consider proving Theorem 11 on FixMatch. In this case, the formulation of strong
augmentation A(·) is defined in Eq. (10). For (X, y) ∈ Z̃u,s with l̂(X) = l∗, the feature vy,l∗ is
removed with the probability π2. When the patches of learned feature are removed, the left part
is pure noise. In this way, same as Claim 23, for every i ∈ [k], logiti(F

(t),A(X)) = O( 1k ), and
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Vi,r,l = Ivi,l∈V(X)

∑
p∈Pvi,l

(X) ReLU
′
(⟨wi,r, xp⟩)zp = o( 1

polylog(k) ). When the patches of noises
are removed, the left part is semantic patches of feature vy,l∗ . Since we have already captured this
feature in learning Phase I, we have logity(F

(t),A(X)) ≥ 1 − Õ( 1
s2 ). In both above cases, by

Claim 19 and Claim 20, the training samples (X, y) ∈ Z̃u,s contribute little to the weight update
process.

For multi-view data (X, y) ∈ Z̃u,m, when the patches of noises are removed with probability 1− π2,
since the learned feature vy,l∗ of Phase I is still in the data, we have logity(F

(t),A(X)) ≥ 1−Õ( 1
s2 ).

When the patches of unlearned feature vy,3−l∗ are removed with probability π1π2 or (1 − π1)π2
(depending on the value of 3− l∗), the learned feature of Phase I is also still in the data. Thus we
also have logity(F

(t),A(X)) ≥ 1− Õ( 1
s2 ). In this way, the loss on all data points (X, y) ∈ Z̃u,m

that belongs to the above two cases keeps small (≤ 1
poly(k) ) and contributes negligible to the learning

of unlearned features in Phase II. Finally, when the patches of learned feature vy,l∗ are removed with
probability π1π2 or (1−π1)π2 (depending on the value of l∗), the remaining patches of feature vy,3−l∗

are unlearned and the approximation of initial loss on this part of samples is the same as Claim 23.
The loss on samples (X, y) ∼ Z̃u,m with learned features removed dominates the training objective in
learning Phase II, and the rest proof schedule is the same as the proof of SA-FixMatch. However, now
the size of data with learned features removed for class i ∈ [k] is either π1π2 · Ñ i

u or (1− π1)π2 · Ñ i
u.

Thus, similar to the proof of Theorem 13 and for the simplicity of notation, the requirement on the size
of unlabeled data for FixMatch should be Ñu ≥ ηT2 ·poly(k)/min{π1π2, (1−π1)π2}. Accordingly,
we can derive that the relationship between the size of the unlabeled data in SA-FixMatch Nc and
FixMatch Nu is given by Nc = max{π1π2, (1− π1)π2}Nu.

G PROOF FOR FLEXMATCH, FREEMATCH, DASH, AND SOFTMATCH

Our analysis framework and theoretical results are also applicable to other FixMatch-like SSL, e.g.,
FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and
SoftMatch (Chen et al., 2023), since the main difference is the choice of confidence threshold Tt
in unsupervised loss Eq. (5). Here we first introduce their choice of Tt and then explain how our
theoretical results in Sec. 4 can be generalized to their case.

FlexMatch (Zhang et al., 2021a) designs an adaptive class-specific threshold Tt = βt(b)τ at iteration
t, where βt(b) ∈ [0, 1] is the model’s prediction confidence for class b (L1 normalized). FreeMatch
(Wang et al., 2022b) replaces τ in FlexMatch with an adaptive τt, which is the average prediction
confidence of the model on unlabeled data and increases as the training progresses. SoftMatch uses
the average prediction confidence τt of the model as the threshold and sets the sample weight as 1.0
if logitb(F

(t), α(Xu)) ≥ τt, otherwise a smaller constant according to a Gaussian function. Dash
adopts the cross-entropy loss to design the indicator function I{− log logitb(F

(t),α(Xu))<ρt}, where ρt
decreases as training processes. This is equivalent to a dynamically increasing threshold Tt in Eq. (5).
Below we detail how our theoretical findings apply to each of these SSL algorithms.

