Learning to Create Abstraction Hierarchies for Motion Planning under Uncertainty

Naman Shah, Siddharth Srivastava
Arizona State University, Tempe, AZ, USA
{shah.naman, siddharths} @asu.edu,

Abstract

State and action hierarchies have been found to be
invaluable in long-horizon robot motion planning.
However, approaches for learning such hierarchies
tend to require extensive experience on the target
task, target environment and/or deterministic dynam-
ics. This paper considers the problem of learning
how to create state and action abstractions for a
known robot with stochastic low-level controllers
in previously unseen environments. We present a
novel and robust approach for learning to create
an abstract, searchable state space, high-level op-
tions, as well as low-level option policies in this
setting. We show that this approach facilitates ef-
ficient hierarchical planning in stochastic settings
with strong guarantees of composability and com-
pleteness for holonomic robots. Extensive empirical
analysis with holonomic as well as non-holonomic
robots on a total of 60 different combinations un-
seen environments and tasks shows that the resulting
approach is broadly applicable, scales well and en-
ables effective learning and transfer even in tasks
with long horizons where baselines are unable to
learn.

1 Introduction

State and action abstractions have been shown to be vital in
solving long-horizon robot planning problems. Approaches
for practical robot planning typically require such abstractions
to be provided as input. However, designing such abstractions
tends to be expensive and time-consuming because (1) ab-
stractions have to be domain-specific, and (2) they need to be
designed while considering the range of the robot’s feasible
movements as well as the potential tasks of interest. These
considerations limit the scope and applicability of robot plan-
ning in more realistic dynamic settings with changing tasks
and requirements. Additionally, it is not clear how to design
such abstractions for stochastic robot planning problems given
the non-intuitive nature of actions in stochastic settings.

This paper presents a novel approach that learns to create
abstract states and actions and then creates them autonomously
during motion planning on new tasks and environments. Our
approach proceeds by first carrying out robot-specific learning

on training environments and tasks. After this phase, which
is akin to a robot-specific algorithmic design process, the ap-
proach works like any other motion planner except that it
dynamically utilizes the results of learning to solve arbitrary
stochastic motion planning problems with the same robot.
More precisely, given an unseen task in an unseen stochastic
environment, it automatically creates state abstractions and
action abstractions on-the-fly and uses them to solve the in-
put stochastic motion planning problem. Empirical results
show that even when accounting for the time taken to create
abstractions, the resulting approach vastly outperforms prior
approaches in terms of solution time as well as solution quality
in stochastic environments.

While prior work has led to immense progress on related
problems such as identifying such state or action abstractions
for deterministic problems [34}, 16l 48], for short-horizon con-
trol problems [36} 57, [18]], and for learning environment and
task-specific abstractions [37, 5] (a greater discussion is pre-
sented in Sec.[5]and Appendix[A)), this paper presents the first
data-driven approach for learning to create both state abstrac-
tions and action abstractions, for robot motion planning in
stochastic settings.

Rather than learning an abstraction for a given task or for a
given set of high-level actions, the presented approach learns
how to create abstractions independent of target tasks and
environments. It transfers the learned knowledge by creating
on-the-fly abstractions for unseen tasks in unseen environ-
ments. In this way, it effectively incorporates sub-symbolic
learning with symbolic planning and reasoning to learn from
experience while providing strong efficiency, robustness, and
generalizability.

We show that the abstract actions (expressed as options [55]])
generated through this approach have three desirable charac-
teristics: (1) they are composable, i.e., they enable high-level
search algorithm for computing abstract plans, (2) they are
downward refinable for holonomic robots, and (3) they can
be zero-shot transferred to different tasks in the same envi-
ronment without any additional learning. This constitutes
the first known approach for using learning to automatically
transform an input stochastic robot planning problem into a
high-level search problem with auto-generated abstract states
and options.

We also present a formal analysis presenting the sufficient
conditions under which we can assert desirable properties

of our approach such as completeness. However, empirical
results indicate that these conditions may be more conserva-
tive than necessary in practice. We extensively evaluate our
approach with three different robots in a total of 7 different
environments and 60 different tasks in stochastic settings. Our
empirical evaluation confirms that the learned options are ef-
fective when combined with a high-level planning algorithm,
and they can be zero-shot transferred to new tasks without any
additional training. It also shows that the learned abstractions
scale up robot planning in stochastic settings to much larger
problems compared to known approaches.

The rest of the paper is organized as follows: Sec.[2]provides
background on stochastic motion planning; Sec. [3|describes
our approach; Sec.] presents an extensive empirical evalua-
tion of our approach; Sec. [5|briefly discusses closely related
methods (Appendix |A|presents detailed discussion).

2 Background

Let X C RY = Xjee U X5 be the configuration space of a
robot R and let O be a set of obstacles in a given environment.
Given a collision function f : X — {0, 1}, Xpee represents
the set of configurations that are not in collision with any
obstacle o € O such that f(z) = 0 and let Xops = X\ Xree-
Let x; € Aee be the initial configuration of the robot and
24 € Afree be the goal configuration of the robot. The motion
planning problem can be defined as:

Definition 1. A motion planning problem M is defined as
a 4-tuple (X, f,x;, x4), where X is the configuration space,
f is the collision function, z; and x4 are initial and goal
configurations.

A solution to a motion planning problem is a motion plan 7.
A motion plan is a sequence of configurations (zo, ..., Zp)
such that g = z;, x,, = x4, and Vz € 7, f(z) = 0. Robots
use controllers that accept sequenced configurations from the
motion plan and generate controls that take the robot from one
configuration to the next configuration. In practice, environ-
ment dynamics can be noisy, which introduces stochasticity in
the problem. We define the stochastic motion planning (SMP)
problem as a variant of stochastic shortest path problems
(SSPs) [I8]. We define a stochastic motion planning problem
as P = (X,U,T,xg,z,) where ¥ C R?is a d-dimensional
configuration space. U C R? is the uncountably infinite set
of stochastic control actions defined in terms of the intended
change in each degree of freedom of the robot. Each u € U
follows a stochastic transition function T, : = — p(z + u)
where p1(x + u) is a probability measure parameterized using
the intended target « + u of the control action. x is the initial
configuration and x4 is the goal configuration. A solution
to a stochastic motion planning problem is a partial policy
m : X — U that maps each reachable configuration in the
configuration space (when starting with y and following 7)
to a control action from the set of controls (actions) 4.

3 Our Approach

The central idea of this paper is to learn to automatically
create abstractions for unseen tasks and environments and effi-
ciently use them to compute policies for long-horizon stochas-

tic motion planning problems under sparse reward. We pro-
pose a novel hierarchical approach -- stochastic hierarchical
abstraction-guided robot planner (SHARP) -- for stochastic
motion planning (Sec.[3.3). SHARP first learns to create state
abstractions (Sec. and uses it to automatically identify
state abstractions in an unseen environment. SHARP uses
these identified state abstractions to identify task-independent
action abstractions in this environment (Sec. [3.2).

