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Abstract

Existing deep learning methods for medical image super-resolution (SR) often rely on paired
datasets generated by simulating low-resolution (LR) images from corresponding high-
resolution (HR) scans, which can introduce biases and degrade real-world performance. To
overcome these limitations, we present an unsupervised approach based on a score-based
diffusion model that does not require paired training data. We train a score-based diffusion
model using denoising score matching on HR Magnetic Resonance Imaging (MRI) scans,
then perform iterative refinement with a stochastic differential equation (SDE) solver while
enforcing data consistency from LR scans. Our method provides faster sampling compared
to existing generative approaches and achieves competitive results on key metrics, though
it does not surpass fully supervised baselines in PSNR and SSIM. Notably, while supervised
models often report higher numerical metrics, we observe that they can produce suboptimal
reconstructions due to their reliance on fixed upscaling kernels. Finally, we introduce
the SRMRI dataset, containing LR and HR images obtained from scanner for training
and evaluating MR image super-resolution models. Code and dataset are available at:
https://github.com/arpanpoudel/SRMRI.

Keywords: unsupervised MRI super-resolution, MRI reconstruction, super-resolution
dataset, score-based diffusion model

1. Introduction

MRI is a widely used technology in medical imaging that acquires data in k-space—the
Fourier domain—by placing the subject on a magnetic field and generating corresponding
signals. Images are then obtained using inverse Fourier transform on k-space data. Although
HR images are desired for accurate clinical diagnosis, their acquisition is limited by hardware
limitations, patient movement, and extended scan times, leading to a reliance on LR images.
Super-resolution techniques provide a reliable solution to overcome these challenges.

Supervised deep learning method for medical image super-resolution (de Leeuw den
Bouter et al., 2022; Isaac and Kulkarni, 2015; Sano et al., 2017) directly learns the mapping
between LR and HR images by training on a large paired dataset. These paired datasets
are prepared by simulating specific degradation methods such as Bicubic Downsample,
Gaussian Blurring, or Median Filtering (Keys, 1981) on HR images to obtain LR images.
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In MRI super-resolution, acquiring matching LR and HR image pairs is often impossible
due to practical challenges. These include subject motion between acquisitions and exces-
sively long scanning times, making it difficult to obtain exact training pairs. Additionally,
the degradation process in MRI is non-deterministic making simulated data unsuitable for
practical cases. In real-world scenarios, high-resolution images may degrade due to several
factors such as magnetic field inhomogeneity, improper acquisition parameters, patient mo-
tion during the scan, and scanner electrical noise or insufficient acquisition time leading to
low-resolution images that cannot be accurately mimicked by simulated LR images. Conse-
quently, deep learning models trained on specific degradation methods are biased (Shrestha
et al., 2023) on the training data pair and only learn to super-resolve the training data
degradation. When the simulated degradation method or degradation factor changes, we
have to re-obtain the paired dataset and re-train the model.

In this work, we introduce the SRMRI dataset, a novel collection of LR and HR MRI
images obtained directly from the scanner. Further, we also propose an unsupervised frame-
work for reconstructing HR MRI images that does not require a paired training dataset for
training, thus avoiding the limitation of a fixed degradation process. Our method is in-
spired by the idea of learning the prior distribution of HR images by training a score-based
diffusion model (Song et al., 2020) as the data prior and provide a sampling algorithm to
sample images from data distribution that are consistent with the low-resolution images.

Our work makes the following contributions:

• We introduce the SRMRI dataset, a collection of low-resolution and high-resolution
images on the same subjects acquired from the scanner.

• We train a score-based diffusion model on MRI images to generate HR MRI images as
unconditional samples using a numerical solver. We propose a sampling algorithm to
reconstruct HR images from the LR images by alternating between Diffusion Posterior
Sampling (DPS) (Chung et al., 2023) and image fusion strategy. Finally, we evaluate
our model on scanner-obtained LR-HR pairs to provide a better representation of
performance.

An overview of our method is illustrated in Figure 1, and the detail of our method in
Section 3.

