
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KDP: SIMPLIFYING REPRESENTATION DYNAMICS IN
KERNEL SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper proposes Kernelized Dynamics Pruning (KDP), a novel layer pruning
method from the perspective of simplifying representation dynamics within large
language models (LLMs). Motivated by the high similarity between consecutive
layer representations, we view the LLM’s forward pass as a discrete-time dynam-
ical system. We speculate that this phenomenon indicates the model’s internal
dynamics have entered a “slow manifold”, which exhibits computational redun-
dancy. Based on this insight, we project the representations into a kernel space
where the complex, non-linear transformation between them is simplified to an
approximately linear one. Then, a simple network learns the inverse kernel trans-
formation, thereby enabling the pruning of the entire layer block. Both theoretical
analysis and extensive experiments validate the effectiveness of KDP, demonstrat-
ing its superiority over existing pruning baselines. Code is available at here.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional performance across various tasks
and domains (Touvron et al., 2023; Grattafiori et al., 2024; Yang et al., 2025; Liu et al., 2024). How-
ever, as models increase in scale, the substantial computational and hardware deployment costs pose
significant challenges, limiting their broader application in real-world scenarios. Pruning is a pri-
mary technique for model compression aimed at alleviating the aforementioned problems (Louizos
et al., 2017; Xia et al., 2023; Sun et al., 2024; Ma et al., 2023). Among various pruning methods,
layer pruning is garnering increasing attention because it naturally leads to inference acceleration
and model size reduction without requiring special handling.

The prevailing layer pruning paradigm involves removing redundant layers (Song et al., 2024; Men
et al., 2024) or substituting them with compact modules (Yang et al., 2024; Chen et al., 2025), with
a primary emphasis on the choice of pruning locations and the techniques for performance recovery
(e.g., fine-tuning or distillation). However, this line of work largely overlooks the fundamental
properties of the model’s internal dynamic flow, thereby leaving the potential simplification patterns
unexplored, see Appendix C for details on related work. We suggest that pruning can be viewed
not only as a method to “construct” a smaller sub-network, but also as a process to “search” for a
geometric viewpoint that reveals the inherent simplicity of complex dynamics.

LLMs exhibit a notable characteristic: their consecutive layers tend to learn highly similar repre-
sentations (Ding et al., 2025). As demonstrated in Figure 1, we employ both the centered kernel
alignment (CKA, Kornblith et al., 2019) and the cosine similarity metric to measure the similarity of
layer representations from the perspectives of the original space and the kernel space, respectively,
and find that multiple consecutive layers exhibit consistently high similarity. This observation raises
a key research question: Does representational similarity equate to computational redundancy which
can be substituted by a simple function?

Viewing the forward pass of an LLM as a discrete-time dynamical system, high representational
similarity signifies the system’s entry into a “slow manifold”, characterized by a small velocity. We
assume that in such regions, the system’s short-term evolution can be described by a much simpler
function (e.g., a linearized first-order approximation), rather than requiring the nonlinear dynamics
of a complete Transformer block. However, substituting the non-linear forward pass with linear
dynamics may result in the loss of fine-grained details, which could contain low-variance, task-
relevant information (Cloos et al., 2025). Notably, Figure 1 shows that the similarity measured in the

1

https://anonymous.4open.science/r/draft-123abc

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

kernel space is substantially higher than that in the original space. This observation suggests that the
kernel space possesses stronger capability in modeling high-dimensional relationships, consistent
with the intuition behind SVMs (Cortes & Vapnik, 1995). Consequently, it exhibits higher similarity
and suggests a potential for linear simplification. Motivated by this, we aim to identify a Hilbert
space in which the complex dynamics become amenable to linear approximation, thereby enabling
effective layer pruning via linear simplification in kernel space.

Based on these insights, we propose Kernelized Dynamics Pruning (KDP), simplifying repre-
sentational dynamics within a kernel space to reduce computational redundancy. Specifically, our
method proceeds in the following two steps. First, we jointly optimize a learnable kernel trans-
formation and the linear coefficients mapping between layers. Second, an inverse transformation
network maps these representations from the kernel space back to the original space, reconstructing
the original layer to enable model pruning.

We validate the effectiveness of our method through both theoretical analysis and extensive exper-
iments. First, we present a theorem providing an error bound for approximating multi-layer rep-
resentations with linear transformations in the kernel space, thereby demonstrating that cross-layer
representations can be linearly approximated within this space. We further show that the linear ap-
proximation capability in the kernel space surpasses that in the original space, providing a theoretical
foundation for KDP. Extensive experimental results empirically answer our guiding research ques-
tions, demonstrating that exploiting representation similarity significantly simplifies computational
processes by eliminating redundancy. KDP learns simplified internal representational dynamics in
kernel space using only localized representation supervision, without requiring fine-tuning of the
entire model on downstream tasks. This method enables effective modeling with limited data and
obviates the need for post-training to restore performance. Our main contributions are as follows:

• We reformulate layer pruning as the search for an optimal geometric embedding within a Repro-
ducing Kernel Hilbert Space and propose Kernelized Dynamics Pruning (KDP) method, which
linearizes representational dynamics using the kernel trick to simplify consecutive layers.

• We provide a theoretical error bound for linearization in the kernel space and demonstrate the
modeling and linear simplification advantages of the kernel space, with experimental results cor-
roborating the theoretical analysis.

• We conduct extensive experiments on 15 benchmarks, demonstrating that our method maintains
superior performance while requiring only a small number of trainable parameters and limited
calibration data, eliminating the need for additional post-training.

2 PRELIMINARIES & THEORETICAL ANALYSIS

2.1 PROBLEM SETUP & KERNELIZATION

LLM Forward Formulation. Consider an LLM composed of a sequence of N Pre-Norm Trans-
former layers, F1, . . . ,FN . Given an input x, for the l-th layer, the forward pass is written as

hl+1(x) = hl(x) + fl(Norm(hl(x))). (1)

Here, Norm(·) denotes the Layer Normalization function, hl(x) ∈ Rd denotes the l-th layer repre-
sentation and fl(·) denotes the backbone function of the Transformer layer composed of multi-head
attention (MHA) and feed-forward neural network (FFN). For simplicity, we write h for h(·) when
the context is clear.

Kernel Model. A kernel is a function k(x,y) that measures the similarity between two data points
x and y. It is formally defined as an inner product in a feature space H. Gaussian Radial Ba-
sis Function (RBF) kernel (i.e., k(x,y) = exp(−γ∥x − y∥2)) is the canonical choice due to
its universality and consistency(Steinwart, 2002). In this paper, we employ a learnable Random
Fourier Features (RFF) kernel to learn a data-driven, anisotropic Gaussian RBF kernel (Rahimi &
Recht, 2007), which enhances representational capacity and reduces computational cost. The ker-
nel is approximated by the inner product of a low-dimensional feature map φ(·) : Rd → R2m,
k(x,y) ≈ φ(x)⊤φ(y), where φ(x) is defined as:

φ(x) =
1√
m

(
cos
(
W⊤x+ b

)⊤
, sin

(
W⊤x+ b

)⊤)⊤
. (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

LL
aM

A2
-7
B

LL
aM

A2
-1
3B

LL
aM

A3
-8
B

Figure 1: Inter-layer Cosine and CKA Similar-
ity of 3 LLaMA LLMs.

Algorithm 1: Kernelized Dynamics Pruning

1: Require: Pretrained LLM F, calib. setD, RFF dim m,
low-rank r, block max length Kmax, budget B,
stability step γ, weight W , training iters T .

2: Let G be the set of B non-overlapping model blocks
Fl:l+Kmax that maximize the similarity score
CKA(hl,hl+Kmax).

3: procedure JOINTKERNELLINEARIZATION
4: for (l, · · · , l + Kmax) ∈ G do
5: Define φθ , operators {Ai}ki=1

6: for minibatch B ⊂ D do
7: φ̂(hl+k(B))←

(∏k
i=1 Ai

)
φθ (hl (B))

8: L(·)← Lmse + Lcos

9: Update θ and {Ai}ki=1

10: return {θ(l), {A(l)
i }

k
i=1}l∈G

11: procedure TRAININVERSENETWORK
12: for (l, · · · , l + Kmax) ∈ G do
13: Define inverse networkRϕ

14: for minibatch B ⊂ D do
15: ĥl+k ← R (φ̂(hl+k))

16: L(·)← Lmse + Lnorm

17: Update ϕ

18: return {ϕ(l)}l∈G

19: procedure FOLDBLOCK

20: Define S(h)← Iϕ
((∏k

i=1 Ai

)
φθ(h)

)
21: Replace Fl, . . . ,Fl+k with S

Here the columns of weight matrix W ∈ Rd×m are i.i.d. samples drawn from N (0,Σ), and the ele-
ments of bias vector b ∈ Rm are i.i.d. samples drawn from U(0, 2π). In contrast to the original RFF
kernel, which relies on a pre-defined spectral distribution, here the covariance matrix Σ is learnable
and parameterized as Σ = D + LL⊤, D = diag(exp(λ)) is a diagonal matrix parameterized by a
learnable vector λ ∈ Rd and L ∈ Rd×r is a learnable low-rank factor matrix, where the rank r is
a hyperparameter that satisfies r ≪ d. Equation 2 effectively learns an anisotropic Guassian RBF
kernel k(x,y) = exp

(
− 1

2 (x− y)⊤Σ−1(x− y)
)

whose distance metric is adapted to the data.

Symbol Denotation. In this paper, the ℓp-norm of a vector v = (v1, · · · , vm)⊤ is denoted by
∥v∥p ≜

∑m
i=1 (v

p
i)

1/p, with the subscript omitted for the standard ℓ2-norm (i.e., ∥v∥ ≜ ∥v∥2),
the operator norm for a matrix is denoted by ∥ · ∥op, (x)+ = max{x, 0} denotes the positive part
of vairable x, and O(·) denotes the standard Big-O notation for an asymptotic upper bound. For
detailed definitions of technical machine learning terms, such as ERM and population risk, please
refer to the Appendix A.

2.2 FORWARD DYNAMICS ON A SLOW MANIFOLD

The residual connection described in Equation 1 motivates us to view the Transformer’s forward
pass as a discrete-time dynamical system. The term fl(·) can be seen as a “velocity” or “update”
vector that perturbs the current state hl, thereby producing the state of the next layer, hl+1.

