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Abstract

Graph Neural Tangent Kernel (GNTK) fuses graph neural networks and graph
kernels, simplifies the process of graph representation learning, interprets the
training dynamics of graph neural networks, and serves various applications like
protein identification, image segmentation, and social network analysis. In practice,
graph data carries complex information among entities that inevitably evolves over
time, and previous static graph neural tangent kernel methods may be stuck in
the sub-optimal solution in terms of both effectiveness and efficiency. As a result,
extending the advantage of GNTK to temporal graphs becomes a critical problem.
To this end, we propose the temporal graph neural tangent kernel, which not only
extends the simplicity and interpretation ability of GNTK to the temporal setting
but also leads to rigorous temporal graph classification error bounds. Furthermore,
we prove that when the input temporal graph grows over time in the number of
nodes, our temporal graph neural tangent kernel will converge in the limit to
the graphon NTK value, which implies the transferability and robustness of the
proposed kernel method, named Temporal Graph Neural Tangent Kernel with
Graphon-Guaranteed or Temp-G3NTK. In addition to the theoretical analysis,
we also perform extensive experiments, not only demonstrating the superiority
of Temp-G3NTK in the temporal graph classification task, but also showing that
Temp-G3NTK can achieve very competitive performance in node-level tasks like
node classification compared with various SOTA graph kernel and representation
learning baselines. Our code is available at https://github.com/kthrn22/
TempGNTK

1 Introduction

Graphs, as a relational structure, model the complex relationships among entities and have attracted
much research attention nowadays. To serve various applications, graph neural networks have been
extensively studied for their representation learning ability. On the one hand, graph neural networks
usually need to build complex neural architectures with hyperparameters to achieve their powerful
expressive ability, which is typically a nonlinear process and hard to interpret [50, 13, 21]. On the
other hand, graph kernels enjoy the explicit formula and can be convex, leading to solid theoretical
results, although their specific form is often hand-crafted and may not be powerful enough to support
complicated application scenarios [23, 34, 12]. Hence, graph neural tangent kernel (GNTK) [9]
has been proposed to fuse graph neural networks and graph kernels, enjoying the benefits of both
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approaches, i.e., achieving the excellent representation ability while relying on simple computation
processes.

However, in the real world, the graph topology and features are inevitably evolving over time,
e.g., the user connections and interests in social networks. This temporal evolution brings new
challenges to GNTK research as to how the similarity of temporal graphs is measured and how the
corresponding kernel matrix is derived. To be more specific, how can we design a temporal graph
neural tangent kernel, which not only has a superior representation ability than temporal graph
neural networks [39, 8] but also inherits the expression simplicity and analysis rigorousness of graph
neural tangent kernels [9, 24]?

Hence, we propose Temporal Graph Neural Tangent Kernel with Graphon-Guaranteed, or Temp-
G3NTK. First, we propose the kernel matrix computation formula for temporal graphs with time-
evolving structures and time-evolving node features, and the corresponding kernel value can be used
for classification tasks with generalization error bounded. This proposed kernel method addresses how
to measure the similarity between temporal graphs to achieve the accuracy of graph neural networks
but without complex neural computational procedures like gradient descent. Second, considering the
property of temporal graphs, we also prove that when the temporal graph is growing, i.e., the number
of nodes increases over time, our Temp-G3NTK kernel will converge in the limit to the graphon NTK
value. This result addresses the challenge of adapting graphon neural network [41] and graphon neural
tangent kernel [24] to the temporal setting, and, more importantly, demonstrates that Temp-G3NTK
has the excellent potential to transfer to large-scale temporal graph data with robust performance.
Third, in addition to the theoretical analysis, we also design extensive experiments for not only
temporal graph classification but also temporal node classification, illustrating the effectiveness of
the proposed Temp-G3NTK compared with various state-of-the-art temporal graph representation
learning and graph kernel methods.

2 Temporal Graph Modeling

To begin with, we first denote a static undirected graph as G = (V,E), where V and E are sets of
vertices and edges, respectively. We also denote the node features of node v (v ∈ V ) as hv ∈ Rd, the
neighborhood as N (v), and edge features of an edge (u, v) as euv .

In order to extend to the temporal setting, researchers usually model the temporal graph G as a
continuous-time dynamic graph (CTDG) [22], which is mathematically represented as a stream
of events, G = {(u, v,hu(t),hv(t), euv(t), t)}Tt=t0 , where an event (u, v,hu(t),hv(t), euv(t), t)
indicates that at time t, an edge exists between node u and v, and hu(t), hv(t), and euv(t) are the
features of u, v, and (u, v) at time t, respectively. To support different computation requirements,
a CTDG G can also be transferred into a discrete-time dynamic graph (DTDG) [22], which is a
collection of snapshots G(t). To be specific, a snapshot of G at any time t ≥ t0, is denoted as G(t),
which can be obtained by sequentially updating the initial state of G(t0) with the event stream, i.e.,
G(t) = {(u, v,hu(t̄),hv(t̄), euv(t̄), t̄)}tt̄=t0

given (t0 ≤ t̄ ≤ t), and temporal graph equals to the
last time snapshot, i.e., G = G(T ) given the last timestamp is denoted by T .

Let V (t), E(t) be the sets of vertices and edges of G(t). We denote the temporal neighborhood of
node v at time t as N (t)(v) = {(u, t̄) : ((u, v,hu(t̄),hv(t̄), euv t̄) ∈ G(t)}, i.e., a set of nodes u that
are involved in an event with v at any time t̄ (t0 ≤ t̄ ≤ t). Note that, in the rest of the paper, we use
G to denote an entire temporal graph, and G(t) as a snapshot. For simplicity, we denote t0 = 0.

