
MICDrop: Masking Image and Depth Features via Complementary Dropout
for Domain-Adaptive Semantic Segmentation

Linyan Yang 1 Lukas Hoyer 2 Mark Weber 1 Tobias Fischer 2 Dengxin Dai 2
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Abstract

Unsupervised Domain Adaptation (UDA) is the task of
bridging the domain gap between a labeled source domain,
e.g., synthetic data and an unlabeled target domain. We ob-
serve that current UDA methods show inferior results on
fine structures and tend to oversegment objects with ambigu-
ous appearance. To address these shortcomings, we propose
to leverage depth predictions, as depth discontinuities of-
ten coincide with segmentation boundaries. We show that
naively incorporating depth does not fully exploit its poten-
tial. To this end, we present MICDrop, which learns a joint
feature representation by masking image encoder features by
inversely masking depth encoder features. With this simple
yet effective complementary masking strategy, we enforce the
use of both modalities when learning the joint feature repre-
sentation. We further propose a feature fusion module to im-
prove both global and local information sharing. MICDrop
can be plugged into various recent UDA methods and con-
sistently improves results across standard UDA benchmarks,
obtaining new state-of-the-art performances. Project Page:
https://github.com/ly-muc/MICDrop

1. Introduction
The computer vision community has seen tremendous suc-
cess in recognition tasks over the years, yet the issue of labor-
intensive labeled images [7, 43] for supervised training of
neural networks persists. Alternatively, a simulator can eas-
ily obtain images and corresponding segmentation labels at
a large scale. However, models trained on synthetic datasets
experience a noticeable performance decline when applied
to real-world data due to the variance in data distributions
(e.g., the appearance of objects), a phenomenon known as
domain shift. This paper focuses on Unsupervised Domain
Adaptation (UDA), where a model is trained on labeled syn-
thetic source and unlabeled real-world target domain data.
Current challenges in UDA: Recent UDA methods [4, 19–
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Figure 1. Qualitative Examples. Previous UDA methods, e.g.,
MIC [21] struggle with the segmentation of fine structures (top)
and oversegmentation of difficult objects (bottom). MICDrop im-
proves semantic segmentation UDA with depth estimates, captur-
ing fine structures and consistency within object boundaries.

21, 24, 27, 55] significantly reduce the gap to a fully super-
vised method, yet they still struggle with two main aspects:
(1) Fine structures and high-frequency details, despite us-
ing high-resolution strategies such as HRDA [20]. (2) Over-
segmentation when visual appearance clues are ambiguous.
Motivated by these issues, we recognize that geometric rep-
resentation could provide complementary cues to address
challenges (1) and (2), as shown in Fig. 1. First, a pole might
blend with a building behind it in color, but its depth profile
is distinct, simplifying its segmentation. Second, the visual
features of the back of the truck resemble a building, how-
ever, the smooth depth within the boundaries suggests a con-
sistent semantic class. While measured depth might not be
available, advances in image-based depth estimation [10, 59]
enable us to explore the task in a general setting.
Contributions: We propose a streamlined approach for
leveraging depth in UDA, using a novel cross-modality com-
plementary dropout technique along with a tailored masking
schedule. Our masking strategy fosters cross-modal feature
learning by strategically corrupting both RGB and depth
features in a complementary manner, enforcing the utiliza-
tion of the different modalities to fill in masked informa-
tion. We also propose a cross-modality feature fusion mod-
ule, designed to integrate global and local cues from one
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modality to the other. First, it computes depth feature sim-
ilarities to aggregate RGB features based on the resulting
attention map, aiding segmentation with global depth cues.
Second, it applies local self-attention to depth features, lever-
aging the discontinuity in local depth for describing bound-
aries thus identifying thin structures. In summary, our key
contributions are: (1) A complementary feature masking
strategy for depth and RGB, fostering cross-modal feature
learning. (2) A cross-modality fusion module to improve
segmentation based on depth by using global and local cues.
(3) Comprehensive ablations demonstrating MICDrop’s ef-
ficacy, with improvements ranging from 0.7 to 1.8 mIoU
across four recent UDA methods on the GTA→Cityscapes
benchmark. By showing that complementary geometric in-
formation improves modern UDA methods, we hope to lay
the foundation for future research exploring the merits of
auxiliary modalities for UDA.