FlexMatch (Zhang et al., 2021a) differentiates itself from FixMatch by modifying the constant
threshold τ to include an adaptive class-specific threshold βt(b) for each class b. Under our multi-view
data assumption as defined in Def. 7, the data distribution for each class is the same. Consequently,
as suggested by Claim 24 and Claim D.10 in Allen-Zhu & Li (2023), all classes progress at a similar
rate during training. This uniformity over all classes allows us to standardize βt(b) = 1, ∀b ∈ [k],
thereby aligning the proof for FlexMatch with that of FixMatch.

For FreeMatch (Wang et al., 2022b) and SoftMatch (Chen et al., 2023), instead of applying a large
constant threshold τ during the training process, they use an adaptive τt to involve more unlabeled
data with correctly-predicted pseudo-label in the training of the network. Under our multi-view data
assumption Def. 7, the majority of the data in training dataset is of multi-view (with probability
1− 1

poly(k) ), so we only consider the network’s prediction confidence for multi-view data to determine
τt. We set the adaptive threshold τt as follows:

τt=

{
maxX∈Zu,m

[logitb(F
(t), X)], t = T0,

βτt−1 + (1− β)maxX∈Zu,m
[logitb(F

(t), X)], t > T0,
(23)
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where β is the momentum parameter, b = argmaxi logiti(F
(t), X), and T0 = Θ( k

ησq−2
0

). Here we
do not consider the unsupervised loss term Eq. (5) before T0-th iteration in our analysis, since the
model is bad at generating correct pseudo-label at the initial phase of training. We use max function
here to ensure the high quality of pseudo-label for unlabeled data involved at each training step. After
T0-th iteration, according to Claim D.11 and Lemma D.22 in Allen-Zhu & Li (2023), the feature
correlations increase to Λ

(t)
i = Θ̃(1) for t ≥ T0, while the off-diagonal correlations ⟨wi,r, vj,l⟩

(i ̸= j) keep small at the scale of Õ(σ0). Denote Φ(t) = maxi∈[k],l∈[2] Φ
(t)
i,l , recall from Claim D.9

in Allen-Zhu & Li (2023), for every X ∈ argmaxX∈Zu,m
[logitb(F

(t), X)] with ground truth label

y, we have F (t)
j (X) ≤ 0.8001Φ(t) for j ̸= y and F (t)

y (X) ≥ 0.9999Φ(t) with probability at least

1− e−Ω(log2 k). Accordingly, we have F (t)
y (X) ≥ maxj ̸=y F

(t)
j (X) + Θ̃(1), which means that F (t)

can correctly classify the unlabeled data with high probability (i.e., b = y). Therefore, when t ≥ T0,
both the supervised loss Eq. (4) and unsupervised loss Eq. (5) take effect. Same as in Sec. 4, we use
Φ

(t)
i,l here to monitor the feature learning process. For (i, l) ∈ M, feature vi,l is partially learned

during the first T0 iterations in that Φ(T0)
i,l = Θ̃(1) < Ω(log(k)), while feature vi,3−l is missed in that

Φ
(T0)
i,3−l = Õ(σ0) ≪ Θ̃(1). Start from T0, feature vi,l is continued to be better learned with the help

of supervised loss and unsupervised loss until Φ(t)
i,l ≥ Ω(log k), and feature vi,3−l start to be learned

with the help of unsupervised loss. We can analyze this feature learning process using a similar
approach as in Sec. E. The key intuition for the extension of the proof of FixMatch to FreeMatch
and SoftMatch is that by setting an adaptive confidence threshold, the learning process of unlearned
features begin at T0 instead of T1 = poly(k)/η ≫ T0 in FixMatch.

For Dash, it uses cross-entropy loss as the threshold indicator function rather than prediction confi-
dence I{− log logitb(F

(t),α(Xu))<ρt}, where ρt decreases as the training progresses. Since we have

− log logitb(F
(t), α(Xu)) < ρt ⇐⇒ logitb(F

(t), α(Xu)) > e−ρt ,

we can set ρt = − log τt and the rest of the analysis is the same as in SoftMatch and FreeMatch.

