

000 001 002 003 004 005 KDP: SIMPLIFYING REPRESENTATION DYNAMICS IN 006 KERNEL SPACE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

This paper proposes Kernelized Dynamics Pruning (KDP), a novel layer pruning method from the perspective of simplifying representation dynamics within large language models (LLMs). Motivated by the high similarity between consecutive layer representations, we view the LLM’s forward pass as a discrete-time dynamical system. We speculate that this phenomenon indicates the model’s internal dynamics have entered a “slow manifold”, which exhibits computational redundancy. Based on this insight, we project the representations into a kernel space where the complex, non-linear transformation between them is simplified to an approximately linear one. Then, a simple network learns the inverse kernel transformation, thereby enabling the pruning of the entire layer block. Both theoretical analysis and extensive experiments validate the effectiveness of KDP, demonstrating its superiority over existing pruning baselines. Code is available at [here](#).

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional performance across various tasks and domains (Touvron et al., 2023; Grattafiori et al., 2024; Yang et al., 2025; Liu et al., 2024). However, as models increase in scale, the substantial computational and hardware deployment costs pose significant challenges, limiting their broader application in real-world scenarios. Pruning is a primary technique for model compression aimed at alleviating the aforementioned problems (Louizos et al., 2017; Xia et al., 2023; Sun et al., 2024; Ma et al., 2023). Among various pruning methods, layer pruning is garnering increasing attention because it naturally leads to inference acceleration and model size reduction without requiring special handling.

The prevailing layer pruning paradigm involves removing redundant layers (Song et al., 2024; Men et al., 2024) or substituting them with compact modules (Yang et al., 2024; Chen et al., 2025), with a primary emphasis on the choice of pruning locations and the techniques for performance recovery (e.g., fine-tuning or distillation). However, this line of work largely overlooks the fundamental properties of the model’s internal dynamic flow, thereby leaving the potential simplification patterns unexplored, see Appendix C for details on related work. We suggest that pruning can be viewed not only as a method to “construct” a smaller sub-network, but also as a process to “search” for a geometric viewpoint that reveals the inherent simplicity of complex dynamics.

LLMs exhibit a notable characteristic: their consecutive layers tend to learn highly similar representations (Ding et al., 2025). As demonstrated in Figure 1, we employ both the centered kernel alignment (CKA, Kornblith et al., 2019) and the cosine similarity metric to measure the similarity of layer representations from the perspectives of the original space and the kernel space, respectively, and find that multiple consecutive layers exhibit consistently high similarity. This observation raises a key research question: *Does representational similarity equate to computational redundancy which can be substituted by a simple function?*

Viewing the forward pass of an LLM as a discrete-time dynamical system, high representational similarity signifies the system’s entry into a “slow manifold”, characterized by a small velocity. We assume that in such regions, the system’s short-term evolution can be described by a much simpler function (e.g., a linearized first-order approximation), rather than requiring the nonlinear dynamics of a complete Transformer block. However, substituting the non-linear forward pass with linear dynamics may result in the loss of fine-grained details, which could contain low-variance, task-relevant information (Cloos et al., 2025). Notably, Figure 1 shows that the similarity measured in the

054 kernel space is substantially higher than that in the original space. This observation suggests that the
 055 kernel space possesses stronger capability in modeling high-dimensional relationships, consistent
 056 with the intuition behind SVMs (Cortes & Vapnik, 1995). Consequently, it exhibits higher similarity
 057 and suggests a potential for linear simplification. Motivated by this, we aim to identify a Hilbert
 058 space in which the complex dynamics become amenable to linear approximation, thereby enabling
 059 effective layer pruning via linear simplification in kernel space.

060 Based on these insights, we propose **Kernelized Dynamics Pruning (KDP)**, simplifying repre-
 061 sentational dynamics within a kernel space to reduce computational redundancy. Specifically, our
 062 method proceeds in the following two steps. First, we jointly optimize a learnable kernel trans-
 063 formation and the linear coefficients mapping between layers. Second, an inverse transformation
 064 network maps these representations from the kernel space back to the original space, reconstructing
 065 the original layer to enable model pruning.

066 We validate the effectiveness of our method through both theoretical analysis and extensive exper-
 067 iments. First, we present a theorem providing an error bound for approximating multi-layer rep-
 068 resentations with linear transformations in the kernel space, thereby demonstrating that cross-layer
 069 representations can be linearly approximated within this space. We further show that the linear ap-
 070 proximation capability in the kernel space surpasses that in the original space, providing a theoretical
 071 foundation for KDP. Extensive experimental results empirically answer our guiding research ques-
 072 tions, demonstrating that exploiting representation similarity significantly simplifies computational
 073 processes by eliminating redundancy. KDP learns simplified internal representational dynamics in
 074 kernel space using only localized representation supervision, without requiring fine-tuning of the
 075 entire model on downstream tasks. This method enables effective modeling with limited data and
 076 obviates the need for post-training to restore performance. Our main contributions are as follows:
 077

- 078 • We reformulate layer pruning as the search for an optimal geometric embedding within a Repro-
 079 ducing Kernel Hilbert Space and propose Kernelized Dynamics Pruning (KDP) method, which
 080 linearizes representational dynamics using the kernel trick to simplify consecutive layers.
- 081 • We provide a theoretical error bound for linearization in the kernel space and demonstrate the
 082 modeling and linear simplification advantages of the kernel space, with experimental results cor-
 083 roborating the theoretical analysis.
- 084 • We conduct extensive experiments on 15 benchmarks, demonstrating that our method maintains
 085 superior performance while requiring only a small number of trainable parameters and limited
 086 calibration data, eliminating the need for additional post-training.

087 2 PRELIMINARIES & THEORETICAL ANALYSIS

088 2.1 PROBLEM SETUP & KERNELIZATION

089 **LLM Forward Formulation.** Consider an LLM composed of a sequence of N Pre-Norm Trans-
 090 former layers, F_1, \dots, F_N . Given an input \mathbf{x} , for the l -th layer, the forward pass is written as

$$091 \mathbf{h}_{l+1}(\mathbf{x}) = \mathbf{h}_l(\mathbf{x}) + f_l(\text{Norm}(\mathbf{h}_l(\mathbf{x}))). \quad (1)$$

092 Here, $\text{Norm}(\cdot)$ denotes the Layer Normalization function, $\mathbf{h}_l(\mathbf{x}) \in \mathbb{R}^d$ denotes the l -th layer repre-
 093 sentation and $f_l(\cdot)$ denotes the backbone function of the Transformer layer composed of multi-head
 094 attention (MHA) and feed-forward neural network (FFN). For simplicity, we write \mathbf{h} for $\mathbf{h}(\cdot)$ when
 095 the context is clear.

096 **Kernel Model.** A kernel is a function $k(\mathbf{x}, \mathbf{y})$ that measures the similarity between two data points
 097 \mathbf{x} and \mathbf{y} . It is formally defined as an inner product in a feature space \mathcal{H} . Gaussian Radial Ba-
 098 sis Function (RBF) kernel (i.e., $k(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \|\mathbf{x} - \mathbf{y}\|^2)$) is the canonical choice due to
 099 its universality and consistency (Steinwart, 2002). In this paper, we employ a learnable Random
 100 Fourier Features (RFF) kernel to learn a data-driven, anisotropic Gaussian RBF kernel (Rahimi &
 101 Recht, 2007), which enhances representational capacity and reduces computational cost. The ker-
 102 nel is approximated by the inner product of a low-dimensional feature map $\varphi(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^{2m}$,
 103 $k(\mathbf{x}, \mathbf{y}) \approx \varphi(\mathbf{x})^\top \varphi(\mathbf{y})$, where $\varphi(\mathbf{x})$ is defined as:

$$104 \varphi(\mathbf{x}) = \frac{1}{\sqrt{m}} \left(\cos(\mathbf{W}^\top \mathbf{x} + \mathbf{b})^\top, \sin(\mathbf{W}^\top \mathbf{x} + \mathbf{b})^\top \right)^\top. \quad (2)$$

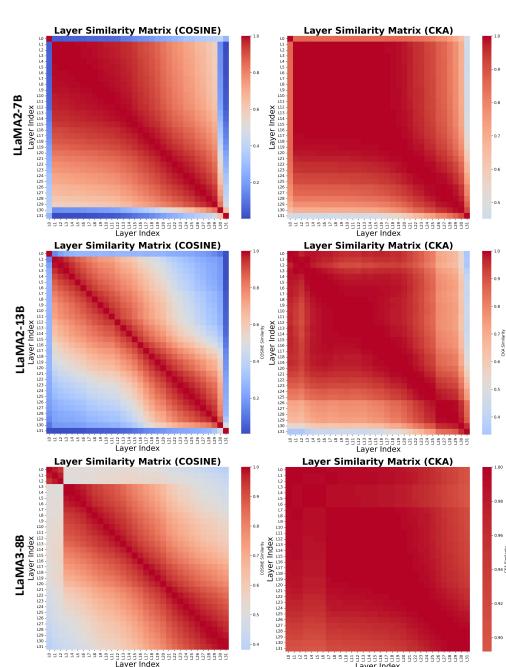


Figure 1: Inter-layer Cosine and CKA Similarity of 3 LLaMA LLMs.

Algorithm 1: Kernelized Dynamics Pruning

```

1: Require: Pretrained LLM  $F$ , calib. set  $\mathcal{D}$ , RFF dim  $m$ , low-rank  $r$ , block max length  $K_{\max}$ , budget  $B$ , stability step  $\gamma$ , weight  $W$ , training iters  $T$ .
2: Let  $\mathcal{G}$  be the set of  $B$  non-overlapping model blocks  $F_{l:l+K_{\max}}$  that maximize the similarity score  $\text{CKA}(\mathbf{h}_l, \mathbf{h}_{l+K_{\max}})$ .
3: procedure JOINTKERNELLINEARIZATION
4:   for  $(l, \dots, l + K_{\max}) \in \mathcal{G}$  do
5:     Define  $\varphi_\theta$ , operators  $\{\mathbf{A}_i\}_{i=1}^k$ 
6:     for minibatch  $\mathcal{B} \subset \mathcal{D}$  do
7:        $\widehat{\varphi}(\mathbf{h}_{l+k}(\mathcal{B})) \leftarrow \left( \prod_{i=1}^k \mathbf{A}_i \right) \varphi_\theta(\mathbf{h}_l(\mathcal{B}))$ 
8:        $\mathcal{L}(\cdot) \leftarrow \mathcal{L}_{\text{mse}} + \mathcal{L}_{\text{cos}}$ 
9:       Update  $\theta$  and  $\{\mathbf{A}_i\}_{i=1}^k$ 
10:    return  $\{\theta^{(l)}, \{\mathbf{A}_i^{(l)}\}_{i=1}^k\}_{l \in \mathcal{G}}$ 
11: procedure TRAININVERSENETWORK
12:   for  $(l, \dots, l + K_{\max}) \in \mathcal{G}$  do
13:     Define inverse network  $\mathcal{R}_\phi$ 
14:     for minibatch  $\mathcal{B} \subset \mathcal{D}$  do
15:        $\widehat{\mathbf{h}}_{l+k} \leftarrow \mathcal{R}(\widehat{\varphi}(\mathbf{h}_{l+k}))$ 
16:        $\mathcal{L}(\cdot) \leftarrow \mathcal{L}_{\text{mse}} + \mathcal{L}_{\text{norm}}$ 
17:       Update  $\phi$ 
18:    return  $\{\phi^{(l)}\}_{l \in \mathcal{G}}$ 
19: procedure FOLDBLOCK
20:   Define  $\mathcal{S}(\mathbf{h}) \leftarrow \mathcal{I}_\phi\left(\left(\prod_{i=1}^k \mathbf{A}_i\right) \varphi_\theta(\mathbf{h})\right)$ 
21:   Replace  $F_l, \dots, F_{l+k}$  with  $\mathcal{S}$ 

```

Here the columns of weight matrix $\mathbf{W} \in \mathbb{R}^{d \times m}$ are i.i.d. samples drawn from $\mathcal{N}(0, \Sigma)$, and the elements of bias vector $\mathbf{b} \in \mathbb{R}^m$ are i.i.d. samples drawn from $U(0, 2\pi)$. In contrast to the original RFF kernel, which relies on a pre-defined spectral distribution, here the covariance matrix Σ is learnable and parameterized as $\Sigma = \mathbf{D} + \mathbf{L}\mathbf{L}^\top$, $\mathbf{D} = \text{diag}(\exp(\lambda))$ is a diagonal matrix parameterized by a learnable vector $\lambda \in \mathbb{R}^d$ and $\mathbf{L} \in \mathbb{R}^{d \times r}$ is a learnable low-rank factor matrix, where the rank r is a hyperparameter that satisfies $r \ll d$. Equation 2 effectively learns an anisotropic Guassian RBF kernel $k(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{y})^\top \Sigma^{-1}(\mathbf{x} - \mathbf{y})\right)$ whose distance metric is adapted to the data.

Symbol Denotation. In this paper, the ℓ_p -norm of a vector $\mathbf{v} = (v_1, \dots, v_m)^\top$ is denoted by $\|\mathbf{v}\|_p \triangleq \sum_{i=1}^m (\mathbf{v}_i^p)^{1/p}$, with the subscript omitted for the standard ℓ_2 -norm (i.e., $\|\mathbf{v}\| \triangleq \|\mathbf{v}\|_2$), the operator norm for a matrix is denoted by $\|\cdot\|_{\text{op}}$, $(x)_+ = \max\{x, 0\}$ denotes the positive part of variable x , and $O(\cdot)$ denotes the standard Big-O notation for an asymptotic upper bound. For detailed definitions of technical machine learning terms, such as ERM and population risk, please refer to the Appendix A.

2.2 FORWARD DYNAMICS ON A SLOW MANIFOLD

The residual connection described in Equation 1 motivates us to view the Transformer’s forward pass as a discrete-time dynamical system. The term $f_l(\cdot)$ can be seen as a “velocity” or “update” vector that perturbs the current state \mathbf{h}_l , thereby producing the state of the next layer, \mathbf{h}_{l+1} .

As shown in Figure 1, consecutive layer representations in LLMs exhibit strikingly high similarity. Within this dynamical framework, high similarity between \mathbf{h}_{l+1} and \mathbf{h}_l is directly equivalent to the update vector having a small relative norm, i.e., $\|f_l(\text{Norm}(\mathbf{h}_l))\| \ll \|\mathbf{h}_l\|$, indicating that the system’s trajectory has entered a “slow manifold”. If the transformation between layers is minor, the local dynamics of a Transformer block f_l could potentially be approximated by a far simpler function. This is a common practice in fields such as the numerical analysis of partial differential equations (PDEs) and model order reduction (e.g. (Murray, 2007), more detailed analysis can be found in the Appendix G). While a first-order approximation (i.e., local linearization of the dynamics) is a natural approach, the Transformer’s forward pass is fundamentally nonlinear. Applying such an approximation directly in the original representation space would therefore lead to significant information loss, as it would neglect crucial nonlinear feature interactions. Note that in Figure

1, the CKA similarity generally exceeds cosine similarity, which is consistent with the property
 163 that the high-dimensional representation induced by the kernel space captures complex representa-
 164 tional relationships more effectively. Therefore, we assume that there exists a kernel function $\varphi(\cdot)$
 165 that induces a Hilbert space where the layer-wise transformation becomes approximately linear, i.e.,
 166 $\varphi(\mathbf{h}_{l+1}) \approx \mathbf{A}_l \varphi(\mathbf{h}_l)$.