3 Preliminaries of Temp-G3NTK

3.1 Temporal Graph Representation Learning

Graph Neural Networks (GNN) are a family of neural architectures for graph representation learning.
In general, most GNNs leverage a message-passing framework to compute a node v’s representation
h
(l)
v at the lth layer. In the static setting, h(l)

v can be obtained by applying a neighborhood aggregation
operator on h

(l−1)
u , ∀u ∈ N (v), then transforming the aggregated neighborhood information. The

graph-level representation can be obtained by applying a pooling function on representations of all
nodes, e.g., the summation of all node representations.
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To derive Temp-G3NTK, our first step is to compute node representations at time t and then apply a
pooling function over all nodes to obtain the graph-level (or snapshot-level) representation. Specifi-
cally, we obtain the node representation of v at time t, hv(t), by aggregating information from its
temporal neighborhood N (t)(v) as

hv(t) = c ·
∑

(u,t̄)∈N (t)(v)

[tenc(t− t̄)||euv(t̄)||xu(t̄)] (1)

where xu(t) is the node feature of u at time t, tenc : R→ Rdt is the time encoding function that can
be instantiated [8] as tenc(∆t) = cos(∆tw), and w ∈ Rdt with its ith entry [w]i = α−(i−1)/β and
dt is the dimension of the time representation vector. Operation [·||·] denotes the concatenation. c is
the scaling factor, and if we set c = 1, then Eq. 1 is simply the sum neighborhood aggregation; and
if c = | 1

|N (t)(v)| |, then Eq. 1 would be the average neighborhood aggregation. Note that if the edge
features do not exist then we simply set euv(t) = 0. Similarly, if node features are not available then
we let xu(t) = 0.

After aggregating information from node v’s neighborhood at time t as Eq. 1, we can input hv(t) into
L layers of Multilayer Perceptrons (MLPs), where the representation of node v after the lth MLP
projection is as

h(l)
v (t) =

√
2

dl
σ
(
W(l)h(l−1)

v (t)
)

(2)

where dl is the output dimension of the lth MLP layer, σ is a non-linear activation function that can
be instantiated as the Rectified Linear Units (ReLU) function.

Furthermore, we denote the graph-level representation of G(t) as hG(t) =
∑

v∈V (t) h
(L)
v (t).

3.2 Graph Neural Tangent Kernel

Next, we provide some background on the infinite-width limit of a fully connected deep neural
network fnn and derive the definition of NTK and its properties on graphs.

Consider the following settings: given a training dataset of n samples {(xi, yi)}ni=1, where xi ∈ Rd

and its label denoted by yi ∈ R. Let fnn(x, θ) be the output of a fully-connected neural network,
with parameters θ ∈ Rp and x as the input. We train fnn by minimizing the squared loss over the
training dataset.

ℓ(θ) =
1

2

n∑
i=1

(fnn(xi, θ)− yi)
2 (3)

Let X ∈ Rn×d (where [X]i = xi) and y ∈ Rn (where [yi] = yi), such that fnn(X, θ) would be the
prediction of fnn, with parameters θ, over all xi of the training set.

Suppose that ℓ is minimized by gradient descent, so the output fnn(X, θ) evolves with respect to the
training time τ as follows [1].

d fnn(X, θ(τ))

dτ
= −H(τ) · (fnn(X, θ(τ))− y) (4)

where θ(τ) is the parameters θ being updated at training time τ based on gradient descent, and H(τ)
is a n× n positive definite matrix with its (i, j)-th entry as follows〈

∂fnn(xi, θ(τ))

∂θ
,
∂fnn(xj , θ(τ))

∂θ

〉
(5)

Existing works on over-parameterized neural networks [1, 2], [10, 11], and [19] have proven that for
infinite-width neural networks, the matrix H(τ) remains constant during training, and under random
initialization of parameters, the matrix H(0) converges in probability to a certain deterministic
kernel matrix H∗, which is named as Neural Tangent Kernel [19]. Moreover, as proven in [1, 2],
the prediction of a fully-trained sufficiently wide ReLU neural network is equivalent to the kernel
regression predictor with the kernel matrix H∗.
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For the temporal setting, similar to the NTK and the infinite-width neural networks, let ftemp denote
the aforementioned temporal GNN in Section 3.1, and ftemp(G

(t),W) be the output of ftemp with
the input G(t) and parameters W. Given two temporal graphs G and G′, at time t, the NTK value
corresponds to infinite-width ftemp, i.e., in the limit that dl →∞, where dl is the output dimension
stated in Eq. 2, l ∈ [L], such that

K(G(t), G′(t)) = EW∼N (0,1)

〈
∂f(G(t),W)

∂W
,
∂f(G′(t),W)

∂W

〉
(6)

Then, in the rest of this paper, we can refer to this value K(G(t), G′(t)) as the Temp-G3NTK value of
G and G′ at time t. In the next section, we are ready to introduce how to compute the defined kernel
as Eq. 6 without training neural networks.

4 Proposed Temp-G3NTK

Given two temporal graphs G and G′, we propose to compute the Temp-G3NTK value at time t,
i.e., K(G(t), G′(t)), with L BLOCK operations 2. We discuss the detailed computation procedure of
Temp-G3NTK here and leave the theoretical derivation in Section 5.

In general, similar to [1, 9], we first recursively compute the node pairwise covariance matrix Σ(l),

its derivative Σ̇
(l)

, and the node-pairwise kernel matrix Θ(l) that correspond to the lth BLOCK
transformation. Finally, the Temp-G3NTK value is obtained by the summation of all of the entries in
the kernel matrix of the last BLOCK transformation, i.e., Θ(L).