H EFFECT OF STRONG AUGMENTATION ON SUPERVISED LEARNING

In this section, we show why using strong augmentation with probabilistic feature removal effect,
such as CutOut, in supervised learning (SL) has minimal alternation to the feature learning process. In
SL, strong augmentation A(·) is utilized at the start of training, before any feature has been effectively
learned, corresponding to Phase I of SSL. According to Assumption 9, A(·) randomly removes
its semantic patches and noisy patches with probabilities of π2 and 1− π2, respectively. Then for
a single-view image, its only semantic feature is removed with probability π2. For a multi-view
image, one of the two features, vi,1 or vi,2 is removed with probabilities π1π2 and (1 − π1)π2,
respectively. Thus, the size of single-view data in training dataset Zl is increased, as A(·) transfers
π2Nl,m multi-view samples to single-view.

However, π2 ∈ (0, 1) is small, since based on our data assumption in Def. 7, the number of
patches associated with certain semantic feature is constant Cp while the total number of patches is
P = k2. Therefore, when we do random masking in A(·) (usually masks 1/4 of all patches), we can
approximate π2 as (Cp/P )

Cp , which is O(1/kCp) based on our definition of A(·) in Eq. (10).

Consequently, strong augmentation A(·) only slightly increases the proportion of single-view data,
and the majority of the training dataset remains multi-view, which dominates the supervised training
loss Eq. (4) since no feature has been learned. The assumptions on the number of labeled single-
view data Nl,s ≤ õ(k/ρ) and Nl ≥ Nl,s · poly(k) still hold after strong augmentation A(·). Thus,
according to Allen-Zhu & Li (2023) and Appendix B, the network learns one feature per class to
correctly classify the majority multi-view data due to "view lottery winning", and memorizes the
single-view data without learned feature during the training process of SL. We also validate the
limited effect of CutOut on SL through experimental results in Appendix K.3.
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I COMPARISON WITH PIONEERING WORK

While this work follows the data assumption and proof framework of Allen-Zhu & Li (2023), analysis
of the feature learning process is significantly different. Firstly, this work focuses on SSL, where
supervised loss on labeled data and unsupervised loss on unlabeled data result in rather different
feature learning processes compared with supervised distillation loss on only labeled data in Allen-
Zhu & Li (2023). Secondly, SSL uses the on-training model as an online teacher which varies along
training iterations, while the SL setting in Allen-Zhu & Li (2023) uses a well-trained and fixed model
as an offline teacher. Indeed, the online teacher in SSL setting is more challenging to analyze, as the
evolution of its performance is harder to characterize, and has a rather different learning process.

J (SA-)FIXMATCH ALGORITHM

In this section, we present the detailed algorithm framework for FixMatch (Sohn et al., 2020) and
SA-FixMatch. At iteration t, we first sample a batch of B labeled data X (t) from labeled dataset Zl,
and a batch of µB unlabeled data U (t) from unlabeled dataset Zu. Then, according to Algorithm 1,
we calculate the loss for current iteration, and use it for the update of the neural network model F (t).
The only difference between FixMatch and SA-FixMatch is in line 6, where FixMatch adopts CutOut
in its strong augmentation of unlabeled data A, while SA-FixMatch adopts SA-CutOut.

Algorithm 1 (SA-)FixMatch algorithm.

1: Input: Labeled batch X (t) = {(Xi, yi) : i ∈ (1, . . . , B)}, unlabeled batch U (t) =
{Ui : i ∈ (1, . . . , µB)}, confidence threshold τ , unlabeled data ratio µ, unlabeled loss weight λ.