168 2.3 THEORETICAL RESULTS

170 As argued in Section 2.2, when adjacent layers exhibit high representational similarity, the forward
 171 propagation enters a slow manifold where a simpler rule can capture short-horizon dynamics, an
 172 approximation that becomes more accurate in a suitable kernel space. In this section, we present
 173 the theoretical formalization of these arguments. First, we derive the error bound for linear fitting
 174 of multi-layer representations in the kernel space, demonstrating that consecutive layers with highly
 175 similar representations can be reduced to linear transformations in this space. Subsequently, we
 176 prove that the kernel space exhibits superior fitting capacity for layer simplification compared to the
 177 original representation space. The detailed proofs are provided in Appendix D.

178 **Theorem 1** (Kernel Linearization Error Bound). *Let $\varphi_\theta : \mathbb{R}^d \rightarrow \mathbb{R}^{2m}$ be a feature map such that
 179 $\|\varphi_\theta(\mathbf{h})\|_2 \leq R_\varphi$ for all representations \mathbf{h} . Let \mathbf{A}_i be linear operators for the i -th step transition
 180 with $\|\mathbf{A}_i\|_{\text{op}} \leq B_{\mathbf{A}}$. Let $(\hat{\theta}, \{\hat{\mathbf{A}}_i\})$ be the Empirical Risk Minimization(ERM) solution on an n -
 181 sample training set, and let L_{ERM} denote the minimum empirical one-step squared error. Then for
 182 any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the draw of the training set, for every starting
 183 layer l and horizon $k \geq 1$, the k -step error $\mathcal{E}_{k,l}(\hat{\theta}, \{\hat{\mathbf{A}}_i\}) := \varphi_{\hat{\theta}}(\mathbf{h}_{l+k}) - \left(\prod_{i=l}^{l+k-1} \hat{\mathbf{A}}_i \right) \varphi_{\hat{\theta}}(\mathbf{h}_l)$
 184 satisfies*

$$\|\mathcal{E}_{k,l}(\hat{\theta}, \{\hat{\mathbf{A}}_i\})\| \leq \underbrace{\sqrt{L_{\text{ERM}} + C B_{\mathbf{A}}^2 R_\varphi^2 \sqrt{\frac{2m \log(2m/\delta)}{n}}}}_{(a)} \cdot \underbrace{\sum_{j=0}^{k-1} B_{\mathbf{A}}^{k-1-j}}_{(b)}. \quad (3)$$

190 Theorem 1 yields a two-factor bound on k -step error: a single-step term (a) that captures the linear
 191 model’s in-kernel fitting ability plus its generalization gap, and a multi-step accumulation factor (b)
 192 that governs how errors accumulate across replaced layers. Theoretically, for the bounded parame-
 193 ters R_φ and $B_{\mathbf{A}}$, the error bound converges at a rate of $O(1/\sqrt{n})$ with the sample size n . In sub-
 194 sequent experiments illustrated in Figure 4, we establish empirical values for $B_{\mathbf{A}}$ and R_φ , demon-
 195 strating that these bounds are well-behaved, i.e., they are significantly smaller than \sqrt{n} . Therefore,
 196 Theorem 1 demonstrates that consecutive layers can be well simplified as linear transformations in
 197 kernel space.

198 Further, we can prove that compared to learning a linear approximation in the original representation
 199 space, the kernel space yields a smaller linear approximation error. Before that, the fitting capability
 200 of kernel space is given in the following lemma.

202 **Lemma 1** (Kernel Existence). *For any given $\epsilon > 0$, there exists a Random Fourier Feature map
 203 $\varphi : \mathbb{R}^d \rightarrow \mathbb{R}^{2m}$ (defined by suitable parameters \mathbf{W}, \mathbf{b} , and a sufficiently large dimension $2m$) and a
 204 corresponding linear operator \mathbf{A} , such that: $\mathbb{E}_{\mathbf{h}_l \sim \mathcal{D}} [\|\varphi(\mathbf{h}_{l+1}) - \mathbf{A}\varphi(\mathbf{h}_l)\|] < \epsilon$.*

205 The proof of Lemma 1 is a direct application of the Universal Kernels (Micchelli et al.,
 206 2006). Next, our analysis begins with two function classes. Consider the following two
 207 function classes at the l -th layer of an LLM: the identity class of the original space $\mathcal{F}_{\text{ID}} :=$
 208 $\{x \mapsto \mathbf{A}x : \|\mathbf{A}\|_{\text{op}} \leq B_{\mathbf{A}}\}$, with a population risk of $\mathcal{R}_{\text{ID}}(\mathbf{A}) := \mathbb{E} [\|\mathbf{h}_{l+1} - \mathbf{A}\mathbf{h}_l\|^2]$; the RFF
 209 class $\mathcal{F}_{\text{RFF}} := \{x \mapsto \mathbf{A}\varphi_\theta(x) : \|\mathbf{A}\|_{\text{op}} \leq B_{\mathbf{A}}, \|\varphi(x)\| \leq R_\varphi, \theta \in \Theta\}$, with a population risk of
 210 $\mathcal{R}_{\text{RFF}}(\theta, \mathbf{A}) := \mathbb{E} [\|\varphi_\theta(\mathbf{h}_{l+1}) - \mathbf{A}\varphi_\theta(\mathbf{h}_l)\|^2]$. Note the minimum population approximation error
 211 of the two classes as:

$$\text{apx}_{\text{ID}} := \inf_{\|\mathbf{A}\|_{\text{op}} \leq B_{\mathbf{A}}} \mathcal{R}_{\text{ID}}(\mathbf{A}), \quad \text{apx}_{\text{RFF}} := \inf_{\theta \in \Theta, \|\mathbf{A}\|_{\text{op}} \leq B_{\mathbf{A}}, \|\varphi(x)\| \leq R_\varphi} \mathcal{R}_{\text{RFF}}(\theta, \mathbf{A}).$$

212 Let $\hat{\mathbf{A}}_{\text{ID}}$ and $(\hat{\theta}, \hat{\mathbf{A}}_{\text{RFF}})$ be the ERM solutions on the respective classes. We can get the following
 213 conclusion on the superior fitting capacity of Kernel space.

216 **Theorem 2** (Kernel Advantage). *Let $\Delta := \text{apx}_{ID} - \epsilon > 0$. For any δ , there exist $m', c, C > 0$, such
217 that for RFF dimension $2m > m'$ and*

$$218 \quad n \geq \frac{16 \left(CB_{\mathbf{A}}^2 \left(R_{\varphi}^2 \sqrt{2m \log \frac{2cm}{\delta}} - R_h^2 \sqrt{d \log \frac{cd}{\delta}} \right)_+ \right)^2}{\Delta^2}, \quad (4)$$

223 *the following holds with probability at least $1 - \delta$: $\mathcal{R}_{RFF}(\hat{\theta}, \hat{\mathbf{A}}_{RFF}) \leq \mathcal{R}_{ID}(\hat{\mathbf{A}}_{ID})$.*

224 Theorem 2 establishes that in the kernel space, a well-trained RFF with dimensionality greater than
225 $2m$ achieves lower population risk compared to simplification in the original representation space.
226 This result further substantiates the necessity of performing linearized model compression in the
227 kernel space. Experiments in Table 3 empirically validate the superiority of the kernel space over
228 the original representation space.

230 3 KERNELIZED DYNAMICS PRUNING

232 As argued in Section 2, on both intuitive and theoretical grounds, representational similarity implies
233 computational redundancy, so that the complex module can be simplified better in kernel space.
234 Building on this foundation, this section details our pruning method, Kernelized Dynamics Pruning
235 (KDP). The algorithm is presented in Algorithm 1.

237 3.1 KERNEL LINEARIZATION JOINT TRAINING

239 The first step is to identify which parts of the network to prune. Inspired by prior work (Chen
240 et al., 2025; Ding et al., 2025; Gromov et al., 2025), we focus on replacing blocks of multiple
241 consecutive Transformer layers. To control the cumulative error as shown in Equation 1, we set the
242 consecutive layers to be replaced with a maximum length K_{\max} . For each block, we first compute
243 the CKA similarity between the output representations of the first and last layers of consecutive
244 blocks. Following standard practice (e.g., Ding et al., 2025), we exclude the initial and final 10%
245 of the model’s layers from consideration, as they are empirically known to be sensitive to pruning.
246 Combining these criteria, we rank all eligible blocks according to their CKA scores and advance the
247 highest-scoring candidate to the kernel linearization training stage.

248 For the candidate block for pruning, we learn a replacement module by jointly optimizing the learnable
249 RFF kernel parameters θ and the multi-step linear operators $\{\mathbf{A}_i\}_{i=1}^{K_{\max}}$. For each training
250 sample $x \in \mathcal{D}$, the estimate $(\hat{\theta}, \{\hat{\mathbf{A}}_i\})$ is given by:

$$251 \quad \arg \min_{\theta, \{\mathbf{A}_i\}} \sum_{i=1}^{K_{\max}} \sum_{x \in \mathcal{D}} \left[\|\mathbf{A}_i \varphi_{\theta}(\mathbf{h}_{l+i-1}(x)) - \varphi_{\theta}(\mathbf{h}_{l+i}(x))\|^2 \right. \\ 252 \quad \left. + (1 - W \odot \cos(\mathbf{A}_i \varphi_{\theta}(\mathbf{h}_{l+i-1}(x)), \varphi_{\theta}(\mathbf{h}_{l+i}(x)))) \right]. \quad (5)$$

256 Here, \odot denotes element-wise multiplication. The loss function is composed of two terms: a re-
257 construction loss and a weighted cosine similarity loss. The latter is designed to encourage a finer-
258 grained alignment of the representations’ geometric structure. Specifically, this cosine similarity
259 term is modulated by a weight matrix W , which assigns greater importance to tokens based on their
260 position, prioritizing those towards the end of the sequence. To improve convergence stability, \mathbf{A}_i
261 is parameterized as $\mathbf{A}_i = \mathbf{I} + \gamma_i \mathbf{B}_i$ that preserves the additive nature of LLM’s forward pass (see
262 Equation 1), where the scalar γ_i and the matrix \mathbf{B}_i are trainable parameters. In addition, we initialize
263 \mathbf{A}_i at the start of each iteration with its Ordinary Least Squares (OLS) estimate in the current RFF
264 kernel space to accelerate training.

265 3.2 INVERSE TRANSFORMATION NETWORK

267 Once the joint training converges, we can get k -step prediction in the kernel space, i.e., $\hat{\varphi}(\mathbf{h}_{l+k}) =$
268 $(\prod_{i=1}^k \hat{\mathbf{A}}_i) \hat{\varphi}_{\theta}(\mathbf{h}_l)$. However, this output must be mapped back to the original space for layer
269 replacement. Thus, an inverse transformation network, $\mathcal{I}(\cdot)_{\phi} : \mathbb{R}^{2m} \rightarrow \mathbb{R}^d$, takes the kernel-space

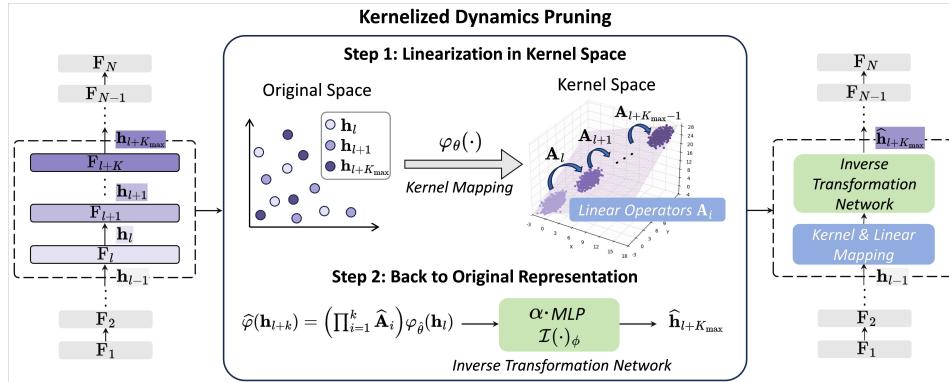
270
271
272
273
274
275
276
277
278
279
280
281
282

Figure 2: Overall illustration of KDP. KDP replaces a multi-layer Transformer block via a two-step process: first, it projects and linearizes non-linear representations in a kernel space; second, it learns an inverse mapping from the kernel space back to the original space using a simple network.

prediction $\hat{\varphi}(\mathbf{h}_{l+k})$ as input, to reconstruct representation in original space \mathbf{h}_{l+k} , denote as $\hat{\mathbf{h}}_{l+k}$. The estimate $\hat{\phi}$ is given by:

$$\arg \min_{\phi} \sum_{x \in \mathcal{D}} \|\mathcal{I}_{\phi}(\hat{\varphi}(\mathbf{h}_{l+k}(x))) - \mathbf{h}_{l+k}(x)\|^2. \quad (6)$$

We parameterize the inverse transformation network \mathcal{I} as a two-layer MLP with a scalar scaling factor α , i.e. $\mathcal{I}(\mathbf{x}) := \alpha \cdot \text{MLP}(\mathbf{x})$. We observe that the iterative application of the linear operators $\{\mathbf{A}_i\}$ in the kernel space can lead to a significant decrease in the representation’s norm. The scaling factor α explicitly compensates for this norm decay, enabling a more stable and efficient recovery of the original representation’s scale.

4 EXPERIMENTS

4.1 SETUP

Models. Our experiments are conducted on 6 popular open-source models: LLaMA2-7B, LLaMA2-13B (Touvron et al., 2023), LLaMA3.1-8B, LLaMA3-8B (Grattafiori et al., 2024), OPT-2.7B and OPT-6.7B. (The results for the OPT model are presented in the Appendix E.) Following prior work, we prune the layers that account for approximately 25% of the original parameters.

Training Datasets. For training, we construct a composite dataset of 4000 samples by randomly selecting 500 samples from the training set of each of the following datasets: PIQA (Bisk et al., 2020), CMMLU (Yüksel et al., 2024), BoolQ (Clark et al., 2019), C3 (Sun et al., 2020), MNLI (Williams et al., 2018), Race-High/Middle (Lai et al., 2017), and SlimPajama (Shen et al., 2024).