As shown in Figure 1, consecutive layer representations in LLMs exhibit strikingly high similar-
ity. Within this dynamical framework, high similarity between hl+1 and hl is directly equivalent to
the update vector having a small relative norm, i.e., ∥fl (Norm (hl))∥ ≪ ∥hl∥, indicating that the
system’s trajectory has entered a “slow manifold”. If the transformation between layers is minor,
the local dynamics of a Transformer block fl could potentially be approximated by a far simpler
function. This is a common practice in fields such as the numerical analysis of partial differential
equations (PDEs) and model order reduction (e.g. (Murray, 2007), more detailed analysis can be
found in the Appendix G). While a first-order approximation (i.e., local linearization of the dynam-
ics) is a natural approach, the Transformer’s forward pass is fundamentally nonlinear. Applying
such an approximation directly in the original representation space would therefore lead to signifi-
cant information loss, as it would neglect crucial nonlinear feature interactions. Note that in Figure

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1, the CKA similarity generally exceeds cosine similarity, which is consistent with the property
that the high-dimensional representation induced by the kernel space captures complex representa-
tional relationships more effectively. Therefore, we assume that there exists a kernel function φ(·)
that induces a Hilbert space where the layer-wise transformation becomes approximately linear, i.e.,
φ(hl+1) ≈ Alφ(hl).

2.3 THEORETICAL RESULTS

As argued in Section 2.2, when adjacent layers exhibit high representational similarity, the forward
propagation enters a slow manifold where a simpler rule can capture short-horizon dynamics, an
approximation that becomes more accurate in a suitable kernel space. In this section, we present
the theoretical formalization of these arguments. First, we derive the error bound for linear fitting
of multi-layer representations in the kernel space, demonstrating that consecutive layers with highly
similar representations can be reduced to linear transformations in this space. Subsequently, we
prove that the kernel space exhibits superior fitting capacity for layer simplification compared to the
original representation space. The detailed proofs are provided in Appendix D.

Theorem 1 (Kernel Linearization Error Bound). Let φθ : Rd → R2m be a feature map such that
∥φθ(h)∥2 ≤ Rφ for all representations h. Let Ai be linear operators for the i-th step transition
with ∥Ai∥op ≤ BA. Let (θ̂, {Âi}) be the Empirical Risk Minimization(ERM) solution on an n-
sample training set, and let LERM denote the minimum empirical one-step squared error. Then for
any δ ∈ (0, 1), with probability at least 1 − δ over the draw of the training set, for every starting

layer l and horizon k ≥ 1, the k-step error Ek,l(θ̂, {Âi}) := φθ̂(hl+k) −
(∏l+k−1

i=l Â i

)
φθ̂(hl)

satisfies

∥∥Ek,l(θ̂, {Âi})
∥∥ ≤

√
LERM + C B2

AR2
φ

√
2m log(2m/δ)

n︸ ︷︷ ︸
(a)

·
k−1∑
j=0

B k−1−j
A︸ ︷︷ ︸

(b)

. (3)

Theorem 1 yields a two-factor bound on k-step error: a single-step term (a) that captures the linear
model’s in-kernel fitting ability plus its generalization gap, and a multi-step accumulation factor (b)
that governs how errors accumulate across replaced layers. Theoretically, for the bounded parame-
ters Rφ and BA, the error bound converges at a rate of O(1/

√
n) with the sample size n. In sub-

sequent experiments illustrated in Figure 4, we establish empirical values for BA and Rφ, demon-
strating that these bounds are well-behaved, i.e., they are significantly smaller than

√
n. Therefore,

Theorem 1 demonstrates that consecutive layers can be well simplified as linear transformations in
kernel space.

Further, we can prove that compared to learning a linear approximation in the original representation
space, the kernel space yields a smaller linear approximation error. Before that, the fitting capability
of kernel space is given in the following lemma.

Lemma 1 (Kernel Existence). For any given ϵ > 0, there exists a Random Fourier Feature map
φ : Rd → R2m(defined by suitable parameters W,b, and a sufficiently large dimension 2m) and a
corresponding linear operator A, such that: Ehl∼D [∥φ (hl+1)−Aφ (hl)∥] < ϵ.

The proof of Lemma 1 is a direct application of the Universal Kernels (Micchelli et al.,
2006). Next, our analysis begins with two function classes. Consider the following two
function classes at the l-th layer of an LLM: the identity class of the original space FID :=
{x 7→ Ax : ∥A∥op ≤ BA} , with a population risk of RID(A) := E

[
∥hl+1 −Ahl∥2

]
; the RFF

class FRFF := {x 7→ Aφθ(x) : ∥A∥op ≤ BA, ∥φ(x)∥ ≤ Rφ, θ ∈ Θ} , with a population risk of
RRFF(θ,A) := E

[
∥φθ(hl+1)−Aφθ(hl)∥2

]
. Note the minimum population approximation error

of the two classes as:

apxID := inf
∥A∥op≤BA

RID(A), apxRFF := inf
θ∈Θ,∥A∥op≤BA,∥φ(x)∥≤Rφ

RRFF(θ,A).

Let ÂID and (θ̂, ÂRFF) be the ERM solutions on the respective classes. We can get the following
conclusion on the superior fitting capacity of Kernel space.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 2 (Kernel Advantage). Let ∆ := apxID − ϵ > 0. For any δ, there exist m′, c, C > 0, such
that for RFF dimension 2m > m′ and

n ≥
16

(
CB2

A

(
R2

φ

√
2m log 2cm

δ −R2
h

√
d log cd

δ

)
+

)2

∆2
, (4)

the following holds with probability at least 1− δ: RRFF(θ̂, ÂRFF) ≤ RID(ÂID).

Theorem 2 establishes that in the kernel space, a well-trained RFF with dimensionality greater than
2m achieves lower population risk compared to simplification in the original representation space.
This result further substantiates the necessity of performing linearized model compression in the
kernel space. Experiments in Table 3 empirically validate the superiority of the kernel space over
the original representation space.

3 KERNELIZED DYNAMICS PRUNING

As argued in Section 2, on both intuitive and theoretical grounds, representational similarity implies
computational redundancy, so that the complex module can be simplified better in kernel space.
Building on this foundation, this section details our pruning method, Kernelized Dynamics Pruning
(KDP). The algorithm is presented in Algorithm 1.

3.1 KERNEL LINEARIZATION JOINT TRAINING

The first step is to identify which parts of the network to prune. Inspired by prior work (Chen
et al., 2025; Ding et al., 2025; Gromov et al., 2025), we focus on replacing blocks of multiple
consecutive Transformer layers. To control the cumulative error as shown in Equation 1, we set the
consecutive layers to be replaced with a maximum length Kmax. For each block, we first compute
the CKA similarity between the output representations of the first and last layers of consecutive
blocks. Following standard practice (e.g., Ding et al., 2025), we exclude the initial and final 10%
of the model’s layers from consideration, as they are empirically known to be sensitive to pruning.
Combining these criteria, we rank all eligible blocks according to their CKA scores and advance the
highest-scoring candidate to the kernel linearization training stage.

For the candidate block for pruning, we learn a replacement module by jointly optimizing the learn-
able RFF kernel parameters θ and the multi-step linear operators {Ai}Kmax

i=1 . For each training
sample x ∈ D, the estimate (θ̂, {Âi}) is given by:

argmin
θ,{Ai}

Kmax∑
i=1

∑
x∈D

[
∥Aiφθ (hl+i−1(x))− φθ (hl+i(x)) ∥2

+ (1−W ⊙ cos (Aiφθ (hl+i−1(x)) , φθ (hl+i(x))))
]
.

(5)

Here, ⊙ denotes element-wise multiplication. The loss function is composed of two terms: a re-
construction loss and a weighted cosine similarity loss. The latter is designed to encourage a finer-
grained alignment of the representations’ geometric structure. Specifically, this cosine similarity
term is modulated by a weight matrix W , which assigns greater importance to tokens based on their
position, prioritizing those towards the end of the sequence. To improve convergence stability, Ai

is parameterized as Ai = I + γiBi that preserves the additive nature of LLM’s forward pass (see
Equation 1), where the scalar γi and the matrix Bi are trainable parameters. In addition, we initialize
Ai at the start of each iteration with its Ordinary Least Squares (OLS) estimate in the current RFF
kernel space to accelerate training.

3.2 INVERSE TRANSFORMATION NETWORK

Once the joint training converges, we can get k-step prediction in the kernel space, i.e., φ̂(hl+k) =(∏k
i=1 Âi

)
φ̂θ(hl). However, this output must be mapped back to the original space for layer

replacement. Thus, an inverse transformation network, I(·)ϕ : R2m → Rd, takes the kernel-space

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Overall illustration of KDP. KDP replaces a multi-layer Transformer block via a two-step
process: first, it projects and linearizes non-linear representations in a kernel space; second, it learns
an inverse mapping from the kernel space back to the original space using a simple network.

prediction φ̂(hl+k) as input, to reconstruct representation in original space hl+k, denote as ĥl+k.
The estimate ϕ̂ is given by:

argmin
ϕ

∑
x∈D

∥Iϕ (φ̂ (hl+k (x)))− hl+k(x)∥2. (6)

We parameterize the inverse transformation network I as a two-layer MLP with a scalar scaling
factor α, i.e. I(x) := α ·MLP(x). We observe that the iterative application of the linear operators
{Ai} in the kernel space can lead to a significant decrease in the representation’s norm. The scaling
factor α explicitly compensates for this norm decay, enabling a more stable and efficient recovery
of the original representation’s scale.

4 EXPERIMENTS

4.1 SETUP

Models. Our experiments are conducted on 6 popular open-source models: LLaMA2-7B, LLaMA2-
13B (Touvron et al., 2023), LLaMA3.1-8B, LLaMA3-8B (Grattafiori et al., 2024), OPT-2.7B and
OPT-6.7B. (The results for the OPT model are presented in the Appendix E.) Following prior work,
we prune the layers that account for approximately 25% of the original parameters.

Training Datasets. For training, we construct a composite dataset of 4000 samples by randomly
selecting 500 samples from the training set of each of the following datasets: PIQA (Bisk et al.,
2020), CMMLU (Yüksel et al., 2024), BoolQ (Clark et al., 2019), C3 (Sun et al., 2020), MNLI
(Williams et al., 2018), Race-High/Middle (Lai et al., 2017), and SlimPajama (Shen et al., 2024).

Benchmarks. For a comprehensive evaluation, we assess the models on 15 standard datasets. We
group the evaluation tasks into two categories: generation and classification. For the classification,
the evaluation is conducted on the test sets of the aforementioned datasets, excluding SlimPajama,
and is supplemented with 6 additional datasets: CHID (Zheng et al., 2019), HellaSwag (Zellers
et al., 2019), CoQA (Reddy et al., 2019), WSC (Levesque et al., 2012), SST2 (Socher et al., 2013),
and C3 (Sun et al., 2020). We also evaluate 3 benchmarks for generative capabilities. For WikiText
(Merity et al., 2017) and C4 (Raffel et al., 2020), we evaluate their Perplexity (PPL), and for XSum
(Narayan et al., 2018), we evaluate ROUGE1. We use the LM Evaluation Harness (Gao et al., 2024)
with default parameters in our evaluations.