3.1 Learning to Create State Abstractions

We build upon prior work to learn how to create state ab-
stractions as follows. We use critical regions [40] to learn
state abstractions for a given configuration space. Intuitively,
critical regions generalize the concept of hubs as well as bot-
tlenecks in the configuration space: regions that are helpful
in solving multiple tasks (e.g., the center of the room from
which all locations are easily accessible) as well as those that
are difficult to sample under a uniform sampling density (e.g.,
bottlenecks such as doors and hallways). Molina et al. [40]
formally define them as follows:

Definition 2. Given a robot R, a configuration space X, and
a class of motion planning problems M, the measure of criti-
cality of a Lebesgue-measurable open set v C X is defined as

vf((stl)), where f(r) is the fraction of observed mo-

tion plans solving tasks from M that pass through s, v(s,,) is
the measure of s, under a reference density (usually uniform),
and —7T denotes the limit from above along any sequence
{sn} of sets containing r (r C s,, Vn).

lim, o+,

Our approach uses a deep neural network for learning to pre-
dict critical regions. Once this DNN is trained, our approach
uses it to predict critical regions in unseen environments. We
use the same framework proposed by Shah and Srivastava
[48] for learning this critical region predictor. This critical
region predictor can be then zero-shot transferred for differ-
ent environments as well as robots with the same kinematic
characteristics. Appendix [B]discusses learning this predictor
in detail.

Once critical regions are predicted for the given environ-
ment and the robot, they are used to construct a region-based
Voronoi diagram (RBVD) [48]]. RBVDs partition the configu-
ration space into multiple Voronoi cells. Shah and Srivastava
[48]] formally define an RBVD as follows:

Definition 3. Given a configuration space X, let d° define
the minimum distance between a configuration x € X and
a region ¢ C X. Given a set of regions ® and a robot R, a
region-based Voronoi diagram VU is a partitioning of X such
that for every Voronoi cell 1; € VU there exists a region ¢; € ®
such that forall x € 1; and forall ¢; # ¢;, d°(z,¢;) <
d°(z, ;) and each 1; is connected.

In this framework, abstract states are defined using a bijec-
tive function £ : ¥ — S that maps each Voronoi cell ¢ € U to
an abstract state s € S. The RBVD WV induces an abstraction
function o : X — & such that a(x) = s if and only if there
exists a Voronoi cell ¢ such that z € ¢ and ¢(¢)) = s. A
configuration x € X is said to be in the high-level abstract
state s € S (denoted by x € s) if a(x) = s. We also define
a neighborhood function V : § x & — {0, 1} such that for

a pair of states s1,s2 € S, V(s1,82) = 1iff 51 and sy are
neighbors.

3.2 Learning to Create Action Abstractions

Given a stochastic motion planning problem, we first create
state abstractions using the learned environment-independent
abstraction framework presented above in Sec. [3.1] Once
abstract states are constructed, we learn abstract actions as
options [55] that go from one abstract state to another. These
action abstractions are task-independent, i.e., they are con-
structed once per environment and robot and reused for differ-
ent tasks (pairs of initial and goal configurations). One critical
observation we make is that learning policies for these options
can be challenging in sparse-reward settings. Therefore, we
introduce a concept of option guides for constructing a dense
pseudo-reward function.

We define an option o as a 4-tuple (Z,, B,, G,, m,) Where
T, C X is an initiation set, 5, C X is a termination set, G,, is
an option guide, and 7, is a policy. For learning useful options,

we first compute option endpoints (Z,, 8,) (Sec.[3.2.1)) and

then use them to generate option guides (Sec. [3.2.2]).

3.2.1 Identifying Option Endpoints
Given a set of critical regions ¢ and a corresponding RBVD ¥
that induces a set of abstract states S, a neighborhood function
V), and an abstraction function «, we define two types of task-
independent options: (1) Options between centroids of two
critical regions -- centroid options and (2) options between
interfaces of two pairs of abstract states — interface options.
First, we define centroid options. Intuitively, these options
define abstract actions that transition between a pair of critical
regions. Formally, we defined them using centroid regions as
follows:

Definition 4. Let s; € S be an abstract state in the RBVD
W with the corresponding critical region ¢; € ®. Let d be
the Euclidean distance measure and let t define a threshold
distance. Let c; be the centroid of the critical region r;. A
centroid region of the critical region r; with the centroid c; is
defined as a set of configuration points {x|x € s; Nd(x,¢;) <
t}.

We use this definition to define the endpoints for the centroid
options as follows:

Definition 5. Let s;,s; € S be a pair of neighboring abstract
states such that V(s;,s;) = 1 in an RBVD ¥ constructed
using the set of critical regions ®. Let ¢;,¢; € ® be the
critical regions for the abstract states s; and s; and let c; and
c; be their centroids regions. The endpoints for a centroid
option are defined as a pair (Z;;, B;;) such that L;; = c; and
Bij = ¢;-

Now, we define interface options. Intuitively, these options
define high-level temporally abstracted actions between inter-
sections of pairs of abstract states and take the robot across the
high-level states. To construct interface options, we first need
to identify interface regions between a pair of neighboring
abstract states. We define interface region as follows:

Definition 6. Let s;,s; € S be a pair of neighboring states
such that V(s;, sj) = 1 and ¢; and ¢; be their corresponding
critical regions. Let d°(x, ¢) define the minimum Euclidean

distance between configuration x € X and some point in a
region ¢ C X. Let p be a configuration such that d°(p, ¢;) =
d°(p, ¢;) that is, p is on the border of the Voronoi cells that
define s; and s;. Given the Euclidean distance measure d
and a threshold distance t, an interface region for a pair of
neighboring states (s;, s;) is defined as a set {z|(x € s;Vx €
sj) Ad(z,p) < t}.

We use this definition of interface regions to define end-
points for the interface options as follows:

Definition 7. Let s;,5;,5, € Sy be abstract states in the
RBVD ¥ such that V(s;,sj) = 1 and V(sj, si) = 1. Let ¢;;
and ¢ ;1 be the interface regions for pairs of high-level states
(si,85) and (sj, si). The endpoints for an interface option
are defined as a pair (L,,, , Bo,,,.) such that L, ,, = ¢;; and
/BOU)C = d)]k

Now given the learned state abstraction in the form of iden-
tified critical regions ® and the RBVD W, our approach syn-
thesizes endpoints for a set of centroid or interface options
as follows: Recall that the RBVD W induces a neighborhood
function V : § x § — {0,1}. Our approach synthesizes
a set of endpoints for centroid options O, = {0;;|Vs;,s; €
S, V(8i78j) =1A Iij =c A ﬁij = Cj} or the set of in-
terface options as O; = {0;;x|Vsi, sj, sk € S, V(si,85) =
1A V(sj,sk) = 1AL = ¢i5 A Bl] = ¢jk} where c; rep-
resents the centroid of the critical region r; for the abstract
state s; and ¢;; represents an interface region for a pair of
neighboring abstract states s; and s;.

We now discuss option guides and our approach for con-
structing them for a set of option endpoints.

3.2.2 Constructing Option Guides

We use option guides for synthesizing a dense pseudo-reward
function for improving sample efficiency while learning policy
for an option in sparse reward settings. We define an option
guide as an e-clear motion plan. A motion plan is an e-clear
motion plan if, for every configuration in the motion plan,
there exists a collision-free e-neighborhood.