Benchmarks. For a comprehensive evaluation, we assess the models on 15 standard datasets. We group the evaluation tasks into two categories: generation and classification. For the classification, the evaluation is conducted on the test sets of the aforementioned datasets, excluding SlimPajama, and is supplemented with 6 additional datasets: CHID (Zheng et al., 2019), HellaSwag (Zellers et al., 2019), CoQA (Reddy et al., 2019), WSC (Levesque et al., 2012), SST2 (Socher et al., 2013), and C3 (Sun et al., 2020). We also evaluate 3 benchmarks for generative capabilities. For WikiText (Merity et al., 2017) and C4 (Raffel et al., 2020), we evaluate their Perplexity (PPL), and for XSum (Narayan et al., 2018), we evaluate ROUGE1. We use the LM Evaluation Harness (Gao et al., 2024) with default parameters in our evaluations.

Baselines. Beyond the dense model, we consider six structured pruning methods: ShortGPT (Men et al., 2024) and SLEB (Song et al., 2024), which prune the network directly via metrics without retraining, and LaCo (Yang et al., 2024), Streamline (Chen et al., 2025), SliceGPT (Ashkboos et al., 2024), and LLM-Pruner (Ma et al., 2023), which first prune or replace network components and then employ a retraining phase to recover performance.

324 4.2 MAIN RESULTS
325

326 Table 1 and Table 2 show the effects of different pruning methods on classification and generative
327 tasks. The two tables present detailed scores on each benchmark, the overall average, and the re-
328 tained performance rate. In the tables, “Dense” refers to the original model and “w/o kernel” is
329 an ablation of our method that only removes the identified layers. “Ours” denotes our proposed
330 method, while “Ours[†]” refers to our method after being fine-tuned using Parameter-Efficient Fine-
331 Tuning (PEFT). (Details of PEFT are provided in the Appendix B.) Table 1 shows that our method’s
332 retained performance surpasses that of the best-performing baseline by 9.1%, 8.3%, and 9.3% on
333 LLaMA2-7B, LLaMA2-13B, and LLaMA3-8B, respectively. Our method also achieves comparable
334 performance on generative tasks. Notably, it requires no retraining phase to recover performance.

335 It is worth noting that on the SST-2 dataset, a simple binary classification task, existing methods
336 show a notable performance degradation despite performing well on other complex benchmarks.
337 We suppose that this phenomenon arises because simpler tasks rely more heavily on coarse-grained
338 information, which prior methods tend to prune inadvertently, thereby leading to instability. In con-
339 trast, our method consistently maintains its effectiveness, indicating its superior capacity to preserve
340 the model’s essential capabilities.

341 The comparison with the “w/o Kernel” demonstrates the effectiveness of KDP. While directly prun-
342 ing consecutive layers leads to a significant degradation in performance, our method of simplifying
343 these layers in the kernel space yields substantial gains. Specifically, it boosts the average retained
344 performance by 31.9%, 23.1%, and 18.9% percentage points for the three models, respectively.

345
346 Table 1: Performance comparison of different baselines on classification benchmarks. “*” indicates
347 the results in the original paper. “†” indicates the results after fine-tuning. Average (Avg.) represents
348 the arithmetic mean of Accuracy across all datasets. Retained performance (RP.) represents the
349 percentage of the original model’s performance retained by the pruning method.

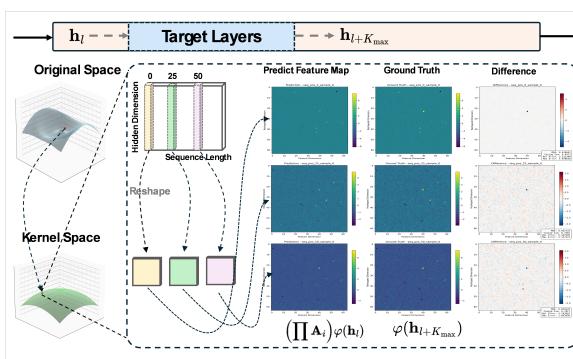
351 LLM	352 Method	353 Ratio	354 CMNLI	355 HeSw	356 RQA	357 CHID	358 WSC	359 CoQA	360 BoolQ	361 MMLU	362 CMMLU	363 Race	364 SST2	365 C3	366 Avg.	367 RP.
354 LLaMA-2-7B	Dense	0.0%	34.9	73.3	79.7	41.6	81.2	66.2	72.3	48.9	30.8	42.8	93.2	44.8	59.14	100.0
	SLEB	20.1%	29.7	63.3	66.1	19.3	75.7	48.5	68.2	24.2	26.4	28.8	78.8	35.3	47.02	79.5
	ShortGPT	27.1%	31.3	51.6	66.3	25.5	70.9	49.0	59.6	34.4	<u>28.5</u>	37.7	68.4	35.9	46.59	78.8
	LaCo*	27.1%	<u>34.4</u>	<u>55.7</u>	<u>69.8</u>	36.1	40.4	45.7	64.1	26.5	25.2	23.6	-	<u>39.7</u>	41.93	70.9
	Streamline [†]	27.0%	32.9	54.3	63.6	26.9	70.7	42.5	64.3	37.7	29.5	34.9	90.5	32.6	48.37	81.8
	LLMPruner [†]	24.8%	31.4	55.4	70.1	27.8	<u>71.4</u>	44.7	53.3	25.7	25.1	25.4	67.7	23.1	43.43	73.4
	SliceGPT	25.4%	31.9	49.9	68.7	16.7	66.5	48.6	55.5	28.2	22.3	25.2	78.3	30.7	43.54	73.6
	SliceGPT [†]	25.4%	32.1	53.3	69.2	20.4	61.2	44.4	61.9	29.7	22.5	26.7	87.1	28.7	44.77	75.7
	w/o Kernel	24.8%	30.8	34.5	57.1	12.8	69.1	11.2	50.3	25.3	24.8	20.5	51.5	23.5	34.28	58.0
	Ours	22.8%	33.6	65.1	70.1	27.2	73.9	45.4	<u>71.6</u>	44.7	28.1	<u>39.9</u>	94.0	43.7	53.11	89.9
	Ours [†]	22.8%	34.6	63.0	68.8	<u>29.5</u>	<u>74.8</u>	49.0	72.3	<u>41.5</u>	26.7	40.4	<u>92.3</u>	37.3	<u>52.52</u>	88.8
368 LLaMA-2-13B	Dense	0.0%	48.1	74.4	77.5	47.9	88.5	65.6	73.9	57.7	38.9	59.7	93.7	47.5	64.45	100.0
	SLEB	19.5%	34.7	63.1	67.2	39.0	77.7	51.7	52.1	25.6	24.6	53.5	77.9	31.7	49.9	77.4
	ShortGPT	24.6%	31.7	61.5	72.5	38.4	70.0	51.0	62.8	<u>54.4</u>	33.7	57.3	76.1	45.0	54.53	84.6
	LaCo*	24.6%	32.9	<u>64.4</u>	74.3	<u>40.1</u>	52.9	52.7	64.0	45.9	32.6	55.6	-	44.9	50.94	79.0
	Streamline*	24.6%	33.0	69.1	75.1	38.0	36.5	63.8	66.2	55.1	39.2	<u>58.0</u>	-	45.7	52.70	81.8
	LLMPruner [†]	24.4%	27.8	55.3	61.9	30.7	63.4	49.7	53.0	23.1	23.3	20.0	65.8	30.3	42.03	65.2
	SliceGPT	23.6%	33.2	53.1	60.8	18.4	74.8	44.3	36.6	25.1	25.7	22.4	68.3	26.1	40.73	63.5
	SliceGPT [†]	23.6%	31.5	45.9	60.3	18.9	67.1	39.7	37.8	29.1	28.4	23.4	78.0	26.9	40.58	63.0
	w/o Kernel	24.3%	32.8	63.1	67.5	33.6	72.5	19.3	60.6	35.1	27.1	33.3	61.7	33.5	45.01	69.8
	Ours	23.4%	<u>40.0</u>	64.1	<u>74.5</u>	39.1	82.5	<u>62.5</u>	69.4	52.7	37.1	58.2	89.1	49.5	59.89	92.9
376 LLaMA3-8B	Ours [†]	22.8%	41.2	63.5	73.9	40.2	<u>80.1</u>	63.8	63.3	51.9	<u>38.0</u>	55.6	87.8	48.5	58.98	91.5
	Dense	0.0%	33.9	75.7	77.9	72.8	86.4	72.5	75.3	67.2	50.1	73.5	93.0	62.1	70.03	100.0
	SLEB	19.0%	33.0	65.1	63.0	28.0	74.6	31.5	<u>67.7</u>	49.3	27.3	24.1	77.9	37.2	48.23	68.9
	ShortGPT	19.0%	33.7	<u>46.0</u>	65.4	<u>25.8</u>	73.0	44.8	38.9	34.2	37.1	<u>30.4</u>	82.3	44.1	46.31	66.1
	w/o Kernel	27.2%	33.0	41.0	55.7	18.0	73.8	29.3	<u>50.8</u>	24.0	25.7	21.7	65.1	36.8	39.58	56.5
	Ours	25.8%	33.9	<u>61.5</u>	<u>73.5</u>	23.9	<u>83.6</u>	<u>37.7</u>	71.0	55.5	<u>34.0</u>	38.4	<u>81.4</u>	38.9	52.77	75.4
	Ours [†]	22.8%	30.1	57.5	74.1	25.1	84.4	33.0	62.4	<u>50.4</u>	38.5	34.0	68.3	35.5	<u>49.44</u>	70.6

378
 379 Table 2: Performance comparison of different baselines on generation benchmarks. For Perplexity,
 380 a lower score means better performance (\downarrow), while for ROUGE, a higher score means better (\uparrow).
 381

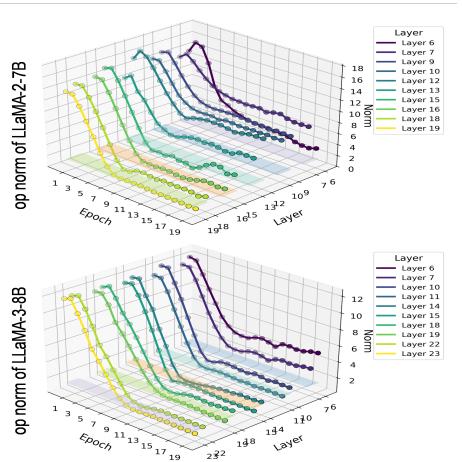
Models	LLaMA2-7B			LLaMA2-13B			LLaMA-3.1-8B			RP(PPL)	RP(Rouge)
	WIKI \downarrow	C4 \downarrow	Xsum \uparrow	WIKI \downarrow	C4 \downarrow	Xsum \uparrow	WIKI \downarrow	C4 \downarrow	Xsum \uparrow		
Dense	5.5	7.0	19.2	4.9	6.5	22.7	6.1	8.8	27.2	100%	100%
Streamline †	9.9	17.1	19.7	43.7	81.7	19.5	377.1	201.1	21.5	5.3%	87.8%
SLEB	12.9	19.3	10.0	33.3	45.5	17.3	55.8	79.6	13.1	15.7%	58.5%
w/o Kernel	13.2	17.4	12.8	20.7	27.9	16.0	120.7	103.6	17.5	12.8%	67.0%
Ours	8.3	<u>13.5</u>	15.3	17.2	25.0	18.0	205.7	113.6	21.8	10.1%	79.7%
Ours †	8.3	9.3	<u>17.0</u>	13.2	15.0	19.3	31.7	14.6	20.2	42.1%	<u>81.8%</u>

4.3 FURTHER ANALYSIS

390
 391 **Representational patterns can be learned within the kernel space.** Figure 3 presents a compari-
 392 son between the predicted representations and the ground-truth representations viewed in the kernel
 393 space. Specifically, we feed a sample from the CMLLU dataset into LLaMA2-7B, where layers 10
 394 through 14 have been replaced by KDP. RFF kernel projects the 14-th layers’ output representations
 395 into a (sequence length \times 1024) matrix. To visualize these representations, we take rows 0, 25, and
 396 50, reshape each into a 32×32 matrix, and render them as heatmaps. As observed, minor deviations
 397 tend to increase with the sequence position, which motivated our weight-scaling design in Equation
 398 5. To this end, the predicted representations closely match the actual ones. Notably, KDP not only
 399 captures the general trends of the representations but also accurately fits outlier points, which are
 400 critical to model performance (Sun et al., 2024). This highlights KDP’s ability to effectively learn
 401 and preserve essential patterns of the representations in the kernel space.
 402



403
 404 Figure 3: Kernel space representation visualization.
 405 The heatmap panels show (from left to right) the pre-
 406 dicted representation, the ground-truth representation,
 407 and their difference for a sample from CMLLU. The
 408 color range is unified for the first two panels to high-
 409 light their similarity.
 410



411 Figure 4: Operator norms of $\varphi(\cdot)$ and $\{\mathbf{A}_i\}$
 412 during training. The line corresponds to
 413 $\|\mathbf{A}_i\|_{\text{op}}$; the shaded region is the norm of
 414 $\|\varphi(\mathbf{h}_l)\|_{\text{op}}$ for the shared kernel space, cal-
 415 culated from mean-subtracted samples.
 416

417 As training progresses, B_A and R_φ behave well. Figure 4 illustrates the evolution of the operator
 418 norms for $\{\mathbf{A}_i\}$ and $\varphi(\cdot)$ during the training of two LLMs. R_φ remains consistently below 1.5,
 419 while B_A decreases rapidly before converging. These observations validate the effectiveness of the
 420 error bound presented in Theorem 1.
 421

422 **Step 1 dominates the pruning performance, while Step 2 serves primarily as the inverse kernel**
 423 **mapping.** Figure 3 intuitively illustrates the effectiveness of kernel-space fitting in Step 1. To gain
 424 deeper insights into the KDP process and identify the component responsible for high performance,
 425 we analyze its training dynamics in Figure 5. The left panel shows that in Step 1, the loss drops
 426 sharply and converges within approximately 100 epochs. Concurrently, the middle panel depicts
 427 the cosine similarity between the predicted and ground-truth representations increasing as the loss
 428 decreases, confirming effective learning in the kernel space. By contrast, the right panel shows that
 429 the loss in Step 2 converges within only 20 steps, suggesting that the inverse transformation network
 430

I carries out a relatively simple task. We also conduct an ablation study to evaluate the performance impact of barely training for each step, with the results detailed in the Appendix F. In conclusion, these results demonstrate that Step 1 is the primary contributor to the pruning performance of KDP.