2. Related Works

2.1. Score-based Diffusion Model

We can construct a diffusion process {x(t)}1t=0 on a continuous time t ∈ [0, 1] with x(t) ∈
Rn, where n denotes the dimension of the image. We sample x(0) from unknown data
distribution p0(x) and perturb the data points with a stochastic process over time [0, 1]
such that x(1) ∼ p1(x), with p1(x) is close to a predefined noise distribution . This process
is governed by an Itô stochastic differential equation (SDE) (Song et al., 2020) given by

dxt = f̂(t)xtdt+ ĝ(t)dwt (1)

where f̂ : Rn −→ Rn denotes the drift coefficient, ĝ(t) : R −→ R defines a diffusion coefficient,
and wt ∈ Rn denotes a Wiener process. The perturbation process SDE in Equation (1)
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Figure 1: Overview of the proposed score-based diffusion method for reconstructing HR
MRI images. Starting from pure noise xT , we obtain x0 through alternating
reverse SDE numerical solver and image fusion step.

can be associated with the following reverse SDE given by Anderson’s theorem (Anderson,
1982)

dxt =
[
f̂(t)xt − ĝ(t)2∇xt log pt(xt)

]
dt+ ĝ(t)dwt (2)

wherewt is a Wiener process running backward in time from 1 to 0, and dt is an infinitesimal
negative timestep. To solve Equation (2), we require the score function of pt(xt), i.e.
∇xt log pt(xt), which can be estimated by the time-conditioned neural network sθ(xt, t) .

To solve Equation (2), we use numerical solvers such as Euler-Maruyama discretization,
and Predictor-Corrector (PC) solvers (Song et al., 2020). With a score-based diffusion
model, we can generate unconditional samples from the prior distribution p0(x) of HR
images x. However, to obtain HR images from LR images, we need to sample from the
posterior distribution p0(x|y) where y denotes LR image.

2.2. Diffusion Posterior Sampling (DPS)

For image super-resolution, we aim to recover the unknown high-resolution image x ∈ Rn

from a degraded measurement y ∈ Rm , which is modeled as:

y = Hx0 (3)

H ∈ Rmxn is an unknown degradation process. We can formulate the reverse SDE to sample
from the posterior distribution by modifying the SDE in Equation (2) as follows:

dxt =
[
f̂(t)xt − ĝ(t)2 (∇xt log pt(xt) +∇xt log pt(y|xt))

]
dt+ ĝ(t)dwt (4)

In Equation (4), we need to compute two terms: the score function ∇xt log pt(xt)and
the likelihood ∇xt log pt(y|xt). We can compute the first term using the pre-trained score
function sθ. The second term can be obtained through Diffusion Posterior Sampling (DPS)
(Chung et al., 2023) that provides an approximation of the likelihood which does not have
an analytical formulation.
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The posterior mean in the case of VE-SDE (Song et al., 2020) for p (x0|xt) can be
obtained through the Tweedie’s approach (Efron, 2011; Chung et al., 2023) such that the
posterior mean becomes as x̂0 ≃ xt + b2t sθ(xt, t).

With this posterior mean, we can approximate the gradient of the log-likelihood

∇xt log p (y|xt) ≃ ∇xt log p (y|x̂0) (5)

3. Method

3.1. DPS for MRI super-resolution

The forward model in Equation (3) can be alternatively formulated as:

y ∼ N
(
y|Hfx0, I

)
(6)

where Hf ∈ Rmxn is an unknown downsampling block, and the forward model is as-
sumed to follow a Gaussian distribution. Then, the likelihood function takes the form

p (y|x0) =
1√

(2π)m
exp

[
−
∥y −Hx0∥22

2

]
(7)

Differentiating Equation (7) with respect to xt, using Equation (5), we get

∇xt log p (y|xt) ≃ −∇xt ∥y −H (x̂0 (xt))∥22 (8)

where we write x̂0 := x̂0 (xt), such that x̂0 is a function of xt. Consequently, calculating
the gradient ∇xt is equivalent to performing backpropagation through the neural network.
Finally, to calculate the gradient of marginal distribution ∇xt log pt (xt|y), we sum up the
gradient of log-likelihood ∇xt log p (y|xt) and use sθ(xt, t) for prior to obtain