Definition 8. Let X' be the C-space of the robot R. Given
an option o; with endpoints (Z;, 3;), let cz, and cg, define
centroids for the I; and (; respectively. Given a threshold dis-
tance t, an arbitrary neighborhood radius €, and the Euclidean
distance measure d, an option guide G; = (p1,...,pn) for
an option o; is a e-clear motion plan such that p1 = cz,,
Dn = cg,, for each pair of consecutive points p;,p; € G; ,
d(pi,p;j) < t, and for every point p; € G;, p; € a(Z;) or
pi € ().

Here, we abuse the notation and use the abstraction function
with a set of low-level configurations rather than a single
configuration such that for a set A, a(A) = {a(x)|Vz € A}.
In practice, we find that any sampling-based motion planner
with e-inflated obstacles can be used to construct option guides
for identified option endpoints. We use HARP [48] and € = 0
for our experiments (Sec. [).

Our approach uses this option guide to automatically for-
malize a dense pseudo-reward function for learning option
policy. This pseudo-reward function provides the robot with

Algorithm 1: Stochastic Hierarchical Abstraction-
guided Robot Planner (SHARP)

Input: Training environments Fi,;,, test environment
€test» initial and goal configurations x; and z,
Output: A policy IT composed of options
1 © < get_critical_regions_predicter();
2 if © is not trained then
| train © using Elin

“w

4 if abstraction is not constructed then

5 ® < predict_critical_regions(eg,0);
6 ¥, S,V « construct_ RBVD(eeq,P);

7 O, C + synthesize_options(®,V,S,V);

8 S;,54 < get_abstract_states(x;,z4);
9 while not refined do

10 p < high_level_plan(s;,s,,0,C);
1 if p = 0 then

12 L break;

13 II = empty_list;

14 mo +— ll_policy(x;,Z,,);

15 II.add(mg);

16 foreach o € p do

17 if 7, does not exist then

18 G, < option_guide(Z,,5,);
19 if G, = () then

20 flag o infeasible;

21 break;

2 o <= 1l_policy(Z,,50,9,);
23 adjust the option cost C,;
2 L II.add(m,);

25 refined < True;

26 if refined then

27 T4l < ll—pOIiCY(BOn’xg);
28 II.add(my,11);

29 return II;

30 else
31 L return failure;

a large positive reward when it reaches the termination set of
the goal, a penalty for drifting to a different abstract state, and
a smoothened reward for making progress on the option guide.
Appendix [Clexplains this in detail. The next section uses these
concepts to present our approach for computing a policy for a
stochastic motion planning problem.

3.3 The SHARP Algorithm for Motion Planning
Under Uncertainty

SHARP (Alg. [1)) uses learned abstractions for motion plan-
ning under uncertainty. Given an SMP problem P =
(X, U, x;,24), it starts with a simulator and an occupancy
matrix of the environment and computes a partial policy
II : X — U that maps each reachable state to a control
action.

Alg. [T]start with using the learned critical region predictor
and identifies a set of critical regions ® in the given test en-

vironment ey (line 5). It then constructs an RBVD (Def. [3))
U using the predicted critical regions ¢ (line 6). This RBVD
W induces a set of abstract states S, an abstraction function
«, and a neighborhood function V. Alg.[TJuses these critical
regions ¢ and RBVD W to synthesize a set of endpoints for
centroid or interface options.

Alg. |1) uses these options as high-level actions with A*
search for computing high-level plans. It considers the initia-
tion and termination sets of these options as their preconditions
and effects. Alg. [l|uses an incremental plan generator that
takes the set of options along with the abstract initial and
goal states as input and generates a high-level plan using A*
search (line 10). It uses the Euclidean distance between the
termination set of the option and the goal configuration as the
heuristic and the Euclidean distance between the initiation and
termination sets as an initial approximation to the cost of the
option.

Given a plan in the form of a sequence of options, Alg.[I]
starts refining these options by computing policies for every
option in the sequence. First, it generates an additional option
0p such that 7,, = x; and f3,, = Z,, and learns its policy
(line 14). Alg.[I]then starts computing policies for each option
in the high-level plan. If a policy exists for the option from
the previous invocation of the algorithm, then it uses the same
policy. Otherwise, it starts computing a policy for it. However,
before computing a policy using reinforcement learning, Alg.[T]
computes an option guide (Def:[8)) as described in Sec.[3.2.2]
(line 18). If it fails to compute a valid option guide for an
option then we mark the option as infeasible and compute a
new high-level plan from the initial abstract state (line 19).
Once an option guide is computed for an option, Alg. [Tjuses
an off-the-shelf low-level policy learner to learn a policy for
it (line 22). After computing (or reusing) policies for all the
options in the plan, it again generates an option o, such that

ons1 = Bo, and B, ., = x4 and learns its policy (line 27).

Alg.[T]only synthesizes options once per each environment
and robot. To efficiently transfer the learned option policies,
our approach needs to update the option costs that A* search
uses to compute the sequence of options. We update this
cost (line 20) by collecting rollouts of the learned policy and
using the average number of steps from the initiation set to the
termination set as an approximation of the cost of the option.
We now prove that Alg.[I]is probabilistically complete.

Finally, Alg.[T]computes a composed policy by composing
policies for every option in this high-level plan. A composed
policy II for a high-level plan is a finite state automaton with
one controller state for each option in the plan. As mentioned
earlier, Alg.|l|computes 7y and 7, as special cases (lines
12 and 22). For a controller state ¢;, II(x) = m;(x) where m;
represents the policy for option o; € O. The controller makes
a transition ¢; — ¢;41 when the robot reaches a configuration
x€l,,,.

3.4 Theoretical Results

We now present theoretical properties of Alg.[ll Let Bs(z)
for & > 0 define the d-neighborhood of z € X under the
Euclidean metric. Recall that each controller implicitly defines
as a transition function with a probability distribution p(z + u)
for the control action u (see Sec.[2)). A d-compliant controller

Test Environments

Test Robots

Navigation Manipulation Fetch
LI}
5 I1—
‘; - ‘Ieich
£ i
5 st == s2 o ug®
[. w
uE) | || | J — | ___|] 2
: - —
Jra=inpsEave SRR . N

Limo

Figure 1: Test environments and robots used to evaluate our approach.

is defined as for which the set of support of one whose set of
support for (x4 w) is Bs(x + u). Our formal guarantees do
not require knowledge of p other than an upper bound on the
support radius. Here, we refer to § as the support radius for
the given controller.

Theorem 3.1. For a given stochastic motion planning problem
P = {(X,U,x1,x,), let D be the set of identified critical re-
gions and VU be the RBVD that induces the set of abstract state
S and a neighborhood function V. If there exists a sequence of
distinct abstract states (s1, . .., Sp) such that V(s;,8;41) = 1
then there exists a composed policy 11 such that the resulting
configuration after the termination of every option in I1 would
be the goal configuration x.,.

Proof. (Sketch) The proof directly derives from the definition
of the endpoints for the centroid and interface options. Given
a sequence of adjacent abstract states (sq,..., sy}, Def.
and [7| ensures a sequence of options (o1, ..., 0,) such that
Bi = Z;+1. This implies that an option can be executed once
the previous option is terminated. Given this sequence of op-
tions (o1, . . ., 0,), according to the definition of the composed
policy, there exists a composed policy II such that for every
pair of options 0;,0; € II, Z,; = B3,,. Thus, we can say that if
every option in II terminates, then the resulting configuration
would be the goal configuration.