Baselines. Beyond the dense model, we consider six structured pruning methods: ShortGPT (Men
et al., 2024) and SLEB (Song et al., 2024), which prune the network directly via metrics without
retraining, and LaCo (Yang et al., 2024), Streamline (Chen et al., 2025), SliceGPT (Ashkboos et al.,
2024), and LLM-Pruner (Ma et al., 2023), which first prune or replace network components and
then employ a retraining phase to recover performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 MAIN RESULTS

Table 1 and Table 2 show the effects of different pruning methods on classification and generative
tasks. The two tables present detailed scores on each benchmark, the overall average, and the re-
tained performance rate. In the tables, “Dense” refers to the original model and “w/o kernel” is
an ablation of our method that only removes the identified layers. “Ours” denotes our proposed
method, while “Ours†” refers to our method after being fine-tuned using Parameter-Efficient Fine-
Tuning (PEFT). (Details of PEFT are provided in the Appendix B.) Table 1 shows that our method’s
retained performance surpasses that of the best-performing baseline by 9.1%, 8.3%, and 9.3% on
LLaMA2-7B, LLaMA2-13B, and LLaMA3-8B, respectively. Our method also achieves comparable
performance on generative tasks. Notably, it requires no retraining phase to recover performance.

It is worth noting that on the SST-2 dataset, a simple binary classification task, existing methods
show a notable performance degradation despite performing well on other complex benchmarks.
We suppose that this phenomenon arises because simpler tasks rely more heavily on coarse-grained
information, which prior methods tend to prune inadvertently, thereby leading to instability. In con-
trast, our method consistently maintains its effectiveness, indicating its superior capacity to preserve
the model’s essential capabilities.

The comparison with the “w/o Kernel” demonstrates the effectiveness of KDP. While directly prun-
ing consecutive layers leads to a significant degradation in performance, our method of simplifying
these layers in the kernel space yields substantial gains. Specifically, it boosts the average retained
performance by 31.9%, 23.1%, and 18.9% percentage points for the three models, respectively.

Table 1: Performance comparison of different baselines on classification benchmarks. “∗” indicates
the results in the original paper. “†” indicates the results after fine-tuning. Average (Avg.) represents
the arithmetic mean of Accuracy across all datasets. Retained performance (RP.) represents the
percentage of the original model’s performance retained by the pruning method.

LLM Method Ratio
CM

NLI
HeS

w
PIQ

A
CHID

W
SC

CoQ
A

Boo
lQ

M
M

LU

CM
M

LU
Rac

e
SST2 C3 Avg. RP.

L
L

aM
A

-2
-7

B

Dense 0.0% 34.9 73.3 79.7 41.6 81.2 66.2 72.3 48.9 30.8 42.8 93.2 44.8 59.14 100.0
SLEB 20.1% 29.7 63.3 66.1 19.3 75.7 48.5 68.2 24.2 26.4 28.8 78.8 35.3 47.02 79.5

ShortGPT 27.1% 31.3 51.6 66.3 25.5 70.9 49.0 59.6 34.4 28.5 37.7 68.4 35.9 46.59 78.8
LaCo∗ 27.1% 34.4 55.7 69.8 36.1 40.4 45.7 64.1 26.5 25.2 23.6 - 39.7 41.93 70.9

Streamline† 27.0% 32.9 54.3 63.6 26.9 70.7 42.5 64.3 37.7 29.5 34.9 90.5 32.6 48.37 81.8
LLMPruner† 24.8% 31.4 55.4 70.1 27.8 71.4 44.7 53.3 25.7 25.1 25.4 67.7 23.1 43.43 73.4

SliceGPT 25.4% 31.9 49.9 68.7 16.7 66.5 48.6 55.5 28.2 22.3 25.2 78.3 30.7 43.54 73.6
SliceGPT† 25.4% 32.1 53.3 69.2 20.4 61.2 44.4 61.9 29.7 22.5 26.7 87.1 28.7 44.77 75.7
w/o Kernel 24.8% 30.8 34.5 57.1 12.8 69.1 11.2 50.3 25.3 24.8 20.5 51.5 23.5 34.28 58.0

Ours 22.8% 33.6 65.1 70.1 27.2 73.9 45.4 71.6 44.7 28.1 39.9 94.0 43.7 53.11 89.9
Ours† 22.8% 34.6 63.0 68.8 29.5 74.8 49.0 72.3 41.5 26.7 40.4 92.3 37.3 52.52 88.8

L
L

aM
A

-2
-1

3B

Dense 0.0% 48.1 74.4 77.5 47.9 88.5 65.6 73.9 57.7 38.9 59.7 93.7 47.5 64.45 100.0
SLEB 19.5% 34.7 63.1 67.2 39.0 77.7 51.7 52.1 25.6 24.6 53.5 77.9 31.7 49.9 77.4

ShortGPT 24.6% 31.7 61.5 72.5 38.4 70.0 51.0 62.8 54.4 33.7 57.3 76.1 45.0 54.53 84.6
LaCo∗ 24.6% 32.9 64.4 74.3 40.1 52.9 52.7 64.0 45.9 32.6 55.6 - 44.9 50.94 79.0

Streamline∗ 24.6% 33.0 69.1 75.1 38.0 36.5 63.8 66.2 55.1 39.2 58.0 - 45.7 52.70 81.8
LLMPruner† 24.4% 27.8 55.3 61.9 30.7 63.4 49.7 53.0 23.1 23.3 20.0 65.8 30.3 42.03 65.2

SliceGPT 23.6% 33.2 53.1 60.8 18.4 74.8 44.3 36.6 25.1 25.7 22.4 68.3 26.1 40.73 63.5
SliceGPT† 23.6% 31.5 45.9 60.3 18.9 67.1 39.7 37.8 29.1 28.4 23.4 78.0 26.9 40.58 63.0
w/o Kernel 24.3% 32.8 63.1 67.5 33.6 72.5 19.3 60.6 35.1 27.1 33.3 61.7 33.5 45.01 69.8

Ours 23.4% 40.0 64.1 74.5 39.1 82.5 62.5 69.4 52.7 37.1 58.2 89.1 49.5 59.89 92.9
Ours† 22.8% 41.2 63.5 73.9 40.2 80.1 63.8 63.3 51.9 38.0 55.6 87.8 48.5 58.98 91.5

L
L

aM
A

-3
-8

B

Dense 0.0% 33.9 75.7 77.9 72.8 86.4 72.5 75.3 67.2 50.1 73.5 93.0 62.1 70.03 100.0
SLEB 19.0% 33.0 65.1 63.0 28.0 74.6 31.5 67.7 49.3 27.3 24.1 77.9 37.2 48.23 68.9

ShortGPT 19.0% 33.7 46.0 65.4 25.8 73.0 44.8 38.9 34.2 37.1 30.4 82.3 44.1 46.31 66.1
w/o Kernel 27.2% 33.0 41.0 55.7 18.0 73.8 29.3 50.8 24.0 25.7 21.7 65.1 36.8 39.58 56.5

Ours 25.8% 33.9 61.5 73.5 23.9 83.6 37.7 71.0 55.5 34.0 38.4 81.4 38.9 52.77 75.4
Ours† 22.8% 30.1 57.5 74.1 25.1 84.4 33.0 62.4 50.4 38.5 34.0 68.3 35.5 49.44 70.6

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of different baselines on generation benchmarks. For Perplexity,
a lower score means better performance (↓), while for ROUGE, a higher score means better (↑).

Models LLaMA2-7B LLaMA2-13B LLaMA-3.1-8B RP(PPL) RP(Rouge)
WIKI↓ C4↓ Xsum↑ WIKI↓ C4↓ Xsum↑ WIKI↓ C4↓ Xsum↑

Dense 5.5 7.0 19.2 4.9 6.5 22.7 6.1 8.8 27.2 100% 100%
Streamline† 9.9 17.1 19.7 43.7 81.7 19.5 377.1 201.1 21.5 5.3% 87.8%
SLEB 12.9 19.3 10.0 33.3 45.5 17.3 55.8 79.6 13.1 15.7% 58.5%
w\o Kernel 13.2 17.4 12.8 20.7 27.9 16.0 120.7 103.6 17.5 12.8% 67.0%
Ours 8.3 13.5 15.3 17.2 25.0 18.0 205.7 113.6 21.8 10.1% 79.7%
Ours† 8.3 9.3 17.0 13.2 15.0 19.3 31.7 14.6 20.2 42.1% 81.8%

4.3 FURTHER ANALYSIS

Representational patterns can be learned within the kernel space. Figure 3 presents a compari-
son between the predicted representations and the ground-truth representations viewed in the kernel
space. Specifically, we feed a sample from the CMMLU dataset into LLaMA2-7B, where layers 10
through 14 have been replaced by KDP. RFF kernel projects the 14-th layers’ output representations
into a (sequence length × 1024) matrix. To visualize these representations, we take rows 0, 25, and
50, reshape each into a 32×32 matrix, and render them as heatmaps. As observed, minor deviations
tend to increase with the sequence position, which motivated our weight-scaling design in Equation
5. To this end, the predicted representations closely match the actual ones. Notably, KDP not only
captures the general trends of the representations but also accurately fits outlier points, which are
critical to model performance (Sun et al., 2024). This highlights KDP’s ability to effectively learn
and preserve essential patterns of the representations in the kernel space.

Figure 3: Kernel space representation visualization.
The heatmap panels show (from left to right) the pre-
dicted representation, the ground-truth representation,
and their difference for a sample from CMMLU. The
color range is unified for the first two panels to high-
light their similarity.

Figure 4: Operator norms of φ(·) and {Ai}
during training. The line corresponds to
∥Ai∥op; the shaded region is the norm of
∥φ(h̄l)∥op for the shared kernel space, cal-
culated from mean-subtracted samples.

As training progresses, BA and Rφ behave well. Figure 4 illustrates the evolution of the operator
norms for {Ai} and φ(·) during the training of two LLMs. Rφ remains consistently below 1.5,
while BA decreases rapidly before converging. These observations validate the effectiveness of the
error bound presented in Theorem 1.

Step 1 dominates the pruning performance, while Step 2 serves primarily as the inverse kernel
mapping. Figure 3 intuitively illustrates the effectiveness of kernel-space fitting in Step 1. To gain
deeper insights into the KDP process and identify the component responsible for high performance,
we analyze its training dynamics in Figure 5. The left panel shows that in Step 1, the loss drops
sharply and converges within approximately 100 epochs. Concurrently, the middle panel depicts
the cosine similarity between the predicted and ground-truth representations increasing as the loss
decreases, confirming effective learning in the kernel space. By contrast, the right panel shows that
the loss in Step 2 converges within only 20 steps, suggesting that the inverse transformation network

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

I carries out a relatively simple task. We also conduct an ablation study to evaluate the performance
impact of barely training for each step, with the results detailed in the Appendix F. In conclusion,
these results demonstrate that Step 1 is the primary contributor to the pruning performance of KDP.