To begin with, we initialize the node pairwise covariance matrix Σ and the kernel matrix Σ at
entries u, u′ (u ∈ V (t), u′ ∈ V ′(t)) as the inner product of node representations of u, u′ at time t,
respectively,

Θ(0)(G(t), G′(t))uu′ = Σ(0)(G(t), G′(t))uu′ = hu(t)
Th′

u(t) (7)

where hu(t) and h′
u(t) are computed by Eq. 1.

Next, we need to compute Σ(l) and Θ(l) that correspond to the lth BLOCK operator with ReLU
activation function σ. As σ(x) = max(0, x), the derivative of σ is σ̇(x) = 1[x ≥ 0], where 1 is the
indicator vector3. For l(1 ≤ l ≤ L), we first define an intermediate covariance matrix as

Λ(l)(G(t), G′(t))uu′ =

(
Σ(l−1)(G(t), G′(t))uu′ Σ(l−1)(G(t), G(t))uu
Σ(l−1)(G′(t), G(t))u′u Σ(l−1)(G′(t), G′(t))u′u′

)
(8)

and Λ(l)(G(t), G′(t))uu′ ∈ R2×2.

As the covariance matrix Σ(l)represents the i.i.d centered Gaussian Processes of hu(t) and h′
u(t) after

transformed by l BLOCK operations, we can compute Σ(l) and Σ̇(l) based on the aforementioned
intermediate covariance matrix as

Σ(l)(G(t), G′(t))uu′ = E(a,b)∼N (0,Λ(l)(G(t),G′(t))uu′ )[σ(a) · σ(b)]

=
π − arccos(Σ(l−1)(G(t), G′(t))uu′)

2π
+

√
1− (Σ(l−1)(G(t), G′(t))uu′)2

2π
(9)

with

Σ̇
(l)
(G(t), G′(t))uu′ = E(a,b)∼N (0,Λ(l)(G(t),G′(t))uu′ )[σ̇(a) · σ̇(b)]

=
π − arccos(Σ(l−1)(G(t), G′(t))uu′)

2π

(10)

2We follow the name of “BLOCK" in [9], which can be understood as an iterative transformation operation.
The new version for temporal graphs is expressed in Eq. 8, Eq. 9, Eq. 10, and Eq. 11.

3with the pseudo derivative at 0.
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Eq. 9 and Eq. 10 hold due to the closed form of the kernel function with ReLU activation g(x, y) =

Ew[σ
′(wTx)σ′(wT y)] =

(
1
2 −

arccos xT y
2π

)
.

Then, the lth kernel matrix, Θ(l), is obtained as

Θ(l)(G(t), G′(t))uu′ = Θ(l−1)(G(t), G′(t))uu′ · Σ̇(l)
(G(t), G′(t))uu′ +Σ(l)(G(t), G′(t))uu′ (11)

Finally, the Temp-G3NTK value of G,G′ at time t is

K(G(t), G′(t)) =
∑

v∈V (t)

∑
v′∈V ′(t)

Θ(L)(G(t), G′(t))vv′ (12)

We perform summation over all entries since in our proposed neural architecture in Section 3.1, we
can obtain the graph embedding by applying a pooling function, e.g., sum pooling, on node-level
representations.

The pseudo-code of computing the Temp-G3NTK kernel as above is shown in Appendix A.

5 Theoretical Analysis of Temp-G3NTK

5.1 Kernel Properties of Temp-G3NTK

To begin with, we first show that our proposed kernal function Temp-G3NTK satisfies symmetric and
semi-definite below, and the full proof can be found in Appendix B
Theorem 5.1. Temp-G3NTK is symmetric.
Theorem 5.2. Temp-G3NTK is positive semi-definite.

5.2 Generalization Bound of Temp-G3NTK

We first state how to utilize Temp-G3NTK as a kernel regression predictor for the temporal graph
classification task; then, we establish a data-dependent generalization error bound of the function
class of kernel regression predictors that are associated with Temp-G3NTK.

To be more specific, we can instantiate the problem of temporal graph classification, where, given an
i.i.d training set of n temporal graphs {G1, G2, . . . , Gn} and their labels {y1, y2, . . . , yn}, our goal
is to predict the label 4 of a testing temporal graph Gtest. Then, the prediction of G(t)

test at any time t
by a kernel regression predictor fkernel associated with Temp-G3NTK kernel K(· , ·) is expressed as
follows,

fkernel(G
(t)
test) =

[
K(G

(t)
test, G

(t)
1 ), . . . ,K(G

(t)
test, G

(t)
n )
]
[K

(t)
train]

−1y (13)

where K
(t)
train is a positive definite n× n kernel matrix, whose (i, j)-th entry is the Temp-G3NTK

value of G(t)
i , G

(t)
j , i.e., [K(t)

train]i,j = K(G
(t)
i , G

(t)
j ) and y ∈ Rn is the label space of temporal

graphs, whose ith entry is [y]i = yi.

Then, we consider any loss function ℓ : R × R → [0, 1] that is α−Lipschitz. We define the
generalization error of the predictor fkernel in Eq. 13 at time t that acts on a temporal graph G labeled
by y as

E[ℓ(fkernel(G(t))y)|{G(1), . . . , G(t−1)}]− ℓ(fkernel(G
(t)), y) (14)

where the expectation is taken over all G(t) drawn from the stochastic process Pt(.|G(1), . . . , G(t−1))
conditioned on all previous snapshots before time t of temporal graph G. The following theorem
establishes the generalization error bound on all snapshot G(t) of G.
Theorem 5.3. Given n i.i.d training samples and their labels {Gi, yi}ni=1 and Gi has t timestamps,
let K(t)

train ∈ Rn×n be the kernel matrix of pairwise Temp-G3NTK values between graphs of the
training set at time t and fkernel be the kernel regression predictor based on the training set and

4Without loss of generality, we assume snapshot G(t) shares the label with its temporal graph G for clear
notation.
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K
(t)
train. Consider any loss function ℓ : R× R→ [0, 1] that is α−Lipschitz, the generalization error

of the fkernel predictor can be upper bounded as

sup
ℓ∈L

[
1

T

T∑
t=1

E[ℓ(fkernel(G(t)), y)|{G(1), . . . , G(t−1)}]− ℓ(fkernel(G
(t)), y)

]

≤ O

(
sup
t

yT [K
(t)
train]

−1y · tr(K(t)
train)

) (15)

where L is the class containing all α−Lipschitz functions, the expectation is taken over all G(t) that
is drawn from Pt(·|G(1), . . . , G(t−1)).