Theorem 3.2. Given a stochastic motion planning problem
P ={(X,U,x,,x4) for a holonomic robot R using a controller
with a support radius §. < 0, a motion planner that can
compute §-clear motion plans, and an optimal low-level policy
learner, if there exists a §-clear motion plan for the robot R
from x1 to x, that forms a sequence of distinct abstract states,
then Alg. [I)will find a proper policy for the given stochastic
motion planning problem.

Proof. (Sketch) Let T' = (x;, ..., x4) be the -clear motion
plan from the initial configuration z; to goal configuration
x4. This d-clear motion plan forms a non-repeating sequence
of abstract states. Let p = (s1,..., S,) be this sequence of
distinct abstract states. Given that Alg.[T]explores all possible

sequences of high-level states between a given pair of initial
and goal abstract states (line 10), we can say that eventually,
it would find this sequence of abstract states p and the corre-
sponding sequence of options for it. We can also deduce that
for every pair of consequent abstract states s;, 541 € p, there
exists a pair of consequent configurations x;,z;1 € T such
that Tj € S5 and Tjt1 € Sj+1 and V(Sj, Sj+1) = 1 and that
there exists J-clear motion plan between abstract states s; and
sj+1. Now, lemmas [D.T] and [D.2] (provided in Appendix
show that given a motion planner that computes J-clear motion
plan and an optimal low-level policy learner, Alg. [T] would
be able to learn options with proper policies for every pair
of neighboring states. This implies that our approach would
be able to learn options for each pair of consequent states in
p. Lastly, Theorem [3.1| proves that if there exists a sequence
of distinct abstract states then there exists a composed pol-
icy of learned options that when executed successfully in z;
terminates in x4 i.e., a solution for the given problem. O

These results provide the foundations for analyzing such
approaches and show a completeness result for the presented
approach. However, our approach generalizes beyond the
sufficient (and not necessary) conditions used in the theorems
above. In fact our empirical evaluation (Sec.) is conducted
on non-holonomic robots that violate the premises of these
results. Furthermore, we use default controllers with unknown
support radii.

4 Empirical Results

We present the salient aspects of our implementation, setup,
and observations here; additional results, code, and data are
available with supplementary material.

Implementation details We implemented our approach
using PyBullet and PyTorch [43] and conducted an exten-
sive empirical evaluation. PyBullet does not explicitly model
stochasticity in the movement of the robot. Therefore, we use
random perturbations in intended targets of control actions to
introduce stochasticity in the environment while training and
using the default controllers to evaluate the learned policies.

—— SHARP - Centroids —— SHARP - Interfaces —— SAC RRT - Replan
Env: S1 Env: S2 Env: L1 Env: L2 Env: L3

1 - - . . -
2 % 0.8 B E E B
2 I 0.6 1 B B B B
o g 041]]]]

2 0.

E o« 0 T
Q
o Env: S1 Env: S2 Env: L1 Env: L2 Env: L3
oY

1 -] -] - - -]
5 £ 0.]]]]
& 2 0.6 i i]]
Y o8 0.4+ A b b A

O T

0 4 812162024 0 4 8 12162024 0 153045607590 0 153045607590 0 153045607590

Time (x100s)

Figure 2: (Higher values are better) Times taken by our approach (SHARP) and baselines to compute path plans in the test
environment. The x-axis shows the time and the y-axis shows the fraction of the test tasks solved in the given time. The numbers

are averaged over 5 independent trails.

Env: M1

/

T T T T T
0 4 8 12162024

Env: M2

cocoo
ONPOOR
I T T B |

Robot: Fetch

T T T T T T
0 4 8 12162024

Figure 3: (Contd. from Fig. 2] with same setup) Results for
manipulation tasks with the Fetch robot.

We used 2—layered neural networks with 256 neurons in
each layer for representing local policies for the learned op-
tions. Inputs to these networks were the current configuration
of the robot and a vector to the nearest point on the option
guide for the current option. We used +1000 as a pseudo re-
ward for reaching the termination set of each option and -100
as a penalty for drifting to a different abstract state. We use
SAC [17] as a low-level policy learner.

Test environments and robots We evaluated our approach
using a total of 7 test environments (Fig:[T) (not included in
training the critical region predictor) using 3 different non-
holonomic robots (Fig: [I) in a total of 60 navigation and
manipulation tasks. Dimensions of the first two environments
(81, S2) were 15m x 15m. The rest of the environments (L1,
L2, L3) were of the size 75m x 75m. For each environment,
we generated 5 test tasks by randomly sampling different
initial and goal configuration pairs. We used the following
robots: the ClearPath Husky robot, the AgileX Limo robot,
and the Fetch manipulator robot. The Husky is a 4-wheeled
differential drive robot that can move in one direction and
rotate in place; the Limo is also a 4-wheeled omnidirectional
robot with an Ackermann dynamics; the Fetch is an 8-DOF
manipulator robot.

Selection of baselines = We considered and evaluated several
learning and planning approaches [35} 117,132, 138},137,15]] as po-

tential baselines for this work. Of these, only RRT-Replan [35]]
and SAC [17]] solved any tasks within the timeouts (see “Eval-
uation framework” below). Therefore, we compared our ap-
proach against SAC and RRT-replan. SAC is an off-policy
deep reinforcement learning approach and learns a single pol-
icy for the overall stochastic motion planning problem. We
used the same network architecture as ours for SAC’s neural
policy. We used a terminal reward of 41000 and a step re-
ward of —1 to train the SAC agent. RRT-replan is a version
of the popular RRT algorithm [35] that recomputes a plan
from the robot’s current configuration if the robot fails to suc-
cessfully reach the goal after executing the initial plan. All
approaches considered use the same input robots, simulators,
and low-level controllers as our approach.

Evaluation framework and metrics We evaluated the effi-
ciency and quality of our approach using the following met-
rics: the fraction of test tasks solved in a given amount of
time (Fig. 2]and [3); the average number of steps taken while
executing the learned solutions (Fig. E[); and the success rate
of computed solutions (Fig.). For our approach, we include
the time taken to predict abstractions, build abstract actions
(option end points), compute high-level plans, and learn the
necessary option policies. We used pre-determined timeouts
and average rewards to terminate the training/planning process
for our approach and the baselines. For all the approaches, we
used a timeout of 2400 seconds for small navigation environ-
ments (S1 and S2) as well as manipulation environments (M1
and M2) and 9000 seconds for large navigation environments
(L1-L3). For learning-based approaches (ours and SAC), we
evaluated the model for 20 episodes after every 10k learn-
ing steps and stopped the training if it achieved an average
evaluation reward of 500 or reached 150k training steps. RRT-
Replan continued its plan-execute loop until the robot reached
the goal configuration or the timeout was reached.