0 100 200 300 400 500
Epoch

3.5

4.0

4.5

To
ta

l L
os

s

Step1 Loss
Layer3-Layer5
Layer27-Layer29
Layer9-Layer11
Layer7-Layer9
Layer23-Layer25
Layer11-Layer13
Layer17-Layer19

0 100 200 300 400 500
Epoch

0.0

0.5

1.0

Co
sin

e
Si

m
ila

rit
y

Step1 Cosine Similarity

Layer3-Layer5
Layer27-Layer29
Layer9-Layer11
Layer7-Layer9
Layer23-Layer25
Layer11-Layer13
Layer17-Layer19

0 20 40 60 80 100
Epoch

10 2

10 1

100

101

To
ta

l L
os

s

Step2 Loss
Layer3-Layer5
Layer7-Layer9
Layer9-Layer11
Layer11-Layer13
Layer17-Layer19
Layer23-Layer25
Layer27-Layer29

Figure 5: Training loss on LLaMA2-13B. From left to right, the panels show: (a) the loss curve
during Step 1, (b) the cosine similarity during Step 1, and (c) the loss curve for Step 2.

4.4 ABLATION STUDY

Different Pruning Ratios. As shown in Figure 6, we evaluate our method on the CMMLU and
WIKI Text across various models and pruning ratios. The method exhibits strong retained perfor-
mance on CMMLU, maintaining over 90% of the original performance at a pruning rate of around
28% and over 80% at rates exceeding 50%, which confirms its robustness. The results show that
the models’ overall performance degrades linearly with an increasing pruning rate. However, on
generative tasks, the PPL behaves differently across models. Specifically, LLaMA3-8B exhibits a
rapid increase, whereas the PPL for LLaMA2-7B and LLaMA2-13B remains relatively stable.

Different Linearization Methods. To validate the importance of the kernel transformation, we
compare KDP against a simplified baseline that performs linear fitting directly in the original rep-
resentation space. As shown in Table 3, both OLS-based methods exhibit a drastic degradation in
performance on the LLaMA3-8B model. In contrast, KDP significantly outperforms both baselines
across all tasks. These results provide strong evidence that the transformations between Transformer
layers are highly non-linear. Linear approximation in the original representation space, as attempted
by OLS, is incapable of capturing these complex dynamics, resulting in severe information loss.
This observation further corroborates Theorem 2, demonstrating the necessity of learning linear
transformations in the kernel space.

Different Max Length. To analyze the impact of Kmax, we incrementally prune more layers from
LLaMA2-7B and compare two strategies for block selection: expanding a fixed initial block or
choosing a new one based on CKA similarity. Table 4 demonstrates our method’s robustness in
simplifying short-term dynamics. Model performance is stable when replacing few layers (Kmax ≤
3) but degrades catastrophically as more layers are replaced. This observed non-linear degradation
strongly supports our theoretical analysis (Theorem 1), which shows that the approximation error
grows exponentially with the number of layers, leading to instability.

5 CONCLUSION

In this paper, we introduce a new perspective on layer pruning that simplifies the information flow
by operating within a kernel space. Based on this perspective, we propose a novel method named
as KDP. We demonstrate the effectiveness of our method through both theoretical analysis and em-

0% 10% 20% 30% 40% 50%
Pruning Rate

23.21

26.75

30.28

33.82

37.35

40.88

44.42

47.95

51.48

Ac
cu

ra
cy

 (
%

)

Model Performance(Acc) Comparison Across Pruning Rates
Models
LLaMA-2-7B
LLaMA-2-13B
LLaMA-3-8B

Line Style
Baseline
Post-Training

0% 10% 20% 30% 40% 50%
Pruning Rate

-24.9

57.0

138.8

220.6

302.4

384.3

466.1

547.9

629.8

Pe
rp

le
xi

ty

Model Performance(PPL) Comparison Across Pruning Rates
Models
LLaMA-2-7B
LLaMA-2-13B
LLaMA-3-8B

Line Style
Baseline
Post-Training

Figure 6: Performance of CMMLU and WIKI when we prune with increasing pruning ratio.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Comparison with direct linearization in
the original space via OLS on LLaMA3-8B.

Method HeSW CoQA MMLU

Dense 75.7 72.5 67.2
Direct OLS 31.3 0.0 26.7
Sequential OLS 30.7 0.0 28.2
Ours 61.5 37.7 55.5

Table 4: Ablation study on max length Kmax.

Kmax Pruned Layers HeSW CoQA MMLU
3 [6,7] 72.1 65.2 48.5
4 [6,7,8] 71.0 64.8 46.0
4 [10,11,12] 71.3 65.1 47.7
5 [6,7,8,9] 65.1 57.8 43.8
5 [12,13,14,15] 66.1 61.6 44.9
6 [6,7,8,9,10] 47.6 41.8 24.0
6 [11,12,13,14,15] 43.2 40.4 27.3

pirical experiments. Our future work includes exploring more kernel functions and adapting our
pruning method for multimodal LMs.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. A detailed description
of our proposed framework, algorithms, and experimental settings is provided in the main text and
Appendix B. Additional implementation details and ablation studies are included in the paper. For
theoretical results, we present all assumptions and complete proofs in the Appendix. All datasets
used in our experiments are publicly available. Furthermore, we submit an anonymous link to the
source code and scripts for reproducing our experiments.

REFERENCES

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-Based Adaptive Struc-
tured Pruning for Large Language Models. In Proceedings of the AAAI conference on Artificial
Intelligence, pp. 10865–10873, 2024.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefler, and James
Hensman. SliceGPT: Compress Large Language Models by Deleting Rows and Columns. In The
Twelfth International Conference on Learning Representations, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, and others. PIQA: Reasoning about Phys-
ical Commonsense in Natural Language. In Proceedings of the AAAI conference on Artificial
Intelligence, volume 34, pp. 7432–7439, 2020.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Stream-
lining Redundant Layers to Compress Large Language Models. In The Thirteenth International
Conference on Learning Representations, 2025.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, volume 1, pp. 2924–2936, 2019.

Nathan Cloos, Moufan Li, Markus Siegel, Scott L. Brincat, Earl K. Miller, Guangyu Robert Yang,
and Christopher J. Cueva. Differentiable Optimization of Similarity Scores Between Models and
Brains. In The Thirteenth International Conference on Learning Representations, 2025.

Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine Learning, 20(3):273–297,
1995.

Xuan Ding, Rui Sun, Yunjian Zhang, Xiu Yan, Yueqi Zhou, Kaihao Huang, Suzhong Fu, Angelica I
Aviles-Rivero, Chuanlong Xie, and Yao Zhu. A Sliding Layer Merging Method for Efficient
Depth-Wise Pruning in LLMs, 2025. URL https://arxiv.org/abs/2502.19159.

Elias Frantar and Dan Alistarh. SparseGPT: Massive Language Models Can be Accurately Pruned
in One-Shot. In International Conference on Machine Learning, volume 202, pp. 10323–10337,
2023.

10

https://arxiv.org/abs/2502.19159

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, et al. The Language Model Evaluation Harness,
2024. URL https://zenodo.org/records/12608602.

Yuri Gardinazzi, Karthik Viswanathan, Giada Panerai, Alessio Ansuini, Alberto Cazzaniga, and
Matteo Biagetti. Persistent topological features in large language models. In International Con-
ference on Machine Learning, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 Herd
of Models, 2024. URL https://arxiv.org/abs/2407.21783.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts. The
Unreasonable Ineffectiveness of the Deeper Layers. In The Thirteenth International Conference
on Learning Representations, 2025.

Lumer Günter. Bochner’s theorem, states, and fourier transforms of measures. Studia Mathematica,
46(2):135–140, 1973. URL http://eudml.org/doc/217761.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What Matters in Transformers? Not All Atten-
tion is Needed, 2024. URL https://arxiv.org/abs/2406.15786.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened LLaMA: A Simple Depth Pruning for Large Language Models,
2024. URL https://arxiv.org/abs/2402.02834.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of Neural
Network Representations Revisited. In International Conference on Machine Learning, pp. 3519–
3529. PMlR, 2019.

Vedang Lad, Jin Hwa Lee, Wes Gurnee, and Max Tegmark. The Remarkable Robustness of LLMs:
Stages of Inference?, 2024. URL https://arxiv.org/abs/2406.19384.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale ReAding
Comprehension Dataset From Examinations. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 785–794, 2017.

Qi Le, Enmao Diao, Ziyan Wang, Xinran Wang, Jie Ding, Li Yang, and Ali Anwar. Probe Pruning:
Accelerating LLMs through Dynamic Pruning via Model-Probing. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. SNIP: Single-shot Network Pruning
based on Connection Sensitivity. In The Seventh International Conference on Learning Repre-
sentations, 2019.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The Winograd Schema Challenge. In
Proceedings of the Thirteenth International Conference on Principles of Knowledge Representa-
tion and Reasoning, pp. 552–561, 2012.

Xun Liang, Hanyu Wang, Huayi Lai, Simin Niu, and Shichao Song. SEAP: Training-free Sparse
Expert Activation Pruning Unlock the Brainpower of Large Language Models, 2025. URL
https://arxiv.org/abs/2503.07605.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-V3 Technical Report, 2024. URL
https://arxiv.org/abs/2412.19437.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja Vu: Contextual Sparsity for Efficient
LLMs at Inference Time. In International Conference on Machine Learning, pp. 22137–22176,
2023.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
L 0 regularization, 2017. URL https://arxiv.org/abs/1712.01312.

11

https://zenodo.org/records/12608602
https://arxiv.org/abs/2407.21783
http://eudml.org/doc/217761
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2402.02834
https://arxiv.org/abs/2406.19384
https://arxiv.org/abs/2503.07605
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/1712.01312

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-Pruner: On the Structural Pruning of Large
Language Models. In Advances in Neural Information Processing Systems, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. ShortGPT: Layers in Large Language Models are More Redundant Than You
Expect. In Findings of the Association for Computational Linguistics, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mixture
Models. In The Fifth International Conference on Learning Representations, 2017.

Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal Kernels. Journal of Machine
Learning Research, 7(95):2651–2667, 2006.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Ma-
chine Learning. 2018. URL https://mitpress.ublish.com/ebook/
foundations-of-machine-learning--2-preview/7093/Cover.

J.D. Murray. Mathematical Biology: I. An Introduction. Interdisciplinary Applied Mathematics.
Springer New York, 2007. ISBN 9780387224374. URL https://books.google.co.jp/
books?id=4WbpP90Gk1YC.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t Give Me the Details, Just the Summary!
Topic-Aware Convolutional Neural Networks for Extreme Summarization. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pp. 1797–1807, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. In Advances
in Neural Information Processing Systems, volume 20, 2007.