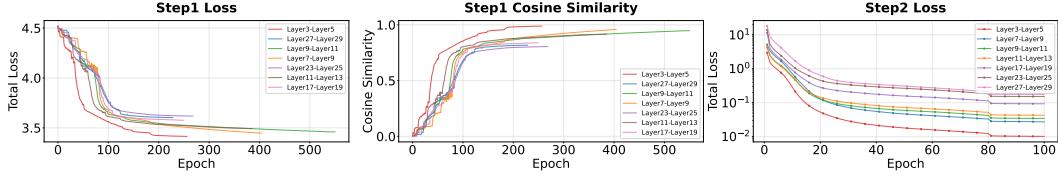


Figure 5: Training loss on LLaMA2-13B. From left to right, the panels show: (a) the loss curve during Step 1, (b) the cosine similarity during Step 1, and (c) the loss curve for Step 2.

4.4 ABLATION STUDY

Different Pruning Ratios. As shown in Figure 6, we evaluate our method on the CMMU and WIKI Text across various models and pruning ratios. The method exhibits strong retained performance on CMMU, maintaining over 90% of the original performance at a pruning rate of around 28% and over 80% at rates exceeding 50%, which confirms its robustness. The results show that the models' overall performance degrades linearly with an increasing pruning rate. However, on generative tasks, the PPL behaves differently across models. Specifically, LLaMA3-8B exhibits a rapid increase, whereas the PPL for LLaMA2-7B and LLaMA2-13B remains relatively stable.

Different Linearization Methods. To validate the importance of the kernel transformation, we compare KDP against a simplified baseline that performs linear fitting directly in the original representation space. As shown in Table 3, both OLS-based methods exhibit a drastic degradation in performance on the LLaMA3-8B model. In contrast, KDP significantly outperforms both baselines across all tasks. These results provide strong evidence that the transformations between Transformer layers are highly non-linear. Linear approximation in the original representation space, as attempted by OLS, is incapable of capturing these complex dynamics, resulting in severe information loss. This observation further corroborates Theorem 2, demonstrating the necessity of learning linear transformations in the kernel space.

Different Max Length. To analyze the impact of K_{\max} , we incrementally prune more layers from LLaMA2-7B and compare two strategies for block selection: expanding a fixed initial block or choosing a new one based on CKA similarity. Table 4 demonstrates our method's robustness in simplifying short-term dynamics. Model performance is stable when replacing few layers ($K_{\max} \leq 3$) but degrades catastrophically as more layers are replaced. This observed non-linear degradation strongly supports our theoretical analysis (Theorem 1), which shows that the approximation error grows exponentially with the number of layers, leading to instability.

5 CONCLUSION

In this paper, we introduce a new perspective on layer pruning that simplifies the information flow by operating within a kernel space. Based on this perspective, we propose a novel method named as KDP. We demonstrate the effectiveness of our method through both theoretical analysis and em-

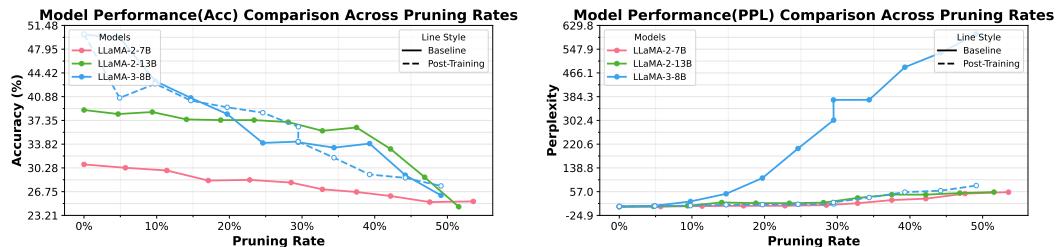


Figure 6: Performance of CMMU and WIKI when we prune with increasing pruning ratio.

486
487 Table 3: Comparison with direct linearization in
488 the original space via OLS on LLaMA3-8B.
489

Method	HeSW	CoQA	MMLU
Dense	75.7	72.5	67.2
Direct OLS	31.3	0.0	26.7
Sequential OLS	30.7	0.0	28.2
Ours	61.5	37.7	55.5

495
496 Table 4: Ablation study on max length K_{\max} .
497

K_{\max}	Pruned Layers	HeSW	CoQA	MMLU
3	[6,7]	72.1	65.2	48.5
4	[6,7,8]	71.0	64.8	46.0
4	[10,11,12]	71.3	65.1	47.7
5	[6,7,8,9]	65.1	57.8	43.8
5	[12,13,14,15]	66.1	61.6	44.9
6	[6,7,8,9,10]	47.6	41.8	24.0
6	[11,12,13,14,15]	43.2	40.4	27.3

498
499 pirical experiments. Our future work includes exploring more kernel functions and adapting our
500 pruning method for multimodal LMs.
501

502
503 **REPRODUCIBILITY STATEMENT**
504

505 We have taken several measures to ensure the reproducibility of our work. A detailed description
506 of our proposed framework, algorithms, and experimental settings is provided in the main text and
507 Appendix B. Additional implementation details and ablation studies are included in the paper. For
508 theoretical results, we present all assumptions and complete proofs in the Appendix. All datasets
509 used in our experiments are publicly available. Furthermore, we submit an anonymous link to the
510 source code and scripts for reproducing our experiments.
511

512
513 **REFERENCES**
514

515 Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-Based Adaptive Struc-
516 tured Pruning for Large Language Models. In *Proceedings of the AAAI conference on Artificial*
517 *Intelligence*, pp. 10865–10873, 2024.

518 Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefer, and James
519 Hensman. SliceGPT: Compress Large Language Models by Deleting Rows and Columns. In *The*
520 *Twelfth International Conference on Learning Representations*, 2024.

521 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, and others. PIQA: Reasoning about Phys-
522 ical Commonsense in Natural Language. In *Proceedings of the AAAI conference on Artificial*
523 *Intelligence*, volume 34, pp. 7432–7439, 2020.

524 Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Stream-
525 lining Redundant Layers to Compress Large Language Models. In *The Thirteenth International*
526 *Conference on Learning Representations*, 2025.

527 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
528 Toutanova. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions. In *Proceed-
529 ings of the 2019 Conference of the North American Chapter of the Association for Computational*
530 *Linguistics: Human Language Technologies*, volume 1, pp. 2924–2936, 2019.

531 Nathan Cloos, Moufan Li, Markus Siegel, Scott L. Brincat, Earl K. Miller, Guangyu Robert Yang,
532 and Christopher J. Cueva. Differentiable Optimization of Similarity Scores Between Models and
533 Brains. In *The Thirteenth International Conference on Learning Representations*, 2025.

534 Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. *Machine Learning*, 20(3):273–297,
535 1995.

536 Xuan Ding, Rui Sun, Yunjian Zhang, Xiu Yan, Yueqi Zhou, Kaihao Huang, Suzhong Fu, Angelica I
537 Aviles-Rivero, Chuanlong Xie, and Yao Zhu. A Sliding Layer Merging Method for Efficient
538 Depth-Wise Pruning in LLMs, 2025. URL <https://arxiv.org/abs/2502.19159>.

539 Elias Frantar and Dan Alistarh. SparseGPT: Massive Language Models Can be Accurately Pruned
540 in One-Shot. In *International Conference on Machine Learning*, volume 202, pp. 10323–10337,
541 2023.

540 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
 541 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, et al. The Language Model Evaluation Harness,
 542 2024. URL <https://zenodo.org/records/12608602>.

543

544 Yuri Gardinazzi, Karthik Viswanathan, Giada Panerai, Alessio Ansuini, Alberto Cazzaniga, and
 545 Matteo Biagetti. Persistent topological features in large language models. In *International Con-*
 546 *ference on Machine Learning*, 2025.

547 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 548 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 Herd
 549 of Models, 2024. URL <https://arxiv.org/abs/2407.21783>.

550 Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts. The
 551 Unreasonable Ineffectiveness of the Deeper Layers. In *The Thirteenth International Conference*
 552 *on Learning Representations*, 2025.

553

554 Lumer Günter. Bochner's theorem, states, and fourier transforms of measures. *Studia Mathematica*,
 555 46(2):135–140, 1973. URL <http://eudml.org/doc/217761>.

556

557 Shuai He, Guoheng Sun, Zheyu Shen, and Ang Li. What Matters in Transformers? Not All Atten-
 558 tion is Needed, 2024. URL <https://arxiv.org/abs/2406.15786>.

559

560 Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
 561 Hyoung-Kyu Song. Shortened LLaMA: A Simple Depth Pruning for Large Language Models,
 562 2024. URL <https://arxiv.org/abs/2402.02834>.

563

564 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of Neural
 565 Network Representations Revisited. In *International Conference on Machine Learning*, pp. 3519–
 566 3529. PMIR, 2019.

567

568 Vedang Lad, Jin Hwa Lee, Wes Gurnee, and Max Tegmark. The Remarkable Robustness of LLMs:
 569 Stages of Inference?, 2024. URL <https://arxiv.org/abs/2406.19384>.

570

571 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale ReADING
 572 Comprehension Dataset From Examinations. In *Proceedings of the 2017 Conference on Empirical*
 573 *Methods in Natural Language Processing*, pp. 785–794, 2017.

574

575 Qi Le, Enmao Diao, Ziyan Wang, Xinran Wang, Jie Ding, Li Yang, and Ali Anwar. Probe Pruning:
 576 Accelerating LLMs through Dynamic Pruning via Model-Probing. In *The Thirteenth Interna-*
 577 *tional Conference on Learning Representations*, 2025.

578

579 Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. SNIP: Single-shot Network Pruning
 580 based on Connection Sensitivity. In *The Seventh International Conference on Learning Repre-*
 581 *sentations*, 2019.

582

583 Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The Winograd Schema Challenge. In
 584 *Proceedings of the Thirteenth International Conference on Principles of Knowledge Representa-*
 585 *tion and Reasoning*, pp. 552–561, 2012.

586

587 Xun Liang, Hanyu Wang, Huayi Lai, Simin Niu, and Shichao Song. SEAP: Training-free Sparse
 588 Expert Activation Pruning Unlock the Brainpower of Large Language Models, 2025. URL
 589 <https://arxiv.org/abs/2503.07605>.

590

591 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 592 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-V3 Technical Report, 2024. URL
 593 <https://arxiv.org/abs/2412.19437>.

594

595 Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
 596 Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja Vu: Contextual Sparsity for Efficient
 597 LLMs at Inference Time. In *International Conference on Machine Learning*, pp. 22137–22176,
 598 2023.

599

600 Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
 601 L_0 regularization, 2017. URL <https://arxiv.org/abs/1712.01312>.

594 Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-Pruner: On the Structural Pruning of Large
 595 Language Models. In *Advances in Neural Information Processing Systems*, 2023.

596

597 Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
 598 Weipeng Chen. ShortGPT: Layers in Large Language Models are More Redundant Than You
 599 Expect. In *Findings of the Association for Computational Linguistics*, 2024.

600 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mixture
 601 Models. In *The Fifth International Conference on Learning Representations*, 2017.

602

603 Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal Kernels. *Journal of Machine*
 604 *Learning Research*, 7(95):2651–2667, 2006.

605 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Ma-*
 606 *chine Learning*. 2018. URL [https://mitpress.publish.com/ebook-
 607 foundations-of-machine-learning--2-preview/7093/Cover](https://mitpress.publish.com/ebook-foundations-of-machine-learning--2-preview/7093/Cover).

608

609 J.D. Murray. *Mathematical Biology: I. An Introduction*. Interdisciplinary Applied Mathematics.
 610 Springer New York, 2007. ISBN 9780387224374. URL [https://books.google.co.jp/
 611 books?id=4WbpP90Gk1YC](https://books.google.co.jp/books?id=4WbpP90Gk1YC).

612 Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don't Give Me the Details, Just the Summary!
 613 Topic-Aware Convolutional Neural Networks for Extreme Summarization. In *Proceedings of the*
 614 *2018 Conference on Empirical Methods in Natural Language Processing*, pp. 1797–1807, 2018.

615

616 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 617 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 618 transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020.

619 Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. In *Advances*
 620 *in Neural Information Processing Systems*, volume 20, 2007.

621

622 Siva Reddy, Danqi Chen, and Christopher D. Manning. CoQA: A Conversational Question An-
 623 swering Challenge. *Transactions of the Association for Computational Linguistics*, 7:249–266,
 624 2019.

625 Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
 626 Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, et al. SlimPajama-DC: Under-
 627 standing Data Combinations for LLM Training, 2024. URL [https://arxiv.org/abs/2309.
 628 10818](https://arxiv.org/abs/2309.10818).

629

630 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
 631 and Christopher Potts. Recursive Deep Models for Semantic Compositionality Over a Sentiment
 632 Treebank. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language*
 633 *Processing*, pp. 1631–1642, 2013.

634

635 Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. SLEB:
 636 Streamlining LLMs through Redundancy Verification and Elimination of Transformer Blocks. In
 637 *International Conference on Machine Learning*, 2024.

638

639 Yang Song and Stefano Ermon. *Generative modeling by estimating gradients of the data distri-
 640 bution*. Curran Associates Inc., Red Hook, NY, USA, 2019.

641

642 Ingo Steinwart. On the Influence of the Kernel on the Consistency of Support Vector Machines. 2:
 643 67–93, 2002.

644

645 Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. Investigating Prior Knowledge for Challenging
 646 Chinese Machine Reading Comprehension. *Transactions of the Association for Computational*
 647 *Linguistics*, 8:141–155, 2020.

648

649 Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A Simple and Effective Pruning Approach
 650 for Large Language Models. In *The Twelfth International Conference on Learning Representa-
 651 tions*, 2024.

648 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 649 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open Founda-
 650 tion and Fine-Tuned Chat Models, 2023. URL <https://arxiv.org/abs/2307.09288>.
 651

652 Adina Williams, Nikita Nangia, and Samuel Bowman. A Broad-Coverage Challenge Corpus for
 653 Sentence Understanding through Inference. In *Proceedings of the 2018 Conference of the North*
 654 *American Chapter of the Association for Computational Linguistics: Human Language Technolo-*
 655 *gies*, volume 1, pp. 1112–1122, 2018.

656 Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerating Lan-
 657 guage Model Pre-training via Structured Pruning, 2023. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2310.06694)
 658 [2310.06694](https://arxiv.org/abs/2310.06694).

659 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 660 Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 Technical Report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 661

662 Yifei Yang, Zouying Cao, and Hai Zhao. LaCo: Large Language Model Pruning via Layer Collapse.
 663 In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 6401–6417,
 664 2024.

665 Alexander Yom Din, Taelin Karidi, Leshem Choshen, and Mor Geva. Jump to Conclusions: Short-
 666 Cutting Transformers with Linear Transformations. In *Proceedings of the 2024 Joint International*
 667 *Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING*
 668 *2024)*, pp. 9615–9625, 2024.

669 Arda Yüksel, Abdullatif Köksal, Lütfi Kerem Senel, Anna Korhonen, and Hinrich Schuetze. Turk-
 670 ishMMLU: Measuring Massive Multitask Language Understanding in Turkish. In *Findings of the*
 671 *Association for Computational Linguistics: EMNLP 2024*, pp. 7035–7055, 2024.