I SHARP - Centroids I SHARP - Interfaces RRT - Replan Il SAC
:-)_ Robot: Husky Robot: Limo Robot: Fetch
+< 1500 H B
(7]
“) (C) v)
5 e £ g ¢ I 9 oo I TQ
© 1000 1 b |
o 45 Py
€ ‘.
2 500 4 ; 301 ¢
v e o2t %0 e o2 ccCe 9% 0¢ | |
© OQOIOQI'.Q'.Q'.Q Q.IQCI'.Q'.()'.OO
(V] - .
Ed s1 s2 L1 L2 L3 s1 L2 L3 M1 M2

S2 Ll
Environment

Figure 4: (Lower values or darker circles are better) Average number of steps taken in the successful execution of the learned
policies and success rates for our approach and the baselines. These numbers do not include instances when the execution of the
policy did not end at the goal configuration. The pie chart over each bar represents the success rate (shaded black area) while

executing the learned policy.

ST [S2 [Ll [L2 | L3 | MI | M2

g‘te."face 43% | 33% | 37% | 33% | 42% | 50% | 75%
ptions

Centroid | 550 1 50, | 39% | 36% | 50% | 65% | 75%
Options

Figure 5: Percentage of options that our approach reused
from the task they were computed to every subsequent task
they were needed across 5 test tasks in each environment.

4.1 Analysis of Results

We thoroughly evaluated our approach for answering two crit-
ical questions: (1) Does this approach learn useful high-level
planning representations? (2) Can these learned options be ze-
ro-shot transferred to new tasks in the same environment? Our
experiments show that the presented approach effectively gen-
erates hierarchies and significantly outperforms all baselines
across all environments. In larger environments (L1-L3), the
presented approach is the only approach that is able to show
significant learning, and it achieves a significantly higher suc-
cess rate than all baselines.

Learning to predict abstractions One of the key contribu-
tions of this paper is to be able to learn to predict abstractions
from experience in training environment and zero-short trans-
fer them in the form of a predictor to identify critical regions in
unseen environments. Appendix [E]shows the predicted critical
regions, 2D projections of the RBVDs, and synthesized option
endpoints for our test environments. These automatically iden-
tified abstractions show that our approach is able to zero-short
transfer the learned critical region predictor to new unseen test
environments and identify useful abstract states and option
endpoints without any additional training.

Improved learning and planning performance We evalu-
ate the efficiency of our approach using the total time taken to
produce a policy starting from the common input given to all
baselines. In our case, this includes the time taken to create
the abstract states and actions as well as to compute the solu-
tions. Figs. [2and[3|show the fraction of tasks solved in a given
amount of time. Each subsequent task uses learned high-level
actions (policies and options) from the previous tasks when
available. Results show that our approach was able to learn

policies significantly faster than the baselines. In most cases,
our approach was able to compute solutions in less than half of
the time taken by the baselines. These results illustrate the im-
pact of learning to create and utilize abstractions: even when
the time for predicting critical regions, building abstractions,
computing high-level plans, and learning low-level policies is
included, SHARP significantly outperforms the baselines.
Improved solution quality We evaluate the quality of com-
puted solutions using the average number of steps taken while
executing the policies, as well as per-task success rates of the
computed solution policies (Fig[). These results are averaged
over 20 independent executions of each learned policy. These
results show that SHARP learns policies that require signif-
icantly fewer steps during execution compared to baselines.
Furthermore, SHARP’s solutions have a success rate of more
than 90% across all tasks. On the other hand, the best perform-
ing baseline, RRT-replan has a success rate of only ~ 50% in
the smaller navigation (S1, S2) and manipulation (M1, M2)
tasks and a success rate of less than one-third in the larger
navigation (L1-L3) tasks. SAC only solved 20% of the robot
navigation tasks and 60% of the manipulation tasks.
Zero-shot action transfer across tasks Lastly, we also
conducted a thorough analysis of options being used across all
tasks in each environment. Fig.[5|shows the fraction of options
reused from the task they were computed to all the subsequent
tasks they were needed by our approach. These reuse rates
combined with the success rates show that our approach is
able to successfully zero-shot transfer learned options across
new tasks.

5 Related Work

In this section, we briefly discuss some related approaches.
Here we focus on broad classifications of these approaches
and include a detailed discussion in Appendix [A]

To the best of our knowledge, this is the first data-driven
approach that learns to identify a discrete set of abstract states
and plannable task-independent abstract actions automatically
for unseen environments with stochastic dynamics. In this
paper, we exclusively focus on solving long-horizon motion
planning problems under uncertainty.

Several other approaches have been developed to solve

similar class of problems. These approaches can be broadly
classified as follows. Approaches for stochastic motion plan-
ning [11} 33} 159, 22, [7} 20]] require an analytical dynamics
model of the robot. In practice, such analytical models may
not be available. Another approach is to learn task-specific
subgoals in the given test environment [32} 14} 141,142, |10]]. In
contrast to our approach, which learns to predict state and
action abstractions without any experience collected from the
test environment, these approaches require interactions with
the environments in order to learn useful subgoals. Finally, ap-
proaches for learning task-specific options [53} 152,19, 113,15, 6]
learn options for specific tasks while interacting in the target
environment. In contrast, our approach conducts transferrable,
task and environment-independent learning, permits theoreti-
cal analysis, and exhibits strong transfer and generalizability
across tasks and environments.

Finally, there has been a lot of progress on short-horizon
(~ 5 seconds) dense-reward problems where the robot receives
frequent feedback for its actions from the environment. These
approaches include conventional control approaches as well as
image-based DRL approaches for model predictive control [60,
36,141 150119,157, 134 [12, 2L [18]]. While this paper’s focus is on
long-horizon sparse-reward motion planning problems, these
approaches can be used as low-level policy learners in our
approach (Alg.[T} line 22).

6 Conclusions, Limitations, and Future Work

This paper presents the first approach that uses a data-driven
process to learn to create state and action abstractions for
unseen environments and tasks. We provide theoretical results
as well as a thorough empirical evaluation for the presented
methods. These results show that the presented approach
effectively learns to create abstractions that provide strong
performance and quality advantages on a broad set of tasks
that are currently beyond the scope of known methods.

One of the main limitations of the presented work is that
like much of contemporary Al research, it requires a simulator
of the environment and it has only been tested in simulated
settings. However, advances from independent and active
research threads on sim2real approaches would benefit these
approaches and allow the learned policies to be executed in
the real world. Another limitation of the presented approach
is that it does not currently address the problem of learning
abstractions for task and motion planning problems [49,[16],
which can be a promising direction for future work.

Acknowledgements

We thank Kiran Prasad for his help in implementing a primitive
version of the presented approach. The presented work is
supported by NSF under grant IIS 1942856.

References

[1] Ron Alterovitz, Thierry Siméon, and Ken Goldberg. The
stochastic motion roadmap: A sampling framework for
planning with markov motion uncertainty. In Proc. R:SS,
2007.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots,
and J Zico Kolter. Differentiable MPC for end-to-end
planning and control. In Proc. NeurlPS, volume 31,
2018.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas
Schneider, Rachel Fong, Peter Welinder, Bob Mc-
Grew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech
Zaremba. Hindsight experience replay. In Proc. NeurIPS,
2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The
option-critic architecture. In Proc. AAAI 2017.

Akhil Bagaria and George Konidaris. Option discovery
using deep skill chaining. In Proc. ICLR, 2020.