∇xt log pt (xt|y) ≃ sθ (xt, t)− ρ∇xt

∥∥∥y − Ĥ (x̂0)
∥∥∥2
2

(9)

where ρ is the step size and a chosen downsampling block, Ĥ (e.g., Bicubic), is used to
estimate a downsampled x̂0. Notably, the choice of downsampling block for data consistency
does not affect the evaluation metrics, as demonstrated in B. This differs from supervised
methods that are trained on a simulated dataset, where the models become biased toward
the specific downsampling kernel used (Shrestha et al., 2023). Using only DPS for data
consistency requires numerous computationally expensive backpropagations, resulting in a
prolonged image reconstruction time.

3.2. Iterative Image Fusion during Sampling

To overcome the high computational cost of backpropagation, we propose a hybrid sampling
approach that alternates between backpropagation and a more efficient image fusion strat-
egy. Specifically, at time t, we employ DPS to estimate xt−1 and x̂0. For the subsequent
step, we utilize an image fusion technique that integrates xt−1, with y. We decompose an
image into multiple subbands at different scales, including low-low, low-high, high-low, and
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high-high bands. An effective integration strategy is to select wavelet coefficients from both
the LR and HR images: the low-low band from the LR image and the other coefficients
from the HR image. Then, the Inverse Discrete Wavelet Transform (IDWT) is applied to
the combined coefficients to construct a fused image. This fusion approach effectively har-
monizes the high-resolution features of xt−1 with the measurement data y, yielding xt−2

that ensures data consistency.

We employ a wavelet-based fusion technique at time t−1 to integrate the high-resolution
features of xt−1 with the upscaled low-resolution image y which can modeled as

W (xt−1) = {Ax, Dx} ,W (y) = {Ay, Dy} (10)

where W denotes the wavelet decomposition operation, A represents the approximation
(low-frequency) coefficients, and D represents the detail (high-frequency) coefficients. The
fusion of these components is defined as Afused = Ay, Dfused = Dx.

Finally, the fused image xt−2 is reconstructed from the fused wavelet coefficients using
the inverse wavelet transform: xt−2 = W−1 (Afused , Dfused).

This method offers a computationally efficient solution, as it bypasses the need for
backpropagation. As outlined in Algorithm 1, our method combines the predictor and
corrector steps of the PC algorithm with k skip steps for image fusion.

Algorithm 1 SRMRI Predictor-Corrector (PC) Sampling

Require: sθ, N , M ,y, k ▷k : skip steps
1: xN ∼ N (0, σ2

T I)
2: for i = N to 1 do
3: x′

i−1 ← Predictor (xi, σi, σi−1)
4: if x mod k = 0 then
5: x̂0 ← xi + σ2

i sθ(xi, σi)

6: xi−1 ← x′
i−1 − ρ∇xi

∥∥∥y − Ĥ(x̂0)
∥∥∥2
2

7: else
8: Axi−1, Dxi−1 ←W

(
x′
i−1

)
; Ay,Dy ←W (y)

9: xi−1 = W−1 (Ay,Dxi−1)
10: end if
11: for j = 1 to M do
12: xi−1 ← Corrector (xi−1, σi−1)
13: end for
14: end for
15: return x0

4. Experiments

We assess the effectiveness of our algorithm outlined by Algorithm 1 and compared it
with other unsupervised and supervised learning-based baselines. Additional details about
implementation can be found in A.1.
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4.1. Dataset