2. Related Work
Unsupervised Domain Adaptation (UDA): In UDA, meth-
ods can mostly be categorized into adversarial training [16,
17, 42, 47, 51] and self-training [11, 28]. In self-training,
pseudo labels are created by a teacher network [1, 35, 36, 62–
64, 67]. The student model then receives an augmented [1,
45, 66] image version. Self-training can further be strength-
ened by domain-robust Transformers [19, 23, 41, 48, 60],
class-balanced sampling [19, 68], multi-resolution adapta-
tion [20], or contrastive learning [4, 55]. Our proposed
MICDrop builds on the self-training paradigm.
Depth in Semantic Segmentation: Several works in seman-
tic segmentation have shown the merits of leveraging geo-
metric cues as an auxiliary task [12, 18, 22, 26, 29, 32, 40,
49, 52, 53, 58, 65]. Our method, however, is more closely
related to RGB-D semantic segmentation [5, 25]. In contrast
to previous RGB-D works such as [5, 31, 61], we leverage
both local and global dependencies for domain-robust seg-
mentation and show in Tab. 3b that leveraging geometric
cues is not trivial in the context of UDA.
Masked Image Modeling (MIM): In MIM [2, 3, 8, 14,
54, 57], information is withheld to train the network to re-
cover certain targets. Different from MIC [21], we propose
a novel complementary multi-modal feature dropout to fa-
cilitate cross-modality learning. In Sec. 4, we show that our
method is orthogonal to MIC and can further improve it.

3. Method

Preliminaries. In Figs. 2 and 3, we present our architec-
ture and training scheme, featuring two novel modules that
can be plugged into various UDA methods to leverage ge-
ometric cues. Our feature fusion module integrates auxil-
iary inputs via global and local attention-based aggregation.
The masking module ensures balanced input usage, avoid-
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Figure 2. Architecture. We use a light-weight depth encoder and
process the features in our cross-modal feature fusion module.
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Figure 3. Training Scheme. In our training pipeline, source and
target images are fed through the student encoders, which apply
our proposed cross-modality complementary dropout. Following
our feature fusion block, the decoder makes the final prediction.

ing pure reliance on a single input modality. We tackle the
problem of unsupervised domain adaptation, in which we
have access to labeled source data (Xs, Ys) and unlabeled
target data (Xt) during training. The goal is to bridge the do-
main gap between Xs and Xt. The performance is measured
on a labeled hold-out validation set of the target domain.
The network is typically trained in a supervised manner on
a source domain. To leverage unlabeled target data, we fol-
low recent approaches by adopting a student-teacher [1, 19–
21, 45, 46, 55] framework. Here, we present the student with
a heavily augmented view [45], while the teacher receives a
weakly augmented image. We study the effectiveness of our
proposed method by extending pretrained encoders [19, 20].
Multi-Modal Feature Fusion: To achieve a light-weight
training pipeline, we construct a multi-modality encoder that
contains two individual encoders. A newly trained light-
weight depth encoder to produce depth features and a trained
RGB multi-scale feature encoder. As seen in Fig. 4, our fea-
ture fusion block is divided into (1) global depth-guided
cross-attention, (2) local self-attention and (3) residual fu-
sion. Intuitively, similarities in depth features can provide
a strong cue towards the same semantic class. For example,
large objects like bus or train exhibit similar gradual changes
within their object, while thin structures such as pole or sign
typically exhibit rapid depth changes relative to their sur-
roundings. Thus, the purpose of the global branch is to ag-
gregate RGB features globally based on their corresponding
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Figure 4. Feature fusion of
RGB and depth. The lo-
cal attention module refines
depth information within a lo-
cal window. The global atten-
tion module aggregates im-
age features based on simi-
larity in their corresponding
depth features. Finally, the
residual feature fusion block
fuses all features.