In brief, inspired by existing works on generalization bounds for kernel classes [4], we first
bound our generalization error by the Sequential Rademacher Complexity [38, 26] of F (i.e.,
the function class containing kernel such as fkernel), and then bound this complexity measure
by O(supt yT [K

(t)
train]

−1y · tr(K(t)
train)), where supt y

T [K
(t)
train]

−1y · tr(K(t)
train)) gives maximum

value of yT [K
(t)
train]

−1y · tr(K(t)
train)) over all timestamps of the training temporal graphs. The

classification to the temporal graph G is the max-aggregation of fkernel(G(t)). The full proof is in
Appendix C.

5.3 Convergence of Temp-G3NTK

In this part, we investigate our Temp-G3NTK value on two growing temporal graphs, G and G′.
“Growing” means the number of nodes in G and G′ would increase with time, and the following
theorem shows that the proposed Temp-G3NTK enjoys a rigorous convergence. To verify this, we
first adopt the definition of Graphon NTK on a single growing graph [24] and then extend the concept
to different and temporal graphs to establish the convergence of Temp-G3NTK value of G,G′ as
follows. The full proof is provided in Appendix D.

Theorem 5.4. Given two growing temporal graphs G and G′ and two graphons W and W ′, suppose
snapshots of G (i.e., G(t)) converge to W and snapshots of G′ (i.e., G′(t)) converge to W ′, as
t→∞. Then, the graphon neural tangent kernel induced by Temp-G3NTK of G,G′ at time t, i.e.,
KW (W (t),W ′(t)), converges in the limit of the operator norm to the graphon neural tangent kernel
of W and W ′, i.e., KW (W,W ′), as follows:

lim
t→∞

||KW (W (t),W ′(t))−KW (W,W ′)|| → 0 (16)

where KW denotes the graphon NTK value.

This theorem addresses the convergence limitations of previous work [24] in terms of different
temporal graphs. In other words, besides temporal dependencies between snapshots of different
evolving graphs, the work [24] only establishes a limit object for different stages of a single growing
graph. An empirical visualization can be seen in Figure 1, and the detailed comparison and illustration
are delivered in the Appendix D.3.

5.4 Time Complexity of Temp-G3NTK

Here, the following table shows the time complexity comparison between our Temp-G3NTK with
other graph kernel and graph representation learning methods for measuring n pairs of temporal
graphs at a certain timestamp t.

In the above table, we first need to declare some mathematical notation as follows. |V |, |E| denote
the maximum size of the vertex set and edge set among n given graphs. Then, for the time complexity
of WL-Subtree [42], Graph2Vec [33], and GL2Vec [6], h denotes the number of iterations in WL-
Subtree algorithms; for Graph2Vec [33] and GL2Vec [6], D represents the maximum degree of
the rooted subgraphs that are used to compute graph embeddings; and for the time complexity of
NetLSD [45], k denotes the number of eigenvalues (obtained from the graph Laplacian matrix) used
to compute the graph embeddings; for TGN [39], Lhop denotes the number of neighbor hops that a
node can aggregate information from; for our Temp-G3NTK, based on Section 4 and Appendix A, L
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Table 1: Total Runtime Complexity of Computing Similarity for n Pairs of Graphs at Timestamp t.

METHOD RUNTIME COMPLEXITY

WL-SUBTREE [42] O(nh|E|+ n2h|V |)
SHORTEST PATH [5] O(n2|V |4)
RANDOM WALK [46] O(n2|V |3)

GRAPH2VEC [33] O(n2|V |Dh|E|) · B
NETLSD [45] O(n2(k|E|+ k2|V |)) · B
GL2VEC [6] O(n|V |2 + n2|V |Dh|E|) · B

GRAPHMIXER [8] O(n2 + n|V |K) · B
TGN [39] O(n2 + n(|V |+ |E|)Lhop) · B

TEMP-G3NTK (OURS) O(n2L|V |2 + n|E|)

represents the number of BLOCK operations; and B denotes the number of training epochs for all
neural representation learning algorithms.

Notably, our method Temp-G3NTK falls into the category of graph kernels, and its computational
complexity is cheaper than [5, 46] . Also, compared with graph neural representation methods [6,
33, 45, 39, 8], the computation iteration of Temp-G3NTK does not rely on neural computation like
gradient descent and backpropagation, such that the empirical execution time of our method is still
faster. Moreover, we further demonstrate our Temp-G3NTK’s efficiency by providing empirical
runtime comparison in Table 3, and the detailed empirical effectiveness comparison of these methods
is shown in the next section.

6 Experiments

In this section, we demonstrate the performance of Temp-G3NTK by crucial tasks of temporal graph
learning. More extra experiments about ablation study, parameter analysis, and robustness can be
referred to Appendix F.