We acquired brain images from 10 Alzheimer’s disease (AD) mice with a 5xFAD background
using a 9.4 T magnet with a 30-cm bore (Bruker-BioSpec 94/30, Billerica, MA). A 3D
gradient echo (GRE) pulse sequence was performed at both 25 µm and 50 µm isotropic
resolution. The field of view (FOV) was set to 18.0 mm × 12.8 mm × 7.6mm, flip angle
of 45°, bandwidth (BW) of 125 kHz, and repetition time (TR) of 100 ms. We used the 25
µm resolution volumes, measuring 720 × 512 × 304, as high-resolution (HR) and the 50
µm resolution volumes, measuring 360 × 256 × 152, as low-resolution (LR). For training,
We acquired image slices along the coronal plane, resulting in HR images with dimensions
of 720×512. We removed the first and last fifteen slices from each volume to exclude noise-
only data and improve training. This results in approximately 3k slices of training data.
For evaluation, we used the HR and LR volumes from 4 subjects. The 25 µm scans had
the voxel spacing of (0.025, 0.025, 0.025), while the 50 µm scans had a spacing of (0.05,
0.05, 0.05). It is important to note that our training and evaluation dataset consists of LR-
HR pairs obtained directly from the scanner. Due to hardware and physical constraints,
acquiring perfectly matched pairs of HR and LR images is generally not feasible. Therefore,
we formed test pairs by selecting a 50 µm image and identifying the closest 25 µm image
from the same subject using a voting scheme based on three metrics: LPIPS (Zhang et al.,
2018a), PCA (Jolliffe and Cadima, 2016), and SSIM (Wang et al., 2004). The pair with the
most votes was chosen. Further details about datasets are provided in A.2.

4.2. Comparison study

4.2.1. Unsupervised methods

We compared our approach with four unsupervised super-resolution methods baselines:
DPS (Chung et al., 2023), manifold constrained gradients (MCG) (Chung et al., 2022b),
KernelGAN (Bell-Kligler et al., 2020) + ZSSR (Shocher et al., 2017) and Score-SDE (Song
et al., 2020). DPS, MCG, and Score-SDE are diffusion-based models that can be used for
solving inverse problems. Comparisons were made using PSNR, SSIM, LPIPS, and inference
time.

Table 1: Quantitative evaluation (PSNR, SSIM, LPIPS) of MRI super-resolution (Unsu-
pervised) on scanner images. Bold: Best, under: second best. k : skip step.

Method PSNR ↑ SSIM ↑ LPIPS ↓ time (s) ↓

Score-SDE (Song et al., 2020) 23.58 0.49 0.17 740
DPS(Chung et al., 2023) 24.23 0.58 0.11 1194
MCG (Chung et al., 2022b) 24.10 0.53 0.12 1198
KernelGAN (Bell-Kligler et al., 2020)
+ ZSSR (Shocher et al., 2017) 18.44 0.36 0.43 175

SRMRI (Ours)(k=2) 24.75 0.61 0.1 873
SRMRI (Ours)(k=3) 24.54 0.60 0.11 790
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Table 1 shows the results for unsupervised training, where our method, SMRI, outper-
forms other techniques across evaluation metrics. Additionally, it is worth noting that our
method offers a faster inference with higher performance compared to existing unsupervised
approaches that use diffusion models for solving inverse problems. In the case of Kernel-
GAN + ZSSR, KernelGAN estimates the unknown downsampling kernel from the input LR
images, while ZSSR uses this learned kernel to perform zero-shot super-resolution leading
to lower overall performance.

4.2.2. Supervised methods

We also evaluated our method against the supervised techniques listed in Table 2, using the
training dataset described in Section 4.1.

Table 2: Quantitative evaluation (PSNR, SSIM, LPIPS) of MRI super-resolution with sen-
sor images (Supervised).