depth feature similarity. To address the problematic scaling
behavior of (global) cross-attention [50], we downsample
low- and high-level feature maps with a pooling factor of
{4, 2, 1, 1} during inference and {2, 1, 1, 1} during train-
ing. Given potentially downscaled depth features Fi

depth at
level i, we obtain depth-based queries Qdepth and keys Kdepth
by using projection weights Wi

q and Wi
k. The correspond-

ing RGB features Fi
rgb are downscaled in similar fashion

and serve as values Vrgb after being projected by Wi
k. How-

ever, modeling global interactions on a downsized resolution
might not be enough to capture the fine details of objects like
sign or pole. Specifically, local depth discontinuities provide
strong cues for boundary regions among semantic classes,
while smooth and continuous depth indicate no change in se-
mantics. Keeping the same computational complexity prob-
lem in mind, we draw inspiration from earlier work [15, 58]
and restrict the self-attention to a local window without pool-
ing, using two 3 × 3 convolutions. As this branch is used
to model complementary features, we exclusively use depth
features. Formally, we compute the local self-attention as:
Fi

local = σ
(

Conv3×3

(
Fi

depth

))
⊙ Conv3×3

(
Fi

depth

)
. Af-

ter aggregating global and local features, we use a simple
two-step feature fusion block to obtain the refined features:
Fi

refined = Fi
rgb + ReLU(BN(Conv(Fi

global||Fi
local))). The re-

fined features are fed to the decode head for final predictions.
Complementary Feature Masking: During initial experi-
ments, we observed that simply providing estimated depth
and RGB images to the network does not enable the network
to leverage the full potential of all provided information. For
this, we propose using blockwise dropout [9] to generate
masked features. Masking larger blocks prevents easy re-
covery from the neighborhood in the same modality and
requires understanding the semantics of the other modality.
Furthermore, we hypothesize that learning features across
modalities can be achieved best by masking the feature maps
of different modalities in a complementary fashion, as il-
lustrated in Fig. 2. We experimentally validate that design
in Sec. 4. Formally, we define complementary masking as:

Mrgb(u, v) = [γ > mt
r], γ ∼ Uniform(0, 1) (1)

Mdepth(u, v) = 1−Mrgb(u, v) (2)

where mt
r denotes the masking ratio at iteration t and

(u, v) the block index of the i-th feature map. Conceptually,
this avoids the recovery of features within the feature pyra-
mid of the same modality. Therefore, our method is designed
to foster the transfer of complementary information and to
promote the learning of potentially redundant information,
which in turn increases robustness and reduces sensitivity to
domain-specific appearance changes. Similar to prior stud-
ies [9, 30], we adopt a dynamic masking ratio schedule for
RGB and depth features. This approach is particularly effec-
tive when using a pretrained encoder for one modality and
an untrained encoder for the other. In early training stages,
we keep a high proportion of depth features to accelerate the
depth encoder training and improve its feature quality. Dur-
ing training, we gradually reduce depth feature retention.

4. Experiments
Implementation: We utilize two widely used UDA bench-
marks. The synthetic source domain datasets consist of
GTA [37], 24,966 images with a resolution of 1914×1052,
and SYNTHIA [39], 9,400 images with a resolution of
1280×760. The target dataset Cityscapes [7] includes 2975
training and 500 validation images each with a resolu-
tion of 2048×1024. We employ self-supervised monocular
depth estimation, MonoDepth2 [10], trained on image se-
quences from VIPER(GTA) [38] and SYNTHIA-SEQ, for
the source domain. For the target domain, we obtain dis-
parity estimations from UniMatch [59], trained on a syn-
thetic dataset [34]. To demonstrate the plugin capability of
MICDrop we also apply it to state-of-the-art methods [19–
21], using a light-weight MiT-B3 [56] depth encoder. We ini-
tialize the RGB encoder and decode head with the publicly
available pre-trained weights and the depth encoder with Im-
ageNet weights. We use an AdamW [33] optimizer with a
learning rate of 6×10−5 for the depth encoder and 6×10−4

for the remaining modules. Furthermore, we apply a linear
warm-up for 1.5k iterations followed by polynomial decay
with a factor of 0.9. Following prior works [19, 21, 45], we
use an EMA [44] teacher with α=0.999, batch size of 2 and
strong data augmentations [45]. We freeze the RGB encoder
and train the rest of the network for 20k iterations.
Main Results: To validate the effectiveness of MICDrop
and its plugin capabilities, we evaluate the mean Inter-
section over Union (mIoU) across the three state-of-the-
art methods [19–21] as shown in Tab. 1 using the classes
shared by source and target domain. Applying MICDrop on
GTA, the results improve current methods DAFormer [19],
MICDAFormer [21] and HRDA [20] by 1.8 mIoU, 1.2 mIoU
and 1.0 mIoU respectively. Using DAFormer with a ResNet-
101 backbone, in Tab. 1, MICDrop achieves a significant
gain of 4.1 mIoU and outperforms the previous SOTA depth-
guided UDA method CorDA [53]. Building on top the best
performing model MICHRDA, we can further boost results
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Synthetic-to-Real: GTA→Cityscapes (Val.)