672 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a Ma-
 673 chine Really Finish Your Sentence? In *Proceedings of the 57th Annual Meeting of the Association*
 674 *for Computational Linguistics*, pp. 4791–4800, 2019.

675 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
 676 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open Pre-trained Transformer
 677 Language Models, 2022. URL <https://arxiv.org/abs/2205.01068>.
 678

679 Chujie Zheng, Minlie Huang, and Aixin Sun. ChID: A Large-scale Chinese IDiom Dataset for
 680 Cloze Test. In *Proceedings of the 57th Annual Meeting of the Association for Computational*
 681 *Linguistics*, pp. 778–787, 2019.

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A PRELIMINARIES

Empirical Risk Minimization. Empirical Risk Minimization (ERM) is a fundamental principle in statistical learning theory. Given a class of functions \mathcal{H} and a dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ sampled i.i.d. from an unknown distribution \mathcal{P} , ERM selects the function that minimizes the empirical loss:

$$\hat{R}(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(x_i), y_i), \quad h_{\text{ERM}} = \arg \min_{h \in \mathcal{H}} \hat{R}(h).$$

ERM serves as a tractable surrogate for minimizing the population risk $R(h) = \mathbb{E}_{(x,y) \sim \mathcal{P}} [\ell(h(x), y)]$.

Population Approximation Error. The Population Approximation Error (PAE) measures the discrepancy between empirical performance and the true expected performance:

$$\text{apx}(h) = |R(h) - \hat{R}(h)|.$$

A small approximation error indicates that the empirical distribution is a good proxy for the underlying population distribution.

L' -Lipschitz Continuity. A function $f : \mathcal{X} \rightarrow \mathbb{R}^d$ is L' -Lipschitz continuous if

$$\|f(x) - f(x')\| \leq L' \|x - x'\|, \quad \forall x, x' \in \mathcal{X}.$$

Rademacher Complexity. Given a class of real-valued functions \mathcal{F} and samples $\{x_1, \dots, x_n\}$, the empirical Rademacher complexity of \mathcal{F} is defined as

$$\hat{\mathfrak{R}}_n(\mathcal{F}) = \mathbb{E}_\sigma \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i f(x_i) \right],$$

where σ_i are i.i.d. Rademacher random variables taking values ± 1 with equal probability. Rademacher complexity measures the expressive capacity of the function class \mathcal{F} : a larger value indicates a richer class that may overfit, while a smaller value suggests better generalization ability. A standard uniform generalization bound is

$$R(f) \leq \hat{R}(f) + 2\hat{\mathfrak{R}}_n(\mathcal{F}) + O\left(\sqrt{\frac{\log(1/\delta)}{n}}\right),$$

holding for all $f \in \mathcal{F}$ with probability at least $1 - \delta$.

B REPRODUCIBILITY STATEMENT & EXPERIMENTAL DETAILS

Hyperparameters. In our main experiments, the maximum sequence length for representation extraction is set to 128. For Step 1, we configure the training process as follows. The dimension of the kernel transformation ($2m$) is set to 1024. We use the Adam optimizer with an initial learning rate of 0.01. A learning rate scheduler is employed, which reduces the learning rate by a factor of 0.5 if the performance does not improve for 3 consecutive epochs (patience = 3). The model is trained with a batch size of 100 until convergence. The weights, denoted by W , are set as a geometric sequence with a base of 2 and exponents ranging from 0 to $\text{num_layers} - 1$. For Step 2, the model is trained for 100 epochs using the Adam optimizer. The learning rate is set to a fixed value of $1e-3$, and the batch size is 128. Pruned layers in the main results are shown in the following table 5. Training was conducted on an $8 \times$ NVIDIA A100 server, leveraging pipeline parallelism to distribute different layers of the model across the GPUs.

We fix the two base random matrices \mathbf{Z} and \mathbf{V} with their vectorizations $\text{Vec}(\mathbf{Z}) \sim \mathcal{N}_{d \times m}(0, I)$ and $\text{Vec}(\mathbf{V}) \sim \mathcal{N}_{r \times m}(0, I)$ at initialization. At each forward pass we construct frequencies $\Omega = \mathbf{D}^{1/2} \mathbf{Z} + \mathbf{L} \mathbf{V}$, where \mathbf{D} and \mathbf{L} are learnable. As $m \rightarrow \infty$, the empirical covariance $(1/m)\Omega\Omega^\top$ concentrates around $\Sigma = \mathbf{D} + \mathbf{L}\mathbf{L}^\top$. We do not resample \mathbf{Z}, \mathbf{V} during training; learning occurs via \mathbf{D} and \mathbf{L} .

756
757
758 Table 5: Pruning Results for LLaMA Models.
759
760
761
762
763

LLM	Pruning Ratio	Pruned Layers
LLaMA-2-7B	22.8%	[6,7], [10,11], [14,15], [18,19], [22,23]
LLaMA-2-13B	23.4%	[3,4], [7,8], [9,10], [17,19], [27,28]
LLaMA-3-8B	25.8%	[6,7], [9,10], [12,13], [15,16], [18,19]

764 **Post training.** To counter the rise in perplexity induced by kernelized layer replacement, we apply
 765 a low-rank adaptation only at the output projection, i.e., on the final hidden-to-vocabulary mapping.
 766 When the output head is tied to the input embeddings, we insert a lightweight 1×1 linear “logit
 767 adapter” before the head and place LoRA on this adapter; otherwise, LoRA is attached directly
 768 to the head. All other parameters remain frozen (including the kernel map φ_θ , the linear maps
 769 $\{\mathbf{A}_i\}$, and the inverse mapping), so the structural simplification of KDP is preserved while the
 770 “representation→logits” distribution is re-calibrated. Training uses teacher forcing with knowledge
 771 distillation from the unpruned teacher: the objective is $\mathcal{L} = \lambda \text{KL}(p_{\text{teacher}} \parallel p_{\text{student}}) + (1 - \lambda) \text{CE}$ with
 772 $\lambda = 0.5$ and temperature $\tau = 1.0$; we find $\tau \in [1, 2]$ behaves similarly, and report $\tau = 1.0$. LoRA
 773 hyperparameters are rank $r = 8$, $\alpha = 32$, and dropout 0.05. Optimization uses Adam (lr 1×10^{-4} ,
 774 no weight decay), bf16, gradient clip 1.0, warmup 3% with cosine decay, and early stopping on
 775 validation PPL. We train for 1–2 epochs on the calibration dataset, which is reported in Section 3.1
 776 and sequence length of 2048. After training, the LoRA weights are merged into the output head,
 777 adding no runtime overhead.

778 The source code is available at the following link: <https://anonymous.4open.science/r/draft-123abc>.

779 C RELATED WORK

780 **Redundancy in LLMs.** The existence of substantial redundancy within LLMs has been demon-
 781 strated through multiple perspectives. Liu et al. (2023) and Yom Din et al. (2024) reveal that suc-
 782 cessive transformer blocks in LLMs exhibit remarkable similarity in their representational outputs.
 783 Gardinazzi et al. (2025) hierarchically analyze representations by examining topological features.
 784 They observe that the early layers exhibit numerous short-lived topological structures. In contrast,
 785 structures in the middle layers become long-lived (or persistent), before short-lived structures re-
 786 appear in the late layers. This indicates that the middle layers possess significant redundancy. Song
 787 et al. (2024) indicates the residual connection structure inherent in transformer architectures con-
 788 strains each block to make only incremental contributions to the overall representation, resulting in
 789 high similarity between block representations. Men et al. (2024) and Gromov et al. (2025) find mul-
 790 tiple layers perform similar or overlapping computations to refine predictions. Lad et al. (2024) also
 791 shows that LLMs exhibit inherent redundancy, particularly in intermediate layers, where dropping
 792 middle layers yields minimal impact on final model performance. To reduce model redundancy,
 793 pruning has emerged as a mainstream method for removing parameters and improving efficiency.

794 **Weight Pruning.** Weight pruning is divided into structured pruning and unstructured pruning from
 795 the perspective of the pruning paradigm. Unstructured pruning removes individual weights or neu-
 796 rons based on predefined importance scores (Lee et al., 2019; Frantar & Alistarh, 2023; Sun et al.,
 797 2024). Although effective in reducing model size, unstructured pruning typically leads to irregular
 798 sparsity patterns, which significantly hinder hardware efficiency and deployment flexibility. Struc-
 799 tured pruning has emerged as a powerful technique for optimizing neural networks by removing
 800 entire groups of weights while maintaining computational efficiency.

801 Structured pruning eliminates entire columns within weight matrices (An et al., 2024; Ashkboos
 802 et al., 2024; Le et al., 2025; Liang et al., 2025), attention heads (He et al., 2024), or even graph-based
 803 structures (Ma et al., 2023), resulting in more hardware-friendly sparsity. Despite their structural
 804 advantages, these methods often disrupt the model’s original architectural flow and typically require
 805 customized software or hardware to realize actual inference acceleration.

806 **Layer Pruning.** To preserve architectural integrity, layer-wise structured pruning removes entire
 807 layers based on their representational redundancy. LaCo (Yang et al., 2024) groups consecutive
 808 layers and replaces them with layer-wise parameter difference to achieve compression. ShortGPT
 809 (Men et al., 2024) computes BI scores—akin to cosine similarity—between layers to identify and re-

move less important ones. SLEB (Song et al., 2024) estimates layer importance using perplexity and prunes those deemed insignificant. Ding et al. (2025) using Centered Kernel Alignment (CKA, Kornblith et al., 2019), map representations to a kernel space to measure similarity and remove blocks with high CKA scores. Streamlining (Chen et al., 2025) adopts cosine similarity to identify redundant layers and utilizes knowledge distillation to restore performance post-pruning. However, these studies are typically metric-driven, focusing on identifying layers to prune rather than approaching the problem from a model dynamics perspective by fundamentally replacing parameter-heavy blocks with simpler modules. As a result, they either directly eliminate redundant layers (Song et al., 2024; Men et al., 2024)—inevitably incurring performance degradation—or require extensive data for fine-tuning (Kim et al., 2024; Yang et al., 2024; Gromov et al., 2025) or distillation (Chen et al., 2025) to mitigate the loss. This overlooks the opportunity to uncover simplified structural alternatives that enable rapid post-pruning recovery with minimal data.

D PROOF

Proof of Theorem 1. First, we establish a high-probability generalization bound on the one-step linear approximation error. For any given step l , we approximate $\varphi(\mathbf{h}_{l+1})$ using a linear transformation \mathbf{A}_l on $\varphi(\mathbf{h}_l)$. The error vector for this one-step prediction is defined as:

$$\mathbf{e}_l = \varphi(\mathbf{h}_{l+1}) - \mathbf{A}_l \varphi(\mathbf{h}_l). \quad (7)$$

The corresponding expected loss under the true distribution is given by:

$$L(\hat{\theta}, \hat{\mathbf{A}}_l) = \mathbb{E} \left[\|\varphi_{\hat{\theta}}(\mathbf{h}_{l+1}) - \hat{\mathbf{A}}_l \varphi_{\hat{\theta}}(\mathbf{h}_l)\|^2 \right]. \quad (8)$$

We invoke the standard uniform convergence bound based on Rademacher complexity (Mohri et al., 2018, Theorem 1). Since $\|\varphi(\mathbf{h})\| \leq R_{\varphi}$ and $\|\mathbf{A}_i\|_{\text{op}} \leq B_{\mathbf{A}}$, the squared loss $\ell(y, y') = \|y - y'\|^2$ is L' -Lipschitz on the ball $\{\|y\|, \|y'\| \leq (B_{\mathbf{A}} + 1)R_{\varphi}\}$ and has range in $[0, (B_{\mathbf{A}} + 1)^2 R_{\varphi}^2]$. Therefore, with probability at least $1 - \delta$, for all $(\theta, \{\mathbf{A}_i\})$ in the hypothesis class $\mathcal{H}' = \{ \mathbf{h} \mapsto \mathbf{A} \varphi_{\theta}(\mathbf{h}) \in \mathbb{R}^d : \|\mathbf{A}\|_{\text{op}} \leq B_{\mathbf{A}}, \theta \in \Theta, \|\varphi_{\theta}(\mathbf{h})\| \leq R_{\varphi} \}$, it holds that

$$L(\hat{\theta}, \{\hat{\mathbf{A}}_i\}) \leq L_{\text{ERM}} + 2L' \mathfrak{R}_n(\mathcal{H}') + (B_{\mathbf{A}} + 1)^2 R_{\varphi}^2 \sqrt{\frac{\log(1/\delta)}{2n}}. \quad (9)$$

Next we bound $\mathfrak{R}_n(\mathcal{H}')$. For each row $\mathbf{A}_l[i]$ of \mathbf{A}_l we have $\|\mathbf{A}_l[i]\|^2 \leq B_{\mathbf{A}}$, and $\|\varphi(\mathbf{h})\| \leq R_{\varphi}$, hence the linear class satisfies $\mathfrak{R}_n(\mathcal{H}') \lesssim B_{\mathbf{A}} R_{\varphi} \sqrt{2m/n}$. Applying the standard contraction (shrinkage) lemma for Lipschitz losses to $\ell \circ \mathcal{H}'$ yields

$$L(\hat{\theta}, \{\hat{\mathbf{A}}_i\}) \leq L_{\text{ERM}} + C B_{\mathbf{A}}^2 R_{\varphi}^2 \sqrt{\frac{2m \log(2m/\delta)}{n}}. \quad (10)$$

for a universal constant $C > 0$.