2: L(t)
s = 1

B

∑B
i=1

(
− log logityi

(F (t), α(Xi))
)

{Cross-entropy loss for labeled data}
3: for i = 1 to µB do
4: vi = argmaxj{logitj(F (t), α(Ui))} {Compute prediction after applying weak data augmen-

tation of Ui}
5: end for
6: L(t)

u = 1
µB

∑µB
i=1

(
−I{logitvi (F (t),α(Ui))≥τ} log logitvi(F

(t),A(Ui))
)

{Cross-entropy loss
with pseudo-label and confidence for unlabeled data}

7: return: L(t)
s + λL

(t)
u

K EXPERIMENTAL DETAILS

K.1 EFFECT OF STRONG AUGMENTATION

In this section, we conduct experiments to evaluate the impact of different strong augmentation
operations employed in FixMatch (Sohn et al., 2020). We assess their effects by applying these
strong augmentations to test images and observing the resulting changes in test accuracy. To ensure a
fair comparison, we train neural networks using weakly-augmented labeled data, where the weak
augmentation consists of a random horizontal flip and a slight extension of the image around its edges
before cropping the main portion. Subsequently, we apply a single strong augmentation operation at a
time to the test dataset and record the corresponding test accuracy on the pretrained model. The pool
of strong augmentation operations from RandAugment (Cubuk et al., 2020) includes: Colorization,
Equalize, Posterize, Solarize, Rotate, Sharpness, ShearX, ShearY, TranslateX, and TranslateY. The
experimental results are summarized in Tables 5 and 6.

Original CutOut ShearX Solarize TranslationX
80.95 38.67 78.38 52.70 80.69

Sharpness Posterize Equalize Rotate Color
72.99 76.17 60.14 67.97 69.71

Table 5: Pretrained model test accuracies (%) with different strong augmentation operations for test
images on CIFAR-100.
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Original CutOut ShearX Solarize TranslationX
86.44 62.94 85.01 78.94 84.44

Sharpness Posterize Equalize Rotate Color
82.17 86.19 80.74 82.29 84.34

Table 6: Pretrained model test accuracies (%) with different strong augmentation operations for test
images on STL-10.

From Tables 5 and 6, we observe that CutOut is the strong augmentation operation with the most
significant impact on model performance. Additionally, transformations such as Solarize and Equalize
from RandAugment also have a noticeable effect on model performance. To better understand the
influence of these transformations on input images, we visualize the effects of CutOut, Solarize,
and Equalize on CIFAR-100 images in Figure 3. From the first and second rows of Figure 3, we
can see that both CutOut and Solarize have the potential to remove semantic features by masking
parts of the images. From the third row of Figure 3, we observe that Equalize tends to remove color
features of images while retaining shape features. In all cases, these effective strong augmentation
operations have the potential to remove partial semantic features. Therefore, in Assumption 3 for
strong augmentation A(·), we focus on its probabilistic feature removal effect.

Figure 3: Visualization of the effects of CutOut (first row), Solarize (second row), and Equalize (third
row) on CIFAR-100 images.

K.2 EFFECT OF WEAK AUGMENTATION

Since weak augmentation consists only of a random horizontal flip and a random crop with a small
padding of 4 pixels, followed by cropping the padded image back to the original size, it minimally
alters the semantic features of the image. This allows us to treat weak augmentation α(·) as an
identity mapping for our theoretical analysis in Sec. 4. In this section, we conduct experiments
by training FixMatch without weak augmentation on CIFAR-100 with 10000 labeled samples and
STL-10 with 1000 labeled samples, comparing the test performance to that of the original FixMatch.
As shown in Table 7, weak augmentation does not significantly impact the model’s performance.

Dataset STL-10 CIFAR-100

Weak Augmentation 92.65 77.27
No Weak Augmentation 91.83 77.19

Table 7: Comparison of test accuracies (%) of FixMatch with and without weak augmentation.

K.3 COMPARISON OF CUTOUT IN SL AND FIXMATCH

Data augmentation operations like CutOut can help SL, but cannot improve as much as in deep SSL
with limited labeled data. On STL-10 dataset with 40 labeled data, when we remove CutOut from SL,
the test accuracy (%) does not drop a lot as shown in Table 8. In contrast, removing CutOut from
the strong augmentation A(·) in FixMatch’s unsupervised loss L(t)

u leads to a severe performance
degradation.
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Method SL FixMatch

CutOut 23.98 68.30
No CutOut 22.88 53.64

Table 8: Comparison of test accuracies (%) of SL and FixMatch with and without CutOut.