CorDA [53] 56.6 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0
DAFormer [19] 54.2 85.7 66.8 81.5 27.3 20.4 46.4 53.2 63.0 84.5 32.1 72.9 71.9 45.0 90.5 60.7 58.8 0.1 23.2 46.4

+ MICDrop 58.3 95.2 69.1 88.1 26.0 27.7 48.8 55.2 63.6 89.6 49.5 90.3 72.0 45.4 91.4 63.3 61.1 0.0 23.8 46.7

DAFormer [19] 68.3 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8
+ MICDrop 70.1 96.0 71.8 90.3 53.3 46.4 54.8 57.8 66.7 90.0 49.2 92.2 73.6 46.3 92.8 78.1 80.6 70.7 57.5 63.2

MICDAFormer [21] 70.6 96.7 75.0 90.0 58.2 50.4 51.1 56.7 62.1 90.2 51.3 92.9 72.4 47.1 92.8 78.9 83.4 75.6 54.2 62.6
+ MICDrop 71.8 96.5 74.2 90.8 60.5 52.0 55.8 59.9 65.6 90.3 51.8 93.0 73.1 46.9 93.4 82.0 85.8 74.3 56.6 62.8

HRDA [20] 73.8 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5
+ MICDrop 74.8 95.8 71.1 91.5 62.8 55.0 60.8 64.0 73.4 91.3 49.1 94.0 79.2 54.6 94.4 84.8 88.5 79.0 65.9 65.5

MICHRDA [21] 75.9 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 95.6 85.4 90.3 80.4 64.5 68.5
+ MICDrop 76.6 97.6 81.5 92.0 62.8 59.4 62.6 62.9 73.6 91.6 52.6 94.1 80.2 57.0 94.8 87.4 90.7 81.6 65.3 67.8

Synthetic-to-Real: Synthia→Cityscapes (Val.)

DAFormer [19] 61.3 82.2 37.2 88.6 42.9 8.5 50.1 55.1 54.5 85.7 – 88.0 73.6 48.6 87.6 – 62.8 – 53.1 62.4
+ MICDrop 62.4 81.0 37.1 89.4 45.7 9.5 51.8 57.3 58.0 86.7 – 85.0 73.6 50.4 88.2 – 64.7 – 56.8 62.8

HRDA [20] 65.8 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 – 92.9 79.4 52.8 89.0 – 64.7 – 63.9 64.9
+ MICDrop 66.8 86.3 49.6 89.3 53.7 5.1 57.6 66.4 63.8 86.1 – 94.1 79.1 56.0 87.8 – 65.0 – 64.2 65.0

MICHRDA [21] 67.3 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 – 94.6 81.0 58.9 90.1 – 61.9 – 67.1 64.3
+ MICDrop 67.9 82.8 42.6 90.5 51.6 9.6 61.0 65.7 65.0 89.1 – 95.0 81.1 59.7 90.6 – 68.3 – 67.4 66.5

Table 1. Comparison of MICDrop with state-of-the-art UDA
methods. The performance is reported as IoU in %. We group
methods based on ResNet [13] and Segformer [56] backbones.
On both, GTA and SYNTHIA, MICDrop achieves consistent im-
provements demonstrating the effectiveness of our masking strat-
egy and fusion module.
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MICHRDA [21] 52.0 41.9 59.1 54.0 36.6 31.7 58.1 53.3 56.1 64.9 34.6 66.6 63.3 44.3 72.5 49.2 61.0 49.4 41.2 50.3
+ MICDrop 53.6 41.1 60.2 58.2 36.9 33.8 61.0 51.9 59.9 65.3 35.0 66.3 65.6 46.6 73.6 54.1 64.1 49.3 43.6 52.3
∆ +1.6 -0.8 +1.1 +4.2 +0.3 +2.1 +2.9 -1.4 +3.8 +0.4 +0.4 -0.3 +2.3 +2.3 +1.1 +4.9 +3.1 -0.1 +2.4 +2.0

Table 2. Boundary IoU on GTA→Cityscapes (dilation 0.005).