Siva Reddy, Danqi Chen, and Christopher D. Manning. CoQA: A Conversational Question An-
swering Challenge. Transactions of the Association for Computational Linguistics, 7:249–266,
2019.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, et al. SlimPajama-DC: Understand-
ing Data Combinations for LLM Training, 2024. URL https://arxiv.org/abs/2309.
10818.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive Deep Models for Semantic Compositionality Over a Sentiment
Treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, 2013.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. SLEB:
Streamlining LLMs through Redundancy Verification and Elimination of Transformer Blocks. In
International Conference on Machine Learning, 2024.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribu-
tion. Curran Associates Inc., Red Hook, NY, USA, 2019.

Ingo Steinwart. On the Influence of the Kernel on the Consistency of Support Vector Machines. 2:
67–93, 2002.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. Investigating Prior Knowledge for Challenging
Chinese Machine Reading Comprehension. Transactions of the Association for Computational
Linguistics, 8:141–155, 2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A Simple and Effective Pruning Approach
for Large Language Models. In The Twelfth International Conference on Learning Representa-
tions, 2024.

12

https://mitpress.ublish.com/ebook/foundations-of-machine-learning--2-preview/7093/Cover
https://mitpress.ublish.com/ebook/foundations-of-machine-learning--2-preview/7093/Cover
https://books.google.co.jp/books?id=4WbpP90Gk1YC
https://books.google.co.jp/books?id=4WbpP90Gk1YC
https://arxiv.org/abs/2309.10818
https://arxiv.org/abs/2309.10818

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open Founda-
tion and Fine-Tuned Chat Models, 2023. URL https://arxiv.org/abs/2307.09288.

Adina Williams, Nikita Nangia, and Samuel Bowman. A Broad-Coverage Challenge Corpus for
Sentence Understanding through Inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, volume 1, pp. 1112–1122, 2018.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerating Lan-
guage Model Pre-training via Structured Pruning, 2023. URL https://arxiv.org/abs/
2310.06694.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 Technical Report, 2025. URL https://
arxiv.org/abs/2505.09388.

Yifei Yang, Zouying Cao, and Hai Zhao. LaCo: Large Language Model Pruning via Layer Collapse.
In Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 6401–6417,
2024.

Alexander Yom Din, Taelin Karidi, Leshem Choshen, and Mor Geva. Jump to Conclusions: Short-
Cutting Transformers with Linear Transformations. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING
2024), pp. 9615–9625, 2024.

Arda Yüksel, Abdullatif Köksal, Lütfi Kerem Senel, Anna Korhonen, and Hinrich Schuetze. Turk-
ishMMLU: Measuring Massive Multitask Language Understanding in Turkish. In Findings of the
Association for Computational Linguistics: EMNLP 2024, pp. 7035–7055, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a Ma-
chine Really Finish Your Sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open Pre-trained Transformer
Language Models, 2022. URL https://arxiv.org/abs/2205.01068.

Chujie Zheng, Minlie Huang, and Aixin Sun. ChID: A Large-scale Chinese IDiom Dataset for
Cloze Test. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 778–787, 2019.

13

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2205.01068

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A PRELIMINARIES

Empirical Risk Minimization. Empirical Risk Minimization (ERM) is a fundamental principle in
statistical learning theory. Given a class of functions H and a dataset D = {(xi, yi)}ni=1 sampled
i.i.d. from an unknown distribution P , ERM selects the function that minimizes the empirical loss:

R̂(h) =
1

n

n∑
i=1

ℓ(h(xi), yi), hERM = argmin
h∈H

R̂(h).

ERM serves as a tractable surrogate for minimizing the population risk R(h) =
E(x,y)∼P [ℓ(h(x), y)].

Population Approximation Error. The Population Approximation Error (PAE) measures the dis-
crepancy between empirical performance and the true expected performance:

apx(h) =
∣∣R(h)− R̂(h)

∣∣.
A small approximation error indicates that the empirical distribution is a good proxy for the under-
lying population distribution.

L′-Lipschitz Continuity. A function f : X → Rd is L′-Lipschitz continuous if

∥f(x)− f(x′)∥ ≤ L′∥x− x′∥, ∀x, x′ ∈ X .

Rademacher Complexity. Given a class of real-valued functions F and samples {x1, . . . , xn}, the
empirical Rademacher complexity of F is defined as

R̂n(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σi f(xi)

]
,

where σi are i.i.d. Rademacher random variables taking values ±1 with equal probability.
Rademacher complexity measures the expressive capacity of the function class F : a larger value
indicates a richer class that may overfit, while a smaller value suggests better generalization ability.
A standard uniform generalization bound is

R(f) ≤ R̂(f) + 2 R̂n(F) +O

(√
log(1/δ)

n

)
,

holding for all f ∈ F with probability at least 1− δ.

B REPRODUCIBILITY STATEMENT & EXPERIMENTAL DETAILS

Hyperparameters. In our main experiments, the maximum sequence length for representation
extraction is set to 128. For Step 1, we configure the training process as follows. The dimension of
the kernel transformation (2m) is set to 1024. We use the Adam optimizer with an initial learning
rate of 0.01. A learning rate scheduler is employed, which reduces the learning rate by a factor
of 0.5 if the performance does not improve for 3 consecutive epochs (patience = 3). The model
is trained with a batch size of 100 until convergence. The weights, denoted by W , are set as a
geometric sequence with a base of 2 and exponents ranging from 0 to num layers − 1. For Step 2,
the model is trained for 100 epochs using the Adam optimizer. The learning rate is set to a fixed
value of 1e-3, and the batch size is 128. Pruned layers in the main results are shown in the following
table 5. Training was conducted on an 8× NVIDIA A100 server, leveraging pipeline parallelism to
distribute different layers of the model across the GPUs.

We fix the two base random matrices Z and V with their vectorizations Vec(Z) ∼ Nd×m(0, I)
and Vec(V) ∼ Nr×m(0, I) at initialization. At each forward pass we construct frequencies Ω =
D1/2Z + LV, where D and L are learnable. As m → ∞, the empirical covariance (1/m)ΩΩ⊤

concentrates around Σ = D+ LL⊤. We do not resample Z,V during training; learning occurs via
D and L.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Pruning Results for LLaMA Models.

LLM Pruning Ratio Pruned Layers

LLaMA-2-7B 22.8% [6,7], [10,11], [14,15], [18,19], [22,23]
LLaMA-2-13B 23.4% [3,4], [7,8], [9,10], [17,19], [27,28]
LLaMA-3-8B 25.8% [6,7], [9,10], [12,13], [15,16], [18,19]

Post training. To counter the rise in perplexity induced by kernelized layer replacement, we apply
a low-rank adaptation only at the output projection, i.e., on the final hidden-to-vocabulary mapping.
When the output head is tied to the input embeddings, we insert a lightweight 1 × 1 linear “logit
adapter” before the head and place LoRA on this adapter; otherwise, LoRA is attached directly
to the head. All other parameters remain frozen (including the kernel map φθ, the linear maps
{Ai}, and the inverse mapping), so the structural simplification of KDP is preserved while the
“representation→logits” distribution is re-calibrated. Training uses teacher forcing with knowledge
distillation from the unpruned teacher: the objective is L = λKL(pteacher ∥ pstudent)+(1−λ) CE with
λ = 0.5 and temperature τ = 1.0; we find τ ∈ [1, 2] behaves similarly, and report τ = 1.0. LoRA
hyperparameters are rank r = 8, α = 32, and dropout 0.05. Optimization uses Adam (lr 1× 10−4,
no weight decay), bf16, gradient clip 1.0, warmup 3% with cosine decay, and early stopping on
validation PPL. We train for 1–2 epochs on the calibaration dataset, which is reported in Section 3.1
and sequence length of 2048. After training, the LoRA weights are merged into the output head,
adding no runtime overhead.

The source code is available at the following link: https://anonymous.4open.science/r/draft-123abc.

C RELATED WORK

Redundency in LLMs. The existence of substantial redundancy within LLMs has been demon-
strated through multiple perspectives. Liu et al. (2023) and Yom Din et al. (2024) reveal that suc-
cessive transformer blocks in LLMs exhibit remarkable similarity in their representational outputs.
Gardinazzi et al. (2025) hierarchically analyze representations by examining topological features.
They observe that the early layers exhibit numerous short-lived topological structures. In contrast,
structures in the middle layers become long-lived (or persistent), before short-lived structures reap-
pear in the late layers. This indicates that the middle layers possess significant redundancy. Song
et al. (2024) indicates the residual connection structure inherent in transformer architectures con-
strains each block to make only incremental contributions to the overall representation, resulting in
high similarity between block representations. Men et al. (2024) and Gromov et al. (2025) find mul-
tiple layers perform similar or overlapping computations to refine predictions. Lad et al. (2024) also
shows that LLMs exhibit inherent redundancy, particularly in intermediate layers, where dropping
middle layers yields minimal impact on final model performance. To reduce model redundancy,
pruning has emerged as a mainstream method for removing parameters and improving efficiency.

Weight Pruning. Weight pruning is divided into structured pruning and unstructured pruning from
the perspective of the pruning paradigm. Unstructured pruning removes individual weights or neu-
rons based on predefined importance scores (Lee et al., 2019; Frantar & Alistarh, 2023; Sun et al.,
2024). Although effective in reducing model size, unstructured pruning typically leads to irregular
sparsity patterns, which significantly hinder hardware efficiency and deployment flexibility. Struc-
tured pruning has emerged as a powerful technique for optimizing neural networks by removing
entire groups of weights while maintaining computational efficiency.

Structured pruning eliminates entire columns within weight matrices (An et al., 2024; Ashkboos
et al., 2024; Le et al., 2025; Liang et al., 2025), attention heads (He et al., 2024), or even graph-based
structures (Ma et al., 2023), resulting in more hardware-friendly sparsity. Despite their structural
advantages, these methods often disrupt the model’s original architectural flow and typically require
customized software or hardware to realize actual inference acceleration.

Layer Pruning. To preserve architectural integrity, layer-wise structured pruning removes entire
layers based on their representational redundancy. LaCo (Yang et al., 2024) groups consecutive
layers and replaces them with layer-wise parameter difference to achieve compression. ShortGPT
(Men et al., 2024) computes BI scores—akin to cosine similarity—between layers to identify and re-

15

https://anonymous.4open.science/r/draft-123abc

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

move less important ones. SLEB (Song et al., 2024) estimates layer importance using perplexity and
prunes those deemed insignificant. Ding et al. (2025) using Centered Kernel Alignment (CKA, Ko-
rnblith et al., 2019), map representations to a kernel space to measure similarity and remove blocks
with high CKA scores. Streamlining (Chen et al., 2025) adopts cosine similarity to identify redun-
dant layers and utilizes knowledge distillation to restore performance post-pruning. However, these
studies are typically metric-driven, focusing on identifying layers to prune rather than approach-
ing the problem from a model dynamics perspective by fundamentally replacing parameter-heavy
blocks with simpler modules. As a result, they either directly eliminate redundant layers (Song
et al., 2024; Men et al., 2024)—inevitably incurring performance degradation—or require extensive
data for fine-tuning (Kim et al., 2024; Yang et al., 2024; Gromov et al., 2025) or distillation (Chen
et al., 2025) to mitigate the loss. This overlooks the opportunity to uncover simplified structural
alternatives that enable rapid post-pruning recovery with minimal data.