K.4 DATASET STATISTICS

For each experiment in Sec. 5, following Sohn et al. (2020); Zhang et al. (2021a); Xu et al. (2021);
Wang et al. (2022b); Chen et al. (2023), we randomly select image-label pairs from the entire training
dataset according to labeled data amount, set images from the whole training dataset without labels as
unlabeled dataset, and we use the standard test dataset. The table below details data statistics across
different datasets.

Dataset Total Training Data Total Labeled Data in Training Data Test Data
STL-10 105000 5000 8000

CIFAR-100 50000 50000 10000
Imagewoof 9025 9025 3929
ImageNet 1281167 1281167 50000

Table 9: Summary of Datasets.

K.5 TRAINING SETTING AND HYPER-PARAMETERS

All experiments are conducted on four RTX 3090 GPUs (24GB memory). Due to resource limitations,
we did not follow Sohn et al. (2020) by training for 1024 epochs with 1024 iterations per epoch (220
iterations in total). Instead, we run 150 epochs with 2048 iterations per epoch (307,200 iterations) for
the standard setting in Sec. 5.1, and 50 epochs with 2048 iterations per epoch (102,400 iterations) for
the same training dataset setting in Sec. 5.4. As shown in Sec. 5, our test accuracy results closely
match those of Sohn et al. (2020). For FixMatch experiments, we base our implementation on Kim
(2020), while all other experiments follow Wang et al. (2022a). Each SSL experiment takes 48 to 120
hours on a single RTX 3090 GPU, depending on the model and dataset.

For CIFAR-100, STL-10, Imagewoof, and ImageNet, their input image size are respectively 32× 32,
96×96, 96×96, 224×224 and their mask size in CutOut are respectively 16×16, 48×48, 48×48,
112 × 112. For the application of SA-CutOut, according to our theoretical analysis in Sec. 4 and
Appendix G, we only need it after partial feature already been learned to learn comprehensive features
in the dataset. Therefore, in practice, we only apply SA-CutOut to deep SSL methods in the last 32
epochs of training, and the total running time of SA-FixMatch is roughly 1.15 times of FixMatch.

For hyper-parameters, we use the same setting following FixMatch (Sohn et al., 2020). Concretely,
the optimizer for all experiments is standard stochastic gradient descent (SGD) with a momentum
of 0.9 (Sutskever et al., 2013). For all datasets, we use an initial learning rate of 0.03 with a cosine
learning rate decay schedule (Loshchilov & Hutter, 2016) as η = η0 cos

(
7πk
16K

)
, where η0 is the

initial learning rate, k is the current training step and K is the total training step that is set to 307200.
We also perform an exponential moving average with the momentum of 0.999. The hyper-parameter
settings are summarized in Table 10.

K.6 SAMPLES IN CIFAR-100, STL-10, IMAGEWOOF, AND IMAGENET

As we can observe from Figure 4, for images in CIFAR-100 and STL-10, the semantic subject in the
image occupies the majority of the image. On the other hand, for images in Imagewoof and ImageNet
dataset, most semantic subject only occupies less than a quarter of the image.
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Dataset CIFAR-100 STL-10 Imagewoof ImageNet
Model WRN-28-8 WRN-37-2 WRN-37-2 ResNet-50

Weight Decay 1e-3 5e-4 5e-4 3e-4
Batch Size 64 128

Unlabeled Data Raion µ 7 1
Threshold τ 0.95 0.7

Learning Rate η 0.03
SGD Momentum 0.9
EMA Momentum 0.999

Unsupervised Loss Weight λ 1

Table 10: Complete hyper-parameter setting.

Figure 4: Samples from CIFAR-100, STL-10, Imagewoof, and ImageNet datasets. Samples in the
first row are from CIFAR-100, samples in the second row are from STL-10, samples in the third row
are from Imagewoof, and samples in the last row are from ImageNet.