by 0.7 mIoU, a significant improvement considering the sat-
uration of this benchmark (94% of the oracle performance).
Thus, our light-weight modules and complementary dropout
consistently show improvements, offering orthogonal con-
tribution to input masking [21]. Diving into the details, we
notice predominately improvements in two types of objects.
First, we see consistent improvements in classes of thin struc-
tures such as poles, signs or motorbikes. This is enabled by
aggregating local depth features, as these local depth discon-
tinuities at boundary regions serve as a strong cue. Second,
large low prevalence classes, e.g., truck, bus, or train, benefit
from both global and local depth features. Due to their size,
global reasoning can improve the segmentation consistency,
while locally smooth, continuous depth reduces the likeli-
hood of changes in the semantics within a local window. In
Tab. 1 MICDrop achieves consistent improvements on SYN-
THIA, i.e. 1.1 mIoU for DAFormer, 1.0 mIoU for HRDA,
and 0.6 mIoU for MICHRDA.
Boundary Analysis: Tab. 2 additionally studies the bound-
ary IoU [6]. Compared to the standard IoU it improves by
a significantly larger margin (1.6 vs 0.7). MICDrop particu-
larly improves fine structures (e.g., pole or sign) and classes
that are prone to oversegmentation (e.g., truck and building),
quantitatively supporting our motivation in Fig 1.
Ablation Studies: For a fair comparison, we finetune the pre-
trained baseline model without any changes but did not ob-
serve any performance improvements (68.3 ±0.2 mIoU). We
validate our design by exploring various masking and feature

Masking Strategy Mask RGB Mask Depth mIoU (↑)

Baseline (w/o Depth) ✗ ✗ 68.3 ±0.5

Baseline (w/ Depth) ✗ ✗ 69.1 ±0.2

Only RGB ✓ ✗ 69.3 ±0.1

Independent ✓ ✓ 69.1 ±0.6

Complementary (ours) ✓ ✓ 70.1 ±0.1

- Different per Level ✓ ✓ 69.7 ±0.1

(a) Dropout strategy ablation.

Fusion Operation mIoU (↑)

Baseline (no Depth) 68.3 ±0.5

Add 69.3 ±0.4

Local Self-Attn 69.7 ±0.1

Global Cross-Attn 68.1 ±0.8

Both (ours) 70.1 ±0.1

(b) Feature Fusion ablation.

Table 3. Ablation study. We use DAFormer [19] trained on GTA
as our baseline model. In (a), we study different dropout strategies.
In (b), we ablate different designs to fuse RGB and depth features.
Mean and standard deviation are reported over 3 seeds.

fusion strategies using DAFormer and the GTA benchmark.
Cross-Modal Complementary Dropout: Adding depth in-
formation without masking improves our baseline by 0.8
mIoU. Additional RGB features masking further improves
by 0.2 mIoU. However, applying independent masking to
both RGB and depth features exhibits no improvements,
resulting in a high standard deviation. Notably, using the
same complementary masking across all levels leads to a
substantial gain: An increase of 1.0 mIoU over the baseline
with depth, and 1.8 mIoU over the DAFormer baseline. We
demonstrate that complementary masking across levels is
crucial, as having different masks per level leads to a de-
crease of 0.4 mIoU. These findings support that complemen-
tary masking is crucial for leveraging depth information for
semantic segmentation in UDA, achieving a great balance
between geometric and visual scene information.
Feature Fusion: In Tab. 3b, we first explore a naive addition
of features and state-of-the-art RGB-D method CMX [61],
both of which only attain suboptimal performance in our
context. Turning our focus to the individual efficacy of our
global and local feature fusion blocks, we observe that the
local self-attention block outperformed our naive baseline,
whereas the global cross-attention block exhibits training in-
stability with no improvement. Analogous to the results ob-
served with CMX, these findings underscore the significance
of controlling the flow of local information and the impor-
tance of the complement design of the local and global atten-
tion mechanism. This combination led to a notable improve-
ment of an additional 0.4 mIoU over local self-attention,
achieving an overall gain of 1.8 mIoU over the baseline [19].

5. Conclusion

We present a novel complementary dropout method specifi-
cally tailored for UDA. Coupled with our cross-modal fusion
module that combines RGB and depth features, our approach
consistently improves various recent UDA methods between
0.7 and 1.8 mIoU, achieving state-of-the-art results. Thus,
MICDrop demonstrates the effectiveness of utilizing depth
in UDA without retraining existing encoders. The plugin
design of MICDrop facilitates easy integration into future
domain-adaptive semantic segmentation methods. We hope
that our simple and effective approach inspires further re-
search into leveraging complementary cues in UDA.