D PROOF

Proof of Theorem 1. First, we establish a high-probability generalization bound on the one-step lin-
ear approximation error. For any given step l, we approximate φ(hl+1) using a linear transformation
Al on φ(hl). The error vector for this one-step prediction is defined as:

el = φ (hl+1)−Alφ (hl) . (7)
The corresponding expected loss under the true distribution is given by:

L(θ̂, Âi) = E
[
∥φθ̂(hl+1)− Âlφθ̂(hl)∥2

]
. (8)

We invoke the standard uniform convergence bound based on Rademacher complexity (Mohri et al.,
2018, Theorem 1). Since ∥φ(h)∥ ≤ Rφ and ∥Ai∥op ≤ BA, the squared loss ℓ(y, y′) = ∥y−y′∥2 is
L′-Lipschitz on the ball {∥y∥, ∥y′∥ ≤ (BA+1)Rφ} and has range in [0, (BA+1)2R2

φ]. Therefore,
with probability at least 1− δ, for all (θ, {Ai}) in the hypothesis class H′ = {h 7→ Aφθ(h) ∈ Rd :
∥A∥op ≤ BA, θ ∈ Θ, ∥φθ(h)∥ ≤ Rϕ }, it holds that

L(θ̂, {Âi}) ≤ LERM + 2L′ℜn(H′) + (BA + 1)2R2
φ

√
log(1/δ)

2n
. (9)

Next we bound ℜn(H′). For each row Al[i] of Al we have ∥Al[i]∥2 ≤ BA, and ∥φ(h)∥ ≤
Rφ, hence the linear class satisfies Rn(H′) ≲ BARφ

√
2m/n. Applying the standard contraction

(shrinkage) lemma for Lipschitz losses to ℓ ◦ H′ yields

L(θ̂, {Âi}) ≤ LERM + C B2
AR2

φ

√
2m log(2m/δ)

n
. (10)

for a universal constant C > 0.

From one-step to k-step. Let ej = φθ̂(hj+1)− Âjφθ̂(hj) be the one-step residual. By a telescop-
ing expansion and triangle inequality, we have

φθ̂(hl+k)−
(l+k−1∏

i=l

Âi

)
φθ̂(hl) = el+k−1 +

l+k−2∑
j=l

(
Âl+k−1 · · · Âj+1

)
ej . (11)

From the Equation 10 it follows that for the learned model parameters, with probability 1− δ there
is a single-step prediction error vector with the number of paradigms bounded in the:

∥el∥ = ∥φθ̂(hl+1)− Âl φθ̂(hl)∥H ≤

√
LERM + C B2

AR2
φ

√
2m log(2m/δ)

n
. (12)

Using the Equation 12, for any consecutive k step state sequence, the cumulative error of Ek is
defined as Ek = φθ̂ (hl+k)−

(∏l+k−1
i=l Âi

)
φθ̂ (hl). By submultiplicativity, we have:

∥Ek∥ ≤
l+k−1∑
t=l

∥∥∥∥∥
l+k−1∏
i=t+1

Âi

∥∥∥∥∥
op

∥et∥ ≤
l+k−1∑
t=l

Bl+k−1−t
A ∥et∥ . (13)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Let j = t− l ∈ {0, · · · , k − 1}, we have:

∥Ek∥ ≤
k−1∑
j=0

Bk−1−j
A ∥el+j∥ , (14)

here, let
b∏

i=a

Âi :=

{
ÂbÂb−1 · · · Âa, a ≤ b,

I, a > b
. (15)

Given that the Equation 12 has indicated, with the probability 1 − δ event, each step is ∥ej∥ ≤√
LERM + CB2

AR2
φ

√
d log(d/δ)

n , we can adjust δ so that the probability applies equally to all 1 ≤
j ≤ k steps by means of the union bound. Therefore, under the same high probability event,
substitute the above equation and extract the common factor outside the sum equation to obtain the
upper bound of the cumulative error norm of the k step:

∥Ek∥ ≤

√LERM + CB2
AR2

φ

√
2m log(2m/δ)

n

 ·

k−1∑
j=0

Bk−1−j
A

 . (16)

Here,
∑k−1

j=0 B
k−1−j
A is the linear mapping error of the k step-by-step accumulation amplified co-

efficient via the gradual transfer. When BA < 1, the coefficient converges to (1 − BA)−1, and
BA = 1 degenerates into a linear growth of k.

Proof of Lemma 1. We prove in two steps. First, in the ideal (infinite-dimensional) feature space
induced by a universal, translation-invariant kernel (e.g., Gaussian RBF), any continuous target
mapping can be approximated arbitrarily well by a linear operator on the canonical feature map.
Second, by Random Fourier Features, the infinite-dimensional feature map can be approximated by
a finite feature map φ to arbitrary accuracy on the support of D. Combining the two approximations
and using the triangle inequality yields the desired bound.

Universality of the kernel and linear representability in the RKHS feature space. Let k(x, y)
be a continuous, positive definite, translation-invariant kernel on Rd whose spectral measure has full
support (e.g., the Gaussian RBF kernel). Result from (Micchelli et al., 2006) says that its RKHS
Hk in the tight set K on which is consistently dense for continuous functions: for any continuous
function f : K → R and any η > 0, exist f∗ ∈ Hk such that supx⊂K |f⋆(x)− f(x)| < η. Denote
Φ : Rd → Hk is the feature mapping, ⟨Φ(x),Φ(y)⟩Hk = k(x, y). Let the true mapping between lay-
ers be hl+1 = f(hl). For any u ∈ Hk, consider gu(hl) := ⟨u,Φ(hl+1)⟩Hk = ⟨u,Φ(f(hl))⟩Hk , u ∈
Hk. When f , Φ is continuous, gu is continuous in K. By the consistency densities in the previous
paragraph, given an arbitrary δ > 0, exists f∗u ∈ Hk make

sup
hl∈K

∥gu (hl)− f⋆
u (hl)∥ < δ. (17)

The nature of the regenerating nucleus suggests that f⋆
u (hl) = ⟨wu,Φ (hl)⟩Hk

. Take a set of
{uj}Jj=1 ⊂ Hk to fetch ϕ(·) of the former j coordinates, we can get the corresponding wj , and
let every upper bound on the agreement error for each coordinate is δj . Let the linear operator
A∞Φ (hl) :=

∑J
j=1 ⟨wj ,Φ (hl)⟩Hk

uj . So there is a consistent error bound

sup
hl∈K

∥Φ (hl+1)−A∞Φ (hl)∥Hk
≤

 J∑
j=1

δ2j

1/2

. (18)

Choose {δj} so that right term ≤ ε1 (for example, ε1 = ϵ/2), we can get
sup
hl∈K

∥Φ (hl+1)−A∞Φ (hl)∥Hk
< ϵ/2. (19)

Since the expectation is less than the upper bound, there is

Ehl∼D ∥Φ (hl+1)−A∞Φ (hl)∥2Hk
≤ (ϵ/2)2. (20)

Approximating the infinite-dimensional map by Random Fourier Features. By Bochner’s theo-
rem (Günter, 1973), for translation-invariant kernels there exist RFF maps φ : Rd → R2m such that

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

inner products of φ approximate the kernel. Rahimi & Recht (2007) shows that, with high probabil-
ity over the draw of the features, one can uniformly approximate popular shift-invariant kernels on
compact sets to within any tolerance εk > 0 using only D = 2m = O(ε−2k log(1/εk)) dimensions:

sup
x,y∈K

|⟨φ(x), φ(y)⟩ − k(x, y)| ≤ εk, (21)

for any compact K ⊂ Rd containing the support of the data, provided m is sufficiently large (high-
probability statement).

Define the (possibly infinite-dimensional) feature map Φ associated with k so that k(x, y) =
⟨Φ(x),Φ(y)⟩. The uniform approximation above implies that, on K,

∥⟨φ(x), φ(y)⟩ − ⟨Φ(x),Φ(y)⟩∥ ≤ εk for all x, y ∈ K, (22)

i.e., x 7→ φ(x) is an εk-isometric embedding of x 7→ Φ(x) at the level of pairwise inner products.
Let A∞ be the operator satisfying

sup
hl∈K

∥Φ (hl+1)−A∞Φ (hl)∥ ≤ ϵ1 with ϵ1 <
ϵ

2
. (23)

Consider the finite-dimensional least-squares problem in RFF space and let A be a minimizer of

min
∥A∥≤BA

E(hl,hl+1)∼D ∥φ (hl+1)−Aφ (hl)∥2 . (24)

Because the squared loss expands into inner products and norms, and because RFF inner products
uniformly approximate kernel inner products on K, the objective in the RFF space uniformly ap-
proximates the kernel-space objective up to an additive O (εk) term (with constant depending only
on RΦ and BA. Consequently, there exists a matrix A with ∥A∥ ≤ BA such that

E ∥φ (hl+1)−Aφ (hl)∥2 ≤ E ∥Φ (hl+1)−A∞Φ (hl)∥2 + Cεk. (25)

Choosing m large enough so that εk ≤ ϵ/(2C) and using the bound in Equation 20, we obtain

Ehl∼D ∥φ (hl+1)−Aφ (hl)∥2 < ϵ, (26)

which completes this part.

Proof of Theorem 2. We start from Lemma 1, which guarantees the existence of an RFF map φθ∗

(with sufficiently large 2m) and a linear operator A∗ such that RRFF(θ
∗,A∗) ≤ ϵ = apxID−∆. The

rest is a finite-sample comparison: let ÂID and (θ̂, ÂRFF) be the ERM solutions in the two classes;
standard uniform-convergence bounds control their true risks by the respective optimal risks plus
generalization terms EID(n, δ) and ERFF(n, δ). Choosing n so that ERFF(n, δ) + EID(n, δ) ≤ ∆

then yields RRFF(θ̂, ÂRFF) ≤ RID(ÂID), establishing the kernel advantage with probability at least
1− δ.

Existence of a low-risk RFF predictor. By Lemma 1, pick ϵ = apxID −∆ > 0. Then there exist
θ∗ and A∗ with ∥A∗∥op ≤ BA and sufficiently large 2m such that RRFF(θ

∗,A∗) ≤ ϵ; equivalently,
apxRFF ≤ ϵ < apxID.