6.1 Graph-Level Experiments

Datasets. Targeting temporal graph classification, we conduct experiments on one of the most
advanced temporal graph benchmarks that have graph-level labels, i.e., TUDataset 5 [32], the four
datasets are INFECTIOUS, DBLP, FACEBOOK, and TUMBLR, the detailed dataset statistics can also
be found in Appendix G.1. Additionally, we also leveraged the more large-scale temporal datasets
REDDIT, WIKIPEDIA, LASTFM, and MOOC from [25]6. Those datasets are large but do not have
graph-level labels, so we use them to demonstrate the scalability of Temp-G3NTK on temporal
graph similarity measurement. The detailed dataset statistics can be found in Appendix G.1, and
corresponding experimental results can be found in Appendix F.3. Below, we focus on introducing
temporal graph classification experiments and findings.

Problem Setting. For each dataset above, we evaluate the temporal graph classification accuracy by
conducting 5-fold cross-validation and then report the mean and standard deviation of test accuracy.
To be specific, given a dataset of n temporal graphs {G1, G2, ..., Gn} and their labels {y1, y2, ..., yn},
and in all four datasets, label yi of the temporal graph Gi is already time-aware, which means the
value does not change with respect to time. Also, edge features are not provided in these four datasets,
and we apply the Temp-G3NTK formula with plain time encoding as stated in Eq. 1.

Baselines. We compare Temp-G3NTK with a range of graph classification algorithms: (1) Graph
Kernels, including WL-Subtree Kernel [42], Random Walk Kernel [46], and Shortest-Path Kernel [5];
(2) Graph Representation Learning methods, including Graph2Vec [33], NetLSD [45], GL2Vec [6];
and (3) Temporal Graph Representation Learning algorithms, including TGN [39], GraphMixer [8],
EvolveGCN [35]. Details about the implementation and parameters of each algorithm are deferred to
Appendix G.

5https://chrsmrrs.github.io/datasets/docs/datasets/
6https://snap.stanford.edu/jodie/
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Table 2: Comparison of Temporal Graph Classification Accuracy.

METHOD INFECTIOUS DBLP FACEBOOK TUMBLR

WL-SUBTREE [42] 0.600 ± 0.044 0.520 ± 0.068 0.650 ± 0.075 0.570 ± 0.121
SHORTEST PATH [5] 0.670 ± 0.075 0.560 ± 0.049 0.560 ± 0.086 0.580 ± 0.143
RANDOM WALK [46] 0.670 ± 0.073 0.530 ± 0.058 0.590 ± 0.093 0.580 ± 0.112

GRAPH2VEC [33] 0.565 ± 0.081 0.539 ± 0.031 0.538 ± 0.028 0.547 ± 0.071
NETLSD [45] 0.625 ± 0.061 0.558 ± 0.035 0.535 ± 0.011 0.552 ± 0.046
GL2VEC [6] 0.545 ± 0.051 0.562 ± 0.030 0.538 ± 0.031 0.558 ± 0.080

GRAPHMIXER [8] 0.500 ± 0.000 0.563 ± 0.011 0.561 ± 0.023 0.509 ± 0.508
TGN [39] 0.520 ± 0.019 0.580 ± 0.003 0.559 ± 0.018 0.517 ± 0.025
EVOLVEGCN [35] 0.521 ± 0.093 0.400 ± 0.089 0.516 ± 0.075 0.395 ± 0.089

TEMP-G3NTK (OURS) 0.740 ± 0.058 0.600 ± 0.063 0.700 ± 0.138 0.630 ± 0.068

Results. The graph classification results are shown in Table 2, and the best test accuracy is highlighted
in bold. Our method, Temp-G3NTK, outperforms the other methods on all four datasets. In particular,
the most notable gap between Temp-G3NTK and the other methods lies in the FACEBOOK dataset,
where Temp-G3NTK gains 70% accuracy. In addition, as the label for each graph remains unchanged,
we evaluate the performance of baseline algorithms on different timestamps until the end of the
temporal graph, and report their highest accuracy score in Table 2.

We also provide a better illustration of how baseline algorithms perform at different timestamps of
the INFECTIOUS and FACEBOOK datasets through Figure 1. For Figure 1, as stated in our problem
setting, each temporal graph is associated with a label, and the label is fixed across timestamps.
Therefore, we expect our method to perform well, i.e., achieve a competitive accuracy score across
all timestamps. As illustrated, Figure 1 shows that Temp-G3NTK performs robustly across all
timestamps and achieves the highest accuracy at most times, which also recalls the convergence
ability of Temp-G3NTK as proved in Section 5.3.

Figure 1: Comparison of test accuracy with respect to different stages of temporal graphs from
the INFECTIOUS and FACEBOOK datasets. The y-axis in each plot is the accuracy, and the x-axis
represents what percentage of timestamps have been taken into account. For example, at x = 1/5,
the accuracy is obtained by performing classification on the first 1/5 timestamps of each graph.

Further, in Table 3, we present the runtime comparison for four datasets, INFECTIOUS, DBLP,
FACEBOOK, and TUMBLR. Overall, the empirical running time aligns with our theoretical analysis
of time complexity in Table 1. That is, our method belongs to the graph kernel category, where the
node-wise comparison is usually inevitable, and our time complexity is lower. Compared to the
neural baselines, since our method does not rely on complex neural training like gradient descent and
backpropagation, our method is still efficient.