References
[1] Nikita Araslanov and Stefan Roth. Self-supervised augmen-

tation consistency for adapting semantic segmentation. In
CVPR, 2021. 2

[2] Roman Bachmann, David Mizrahi, Andrei Atanov, and Amir
Zamir. Multimae: Multi-modal multi-task masked autoen-
coders. In ECCV, 2022. 2

[3] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:
Bert pre-training of image transformers. In ICLR, 2021. 2

[4] Mu Chen, Zhedong Zheng, Yi Yang, and Tat-Seng Chua.
Pipa: Pixel-and patch-wise self-supervised learning for do-
main adaptative semantic segmentation. ACM Multimedia,
2023. 1, 2

[5] Xiaokang Chen, Kwan-Yee Lin, Jingbo Wang, Wayne Wu,
Chen Qian, Hongsheng Li, and Gang Zeng. Bi-directional
cross-modality feature propagation with separation-and-
aggregation gate for rgb-d semantic segmentation. In ECCV,
2020. 2

[6] Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C.
Berg, and Alexander Kirillov. Boundary IoU: Improving
object-centric image segmentation evaluation. In CVPR,
2021. 4

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In CVPR, 2016. 1, 3

[8] Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen,
Weiming Zhang, Lu Yuan, Dong Chen, Fang Wen, Nenghai
Yu, and Baining Guo. Peco: Perceptual codebook for bert
pre-training of vision transformers. In AAAI, 2023. 2

[9] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A
regularization method for convolutional networks. NeurIPS,
2018. 3

[10] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In ICCV, 2019. 1, 3

[11] Yves Grandvalet and Yoshua Bengio. Semi-supervised learn-
ing by entropy minimization. NeurIPS, 17, 2004. 2

[12] Vitor Guizilini, Jie Li, Rares, Ambrus, , and Adrien Gaidon.
Geometric unsupervised domain adaptation for semantic seg-
mentation. In ICCV, 2021. 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
4

[14] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022. 2

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Comput., 1997. 3

[16] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.
Fcns in the wild: Pixel-level adversarial and constraint-based
adaptation. arXiv preprint arXiv:1612.02649, 2016. 2

[17] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.
CyCADA: Cycle-consistent adversarial domain adaptation.
In ICML, 2018. 2

[18] Lukas Hoyer, Dengxin Dai, Yuhua Chen, Adrian Koring,
Suman Saha, and Luc Van Gool. Three ways to improve
semantic segmentation with self-supervised depth estimation.
In CVPR, pages 11130–11140, 2021. 2

[19] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Daformer:
Improving network architectures and training strategies for
domain-adaptive semantic segmentation. In CVPR, 2022. 1,
2, 3, 4

[20] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Hrda:
Context-aware high-resolution domain-adaptive semantic
segmentation. In ECCV, 2022. 1, 2, 3, 4

[21] Lukas Hoyer, Dengxin Dai, Haoran Wang, and Luc Van Gool.
Mic: Masked image consistency for context-enhanced do-
main adaptation. In CVPR, 2023. 1, 2, 3, 4

[22] Lukas Hoyer, Dengxin Dai, Qin Wang, Yuhua Chen, and Luc
Van Gool. Improving semi-supervised and domain-adaptive
semantic segmentation with self-supervised depth estimation.
IJCV, 2023. 2

[23] Lukas Hoyer, David Joseph Tan, Muhammad Ferjad Naeem,
Luc Van Gool, and Federico Tombari. SemiVL: Semi-
supervised semantic segmentation with vision-language guid-
ance. arXiv preprint arXiv:2311.16241, 2023. 2

[24] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Domain
adaptive and generalizable network architectures and training
strategies for semantic image segmentation. IEEE TPAMI, 46
(1):220–235, 2024. 1

[25] Xinxin Hu, Kailun Yang, Lei Fei, and Kaiwei Wang. Acnet:
Attention based network to exploit complementary features
for rgbd semantic segmentation. In ICIP, 2019. 2

[26] Maximilian Jaritz, Tuan-Hung Vu, Raoul de Charette, Emilie
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