Uniform convergence and ERM risks. We now turn to finite samples. Let ÂID ∈
argminA⊂FID

R̂ID(A) and (θ̂, ÂRFF ∈ argmin(θ,A)∈FRFF
R̂RFF(θ,A). Let A∗ID ∈

argminFID
RID(A) and (θ∗,A∗) ∈ argminFRFF

RRFF(θ,A), which implies that:

apxID := RID (A∗ID) , apxRFF := RRFF (θ∗,A∗) . (27)

Fix δ ∈ (0, 1). There exists an event E with probability at least 1 − δ
2 on which the following

double-sided uniform deviations hold simultaneously for both classes:

sup
A⊂FID

∣∣∣RID(A)− R̂ID(A)
∣∣∣ ≤ εID

(
n,

δ

2

)
,

sup
(θ,A)⊂FRFF

∣∣∣RRFF(θ,A)− R̂RFF(θ,A)
∣∣∣ ≤ εRFF

(
n,

δ

2

)
,

(28)

with

εID(n, δ) = CB2
AR2

h

√
d log

(
cd
δ

)
n

, εRFF(n, δ) = CB2
AR2

φ

√
2m log

(
cm
δ

)
n

. (29)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Define for brevity
EID(n, δ) := 2εID

(
n, δ

2

)
, ERFF(n, δ) := 2εRFF

(
n, δ

2

)
. (30)

On E , by Equation 28, we have

RRFF

(
θ̂, ÂRFF

)
≤ apxRFF + 2εRFF

(
n,

δ

2

)
,

RRFF

(
θ̂, ÂRFF

)
≤ apxRFF +ERFF(n, δ).

(31)

On the same high–probability event on which the double–sided uniform deviation bounds hold, we
also have

RID(ÂID) ≥ apxID −EID(n, δ), EID(n, δ) := 2 εID
(
n, δ

2

)
. (32)

Proof of Equation 32. By the deviation bound, RID(A) ≥ R̂ID(A)− εID(n, δ/2) for all A ∈ FID.
Hence
RID(ÂID) ≥ R̂ID(ÂID)− εID

(
n, δ

2

)
≥ R̂ID(A

∗
ID)− εID

(
n, δ

2

)
≥ RID(A

∗
ID)− 2 εID

(
n, δ

2

)
,

where the middle inequality uses ERM optimality of ÂID and the last one uses the deviation bound
again. Since apxID = RID(A

∗
ID), Equation 32 follows.

Comparison via the approximation margin. From Lemma 1, there exists ∆ > 0 such that
apxRFF ≤ apxID −∆. (33)

Combining Equation 33 with the already established bound in Equation 35 and the ID lower bound
in Equation 31, we obtain on the same event:

RRFF(θ̂, ÂRFF) ≤ apxID −∆+ ERFF(n, δ), RID(ÂID) ≥ apxID −EID(n, δ). (34)
Therefore, a sufficient condition for

RRFF(θ̂, ÂRFF) ≤ RID(ÂID)

is
ERFF(n, δ) + EID(n, δ) ≤ ∆. (35)

Choice of Sample Size n. We now choose sufficiently large n to ensure that the RFF model’s true
risk falls below that of the identity model by a margin of at least ∆.

Here we require n such that the sum of the two classes’ generalization error bounds is bounded by ∆.
Since ERFF is typically larger than EID, we can further simplify this to the (conservative) requirement
ERFF(n, δ) ≥ ∆/2 and EID(n, δ) ≤ ∆/2. Apparently it’s similar the other way around. Substituting
the definitions of ERFF and EID, we obtain the explicit condition on n:

CB2
AR2

φ

√
2m log 4cm

δ

n
≤ ∆

4
, and CB2

AR2
h

√
d log 2cd

δ

n
≤ ∆

4
. (36)

This condition can be rewritten more compactly as:

n ≥ N∗(∆, d, 2m, δ) :=

16

(
CB2

A

(
R2

φ

√
2m log 4cm

δ −R2
h

√
d log 2cd

δ

)
+

)2

∆2
, (37)

Here (x)+ = max{x, 0} denotes the positive part, which appears because if the term in parentheses
is negative (i.e. if Rφ2

√
2m log(4cm/δ) < R2

h

√
d log(2cd/δ)), then the RFF class actually has no

larger complexity term than the ID class, and the sample requirement can be significantly weak. In
the typical case 2m ≫ d, the term in parentheses will be positive, and the N∗ given above is the
dominant sample complexity threshold.

E EXPERIMENTS ON OPT MODEL

The performance is further evaluated on two OPT models (OPT-2.7B and OPT-6.7B, Zhang et al.,
2022) with the results presented in Table 6 and Table 7. The results indicate that our method main-
tains robust performance even on relatively small models. While experiencing a marginal decline
on generation tasks, our method’s performance on generation tasks stays comparable, showing no
signs of collapse.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Performance comparison on OPT-2.7B and OPT-6.7B.

LLM Method
CM

NLI
HeS

w
PIQ

A
CHID

W
SC

CoQ
A

Boo
lQ

M
M

LU

CM
M

LU
Rac

e
SST2 C3 Avg. RP.

O
PT

-2
.7

B
Dense 34.2 45.2 75.4 37.9 78.0 51.1 60.6 25.9 26.3 35.6 54.3 36.8 46.78 100.0
SLEB 30.4 40.4 74.2 22.1 72.5 44.8 58.2 25.0 25.3 31.0 55.4 35.6 42.91 91.7

SliceGPT 31.0 27.8 50.5 19.9 57.1 37.3 50.7 24.8 23.4 25.8 60.6 25.1 36.17 77.3
SliceGPT† 33.6 40.8 63.1 24.1 58.5 37.0 46.5 25.1 24.5 25.0 53.4 26.0 38.12 81.5
w/o Kernel 30.8 34.5 57.1 15.8 69.1 11.2 50.3 25.3 24.8 24.5 51.5 23.5 34.87 74.5

Ours 31.9 37.9 73.5 33.1 72.7 30.7 59.4 25.7 25.7 33.2 61.0 35.4 43.35 92.6

O
PT

-6
.7

B

Dense 33.4 60.2 78.6 42.5 81.7 55.0 63.2 25.3 25.5 35.3 76.8 39.6 51.43 100.0
SLEB 36.2 53.2 76.6 23.1 74.7 43.7 46.2 24.1 24.8 31.0 71.6 38.6 45.32 88.1

SliceGPT 30.3 27.0 62.1 18.8 63.4 21.8 33.3 24.8 25.3 24.0 55.7 26.5 34.42 66.9
SliceGPT† 30.0 29.3 61.7 18.8 69.5 27.6 34.7 29.7 25.0 27.1 62.0 37.7 37.76 73.4
w/o Kernel 32.8 63.1 67.5 23.6 72.5 39.3 40.6 25.0 24.2 23.3 61.7 33.5 42.26 82.2

Ours 33.7 53.0 74.5 27.1 76.5 44.5 49.4 29.3 26.1 31.3 69.0 39.5 46.16 89.8

Table 7: Performance of OPT model on generation benchmarks. For Perplexity, a lower score means
better performance (↓), while for ROUGE, a higher score means better performance (↑).

LLM Method WIKI↓ C4↓ Xsum↑ RP(PPL) RP(Rouge)

OPT-2.7B
Dense 15.1 31.3 6.5 100.0 100.0
Ours 28.0 37.2 2.8 69.0 43.1

OPT-6.7B
Dense 10.9 12.3 13.7 100.0 100.0
Ours 13.9 22.1 6.0 67.0 43.8

F MORE ABLATION STUDIES

Different Pruning Ratios(HellaSwag and BoolQ). Although CMMLU (Figure 7) is a compre-
hensive benchmark, the dense model’s performance on it remains relatively low. To mitigate this
potential side effect, we present performance curves on HellaSwag and BoolQ across various prun-
ing rates. The results confirm that the overall performance still exhibits a consistent linear decline.

Different Kernel Sizes. A kernel function for our objective must address a fundamental trade-
off; it must be powerful enough to simplify the system’s dynamics, yet sufficiently constrained
to retain the core information required by the task. For example, a trivial kernel that maps all
representations to a constant would perfectly linearize the dynamics, but at the cost of a complete
“information collapse” that invalidates the model. Therefore, our goal is to design a non-trivial
kernel that can effectively model the simplified dynamics on the slow manifold. Given such a kernel,
we can simplify the transformations between layers, thereby enabling layer pruning. To validate this
point, beyond the end-to-end downstream experiments in the main text, we further investigate how
the method’s performance varies with different kernel sizes (i.e., 2m).

Figure 8 illustrates the impact of varying kernel sizes on the performance of LLaMA2-7B across
three representative datasets (Hellaswag, CoQA and MMLU). With smaller kernel sizes, such as 256

0% 10% 20% 30% 40% 50%
Pruning Rate

38.00

42.94

47.88

52.81

57.75

62.69

67.62

72.56

77.50

Ac
cu

ra
cy

 (
%

)

Model Performance on Hellaswag Across Pruning Rates
Models
LLaMA-2-7B
LLaMA-2-13B
LLaMA-3-8B

Line Style
Baseline
Post-Training

0% 10% 20% 30% 40% 50%
Pruning Rate

59.35

61.95

64.55

67.15

69.75

72.35

74.95

77.55

80.15

Ac
cu

ra
cy

 (
%

)

Model Performance on BoolQ Across Pruning Rates
Models
LLaMA-2-7B
LLaMA-2-13B
LLaMA-3-8B

Line Style
Baseline
Post-Training

Figure 7: Performance of HellaSwag and BoolQ when we prune with increasing pruning ratio.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

and 512, there is a significant drop in performance, which suggests that critical information is lost
due to excessive compression. Conversely, once the kernel size reaches 1024, the performance gains
become marginal. This indicates that a 1024-dimensional kernel space, induced by our learnable
RFF can encode the model’s essential information.

Data efficiency. As presented in Table 8, our method demonstrates high data efficiency, utilizing
only marginally more data than SliceGPT. Critically, our method does not require any post-training
to restore performance.

dense 256 512 1024 2048 4096
Kernel Size

0
10
20
30
40
50
60
70
80

Ac
cu

ra
cy

 (
%

)

73
.3

33
.7

45
.2

65
.1 66

.4 69
.8

66
.2

34
.9 42

.1 45
.4

45
.7

45
.448

.9

29
.5 30

.6
44

.7 45
.9 47

.7

Dataset Accuracy Comparison Across Kernel Sizes
HeSW
CoQA
MMLU

Figure 8: Ablation study on kernel size m.

Table 8: Data usage statistics for each methods.