Given our method achieved the best classification accuracy, as shown in Table 2, according to the
corresponding running time reported in Table 3, our method is (1) more than 10x - 20x faster then
complex temporal graph neural network methods like GraphMixer [8] and TGN [39]; (2) similarly
efficient as simple kernel methods like WL-Subtree [42] and Shortest Path [5] and embedding
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Table 3: Runtime of Baselines for Each Dataset in Seconds

METHOD INFECTIOUS DBLP FACEBOOK TUMBLR

WL-SUBTREE 16.04 10.93 13.88 9.80
SHORTEST PATH 20.36 16.13 32.29 16.29
RANDOM WALK 489.65 566.64 5380.26 972.929

GRAPH2VEC 3.43 3.45 3.87 3.42
NETLSD 14.82 15.20 33.90 15.06
GL2VEC 17.75 14.36 23.95 13.77

GRAPHMIXER 217.70 537.22 720.16 219.29
TGN 254.59 873.03 1101.66 394.34

TEMP-G3NTK (OURS) 23.04 21.00 25.86 21.04

methods like NetLSD [45] and GL2Vec [6]; and only Graph2Vec [33] is running faster than our
method, but our performance is roughly 1.4x better.

6.2 Node-Level Experiments

In this section, we evaluate the performance of Temp-G3NTK for the temporal node property
prediction task. Specifically, we leverage the final node-pairwise kernel matrix computed by Eq. 11,
i.e., Θ(L), and obtain node predictions by performing kernel regression with Θ(L).

Datasets. We demonstrate Temp-G3NTK’s capability of performing dynamic node prediction on
the tgbn-trade dataset from the Temporal Graph Learning Benchmark (TGB) [17], and the details of
TGB can be found at this link 7. The training, validation, and test sets of tgbn-trade are defined in the
TGB package with 70%/15%/15% chronological splits. To assess the performance of a method on
tgbn-trade, we use the normalized discounted cumulative gain (NDCG) metric that is assigned to
tgbn-trade in the TGB package.

Problem Setting. Given a temporal graph with node labels that change with respect to time, the Node
Property Prediction task requires the prediction of labels of some nodes at a certain time t, given
that our predictor can leverage all information about the temporal graphs from the initial timestamps
up to some certain timestamp t̄ with t̄ < t. To be specific, the predictor for node labels by using
Temp-G3NTK at time t would be:

Θ(L)(G(t), G(t̄))[Θ(L)(G(t̄), G(t̄))]−1y(t) (17)

where y(t) ∈ Rn×dlabel is a vector whose ith entry is the label of node i at time t, and dlabel is the
dimension of node labels.

Through the lens of kernel regression, [Θ(L)(G(t̄), G(t̄))] acts as the gram matrix, similar to the role
of Ktrain in Eq. 13, and Θ(L)(G(t), G(t̄)) acts as the kernel values between the test and training
samples. In order to effectively utilize Temp-G3NTK for node property prediction, we perform kernel
regression with C-SVM and employ Θ(L) as the pre-computed kernel. The regularization parameter,
C, of our SVM predictor is searched over 120 values evenly sampled from the interval [10−2, 104] in
log scale. The number of BLOCK operations, L, is searched over {1, 2, 3}, and we obtain the best
NDCG score with L = 1.

Baselines. We compare Temp-G3NTK with deep learning algorithms on the tgbn-trade’s leaderboard,
which include TGN [39], DyRep [44], and DyGFormer [49]. TGN [39] is discussed in the temporal
graph classification task. DyRep [44] is a deep temporal point process model, which is parameterized
by a temporal-attentive representation network encoding time evolving structural information into
node representations. DyGFormer [49] is a Transformer-based architecture for dynamic graph
learning, which learns from nodes’ historical first-hop interactions by the neighbor co-occurrence
sampling and patching scheme with the Transformer neural architecture.

With selected temporal graph representation learning baseline methods, we then report the NDCG
scores of baseline algorithms based on tgbn-trade’s leaderboard.

Results. The results for temporal node property prediction on tgbn-trade are shown in Table 4, and
the best NDCG score is highlighted in bold. Temp-G3NTK achieves very competitive results, with

7https://tgb.complexdatalab.com/docs/nodeprop/
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Table 4: NDCG Score for Node Property Prediction on the tgbn-trade Dataset.

METHOD VALIDATION TEST

DYGFORMER [49] 0.408 ± 0.006 0.388 ± 0.006
TGN [39] 0.395 ± 0.002 0.374 ± 0.001
DYREP [44] 0.394 ± 0.001 0.374 ± 0.001

TEMP-G3NTK (OURS) 0.397 ± 0.039 0.380 ± 0.008

the test NDCG score of 0.380, outperforming TGN and DyRep and approaching DyGFormer very
closely, despite that baselines rely on heavy graph neural architectures like graph neural network or
graph transformer. These results show that Temp-G3NTK has the potential to extend to the temporal
node property prediction task and capture node-level information.