Akhil Bagaria, Jason K Senthil, and George Konidaris.
Skill discovery for exploration and planning using deep
skill graphs. In Proc. ICML, 2021.

Jur van den Berg, Sachin Patil, and Ron Alterovitz. Mo-
tion planning under uncertainty using differential dy-
namic programming in belief space. In Robotics Re-
search, pages 473-490. Springer, 2017.

Dimitri P Bertsekas and John N Tsitsiklis. An analysis
of stochastic shortest path problems. Mathematics of
Operations Research, 16(3):580-595, 1991.

Emma Brunskill and Lihong Li. Pac-inspired option
discovery in lifelong reinforcement learning. In Proc.
ICML, 2014.

Konrad Czechowski, Tomasz Odrzygézdz, Marek
Zbysinski, Michat Zawalski, Krzysztof Olejnik, Yuhuai
Wu, Lukasz Kucifiski, and Piotr MitoS. Subgoal search
for complex reasoning tasks. In Proc. NeurlPS, 2021.

Yanzhu Du, David Hsu, Hanna Kurniawati, Wee Sun,
Lee Sylvie, CW Ong, and Shao Wei Png. A POMDP
approach to robot motion planning under uncertainty. In
Proc. ICAPS, Workshop on Solving Real-World POMDP
Problems. Citeseer, 2010.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie
Xie, Alex Lee, and Sergey Levine. Visual foresight:
Model-based deep reinforcement learning for vision-
based robotic control. arXiv preprint arXiv:1812.00568,
2018.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey
Levine. Search on the replay buffer: Bridging planning
and reinforcement learning. In Proc. NeurlIPS, 2019.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell,
Sergey Levine, and Pieter Abbeel. Deep spatial autoen-
coders for visuomotor learning. In Proc. ICRA, 2016.

Yarin Gal, Rowan McAllister, and Carl Edward Ras-
mussen. Improving PILCO with bayesian neural network
dynamics models. In Data-efficient machine learning
workshop, ICML, 2016.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay,
Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling,
and Tomas Lozano-Pérez. Integrated task and motion

planning. Annual review of control, robotics, and au-
tonomous systems, 4:265-293, 2021.

[17] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. In Proc. ICML, 2018.

[18] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben
Villegas, David Ha, Honglak Lee, and James Davidson.
Learning latent dynamics for planning from pixels. In
Proc. ICML, 2019.

[19] Mikael Henaff, William F Whitney, and Yann LeCun.
Model-based planning with discrete and continuous ac-
tions. arXiv preprint arXiv:1705.07177, 2017.

[20] Michael Hibbard, Abraham P Vinod, Jesse Quattrocioc-
chi, and Ufuk Topcu. Safely: safe stochastic motion
planning under constrained sensing via duality. arXiv
preprint arXiv:2203.02816, 2022.

[21] Robert C Holte, Maria B Perez, Robert M Zimmer, and
Alan J MacDonald. Hierarchical A*: Searching ab-
straction hierarchies efficiently. In Proc. AAAI, pages
530-535, 1996.

[22] Vu Anh Huynh, Sertac Karaman, and Emilio Frazzoli.
An incremental sampling-based algorithm for stochastic
optimal control. The International Journal of Robotics
Research, 35(4):305-333, 2016.

[23] Yuu Jinnai, David Abel, David Hershkowitz, Michael
Littman, and George Konidaris. Finding options that
minimize planning time. In Proc. ICML, 2019.

[24] Tom Jurgenson and Aviv Tamar. Harnessing reinforce-
ment learning for neural motion planning. In Proc. RSS,
2019.

[25] Tom Jurgenson, Or Avner, Edward Groshev, and Aviv
Tamar. Sub-goal trees a framework for goal-based rein-
forcement learning. In Proc. ICML, pages 5020-5030.
PMLR, 2020.

[26] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H
Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE transac-
tions on Robotics and Automation, 12(4):566-580, 1996.

[27] Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-
guided subgoal generation in hierarchical reinforcement
learning. In Proc. NerulPS, 2021.

[28] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. Proc. ICLR, 2014.

[29] Harsha Kokel, Arjun Manoharan, Sriraam Natarajan,
Balaraman Ravindran, and Prasad Tadepalli. RePReL.:
Integrating relational planning and reinforcement learn-
ing for effective abstraction. In Proc. ICAPS, 2021.

[30] George Konidaris, Leslie Pack Kaelbling, and Tomas
Lozano-Perez. From skills to symbols: Learning sym-
bolic representations for abstract high-level planning.
Journal of Artificial Intelligence Research, 61:215-289,
2018.

[31] James J Kuffner and Steven M LaValle. RRT-Connect:
An efficient approach to single-query path planning. In
Proc. ICRA, 2000.

[32] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi,
and Josh Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic
motivation. In Proc. NeurIPS, 2016.

[33] Hanna Kurniawati, Tirthankar Bandyopadhyay, and
Nicholas M Patrikalakis. Global motion planning un-
der uncertain motion, sensing, and environment map.
Autonomous Robots, 33(3):255-272, 2012.

[34] Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Rus-
sell, and Pieter Abbeel. Learning plannable representa-
tions with causal InfoGANSs. In Proc. NerulPS, 2018.

[35] Steven M LaValle. Rapidly-exploring random trees: A
new tool for path planning. 1998.

[36] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334—
1373, 2016.

[37] Andrew Levy, George Konidaris, Robert Platt, and Kate
Saenko. Learning multi-level hierarchies with hindsight.
In Proc. ICLR, 2019.

[38] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. In Proc. ICLR, 2016.

[39] Daoming Lyu, Fangkai Yang, Bo Liu, and Steven
Gustafson. SDRL: interpretable and data-efficient deep
reinforcement learning leveraging symbolic planning. In
Proc. AAAI 2019.

[40] Daniel Molina, Kislay Kumar, and Siddharth Srivastava.
Learn and link: learning critical regions for efficient
planning. In Proc. ICRA, 2020.

[41] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and
Sergey Levine. Data-efficient hierarchical reinforcement
learning. In Proc. NeurIPS, 2018.

[42] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey
Levine. Near-optimal representation learning for hierar-
chical reinforcement learning. In Proc. ICLR, 2019.

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance
deep learning library. In Proc. NeurIPS. 2019.

[44] Sujoy Paul, Jeroen Vanbaar, and Amit Roy-Chowdhury.
Learning from trajectories via subgoal discovery. In Proc.
NeurIPS, 2019.

[45] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly.
Differentially constrained mobile robot motion planning
in state lattices. Journal of Field Robotics, 26(3):308—
333, 20009.

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.

U-Net: convolutional networks for biomedical image
segmentation. In Proc. MICCAI, 2015.

[47] Dhruv Mauria Saxena, Tushar Kusnur, and Maxim
Likhachev. AMRA*: Anytime multi-resolution multi-
heuristic a. In Proc. ICRA. 1EEE, 2022.

[48] Naman Shah and Siddharth Srivastava. Using deep learn-
ing to bootstrap abstractions for hierarchical robot plan-
ning. In Proc. AAMAS, 2022.

[49] Naman Shah, Deepak Kala Vasudevan, Kislay Kumar,
Pranav Kamojjhala, and Siddharth Srivastava. Anytime
integrated task and motion policies for stochastic envi-
ronments. In Proc. ICRA, 2020.