Method Need Training Need Fine-tuning Total Sample

SLEB % % /
ShortGPT % % /
LaCo % " 1B
Streamline " " 30k
LLMPruner " " 50k
SliceGPT " % 1k
Ours " % 4k

Sensitivity analysis for each step. To further investigate the importance of each step, we conduct
an ablation study under extreme conditions on LLaMA-2-7B. We individually train either Step 1
or Step 2 for a minimal number of epochs, forcing the subsequent steps to handle all performance
modeling. As shown in Table 9, we observe a significant performance collapse in both scenarios.
A significant discrepancy in performance becomes evident after a short training period. Training
Step 1 for just 5 epochs, despite recovering some performance, still falls considerably short of the
original baseline. Conversely, training Step 2 for five epochs achieves performance almost on par
with the fully trained method. This provides strong support for our central thesis presented in the
main text: that the trained kernel function models performance, while the inverse transformation
network’s role is to learn the corresponding inverse transformation.

Table 9: Sensitivity analysis for each step.

Method HeSW CoQA MMLU

Original 65.1 45.4 28.1
Barely Step 1 (1 Epoch) 43.9 17.0 24.2
Barely Step 1 (5 Epoch) 52.1 27.0 26.7
Barely Step 2 (1 Epoch) 43.7 13.0 24.4
Barely Step 2 (5 Epoch) 60.0 43.7 26.3

Speed up. To further assess the practicality of our method, we compare its performance and effi-
ciency across several mainstream LLaMA models, with detailed results in Table 10. We mainly fo-
cus on focuses on quantifying the impact of reducing inference computation (FLOPs) on the models’
average performance (Avg RP). For LLaMA-2-7B, FLOPs were reduced by 23.13%, which brought
a 1.30x theoretical inference speedup. For LLaMA-2-13B, FLOPs were reduced by 23.64%, achiev-
ing a 1.30x speedup, and the performance retention rate reached 92.9%; this is the result with the
best performance-efficiency trade-off among the three. In summary, the experimental results demon-
strate that our method effectively accelerates the inference of LLMs. It offers a tunable mechanism
for trading acceptable performance degradation for significant gains in computational efficiency.
This feature holds substantial practical value for deploying large models in resource-constrained
environments.

Different training datasets. To evaluate the performance of our method across various datasets, we
conduct experiments on the LLaMA2-7b model. The results are presented in Table 11. Specifically,
the “Fewer” setting utilizes a training set comprising 200 samples each from BoolQ, CMMLU, and
Slimpajama. In contrast, the “More” setting augmented this base dataset with data from CoQA
and HellaSwag, totaling 11.4k samples. Here, “Avg.” denotes the average performance across the
datasets. “RP. on Dense” and “RP. on std.” indicate the Retained Performance relative to the Dense
model and the standard dataset (reported in the main text), respectively. The experimental results

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 10: Performance and efficiency comparison.

Model Method FLOPs (G) Change (%) SpeedUp

LLaMA-2-7B

Dense 845.71 – –
SLEB 664.38 27.29 1.27×
ShortGPT 612.57 38.06 1.38×
Streamline 586.67 30.63 1.44×
SliceGPT 717.63 15.14 1.17×
Ours 650.06 23.13 1.30×

LLaMA-2-13B

Dense 1645.01 – –
SLEB 1320.20 19.74 1.24×
ShortGPT 1239.00 24.68 1.33×
Streamline 1229.76 25.24 1.34×
SliceGPT 1392.89 15.32 1.18×
Ours 1255.99 23.64 1.30×

demonstrate the remarkable efficiency of our method. Our standard configuration (“Standard”),
using only 4k data samples, achieved 91.4% of the performance of the Dense model (average score
of 58.69). Notably, the “Fewer” configuration, with merely 0.6k samples, attained 97.7% of the
performance of the standard configuration, indicating that our method is not sensitive to the data
volume and possesses strong generalization capabilities. Furthermore, by increasing the dataset size,
the “More” configuration surpassed the standard version’s performance (103.1%), which validates
the scalability of our method. In conclusion, this ablation study highlights the robustness of our
method with respect to data quantity.

Table 11: Performance comparison of LLaMA-2-7B under different training data setups.

LLM Datasets
CM

NLI
HeS

w
PIQ

A
CoQ

A
Boo

lQ

M
M

LU

CM
M

LU
Rac

e
SST2 C3 Avg. RP. on Dense RP. on std.

L
L

aM
A

-2
-7

B Dense 34.9 73.3 79.7 66.2 72.3 48.9 30.8 42.8 93.2 44.8 58.69 100.0 -
Standard (8d 4k) 33.6 65.1 70.1 45.4 71.6 44.7 28.1 39.9 94.0 43.7 53.62 91.4 100.0
Fewer (3d 0.6k) 33.1 72.7 76.5 46.0 72.7 29.3 26.4 36.3 90.5 40.2 52.37 89.2 97.7

More (10d 11.4k) 34.9 73.0 77.0 47.9 70.7 44.7 30.3 38.0 92.4 44.3 55.32 94.3 103.1

G MORE VISUALIZATION

This section presents additional visualizations of the fitting results. Following the mechanism pre-
viously detailed in Figure 3, these figures provide a clearer illustration of the fitting quality.

H MORE ANALYSIS OF SLOW MANIFOLD HYPOTHESIS

The manifold hypothesis posits that high-dimensional data often reside on a manifold with a dimen-
sionality much lower than that of the ambient space, which is beneficial in various fields (Song &
Ermon, 2019). This leads us to consider whether this property also holds for the LLM’s internal
representations, allowing them to be embedded in a low-dimensional manifold. The internal repre-
sentations of the model are sequential. As shown in Equation 1, in standard Pre-Norm Transformers,
hl+1 is obtained by adding an increment to hl. We therefore define this increment as the velocity of
change in the representation.

Although CKA and Cosine similarity are measures of similarity rather than distance, they are closely
correlated with distance measures on the manifold. This implies that high similarity between two
representations corresponds to a small distance between them. This two similarity matrices in Figure
1 provide quantitative evidence for this. When the representation change over a single propagation
step is small, we consider the representation to be in a stable state on the manifold, which is often
feasible to model this stable evolution using a simple dynamical model.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 9: Additional Visualizations of Representation Fitting.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

75
50

25
0

25
50

75
100

t-SNE Component 1

0
4

8
12

16
20

24
28

Layer Index

100
75
50
25
0

25
50
75

t-SNE Com
ponent 2

3D t-SNE Visualization of Layer Representations
Layer 0
Layer 4
Layer 8
Layer 12
Layer 16
Layer 20
Layer 24
Layer 28

Figure 10: The representation propagation trajectories for 100 samples within LLaMA2-7B. The
X and Z axes denote the t-SNE coordinates, while the Y-axis represents the layer index. An in-
spection along the Y-axis (layer depth) reveals that the trajectories for individual samples remain
well-separated and exhibit strong linearity. Furthermore, the transformation between adjacent lay-
ers is gradual.

The concept of using linear approximations for nonlinear dynamics finds parallels in many fields.
Beyond the fundamental example of calculus, a typical case in partial differential equations (PDEs)
is the Fisher equation. Its full form is: ut = Duxx + ru− r

Ku2. However, in the vicinity of u = K,
this equation is often simplified into the following linear PDE: vt = Dvxx − rv.

To provide further intuitive support for our hypothesis, we visualized the representational trajectories
across different layers for 100 samples from LLaMA2-7B using t-SNE in Figure 10. The resulting
plot clearly exhibits a strong linear trend, which in turn validates the feasibility of our method.

I ADDITIONAL OVERHEAD ANALYSIS

KDP introduces additional parameters during two steps: Kernel Linearization Joint Training requires
training the parameters θ, Ai defined in Equation 5; Inverse Transformation Network involves train-
ing the parameter ϕ from Equation 6. Specifically, when we replace a block of Kmax consecutive
layers, the parameter counts for the three components (θ, Ai, ϕ) are as follows:

θ: The RFF kernel learns a data-driven anisotropic Gaussian RBF kernel. Its learnable parameters θ
are derived from the parameterization of the covariance matrix Σ = D+LL⊤. This parameterization
consists of two components: First, the diagonal matrix D = diag(exp(λ)), is parameterized by
the learnable vector λ ∈ Rd, contributing d parameters. Second, L ∈ Rd×r is a learnable low-
rank factor matrix, which contributes d × r parameters. Therefore, the total parameter count is:
Params(θ) = d+ dr = d(1 + r).

Ai: Each operator Ai maps the kernel space representation φ(hl+i−1) ∈ R2m to φ(hl+i) ∈ R2m.
Consequently, Ai is a (2m) × (2m) matrix. To ensure stable training, Ai is parameterized as
Ai = I + γiBi. The learnable parameters for each Ai thus consist of the scalar γi and the matrix
Bi ∈ R2m×2m. This results in a total parameter count of Params(Ai) = Kmax · (1 + (2m)2).
Notably, once training is complete, only the product

(∏k
i=1 Âi

)
needs to be stored. Consequently,

during the inference phase, the final parameter count is reduced to only: Params(Ai) = (2m)2.

ϕ: This represents the parameters for the inverse transformation network I(·). The network is
parameterized as I(x) := α · MLP(x), where α is a learnable scalar and MLP(·) stands for a two-
layer MLP network. The total parameter count is given by: Params(ϕ) = 1+(2m·dhidden+dhidden)+
(dhidden · d+ d).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Therefore, during the training phase, the total introduced parameter count is

ParamsTrian(KDP) = d(1 + r) +Kmax(1 + (2m)2) + (1 + dhidden(2m+ d+ 1) + d),

and during the inference phase, the total introduced parameter count is

ParamsInference(KDP) = d(1 + r) + (2m)2 + (1 + dhidden(2m+ d+ 1) + d).

The FLOPS and corresponding parameter counts under different k are in the Table 12, which demon-
strate that the additional overhead introduced by KDP is minimal.

Table 12: FLOPs and parameter retention under k = 2 and k = 3.

LLM FLOPs (G) Params (M)
k = 2 k = 3 k = 2 k = 3

LLaMA-2-7B
Transformer Block 51.80 77.71 404.77 607.15
Fold Block 2.89 12.40
Retention Rate 5.59% 3.73% 3.07% 2.05%

LLaMA-2-13B
Transformer Block 81.20 121.80 634.41 951.61
Fold Block 3.4 14.83
Retention Rate 4.19% 2.79% 2.34% 1.56%

J THE USE OF LLMS

We thank the Large Language Model (LLM) for its assistance in proofreading and polishing the
manuscript’s language. The LLM was not involved in the idea, theoretical development, or experi-
mental aspects of this research.

25

	Introduction
	Preliminaries & Theoretical analysis
	Problem Setup & Kernelization
	Forward Dynamics on a Slow Manifold
	Theoretical results

	Kernelized Dynamics Pruning
	Kernel Linearization Joint Training
	Inverse Transformation Network

	Experiments
	Setup
	Main Results
	Further Analysis
	Ablation Study

	Conclusion
	Preliminaries
	Reproducibility statement & Experimental details
	Related Work
	Proof
	Experiments on OPT Model
	More Ablation Studies
	More Visualization
	More Analysis of Slow Manifold Hypothesis
	Additional Overhead Analysis
	The use of LLMs