7 Related Work

Graph neural representation learning attracts many research interests and serves for many interesting
tasks like recommendation [3, 36, 37], time series forecasting [29, 15], and social network analy-
sis [28, 14, 27]. In which research domain, many efforts have been devoted to develop non-neural
computations and temporal settings. Graph Neural Tangent Kernel. Graph Neural Tangent Kernel
(GNTK) [9] introduces a class of graph kernels that corresponds to infinite-width GNNs with sum
neighborhood aggregator. Building upon the foundations of GNTK, a line of works unveil different
theoretical aspects of GNTK. For example, [20] improves the computation time of constructing the
gram matrix of GNTK; [18] studies the behavior of GNTK that aligns with GNNs with large depth;
and most relevant to our theoretical results (Theorem 5.4), [24] combines GNTK with the concept of
graphons to derive the Graphon Neural Tangent Kernel. Graphons, Graphon Neural Network, and
Graphon Neural Tangent Kernel. A graphon is a symmetric, bounded, and measurable function
W : [0, 1]2 → [0, 1] that acts as the limit object of dense graph sequences and defines a family of
similar graphs. Similarly, Graphon Neural Networks (WNNs) [41] are proven to be the limit object
of GNNs that operates on a sequence of graphs as the graph’s size grows. Graphon Neural Tangent
Kernel (WNTK) [24] defines the NTK that resonates with the infinite-width WNNs and proves
that the GNTK converges to the corresponding WNTK as the size of the graph grows. Temporal
Graph Learning. Most temporal graph learning methods are comprised of complex architectures
that leverage the message passing framework, a time encoding function that captures time repre-
sentation and distinguishes different timestamps. Some works also employ recurrent architecture
to capture past information and update the node or edge representation at a current time t based
on representations of previous time t̄, where t̄ < t. For example, JODIE [25] employs RNN to
update the history representation of v at time t. TGAT [47] utilizes the self-attenion mechanism
(SAM) to compute the temporal representation of node v. TGN [39] employs recurrent architecture to
capture the history representation of xv(t) (similar to JODIE [25]) and then performs neighborhood
aggregation to obtain the temporal node representation of v at time t, which is similar to TGAT [47].
GraphMixer [8] first constructs edge representation by aggregating raw edge features and then con-
catenates them with relative difference time encoding. Then, the temporal node representation is
determined by aggregating the aforementioned edge representation, hv(t). The node representation is
further transformed by MLP and Mixer-MLP layers. For a more comprehensive comparison between
Temp-G3NTK and previous recurrent neural network works on Temporal Graph Learning, we refer
readers to Appendix E, where we provide detailed illustration of more Temporal Graph Learning
methods, DGNN [31], EvolveGCN [35], ROLAND [48], and SSGNN [7].

8 Conclusion

In this paper, we study the graph neural tangent kernel within the temporal graph setting and propose
a temporal graph neural tangent kernel named Temp-G3NTK, which allows the input graph structure
and node features to evolve over time and output the pairwise similarity. The proposed Temp-
G3NTK enjoys the computational efficiency, expressive representation ability of temporal graph
neural networks, and rigorous error bound. Moreover, the proposed Temp-G3NTK also follows
the graphon convergence property. Empirically, we not only test Temp-G3NTK in the temporal
graph-level experiments and demonstrate its superior accuracy but also extend it to deal with temporal
node-level tasks, where Temp-G3NTK also shows competitive performance.
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A Pseudo Code of Temp-G3NTK

The pseudo-code of Temp-G3NTK is provided below.

Algorithm 1 Pseudo-code for computing Temp-G3NTK value between G,G′ at time t

Input: node embeddings of G,G′ at time t: h(t),h′(t); number of BLOCK operations L
Output: Temp-G3NTK value between G,G′ at time t: K

1: K = 0
2: for u ∈ V (t) do
3: for u′ ∈ V ′(t) do
4: Θ

(0)
u,u′ ← hu(t)

Thu′(t);

5: Σ
(0)
u,u′ ← hu(t)

Thu′(t);
6: for l ∈ [1, . . . , L] do

7: Σ
(l)
u,u′ ←

√
1−arccos

(
Σ

(l−1)

u,u′

)2
2π

8: Σ̇
(l)
u,u′ ←

π−arccos
(
Σ

(l−1)

u,u′

)
2π

9: Θ
(l)
u,u′ ← Θ

(l−1)
u,u′ · Σ̇(l−1)

u,u′ +Σ
(l−1)
u,u′

10: end for
11: end for
12: end for
13: for u ∈ V (t) do
14: for u′ ∈ V ′(t) do
15: K ← K +Θ

(L)
u,u′

16: end for
17: end for

B Theoretical proof for Kernel Properties of Temp-G3NTK

Here, we present the full proof for Theorem 5.1 and Theorem 5.2.

Proof. For Theorem 5.1, we aim to prove that K(G(t), G′(t)) = K(G′(t), G(t)).

Given our proposed kernel function, K(G(t), G′(t)) =
∑

v∈V (t)

∑
v′∈V ′(t) Θ

(L)(G(t), G′(t))vv′ ,
we first write down another equation, where the internal order is flipped, i.e., K(G′(t), G(t)) =∑

v′∈V ′(t)

∑
v∈V (t) Θ

(L)(G′(t), G(t))v′v

We first prove that

Θ(l)(G(t), G′(t))vv′ = Θ(l)(G′(t), G(t))v′v,∀l, 1 ≤ l ≤ L.
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▷ For l = 1, we have

Θ(1)(G(t), G′(t))vv′ = Θ(0)(G(t), G′(t))vv′ · Σ̇(1)
(G(t), G′(t))vv′ +Σ(1)(G(t), G′(t))vv′

= (hv(t)
⊤hv′(t)) · π − arccos(Σ(0)(G(t), G′(t))vv′)

2π

+
π − arccos(Σ(0)(G(t), G′(t))vv′)

2π
+

√
1−Σ(0)(G(t), G′(t))2vv′

2π

= (hv(t)
⊤hv′(t)) · π − arccos(hv(t)

⊤hv′(t))

2π
+

π − arccos(hv(t)
⊤hv′(t))

2π
+

√
1− (hv(t)⊤hv′(t))2

2π

= (hv′(t)⊤hv(t)) ·
π − arccos(hv′(t)⊤hv(t))

2π
+

π − arccos(hv′(t)⊤hv(t))

2π
+

√
1− (hv′(t)⊤hv(t))2

2π

= (hv′(t)⊤hv(t)) ·
π − arccos(Σ(0)(G′(t), G(t))v′v)

2π

+
π − arccos(Σ(0)(G′(t), G(t))v′v)

2π
+

√
1−Σ(0)(G′(t), G(t))2v′v

2π

= Θ(0)(G′(t), G(t))v′v · Σ̇
(1)