From one-step to k -step. Let $e_j = \varphi_{\hat{\theta}}(\mathbf{h}_{j+1}) - \hat{\mathbf{A}}_j \varphi_{\hat{\theta}}(\mathbf{h}_j)$ be the one-step residual. By a telescoping expansion and triangle inequality, we have

$$\varphi_{\hat{\theta}}(\mathbf{h}_{l+k}) - \left(\prod_{i=l}^{l+k-1} \hat{\mathbf{A}}_i \right) \varphi_{\hat{\theta}}(\mathbf{h}_l) = e_{l+k-1} + \sum_{j=l}^{l+k-2} \left(\hat{\mathbf{A}}_{l+k-1} \cdots \hat{\mathbf{A}}_{j+1} \right) e_j. \quad (11)$$

From the Equation 10 it follows that for the learned model parameters, with probability $1 - \delta$ there is a single-step prediction error vector with the number of paradigms bounded in the:

$$\|e_l\| = \|\varphi_{\hat{\theta}}(\mathbf{h}_{l+1}) - \hat{\mathbf{A}}_l \varphi_{\hat{\theta}}(\mathbf{h}_l)\|_{\mathcal{H}} \leq \sqrt{L_{\text{ERM}} + C B_{\mathbf{A}}^2 R_{\varphi}^2 \sqrt{\frac{2m \log(2m/\delta)}{n}}}. \quad (12)$$

Using the Equation 12, for any consecutive k step state sequence, the cumulative error of \mathcal{E}_k is defined as $\mathcal{E}_k = \varphi_{\hat{\theta}}(\mathbf{h}_{l+k}) - \left(\prod_{i=l}^{l+k-1} \hat{\mathbf{A}}_i \right) \varphi_{\hat{\theta}}(\mathbf{h}_l)$. By submultiplicativity, we have:

$$\|\mathcal{E}_k\| \leq \sum_{t=l}^{l+k-1} \left\| \prod_{i=t+1}^{l+k-1} \hat{\mathbf{A}}_i \right\|_{\text{op}} \|e_t\| \leq \sum_{t=l}^{l+k-1} B_{\mathbf{A}}^{l+k-1-t} \|e_t\|. \quad (13)$$

864 Let $j = t - l \in \{0, \dots, k - 1\}$, we have:

$$866 \quad 867 \quad 868 \quad \|\mathcal{E}_k\| \leq \sum_{j=0}^{k-1} B_{\mathbf{A}}^{k-1-j} \|e_{l+j}\|, \quad (14)$$

869 here, let

$$870 \quad 871 \quad \prod_{i=a}^b \hat{\mathbf{A}}_i := \begin{cases} \hat{\mathbf{A}}_b \hat{\mathbf{A}}_{b-1} \cdots \hat{\mathbf{A}}_a, & a \leq b, \\ \mathbf{I}, & a > b \end{cases}. \quad (15)$$

872 Given that the Equation 12 has indicated, with the probability $1 - \delta$ event, each step is $\|e_j\| \leq$
873 $\sqrt{L_{\text{ERM}} + CB_{\mathbf{A}}^2 R_{\varphi}^2 \sqrt{\frac{d \log(d/\delta)}{n}}}$, we can adjust δ so that the probability applies equally to all $1 \leq$
874 $j \leq k$ steps by means of the union bound. Therefore, under the same high probability event,
875 substitute the above equation and extract the common factor outside the sum equation to obtain the
876 upper bound of the cumulative error norm of the k step:
877

$$878 \quad 879 \quad 880 \quad 881 \quad \|\mathcal{E}_k\| \leq \left(\sqrt{L_{\text{ERM}} + CB_{\mathbf{A}}^2 R_{\varphi}^2 \sqrt{\frac{2m \log(2m/\delta)}{n}}} \right) \cdot \left(\sum_{j=0}^{k-1} B_{\mathbf{A}}^{k-1-j} \right). \quad (16)$$

882 Here, $\sum_{j=0}^{k-1} B_{\mathbf{A}}^{k-1-j}$ is the linear mapping error of the k step-by-step accumulation amplified co-
883 efficient via the gradual transfer. When $B_{\mathbf{A}} < 1$, the coefficient converges to $(1 - B_{\mathbf{A}})^{-1}$, and
884 $B_{\mathbf{A}} = 1$ degenerates into a linear growth of k . \square

885 *Proof of Lemma 1.* We prove in two steps. First, in the ideal (infinite-dimensional) feature space
886 induced by a universal, translation-invariant kernel (e.g., Gaussian RBF), any continuous target
887 mapping can be approximated arbitrarily well by a linear operator on the canonical feature map.
888 Second, by Random Fourier Features, the infinite-dimensional feature map can be approximated by
889 a finite feature map φ to arbitrary accuracy on the support of \mathcal{D} . Combining the two approximations
890 and using the triangle inequality yields the desired bound.

891 **Universality of the kernel and linear representability in the RKHS feature space.** Let $k(x, y)$
892 be a continuous, positive definite, translation-invariant kernel on \mathbb{R}^d whose spectral measure has full
893 support (e.g., the Gaussian RBF kernel). Result from (Micchelli et al., 2006) says that its RKHS
894 \mathcal{H}_k in the tight set \mathcal{K} on which is consistently dense for continuous functions: for any continuous
895 function $f : \mathcal{K} \rightarrow \mathbb{R}$ and any $\eta > 0$, exist $f^* \in \mathcal{H}_k$ such that $\sup_{x \in \mathcal{K}} |f^*(x) - f(x)| < \eta$. Denote
896 $\Phi : \mathbb{R}^d \rightarrow \mathcal{H}_k$ is the feature mapping, $\langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}_k} = k(x, y)$. Let the true mapping between layers be $\mathbf{h}_{l+1} = f(\mathbf{h}_l)$. For any $u \in \mathcal{H}_k$, consider $g_u(\mathbf{h}_l) := \langle u, \Phi(f(\mathbf{h}_l)) \rangle_{\mathcal{H}_k} = \langle u, \Phi(\mathbf{h}_{l+1}) \rangle_{\mathcal{H}_k}$, $u \in \mathcal{H}_k$. When f , Φ is continuous, g_u is continuous in K . By the consistency densities in the previous
897 paragraph, given an arbitrary $\delta > 0$, exists $f_u^* \in \mathcal{H}_k$ make
898

$$899 \quad 900 \quad \sup_{\mathbf{h}_l \in K} \|g_u(\mathbf{h}_l) - f_u^*(\mathbf{h}_l)\| < \delta. \quad (17)$$

901 The nature of the regenerating nucleus suggests that $f_u^*(\mathbf{h}_l) = \langle w_u, \Phi(\mathbf{h}_l) \rangle_{\mathcal{H}_k}$. Take a set of
902 $\{u_j\}_{j=1}^J \subset \mathcal{H}_k$ to fetch $\phi(\cdot)$ of the former j coordinates, we can get the corresponding w_j , and
903 let every upper bound on the agreement error for each coordinate is δ_j . Let the linear operator
904 $\mathbf{A}_{\infty} \Phi(\mathbf{h}_l) := \sum_{j=1}^J \langle w_j, \Phi(\mathbf{h}_l) \rangle_{\mathcal{H}_k} u_j$. So there is a consistent error bound
905

$$906 \quad 907 \quad 908 \quad 909 \quad 910 \quad \sup_{\mathbf{h}_l \in \mathcal{K}} \|\Phi(\mathbf{h}_{l+1}) - \mathbf{A}_{\infty} \Phi(\mathbf{h}_l)\|_{\mathcal{H}_k} \leq \left(\sum_{j=1}^J \delta_j^2 \right)^{1/2}. \quad (18)$$

911 Choose $\{\delta_j\}$ so that right term $\leq \varepsilon_1$ (for example, $\varepsilon_1 = \epsilon/2$), we can get

$$912 \quad 913 \quad \sup_{\mathbf{h}_l \in \mathcal{K}} \|\Phi(\mathbf{h}_{l+1}) - \mathbf{A}_{\infty} \Phi(\mathbf{h}_l)\|_{\mathcal{H}_k} < \epsilon/2. \quad (19)$$

914 Since the expectation is less than the upper bound, there is

$$915 \quad 916 \quad \mathbb{E}_{\mathbf{h}_l \sim \mathcal{D}} \|\Phi(\mathbf{h}_{l+1}) - \mathbf{A}_{\infty} \Phi(\mathbf{h}_l)\|_{\mathcal{H}_k}^2 \leq (\epsilon/2)^2. \quad (20)$$

917 **Approximating the infinite-dimensional map by Random Fourier Features.** By Bochner's theorem (Günter, 1973), for translation-invariant kernels there exist RFF maps $\varphi : \mathbb{R}^d \rightarrow \mathbb{R}^{2m}$ such that

inner products of φ approximate the kernel. Rahimi & Recht (2007) shows that, with high probability over the draw of the features, one can uniformly approximate popular shift-invariant kernels on compact sets to within any tolerance $\varepsilon_k > 0$ using only $D = 2m = \mathcal{O}(\varepsilon_k^{-2} \log(1/\varepsilon_k))$ dimensions:

$$\sup_{x,y \in \mathcal{K}} |\langle \varphi(x), \varphi(y) \rangle - k(x, y)| \leq \varepsilon_k, \quad (21)$$

for any compact $\mathcal{K} \subset \mathbb{R}^d$ containing the support of the data, provided m is sufficiently large (high-probability statement).

Define the (possibly infinite-dimensional) feature map Φ associated with k so that $k(x, y) = \langle \Phi(x), \Phi(y) \rangle$. The uniform approximation above implies that, on \mathcal{K} ,

$$\|\langle \varphi(x), \varphi(y) \rangle - \langle \Phi(x), \Phi(y) \rangle\| \leq \varepsilon_k \quad \text{for all } x, y \in \mathcal{K}, \quad (22)$$

i.e., $x \mapsto \varphi(x)$ is an ε_k -isometric embedding of $x \mapsto \Phi(x)$ at the level of pairwise inner products. Let \mathbf{A}_∞ be the operator satisfying

$$\sup_{h_l \in \mathcal{K}} \|\Phi(\mathbf{h}_{l+1}) - \mathbf{A}_\infty \Phi(\mathbf{h}_l)\| \leq \epsilon_1 \quad \text{with } \epsilon_1 < \frac{\epsilon}{2}. \quad (23)$$

Consider the finite-dimensional least-squares problem in RFF space and let \mathbf{A} be a minimizer of

$$\min_{\|\mathbf{A}\| \leq B_\mathbf{A}} \mathbb{E}_{(h_l, h_{l+1}) \sim \mathcal{D}} \|\varphi(\mathbf{h}_{l+1}) - \mathbf{A} \varphi(\mathbf{h}_l)\|^2. \quad (24)$$

Because the squared loss expands into inner products and norms, and because RFF inner products uniformly approximate kernel inner products on \mathcal{K} , the objective in the RFF space uniformly approximates the kernel-space objective up to an additive $\mathcal{O}(\varepsilon_k)$ term (with constant depending only on R_Φ and $B_\mathbf{A}$). Consequently, there exists a matrix \mathbf{A} with $\|\mathbf{A}\| \leq B_\mathbf{A}$ such that

$$\mathbb{E} \|\varphi(\mathbf{h}_{l+1}) - \mathbf{A} \varphi(\mathbf{h}_l)\|^2 \leq \mathbb{E} \|\Phi(\mathbf{h}_{l+1}) - \mathbf{A}_\infty \Phi(\mathbf{h}_l)\|^2 + C\varepsilon_k. \quad (25)$$

Choosing m large enough so that $\varepsilon_k \leq \epsilon/(2C)$ and using the bound in Equation 20, we obtain

$$\mathbb{E}_{\mathbf{h}_l \sim \mathcal{D}} \|\varphi(\mathbf{h}_{l+1}) - \mathbf{A} \varphi(\mathbf{h}_l)\|^2 < \epsilon, \quad (26)$$

which completes this part. \square

Proof of Theorem 2. We start from Lemma 1, which guarantees the existence of an RFF map φ_{θ^*} (with sufficiently large $2m$) and a linear operator \mathbf{A}^* such that $\mathcal{R}_{\text{RFF}}(\theta^*, \mathbf{A}^*) \leq \epsilon = \text{apx}_{\text{ID}} - \Delta$. The rest is a finite-sample comparison: let $\widehat{\mathbf{A}}_{\text{ID}}$ and $(\widehat{\theta}, \widehat{\mathbf{A}}_{\text{RFF}})$ be the ERM solutions in the two classes; standard uniform-convergence bounds control their true risks by the respective optimal risks plus generalization terms $E_{\text{ID}}(n, \delta)$ and $E_{\text{RFF}}(n, \delta)$. Choosing n so that $E_{\text{RFF}}(n, \delta) + E_{\text{ID}}(n, \delta) \leq \Delta$ then yields $\mathcal{R}_{\text{RFF}}(\widehat{\theta}, \widehat{\mathbf{A}}_{\text{RFF}}) \leq \mathcal{R}_{\text{ID}}(\widehat{\mathbf{A}}_{\text{ID}})$, establishing the kernel advantage with probability at least $1 - \delta$.

Existence of a low-risk RFF predictor. By Lemma 1, pick $\epsilon = \text{apx}_{\text{ID}} - \Delta > 0$. Then there exist θ^* and \mathbf{A}^* with $\|\mathbf{A}^*\|_{\text{op}} \leq B_\mathbf{A}$ and sufficiently large $2m$ such that $\mathcal{R}_{\text{RFF}}(\theta^*, \mathbf{A}^*) \leq \epsilon$; equivalently, $\text{apx}_{\text{RFF}} \leq \epsilon < \text{apx}_{\text{ID}}$.

Uniform convergence and ERM risks. We now turn to finite samples. Let $\widehat{\mathbf{A}}_{\text{ID}} \in \arg \min_{\mathbf{A} \in \mathcal{F}_{\text{ID}}} \widehat{\mathcal{R}}_{\text{ID}}(\mathbf{A})$ and $(\widehat{\theta}, \widehat{\mathbf{A}}_{\text{RFF}}) \in \arg \min_{(\theta, \mathbf{A}) \in \mathcal{F}_{\text{RFF}}} \widehat{\mathcal{R}}_{\text{RFF}}(\theta, \mathbf{A})$. Let $\mathbf{A}_{\text{ID}}^* \in \arg \min_{\mathcal{F}_{\text{ID}}} \mathcal{R}_{\text{ID}}(\mathbf{A})$ and $(\theta^*, \mathbf{A}^*) \in \arg \min_{\mathcal{F}_{\text{RFF}}} \mathcal{R}_{\text{RFF}}(\theta, \mathbf{A})$, which implies that:

$$\text{apx}_{\text{ID}} := \mathcal{R}_{\text{ID}}(\mathbf{A}_{\text{ID}}^*), \quad \text{apx}_{\text{RFF}} := \mathcal{R}_{\text{RFF}}(\theta^*, \mathbf{A}^*). \quad (27)$$

Fix $\delta \in (0, 1)$. There exists an event \mathcal{E} with probability at least $1 - \frac{\delta}{2}$ on which the following double-sided uniform deviations hold simultaneously for both classes:

$$\begin{aligned} \sup_{\mathbf{A} \in \mathcal{F}_{\text{ID}}} |\mathcal{R}_{\text{ID}}(\mathbf{A}) - \widehat{\mathcal{R}}_{\text{ID}}(\mathbf{A})| &\leq \varepsilon_{\text{ID}} \left(n, \frac{\delta}{2} \right), \\ \sup_{(\theta, \mathbf{A}) \in \mathcal{F}_{\text{RFF}}} |\mathcal{R}_{\text{RFF}}(\theta, \mathbf{A}) - \widehat{\mathcal{R}}_{\text{RFF}}(\theta, \mathbf{A})| &\leq \varepsilon_{\text{RFF}} \left(n, \frac{\delta}{2} \right), \end{aligned} \quad (28)$$

with

$$\varepsilon_{\text{ID}}(n, \delta) = CB_\mathbf{A}^2 R_h^2 \sqrt{\frac{d \log(\frac{cd}{\delta})}{n}}, \quad \varepsilon_{\text{RFF}}(n, \delta) = CB_\mathbf{A}^2 R_\varphi^2 \sqrt{\frac{2m \log(\frac{cm}{\delta})}{n}}. \quad (29)$$