Method PSNR ↑ SSIM ↑ LPIPS ↓

SRCNN (Dong et al., 2015) 22.49 0.64 0.55
DDBPN (Haris et al., 2018) 25.16 0.64 0.38
CARN (Ahn et al., 2018) 26.31 0.65 0.35
Swinir (Liang et al., 2021) 25.88 0.62 0.36
RCAN (Zhang et al., 2018b) 25.18 0.65 0.31
ESRGAN (Wang et al., 2018) 26.11 0.65 0.34

SRMRI (Ours) (k=2) 24.75 0.61 0.1
SRMRI (Ours) (k=2) 24.54 0.60 0.11

Table 2 compares our method with supervised methods. Unlike unsupervised ap-
proaches, supervised methods require training pairs, which are often simulated. For these
results, the supervised models were trained using LR-HR pairs from the scanner. Although
the supervised methods achieve higher PSNR and SSIM on our dataset, they exhibit more
artifacts and blurring in the reconstructed images (see Figure 2). We attribute this to their
reliance on learning LR-HR correspondence during training to reduce specific loss functions
(eg. pixel-based loss, adversarial loss). However, in our case, the degradation process is
non-deterministic, and there is no exact pixel-to-pixel correspondence between the LR and
HR pairs. As a result, these approaches produce lower perceptual quality despite better
performance on standard numerical metrics. Further, supervised methods has to be re-
trained if the downsampling factor changes. However, our method can be applied to any
downsampling factor. Figure 2 shows an example of super-resolutions (factor x2) from dif-
ferent supervised and unsupervised methods. More examples of super-resolutions can be
seen at C.

5. Discussion and Conclusion

In this paper, we introduce a blind MRI super-resolution method that alternates between
image fusion and DPS during the diffusion-based sampling process. This approach reduces
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Figure 2: Examples of super-resolution (factor x2) results with scanner LR. You may zoom
in to view more details. Blue: Unsupervised, Red: Supervised.

the computational load by replacing the computationally intensive DPS step with low-
complexity image fusion technique. Our experimental results show that our method out-
performs existing unsupervised approaches while offering a speed advantage. In comparison
to supervised methods, which achieve higher metric values but introduce more artifacts and
blurring, our approach produces better-quality images without the need for LR-HR train-
ing pairs, making it more practical for real-world scenario. Furthermore, our method can
effectively recover complex and unknown degradations that may occur in real-world scenar-
ios, even when the degradation is unknown or differs from the training data. Although we
down-sample intermediate images to maintain data consistency during sampling using the
chosen degradation process, our method can be extended to construct multiple diffusion
processes to learn priors for each component. This allows for posterior sampling even when
the degradation operator is unknown (Chung et al., 2022a). Additionally, we introduce a
dataset comprising both LR and HR MRI scans obtained directly from the scanner. To
establish correspondence between the LR and HR pairs, we propose a voting scheme based
on image quality metrics such as PSNR, SSIM, and LPIPS. This dataset can reduce de-
pendence on simulated degradations for supervised super-resolution training. To the best
of our knowledge, we are the first to evaluate model performance on such LR-HR pairs di-
rectly obtained from the scanner, providing a more accurate representation of performance
in real-world scenarios.
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Appendix A. Experimental Details

A.1. Implementation Details

A.1.1. Training of the score function

We used the implementation of the time-dependent score function model ncsnpp 1 (Song
et al., 2020) as a score model. The model architecture consists of a time-conditioned U-Net,
and the sub-block within U-Net is adopted from residual blocks of BigGAN (Brock et al.,
2019). The network is conditioned on time (t) by incorporating Fourier features. These
time-related features are combined with the original input features before being processed
by the encoder.

The model was trained using a batch size of 4 and the Adam optimizer with standard
hyperparameters (β1= 0.9 and β2= 0.999). To stabilize training, a linear learning rate warm-
up was employed for the first 5000 steps, reaching a final learning rate of 2×10−4. Gradient
clipping was applied to prevent exploding gradients, and exponential moving averages were
calculated for the model parameters. All experiments were conducted using PyTorch. The
model was trained on the full training dataset for 1000 epochs, utilizing five RTX 3090
GPUs. This training process takes approximately five days of wall clock time.