[50] David Silver and Kamil Ciosek. Compositional planning
using optimal option models. In Proc. ICML, 2012.

[51] Tom Silver, Rohan Chitnis, Joshua Tenenbaum,
Leslie Pack Kaelbling, and Tomas Lozano-Pérez. Learn-
ing symbolic operators for task and motion planning. In
Proc. IROS, 2021.

[52] Ozgiir Simsek, Alicia P Wolfe, and Andrew G Barto.
Identifying useful subgoals in reinforcement learning by
local graph partitioning. In Proc. ICML, 2005.

[53] Martin Stolle and Doina Precup. Learning options in
reinforcement learning. In International Symposium on
abstraction, reformulation, and approximation, pages
212-223. Springer, 2002.

[54] Wen Sun, Jur van den Berg, and Ron Alterovitz. Stochas-
tic extended LQR for optimization-based motion plan-
ning under uncertainty. /EEE Transactions on Automa-
tion Science and Engineering, 13(2):437-447, 2016.

[55] Richard S Sutton, Doina Precup, and Satinder Singh.
Between MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181-211, 1999.

[56] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine,
and Pieter Abbeel. Value iteration networks. In Proc.
NeurIPS, volume 29, 2016.

[57] Aviv Tamar, Garrett Thomas, Tianhao Zhang, Sergey
Levine, and Pieter Abbeel. Learning from the hindsight
plan—episodic MPC improvement. In Proc. ICRA, 2017.

[58] Jur Van Den Berg, Sachin Patil, and Ron Alterovitz.
Motion planning under uncertainty using iterative local
optimization in belief space. The International Journal
of Robotics Research, 31(11):1263-1278, 2012.

[59] Michael P Vitus, Wei Zhang, and Claire J Tomlin. A
hierarchical method for stochastic motion planning in
uncertain environments. In Proc. IROS. IEEE, 2012.

[60] Manuel Watter, Jost Springenberg, Joschka Boedecker,
and Martin Riedmiller. Embed to control: A locally lin-
ear latent dynamics model for control from raw images.
In Proc. NeurIPS, 2015.

[61] Fangkai Yang, Daoming Lyu, Bo Liu, and Steven
Gustafson. PEORL: Integrating symbolic planning and
hierarchical reinforcement learning for robust decision-
making. In Proc. IJCAI, 2018.

A Extended Related Work

To the best of our knowledge, this is the first approach that
uses a data-driven method for synthesizing transferable and
composable options and leverages these options with a hier-
archical algorithm to compute solutions for stochastic path
planning problems. It builds upon the concepts of abstraction,
stochastic motion planning, option discovery, and hierarchical
reinforcement learning and combines reinforcement learning
with planning. Here, we discuss related work in these areas.

Motion planning is a well-researched area. Numerous
approaches [26l 135, 31, 145, 47] have been developed for
motion planning in deterministic environments. Kavraki
et al. [26]], LaValle [35], Kuffner and LaValle [31] develop
sampling-based techniques that randomly sample configura-
tions in the environment and connect them for computing a
motion plan from the initial and goal configurations. Holte
et al. [21]], Pivtoraiko et al. [45]], Saxena et al. [47] discretize
the configuration space and use search techniques such as A*
search to compute motion plans in the discrete space.

Stochastic motion planning Multiple approaches [11}133]
59, 22, [7, 20] have been developed for performing motion
planning with stochastic dynamics. Alterovitz et al. [1]] build
a weighted graph called stochastic motion roadmap (SMR)
inspired by the probabilistic roadmaps (PRM) [26]] where the
weights capture the probability of the robot making the corre-
sponding transition. Huynh et al. [22] extend SMR for com-
puting stochastic policies through value iteration over motion
trees constructed using RRT [35]. Sun et al. [54] use linear
quadratic regulator -- a linear controller that does not explic-
itly avoid collisions -- along with value iteration to compute
a trajectory that maximizes the expected reward. However,
these approaches require an analytical model of the transi-
tion probability of the robot’s dynamics. Tamar et al. [56]
develop a fully differentiable neural module that approximates
value iteration (VI) and can be used for computing solutions
for stochastic path planning problems. However, these ap-
proaches [} 54, 56] require discretized actions. Du et al.
[L1], Van Den Berg et al. [58] formulate a stochastic motion
planning problem as a POMDP to capture uncertainty in robot
sensing and movements. Multiple approaches [24} 13} 25]] de-
sign end-to-end reinforcement learning approaches for solving
stochastic motion planning problems. These approaches only
learn policies to solve one path-planning problem at a time
and do not transfer knowledge across multiple problems. In
contrast, our approach does not require discrete actions and it
learns options that are transferrable to different problems.

Subgoal discovery Several approaches have considered the
problem of learning task-specific subgoals. Kulkarni et al.
[32]], Bacon et al. [4], Nachum et al. [41}, 42], Czechowski
et al. [[10] use intrinsic reward functions to learn a two-level
hierarchical policy. The high-level policy predicts a subgoal
that the low-level goal-conditioned policy should achieve. The
high-level and low-level policies are then trained simultane-
ously using simulations in the environment. Paul et al. [44]
combine imitation learning with reinforcement learning for
identifying subgoals from expert trajectories and bootstrap
reinforcement learning. Levy et al. [37] learn a multi-level
policy where each level learns subgoals for the policy at the

lower level using Hindsight Experience Replay (HER) [3]] for
control problems rather than long-horizon motion planning
problems in deterministic settings. Kim et al. [27]] randomly
sample subgoals in the environment and use a path planning
algorithm to select the closest subgoal and learn a policy that
achieves this subgoal.

Option discovery Numerous approaches [53] 52} 9] 34, [13|
S| 16] perform hierarchical learning by identifying task-specific
options through experience collected in the test environment
and then use these options [55] along with low-level primitive
actions. Stolle and Precup [53], Simgek et al. [52] lay the
foundation for discovering options in discrete settings. They
collect trajectories in the environment and use them to identify
high-frequency states in the environment. These states are
used as termination sets of the options and initiation sets are
derived by selecting states that lead to these high-frequency
states. Once options are identified, they use Q-learning to
learn policies for these options independently to formulate
Semi-MDPs [55]]. Bagaria and Konidaris [5] learn options in a
reverse fashion. They compute trajectories in the environment
that reaches the goal state. In these trajectories, they use the
last K points to define an option. These points are used to
define the initiation set of the option and the goal state is used
as a termination set. They continue to partition the rest of the
collected trajectories similarly and generate a fixed number of
options.

Several approaches (60, 36, (14} [15, 19157, 12, |2} [18]] have
explored vision-based model predictive control for robot plan-
ning problems. These approaches learn latent representations
of the kinematic and dynamics model of the robot and use them
to perform model-based control for the given robot control
problem. These approaches focus on stochastic optimal con-
trol problems. In contrast, our approach focuses on relatively
long-horizon robot planning problems and can be used with
arbitrary controllers for short-horizon control (~ 5 seconds).

Planning with options Approaches for combining symbolic
planning with reinforcement learning [50, 61} 23] 39} 129, 30,
51 use pre-defined abstract models to combine symbolic plan-
ning with reinforcement learning. In contrast, our approach
learns such options (including initiation and termination sets)
as well as their policies and uses them to compute solutions
for stochastic path planning problems with continuous state
and action spaces.