972 Define for brevity

$$973 \quad E_{\text{ID}}(n, \delta) := 2\varepsilon_{\text{ID}}(n, \frac{\delta}{2}), \quad E_{\text{RFF}}(n, \delta) := 2\varepsilon_{\text{RFF}}(n, \frac{\delta}{2}). \quad (30)$$

975 On \mathcal{E} , by Equation 28, we have

$$976 \quad \mathcal{R}_{\text{RFF}}(\hat{\theta}, \hat{\mathbf{A}}_{\text{RFF}}) \leq \text{apx}_{\text{RFF}} + 2\varepsilon_{\text{RFF}}(n, \frac{\delta}{2}), \quad (31)$$

$$979 \quad \mathcal{R}_{\text{RFF}}(\hat{\theta}, \hat{\mathbf{A}}_{\text{RFF}}) \leq \text{apx}_{\text{RFF}} + E_{\text{RFF}}(n, \delta).$$

980 On the same high-probability event on which the double-sided uniform deviation bounds hold, we
981 also have

$$982 \quad \mathcal{R}_{\text{ID}}(\hat{\mathbf{A}}_{\text{ID}}) \geq \text{apx}_{\text{ID}} - E_{\text{ID}}(n, \delta), \quad E_{\text{ID}}(n, \delta) := 2\varepsilon_{\text{ID}}(n, \frac{\delta}{2}). \quad (32)$$

984 *Proof of Equation 32.* By the deviation bound, $\mathcal{R}_{\text{ID}}(\mathbf{A}) \geq \hat{\mathcal{R}}_{\text{ID}}(\mathbf{A}) - \varepsilon_{\text{ID}}(n, \delta/2)$ for all $\mathbf{A} \in \mathcal{F}_{\text{ID}}$.
985 Hence

$$986 \quad \mathcal{R}_{\text{ID}}(\hat{\mathbf{A}}_{\text{ID}}) \geq \hat{\mathcal{R}}_{\text{ID}}(\hat{\mathbf{A}}_{\text{ID}}) - \varepsilon_{\text{ID}}(n, \frac{\delta}{2}) \geq \hat{\mathcal{R}}_{\text{ID}}(\mathbf{A}_{\text{ID}}^*) - \varepsilon_{\text{ID}}(n, \frac{\delta}{2}) \geq \mathcal{R}_{\text{ID}}(\mathbf{A}_{\text{ID}}^*) - 2\varepsilon_{\text{ID}}(n, \frac{\delta}{2}),$$

$$987 \quad \text{where the middle inequality uses ERM optimality of } \hat{\mathbf{A}}_{\text{ID}} \text{ and the last one uses the deviation bound}$$

$$988 \quad \text{again. Since } \text{apx}_{\text{ID}} = \mathcal{R}_{\text{ID}}(\mathbf{A}_{\text{ID}}^*), \text{ Equation 32 follows.} \quad \square$$

990 **Comparison via the approximation margin.** From Lemma 1, there exists $\Delta > 0$ such that

$$991 \quad \text{apx}_{\text{RFF}} \leq \text{apx}_{\text{ID}} - \Delta. \quad (33)$$

992 Combining Equation 33 with the already established bound in Equation 35 and the ID lower bound
993 in Equation 31, we obtain on the same event:

$$994 \quad \mathcal{R}_{\text{RFF}}(\hat{\theta}, \hat{\mathbf{A}}_{\text{RFF}}) \leq \text{apx}_{\text{ID}} - \Delta + E_{\text{RFF}}(n, \delta), \quad \mathcal{R}_{\text{ID}}(\hat{\mathbf{A}}_{\text{ID}}) \geq \text{apx}_{\text{ID}} - E_{\text{ID}}(n, \delta). \quad (34)$$

995 Therefore, a sufficient condition for

$$996 \quad \mathcal{R}_{\text{RFF}}(\hat{\theta}, \hat{\mathbf{A}}_{\text{RFF}}) \leq \mathcal{R}_{\text{ID}}(\hat{\mathbf{A}}_{\text{ID}})$$

997 is

$$998 \quad E_{\text{RFF}}(n, \delta) + E_{\text{ID}}(n, \delta) \leq \Delta. \quad (35)$$

1000 **Choice of Sample Size n .** We now choose sufficiently large n to ensure that the RFF model’s true
1001 risk falls below that of the identity model by a margin of at least Δ .

1003 Here we require n such that the sum of the two classes’ generalization error bounds is bounded by Δ .
1004 Since E_{RFF} is typically larger than E_{ID} , we can further simplify this to the (conservative) requirement
1005 $E_{\text{RFF}}(n, \delta) \geq \Delta/2$ and $E_{\text{ID}}(n, \delta) \leq \Delta/2$. Apparently it’s similar the other way around. Substituting
1006 the definitions of E_{RFF} and E_{ID} , we obtain the explicit condition on n :

$$1007 \quad CB_{\mathbf{A}}^2 R_{\varphi}^2 \sqrt{\frac{2m \log \frac{4cm}{\delta}}{n}} \leq \frac{\Delta}{4}, \quad \text{and} \quad CB_{\mathbf{A}}^2 R_h^2 \sqrt{\frac{d \log \frac{2cd}{\delta}}{n}} \leq \frac{\Delta}{4}. \quad (36)$$

1009 This condition can be rewritten more compactly as:

$$1011 \quad n \geq N^*(\Delta, d, 2m, \delta) := \frac{16 \left(CB_{\mathbf{A}}^2 \left(R_{\varphi}^2 \sqrt{2m \log \frac{4cm}{\delta}} - R_h^2 \sqrt{d \log \frac{2cd}{\delta}} \right)_+ \right)^2}{\Delta^2}, \quad (37)$$

1014 Here $(x)_+ = \max\{x, 0\}$ denotes the positive part, which appears because if the term in parentheses
1015 is negative (i.e. if $R_{\varphi}^2 \sqrt{2m \log(4cm/\delta)} < R_h^2 \sqrt{d \log(2cd/\delta)}$), then the RFF class actually has no
1016 larger complexity term than the ID class, and the sample requirement can be significantly weak. In
1017 the typical case $2m \gg d$, the term in parentheses will be positive, and the N^* given above is the
1018 dominant sample complexity threshold. \square

1020 E EXPERIMENTS ON OPT MODEL

1022 The performance is further evaluated on two OPT models (OPT-2.7B and OPT-6.7B, Zhang et al.,
1023 2022) with the results presented in Table 6 and Table 7. The results indicate that our method main-
1024 tains robust performance even on relatively small models. While experiencing a marginal decline
1025 on generation tasks, our method’s performance on generation tasks stays comparable, showing no
signs of collapse.

Table 6: Performance comparison on OPT-2.7B and OPT-6.7B.

LLM	Method	CmNLI	HeSw	PIQA	CHID	WSC	CoQA	BoolQ	MMLU	CmMLU	Race	SST2	C3	Avg.	RP.
OPT-2.7B	Dense	34.2	45.2	75.4	37.9	78.0	51.1	60.6	25.9	26.3	35.6	54.3	36.8	46.78	100.0
	SLEB	30.4	40.4	74.2	22.1	72.5	44.8	58.2	25.0	25.3	31.0	55.4	35.6	42.91	91.7
	SliceGPT	31.0	27.8	50.5	19.9	57.1	37.3	50.7	24.8	23.4	25.8	60.6	25.1	36.17	77.3
	SliceGPT [†]	33.6	40.8	63.1	24.1	58.5	37.0	46.5	25.1	24.5	25.0	53.4	26.0	38.12	81.5
	w/o Kernel	30.8	34.5	57.1	15.8	69.1	11.2	50.3	25.3	24.8	24.5	51.5	23.5	34.87	74.5
	Ours	<u>31.9</u>	37.9	<u>73.5</u>	<u>33.1</u>	<u>72.7</u>	30.7	59.4	<u>25.7</u>	<u>25.7</u>	<u>33.2</u>	61.0	<u>35.4</u>	43.35	92.6
OPT-6.7B	Dense	33.4	60.2	78.6	42.5	81.7	55.0	63.2	25.3	25.5	35.3	76.8	39.6	51.43	100.0
	SLEB	36.2	53.2	76.6	23.1	74.7	43.7	<u>46.2</u>	24.1	24.8	<u>31.0</u>	71.6	<u>38.6</u>	<u>45.32</u>	<u>88.1</u>
	SliceGPT	30.3	27.0	62.1	18.8	63.4	21.8	33.3	24.8	<u>25.3</u>	24.0	55.7	26.5	34.42	66.9
	SliceGPT [†]	30.0	29.3	61.7	18.8	69.5	27.6	34.7	29.7	25.0	27.1	62.0	37.7	37.76	73.4
	w/o Kernel	32.8	63.1	67.5	<u>23.6</u>	72.5	39.3	40.6	25.0	24.2	23.3	61.7	33.5	42.26	82.2
	Ours	<u>33.7</u>	<u>53.0</u>	<u>74.5</u>	<u>27.1</u>	<u>76.5</u>	<u>44.5</u>	<u>49.4</u>	<u>29.3</u>	<u>26.1</u>	<u>31.3</u>	<u>69.0</u>	<u>39.5</u>	46.16	89.8

Table 7: Performance of OPT model on generation benchmarks. For Perplexity, a lower score means better performance (\downarrow), while for ROUGE, a higher score means better performance (\uparrow).

LLM	Method	WIKI \downarrow	C4 \downarrow	Xsum \uparrow	RP(PPL)	RP(Rouge)
OPT-2.7B	Dense	15.1	31.3	6.5	100.0	100.0
	Ours	28.0	37.2	2.8	69.0	43.1
OPT-6.7B	Dense	10.9	12.3	13.7	100.0	100.0
	Ours	13.9	22.1	6.0	67.0	43.8

F MORE ABLATION STUDIES

Different Pruning Ratios(HellaSwag and BoolQ). Although CMMLU (Figure 7) is a comprehensive benchmark, the dense model’s performance on it remains relatively low. To mitigate this potential side effect, we present performance curves on HellaSwag and BoolQ across various pruning rates. The results confirm that the overall performance still exhibits a consistent linear decline.

Different Kernel Sizes. A kernel function for our objective must address a fundamental trade-off; it must be powerful enough to simplify the system’s dynamics, yet sufficiently constrained to retain the core information required by the task. For example, a trivial kernel that maps all representations to a constant would perfectly linearize the dynamics, but at the cost of a complete “information collapse” that invalidates the model. Therefore, our goal is to design a non-trivial kernel that can effectively model the simplified dynamics on the slow manifold. Given such a kernel, we can simplify the transformations between layers, thereby enabling layer pruning. To validate this point, beyond the end-to-end downstream experiments in the main text, we further investigate how the method’s performance varies with different kernel sizes (i.e., $2m$).

Figure 8 illustrates the impact of varying kernel sizes on the performance of LLaMA2-7B across three representative datasets (Hellaswag, CoQA and MMLU). With smaller kernel sizes, such as 256

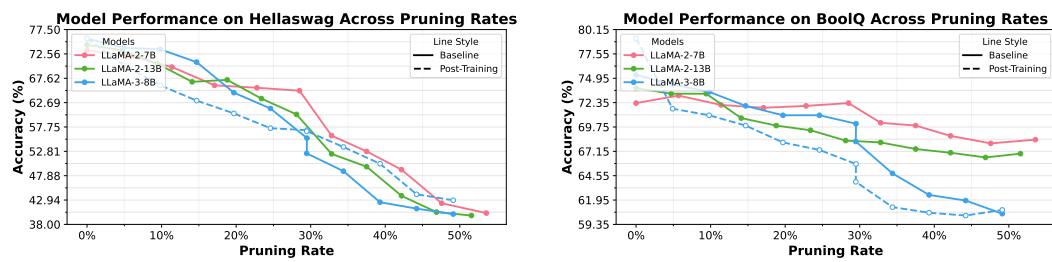
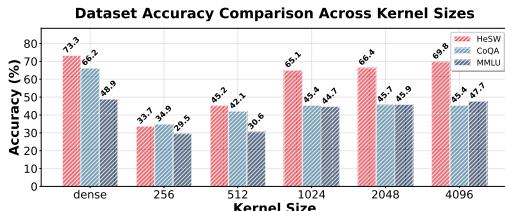


Figure 7: Performance of HellaSwag and BoolQ when we prune with increasing pruning ratio.

1080 and 512, there is a significant drop in performance, which suggests that critical information is lost
 1081 due to excessive compression. Conversely, once the kernel size reaches 1024, the performance gains
 1082 become marginal. This indicates that a 1024-dimensional kernel space, induced by our learnable
 1083 RFF can encode the model’s essential information.

1084 **Data efficiency.** As presented in Table 8, our method demonstrates high data efficiency, utilizing
 1085 only marginally more data than SliceGPT. Critically, our method does not require any post-training
 1086 to restore performance.



1088 Figure 8: Ablation study on kernel size m .
 1089

1090 Table 8: Data usage statistics for each methods.
 1091

Method	Need Training	Need Fine-tuning	Total Sample
SLEB	✗	✗	/
ShortGPT	✗	✗	/
LaCo	✗	✓	1B
Streamline	✓	✓	30k
LLMPruner	✓	✓	50k
SliceGPT	✓	✗	1k
Ours	✓	✗	4k

1092 **Sensitivity analysis for each step.** To further investigate the importance of each step, we conduct
 1093 an ablation study under extreme conditions on LLaMA-2-7B. We individually train either Step 1
 1094 or Step 2 for a minimal number of epochs, forcing the subsequent steps to handle all performance
 1095 modeling. As shown in Table 9, we observe a significant performance collapse in both scenarios.
 1096 A significant discrepancy in performance becomes evident after a short training period. Training
 1097 Step 1 for just 5 epochs, despite recovering some performance, still falls considerably short of the
 1098 original baseline. Conversely, training Step 2 for five epochs achieves performance almost on par
 1099 with the fully trained method. This provides strong support for our central thesis presented in the
 1100 main text: that the trained kernel function models performance, while the inverse transformation
 1101 network’s role is to learn the corresponding inverse transformation.