A.1.2. Sampling

We modify the Predictor-Corrector (PC) sampler, as described in (Song et al., 2020), due to
its superior performance in solving VE-SDE. The PC sampler consists of two components:
the predictor, which is a numerical solver for the reverse-time SDE, and the corrector, where
we use Langevin dynamics for the Markov chain Monte Carlo (MCMC) method. For the
PC sampler, we used 2000 noise scales and 1 step of Langevin dynamics per noise scale. All
the sampling steps outlined were executed on a single RTX 3090 GPU. In our experiments,
we used the level two decomposition in the DWT for two levels of wavelet coefficients.
Empirically, we found that bior4.4 performs best as the mother wavelet.

A.1.3. Code Availability

We will publish our code and dataset used in our experiments upon publication to boost
reproducibility.

A.2. Dataset details

To prepare the dataset for training and evaluation of the supervised method, we used HR
and LR image slices from two subjects, with isotropic resolutions of 25 µm and 50 µm,
respectively. Although the HR and LR image volumes were acquired sequentially from the
same subjects, no direct correspondence exists between the LR and HR slices, limiting their
use as training pairs for supervised learning. Therefore, we employed three methods to pair
the LR and HR images, forming a voting scheme where the image pair with the highest
number of votes was selected. In cases where no consensus was reached during voting, the
images from each method were visually inspected, and the closest pair was chosen. The
following describes the implementation of those three methods.

1. https://github.com/yang-song/score sde pytorch
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PCA based method

We implemented a Principal Component Analysis (PCA) based method to match LR images
with their HR counterparts. Given the difference in resolution between the LR images
(360x256) and the HR images (720x512), we first downsampled the HR images, reducing
them to the same size as the LR images using cubic interpolation. Following this, PCA was
employed to reduce the dimensionality of both the downsampled HR images and the original
LR images. For each HR image, the Euclidean distance between its PCA-transformed
representation and that of the LR image was computed. The HR image with the smallest
distance was identified as the closest match to the LR image.

LPIPS based method

In addition to the PCA-based approach, we implemented a method using Learned Percep-
tual Image Patch Similarity (LPIPS) to match LR images with their corresponding HR
counterparts. LPIPS is a deep learning-based metric that evaluates perceptual similarity
between images by comparing feature maps extracted from a pre-trained convolutional neu-
ral network (CNN). The LR and HR images were first resized to have identical dimensions.
The perceptual distance between the LR and HR images was then calculated in the feature
space, with lower LPIPS scores indicating higher perceptual similarity. The HR image with
the lowest LPIPS distance was selected as the best match for the LR image.

SSIM based Method

For our third method, we utilized the SSIM to assess the structural similarity between the
LR and HR images. As with the other methods, the HR images were resized to match the
dimensions of the LR images. The SSIM value was then calculated for each HR-LR image
pair, with higher SSIM values indicating greater structural similarity. The HR image with
the highest SSIM score was considered the closest match to the LR image.

Appendix B. Impact of Downsampling Methods

In this section, we investigate the effect of using different downsampling kernels in our data
consistency block with k = 2. Specifically, we tested the following methods: bicubic, linear,
Lanczos2 (Wolberg, 1992 - 1990), Lanczos3 (Wolberg, 1992 - 1990), and box. Table B
summarizes the results in terms of PSNR, SSIM, and LPIPS. We observe that the choice
of downsampling has a negligible impact on these evaluation metrics. Hence, any of these
kernels can be employed without adversely affecting the final performance.

Table 3: Comparison of different downsampling methods.

Method PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic 24.75 0.61 0.1
Bilinear 24.61 0.60 0.09
Lanczos2 (Wolberg, 1992 - 1990) 24.61 0.6 0.1
Lanczos3 (Wolberg, 1992 - 1990) 24.65 0.6 0.1
Box 24.72 0.61 0.1
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As shown in Table B, the variation across downsampling methods is minimal, with
differences typically within the margin of error. Consequently, for our main experiments,
we chose the bicubic kernel as the default downsampling method for data consistency.

Appendix C. Additional Examples

C.1. Unsupervised Methods
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Figure 3: Examples of super-resolution (x2) with unsupervised methods.
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C.2. Supervised Methods

Figure 4: Examples of super-resolution (x2) with supervised methods. Blue: ours.
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