L EXPLANATION OF MULTI-VIEW DATA ASSUMPTION

In this section, we make more detailed explanations of our multi-view data assumption Def. 1 by
breaking it down and explain each part with specific examples from car images in ImageNet.

From Figure 1 we know that wheel and front light can be viewed as two discriminative semantic
features of car, and each can be used independently for the learning model to make correct class
prediction. In Figure 5, we give some examples of single-view data and multi-view data in car images
that contains either only one of the two features or both. Then, we use them as examples to explain
the multi-view data assumption Def. 1 in detail.

In Def. 1, the data distribution D is composed of samples from the multi-view data distribution Dm

with probability 1− µ, and from the single-view data distribution Ds with probability µ= 1
poly(k) . In

the context of car images, this implies that the majority of images are multi-view, containing both
wheel and front light features, while a small fraction of images are single-view, containing only one
of these features.

Then, Def. 1 defines (X, y)∼D by first randomly selecting a label y∈ [k] uniformly, and generate
the data X as follows:

(a) A set of noisy features V ′ is sampled uniformly at random from {vi,1, vi,2}i̸=y, each with
probability s/k. The complete feature set of X is then defined as V(X) = V ′ ∪ {vy,1, vy,2}, which
includes both the noisy features V ′ and the main features {vy,1, vy,2}.
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Figure 5: The first single-view image contains only the front light feature, while the middle two
multi-view images contain both wheel and front light features, and the last single-view image contains
only the wheel feature.

In the context of car images, (a) corresponds to the semantic features specific to cars (wheel and front
light) being present in car images, along with noisy features from other classes, such as houses or
trees in the background.

(b) For each v ∈ V(X), pick Cp disjoint patches in [P ] and denote them as Pv(X). For a patch
p ∈ Pv(X), we set xp = zpv + “noises” ∈ Rd, where the coefficients zp ≥ 0 satisfy:
(b1) For "multi-view" data (X, y) ∈ Dm,

∑
p∈Pv(X) zp ∈ [1, O(1)] when v ∈ {vy,1, vy,2} and∑

p∈Pv(X) zp ∈ [Ω(1), 0.4] when v ∈ V(X) \ {vy,1, vy,2}.

(b2) For "single-view" data (X, y) ∈ Ds, pick a value l̂ ∈ [2] randomly uniformly as the index
of the main feature. Then

∑
p∈Pv(X) zp ∈ [1, O(1)] when v = vy,l̂,

∑
p∈Pv(X) zp ∈ [ρ,O(ρ)]

(ρ = k−0.01) when v = vy,3−l̂, and
∑

p∈Pv(X) zp = 1
polylog(k) when v ∈ V(X) \ {vy,1, vy,2}.

In the context of car images, (b1) indicates that multi-view data features a significant presence of
two prominent class-specific semantic features, while the proportion of noisy features in the image
is relatively small. For example, in the middle two multi-view car images shown in Figure 5, the
wheel and front light features are more prominent than the background elements, such as houses
and trees. (b2) indicates that single-view data contains only one prominent class-specific semantic
feature, with the other semantic feature and noisy features being minimal. As shown in the first and
last single-view car images in Figure 5, these images prominently display either the wheel or the
front light, while the other semantic feature and noisy background elements are scarcely present.

(c) For each purely noisy patch p ∈ [P ] \ ∪v∈VPv(X), we set xp = “noises”.

In the context of car images, purely noisy patches correspond to regions such as road or sky patches
that do not contain semantic information relevant to classification.

For a neural network capable of learning comprehensive semantic features after training–such as both
the wheel feature and the front light feature for car images–can accurately predict both multi-view
samples, such as the middle two images in Figure 5, and the single-view samples, such as the first
and last images in Figure 5. However, if the network only learns partial semantic features, either the
wheel or the front light feature, it will misclassify the single-view images that do not contain this
feature, either the first or the last image in Figure 5 and result in inferior generalization performance.
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