1102 Table 9: Sensitivity analysis for each step.
 1103

Method	HeSW	CoQA	MMLU
Original	65.1	45.4	28.1
Barely Step 1 (1 Epoch)	43.9	17.0	24.2
Barely Step 1 (5 Epoch)	52.1	27.0	26.7
Barely Step 2 (1 Epoch)	43.7	13.0	24.4
Barely Step 2 (5 Epoch)	60.0	43.7	26.3

1104 **Speed up.** To further assess the practicality of our method, we compare its performance and effi-
 1105 ciency across several mainstream LLaMA models, with detailed results in Table 10. We mainly fo-
 1106 cuses on focuses on quantifying the impact of reducing inference computation (FLOPs) on the models’
 1107 average performance (Avg RP). For LLaMA-2-7B, FLOPs were reduced by 23.13%, which brought
 1108 a 1.30x theoretical inference speedup. For LLaMA-2-13B, FLOPs were reduced by 23.64%, achiev-
 1109 ing a 1.30x speedup, and the performance retention rate reached 92.9%; this is the result with the
 1110 best performance-efficiency trade-off among the three. In summary, the experimental results demon-
 1111 strate that our method effectively accelerates the inference of LLMs. It offers a tunable mechanism
 1112 for trading acceptable performance degradation for significant gains in computational efficiency.
 1113 This feature holds substantial practical value for deploying large models in resource-constrained
 1114 environments.

1115 **Different training datasets.** To evaluate the performance of our method across various datasets, we
 1116 conduct experiments on the LLaMA2-7b model. The results are presented in Table 11. Specifically,
 1117 the “Fewer” setting utilizes a training set comprising 200 samples each from BoolQ, CMMLU, and
 1118 Slimpajama. In contrast, the “More” setting augmented this base dataset with data from CoQA
 1119 and HellaSwag, totaling 11.4k samples. Here, “Avg.” denotes the average performance across the
 1120 datasets. “RP. on Dense” and “RP. on std.” indicate the Retained Performance relative to the Dense
 1121 model and the standard dataset (reported in the main text), respectively. The experimental results
 1122

Table 10: Performance and efficiency comparison.

Model	Method	FLOPs (G)	Change (%)	SpeedUp
LLaMA-2-7B	Dense	845.71	–	–
	SLEB	664.38	27.29	1.27×
	ShortGPT	612.57	38.06	1.38×
	Streamline	586.67	30.63	1.44×
	SliceGPT	717.63	15.14	1.17×
	Ours	650.06	23.13	1.30×
LLaMA-2-13B	Dense	1645.01	–	–
	SLEB	1320.20	19.74	1.24×
	ShortGPT	1239.00	24.68	1.33×
	Streamline	1229.76	25.24	1.34×
	SliceGPT	1392.89	15.32	1.18×
	Ours	1255.99	23.64	1.30×

demonstrate the remarkable efficiency of our method. Our standard configuration (“Standard”), using only 4k data samples, achieved 91.4% of the performance of the Dense model (average score of 58.69). Notably, the “Fewer” configuration, with merely 0.6k samples, attained 97.7% of the performance of the standard configuration, indicating that our method is not sensitive to the data volume and possesses strong generalization capabilities. Furthermore, by increasing the dataset size, the “More” configuration surpassed the standard version’s performance (103.1%), which validates the scalability of our method. In conclusion, this ablation study highlights the robustness of our method with respect to data quantity.

Table 11: Performance comparison of LLaMA-2-7B under different training data setups.

LLM	Datasets	CMNLI	HeS _W	PIQA	CoQA	BoolQ	MMLU	CMMLU	Race	SST2	C ₃	Avg.	RP. on Dense	RP. on std.
LLaMA-2-7B	Dense	34.9	73.3	79.7	66.2	72.3	48.9	30.8	42.8	93.2	44.8	58.69	100.0	-
	Standard (8d 4k)	33.6	65.1	70.1	45.4	71.6	44.7	28.1	39.9	94.0	43.7	53.62	91.4	100.0
	Fewer (3d 0.6k)	33.1	72.7	76.5	46.0	72.7	29.3	26.4	36.3	90.5	40.2	52.37	89.2	97.7
	More (10d 11.4k)	34.9	73.0	77.0	47.9	70.7	44.7	30.3	38.0	92.4	44.3	55.32	94.3	103.1

G MORE VISUALIZATION

This section presents additional visualizations of the fitting results. Following the mechanism previously detailed in Figure 3, these figures provide a clearer illustration of the fitting quality.

H MORE ANALYSIS OF SLOW MANIFOLD HYPOTHESIS

The manifold hypothesis posits that high-dimensional data often reside on a manifold with a dimensionality much lower than that of the ambient space, which is beneficial in various fields (Song & Ermon, 2019). This leads us to consider whether this property also holds for the LLM’s internal representations, allowing them to be embedded in a low-dimensional manifold. The internal representations of the model are sequential. As shown in Equation 1, in standard Pre-Norm Transformers, \mathbf{h}_{l+1} is obtained by adding an increment to \mathbf{h}_l . We therefore define this increment as the velocity of change in the representation.

Although CKA and Cosine similarity are measures of similarity rather than distance, they are closely correlated with distance measures on the manifold. This implies that high similarity between two representations corresponds to a small distance between them. The two similarity matrices in Figure 1 provide quantitative evidence for this. When the representation change over a single propagation step is small, we consider the representation to be in a stable state on the manifold, which is often feasible to model this stable evolution using a simple dynamical model.

1188
 1189
 1190
 1191
 1192
 1193

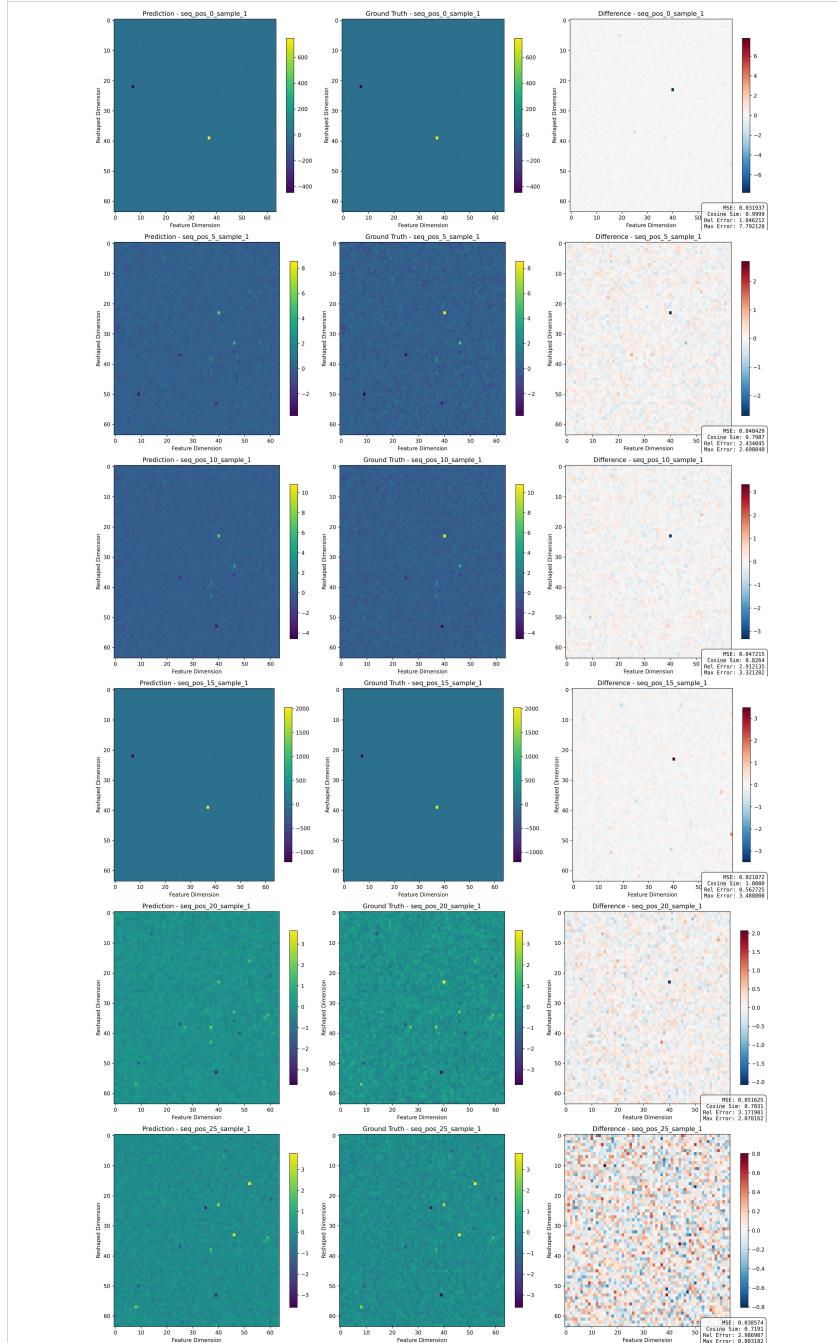


Figure 9: Additional Visualizations of Representation Fitting.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

Figure 10: The representation propagation trajectories for 100 samples within LLaMA2-7B. The X and Z axes denote the t-SNE coordinates, while the Y-axis represents the layer index. An inspection along the Y-axis (layer depth) reveals that the trajectories for individual samples remain well-separated and exhibit strong linearity. Furthermore, the transformation between adjacent layers is gradual.

1260

The concept of using linear approximations for nonlinear dynamics finds parallels in many fields. Beyond the fundamental example of calculus, a typical case in partial differential equations (PDEs) is the Fisher equation. Its full form is: $u_t = Du_{xx} + ru - \frac{r}{K}u^2$. However, in the vicinity of $u = K$, this equation is often simplified into the following linear PDE: $v_t = Dv_{xx} - rv$.

1261

1262

1263

1264

To provide further intuitive support for our hypothesis, we visualized the representational trajectories across different layers for 100 samples from LLaMA2-7B using t-SNE in Figure 10. The resulting plot clearly exhibits a strong linear trend, which in turn validates the feasibility of our method.

1265

1266

1267

1268

I ADDITIONAL OVERHEAD ANALYSIS

1269

1270

1271

1272

1273

KDP introduces additional parameters during two steps: Kernel Linearization Joint Training requires training the parameters θ, \mathbf{A}_i defined in Equation 5; Inverse Transformation Network involves training the parameter ϕ from Equation 6. Specifically, when we replace a block of K_{\max} consecutive layers, the parameter counts for the three components $(\theta, \mathbf{A}_i, \phi)$ are as follows:

1274

1275

1276

1277

1278

1279

θ : The RFF kernel learns a data-driven anisotropic Gaussian RBF kernel. Its learnable parameters θ are derived from the parameterization of the covariance matrix $\Sigma = \mathbf{D} + \mathbf{L}\mathbf{L}^\top$. This parameterization consists of two components: First, the diagonal matrix $\mathbf{D} = \text{diag}(\exp(\lambda))$, is parameterized by the learnable vector $\lambda \in \mathbb{R}^d$, contributing d parameters. Second, $\mathbf{L} \in \mathbb{R}^{d \times r}$ is a learnable low-rank factor matrix, which contributes $d \times r$ parameters. Therefore, the total parameter count is: $\text{Params}(\theta) = d + dr = d(1 + r)$.

1280

1281

1282

1283

1284

1285

\mathbf{A}_i : Each operator \mathbf{A}_i maps the kernel space representation $\varphi(\mathbf{h}_{l+i-1}) \in \mathbb{R}^{2m}$ to $\varphi(\mathbf{h}_{l+i}) \in \mathbb{R}^{2m}$. Consequently, \mathbf{A}_i is a $(2m) \times (2m)$ matrix. To ensure stable training, \mathbf{A}_i is parameterized as $\mathbf{A}_i = \mathbf{I} + \gamma_i \mathbf{B}_i$. The learnable parameters for each \mathbf{A}_i thus consist of the scalar γ_i and the matrix $\mathbf{B}_i \in \mathbb{R}^{2m \times 2m}$. This results in a total parameter count of $\text{Params}(\mathbf{A}_i) = K_{\max} \cdot (1 + (2m)^2)$. Notably, once training is complete, only the product $(\prod_{i=1}^k \hat{\mathbf{A}}_i)$ needs to be stored. Consequently, during the inference phase, the final parameter count is reduced to only: $\text{Params}(\mathbf{A}_i) = (2m)^2$.

1286

1287

1288

1289

1290

1291

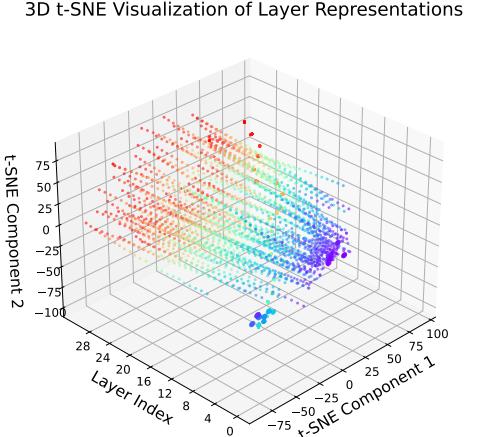
1292

1293

1294

1295

ϕ : This represents the parameters for the inverse transformation network $\mathcal{I}(\cdot)$. The network is parameterized as $\mathcal{I}(x) := \alpha \cdot \text{MLP}(x)$, where α is a learnable scalar and $\text{MLP}(\cdot)$ stands for a two-layer MLP network. The total parameter count is given by: $\text{Params}(\phi) = 1 + (2m \cdot d_{\text{hidden}} + d_{\text{hidden}}) + (d_{\text{hidden}} \cdot d + d)$.



1296 Therefore, during the training phase, the total introduced parameter count is
 1297

$$1298 \text{Params}^{\text{Train}}(\text{KDP}) = d(1 + r) + K_{\max}(1 + (2m)^2) + (1 + d_{\text{hidden}}(2m + d + 1) + d),$$

1299 and during the inference phase, the total introduced parameter count is
 1300

$$1301 \text{Params}^{\text{Inference}}(\text{KDP}) = d(1 + r) + (2m)^2 + (1 + d_{\text{hidden}}(2m + d + 1) + d).$$

1302
 1303 The FLOPS and corresponding parameter counts under different k are in the Table 12, which demon-
 1304 strate that the additional overhead introduced by KDP is minimal.

1305
 1306 Table 12: FLOPs and parameter retention under $k = 2$ and $k = 3$.

	LLM	FLOPs (G)		Params (M)	
		$k = 2$	$k = 3$	$k = 2$	$k = 3$
1311 1312 1313	LLaMA-2-7B	Transformer Block	51.80	77.71	404.77 607.15
		Fold Block		2.89	12.40
		Retention Rate	5.59%	3.73%	3.07% 2.05%
1314 1315 1316	LLaMA-2-13B	Transformer Block	81.20	121.80	634.41 951.61
		Fold Block		3.4	14.83
		Retention Rate	4.19%	2.79%	2.34% 1.56%

J THE USE OF LLMs

1318 We thank the Large Language Model (LLM) for its assistance in proofreading and polishing the
 1319 manuscript’s language. The LLM was not involved in the idea, theoretical development, or experi-
 1320 mental aspects of this research.

1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349