B Training The Critical Region Predictor

Alg. (1] first needs to identify critical regions (Def.[2) to syn-
thesize options in the given environment. Recall that critical
regions are regions in the environment that have a high density
of solutions for the given class of problems but are hard to
sample under uniform distribution (Def. [2)). We train a deep
neural network that learns to identify critical regions in a given
environment using an occupancy matrix of the environment.
Given a set of training environments Ey.;,, training data for
such a network can be generated by solving multiple randomly
sampled motion planning problems.

These critical region predictors are environment indepen-
dent, and they are also generalizable across robots to a large
extent. Furthermore, the approach presented here directly used

the open-source critical regions predictors made available by
Shah and Srivastava [48]]. These predictors are environment in-
dependent and need to be trained only once per the kinematic
characteristics of a robot. E.g., the non-holonomic robots used
to evaluate our approach (details in Sec. 4)) are different from
those used by Shah and Srivastava [48]], however, we used the
critical regions predictor developed by them for a rectangular
holonomic robot.

Shah and Srivastava [48] use 20 training environments
(Elrain) to generate the training data. For each training environ-
ment €gqin € Firain, they randomly sample 100 goal configu-
rations. Shah and Srivastava [48] randomly sample 50 initial
configurations for each goal configuration and compute mo-
tion plans for them using an off-the-shelf motion planner and
a kinematic model of the robot. They use UNet [46] with Tanh
activation function for intermediate layers and Sigmoid activa-
tion for the last layer. They use the weighted logarithmic loss
as the loss function. Lastly, they use ADAM optimizer [28]]
with a learning rate of 10~* and train the network for 50, 000
epochs.

C Dense Pesudo-Reward Function

The option guide is used to define a pseudo reward function
R for the option. It is a dense reward function that provides a
reward to the robot according to the distance of the robot from
the nearest point in the option guide and the distance from the
last point of the option guide. For an option o;, we define the
dense pseudo reward function R; : X — R as follows:

Definition 9. Let o; be an option with endpoints (Z;, ;) and
let G; = [p1,...,pn] be the option guide. Given a configu-
ration x € X, let n(x) = p; define the closest point on the
option guide. Let d be the Euclidean distance measure. The
pseudo reward function R;(x) is defined as:

T ifxep

Tp ifv € SH{a(Zi), a(Bi)}

—(d(z,n(x))
+d(n(z),pn))

Here 1 is a large positive reward and 7, is a large negative
reward that can be tuned as hyperparameters. Intuitively, this
automatically generates a dense pseudo-reward function based
on the information available from the environment. Thus
rather than providing only a sparse reward function (e.g. “+1
when the robot reaches the termination set of the option”),
Alg. [T automatically constructs a pseudo reward function that
captures this condition (first case), a penalty for straying away
from the source and target abstract states (second case), and a
reward for covering more of the option guide (third case).

Ri(x) =

otherwise

D Theoretical Results

Lemma D.1. Let X be the configuration space of the robot
R and let ® and U be the set of critical regions and RBVD
respectively inducing the set of abstract states S and the neigh-
borhood function V. If there exists a pair of neighboring ab-
stract states s;,s; € S such that V(s;,s;) = 1 then there
would exist a pair of option endpoints L;; and (3;; such that
ZLi; C s;and By C sj.

Proof. (Sketch) The proof is straightforward and directly fol-
lows from the Alg.[T]itself. Our approach for create options
considers all pairs of neighboring abstract states and creates
options that transition between them. For more details, refer

to Sec.3.2 O

Proposition D.1. Let R be a holonomic robot using a 0.-
complient controller. For an option o with a pair of endpoints
(Zo, Bo), if there exists an option guide between T, and 3, in
the form of a §-clear motion plan such that §. < § then there
exists a proper partial policy for the option o.

Proof. (Sketch) Let G, = (p1,...,pn) be an option guide
for the option o as defined in Sec.[3.2.2] Here, each p; € G,
refers to a collision-free configuration x; € AXj. that has a
collision-free §-neighborhood represented with Bs(p;). Now,
given that the robot uses a §.-complient controller such that
0. < 9, an optimal partial proper policy can be defined using
a function that gives the next closest point on the option guide
moving towards the termination set of the option o. Let N, :
x — p; such that Vj > ¢, d(p;,) > d(p;,) and d(p;, B,) <
d(x, B,). An optimal policy can be such that 7, (z) = N,(z)
given a d-clear G;. Given that the robot is using J.-complient
controller with the support radius §. < &, the robot would
always end up in B;, neighborhood of a point in the option
guide which a subset of By collision-free neighborhood. This
ensures existence of a proper policy for the option o. O

Lemma D.2. Let R be a holonomic robot using a d.-complient
controller. If there exists a pair of option endpoints T; and
Bi with an option guide G; in the form of a §-clear motion
plan between T; and (; such that §. < 6, and if the low-level
policy learner is optimal, then Alg. [I) will learn an option

0; = <Ii7ﬁi,gz’77Ti>-

Proof. (Sketch) The proof is straightforward. Proposition [D.T]
proves existence of a proper policy m; for an option with
endpoints Z;, 5; and a holonomic robot R using d.-complient
controller if there exists J-clear option guide G; such that
0. < 0. The rest of the proof relies on the optimality of the
low-level learning. The option guide G; also induces a dense
pseudo-reward function R; (Sec. and Appendix. [C) that
provides a smooth reward function that guides the robot to the
termination set of the robot. Given that 7; is an optimal policy
(proposition[D.T)) and the low-level policy learner is optimal,
it should compute 7r;. O

E Automatically Identified Critical Regions and RBVDs
E.1 Environments S1-S4 15m x 15m

":1:'1

o

Env S1 Env S2 Env S3 Env S4

Figure 6: Test environments of the size 15m x 15m with the identified abstract states. These images show 2D projections of high-dimensional
region-based Voronoi diagrams. Each colored partition represents an abstract state. Top: The white circles represent centroids of the predicted
critical regions used to synthesize centroid options. Bottom: The white circles represent the interface regions for each pair of abstract states
used to synthesize interface options.ere

Environments L1-L3 75m x 75m

Figure 7: Test environments of the size 75m x 75m with the identified abstract states. These images show 2D projections of high-dimensional
region-based Voronoi diagrams. Each colored partition represents an abstract state. Top: The white circles represent centroids of the predicted
critical regions used to synthesize centroid options. Bottom: The white circles represent the interface regions for each pair of abstract states
used to synthesize interface options.

	Introduction
	Background
	Our Approach
	Learning to Create State Abstractions
	Learning to Create Action Abstractions
	Identifying Option Endpoints
	Constructing Option Guides

	The SHARP Algorithm for Motion Planning Under Uncertainty
	Theoretical Results

	Empirical Results
	Analysis of Results

	Related Work
	Conclusions, Limitations, and Future Work
	Extended Related Work
	Training The Critical Region Predictor
	Dense Pesudo-Reward Function
	Theoretical Results
	Automatically Identified Critical Regions and RBVDs
	Environments S1-S4 15m 15m