(G′(t), G(t))v′v +Σ(1)(G′(t), G(t))v′v

= Θ(1)(G′(t), G(t))v′v

▷ Suppose ∃k ∈ N, 1 ≤ k ≤ L, such that

Θ(k)(G(t), G′(t))vv′ = Θ(k)(G′(t), G(t))v′v

Thus,

Θ(k+1)(G(t), G′(t))vv′ = Θ(k)(G(t), G′(t))vv′ · Σ̇(k+1)
(G(t), G′(t))vv′ +Σ(k+1)(G(t), G′(t))vv′

= Θ(k)(G(t), G′(t))vv′ · π − arccos(Σ(k)(G(t), G′(t))vv′)

2π

+
π − arccos(Σ(k)(G(t), G′(t))vv′)

2π
+

√
1−Σ(k)(G(t), G′(t))2vv′

2π

= Θ(k)(G′(t), G(t))v′v ·
π − arccos(Σ(k)(G′(t), G(t))v′v)

2π

+
π − arccos(Σ(k)(G′(t), G(t))v′v)

2π
+

√
1−Σ(k)(G′(t), G(t))2v′v

2π

= Θ(k+1)(G′(t), G(t))v′v

Therefore, if Θ(k)(G(t), G′(t))vv′ = Θ(k)(G′(t), G(t))v′v, then Θ(k+1)(G(t), G′(t))vv′ =

Θ(k+1)(G′(t), G(t))v′v . Moreover, we have proven that Θ(1)(G(t), G′(t))vv′ = Θ(1)(G′(t), G(t))v′v .
Thus, by induction, we have:

Θ(l)(G(t), G′(t))vv′ = Θ(l)(G′(t), G(t))v′v,∀l, 1 ≤ l ≤ L.

Finally,

K(G(t), G′(t)) =
∑

v∈V (t)

∑
v′∈V ′(t)

Θ(L)(G(t), G′(t))vv′ =
∑

v′∈V ′(t)

∑
v∈V (t)

Θ(L)(G′(t), G(t))v′v = K(G′(t), G(t))

The proof for Theorem 5.1 is completed.

Next, we elaborate on the proof for Theorem 5.2. To be specific, we prepared two options to
demonstrate the proof.

▷ Option #1:
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Proof. In order to prove that Temp-G3NTK is positive semi-definite, we need to prove the following
statement. Given n temporal graphs G1, . . . , Gn and any c1, . . . , cn ∈ R then

n∑
i=1

n∑
j=1

cicjK(G
(t)
i , G

(t)
j ) ≥ 0 (18)

Intuitively, we can view the right-hand side of Eq. 18 as the summation of all entries of the following
matrix,

K =


c1c1K(G

(t)
1 , G

(t)
1 ) c1c2K(G

(t)
1 , G

(t)
2 ) . . . c1cnK(G

(t)
1 , G

(t)
n )

c2c1K(G
(t)
2 , G

(t)
1 ) c2c2K(G

(t)
2 , G

(t)
2 ) . . . c2cnK(G

(t)
2 , G

(t)
n )

...
...

. . .
...

cnc1K(G
(t)
n , G

(t)
1 ) cnc2K(G

(t)
n , G

(t)
2 ) . . . cncnK(G

(t)
n , G

(t)
n )

 ∈ Rn×n (19)

whose (i, j)th entry is cicjK(G
(t)
i , G

(t)
j ).

Then, we can re-write Eq. 18 by Temp-G3NTK’s formula stated in Eq. 12 as follows

n∑
i=1

n∑
j=1

cicjK(G
(t)
i , G

(t)
j ) =

n∑
i=1

n∑
j=1

mi∑
v=1

mj∑
v′=1

cicjΘ
(L)(G

(t)
i , G

(t)
j )vv′ (20)

where mi is the number of nodes of Gi, ∀i ∈ {1, . . . , n}.

Next, we consider the graph G
(t)
1 ∪G

(t)
2 ∪ · · · ∪G

(t)
n , whose vertex, edge set is the union of all G(t)

i ’s
vertex, edge set (∀i ∈ {1, . . . , n}), respectively. Then the number of nodes of G(t)

1 ∪G
(t)
2 ∪· · ·∪G

(t)
n

if m =
∑n

i=1 mi. Additionally, we re-index the nodes of G(t)
1 ∪G

(t)
2 ∪ · · · ∪G

(t)
n as follows. The

jth node of graph G
(t)
i is the ((

∑i−1
p=1 mp) + j)th node of G(t)

1 ∪G
(t)
2 ∪ · · · ∪G

(t)
n . Then,

n∑
i=1

n∑
j=1

mi∑
v=1

mj∑
v′=1

cicjΘ
(L)(G

(t)
i , G

(t)
j )vv′ =

m∑
v=1

m∑
v′=1

ava
′
vΘ

(L)(G
(t)
1 ∪G

(t)
2 ∪ · · · ∪G(t)

n , G
(t)
1 ∪G

(t)
2 ∪ · · · ∪G(t)

n )v,v′ ≥ 0

(21)

where av = ci if
∑i−1

q=1 mq < v ≤
∑i

p=1 mp for (i ≥ 1), and if v ≤ m1 then av = c1.

Intuitively, the right-hand side of Eq. 21 is the summation of all entries of the following matrix O:

O =


c1c1Θ

(L)(G
(t)
1 , G

(t)
1 ) c1c2Θ

(L)(G
(t)
1 , G

(t)
2 ) . . . c1cnΘ

(L)(G
(t)
1 , G

(t)
n )

c2c1Θ
(L)(G

(t)
2 , G

(t)
1 ) c2c2Θ

(L)(G
(t)
2 , G

(t)
2 ) . . . c2cnΘ

(L)(G
(t)
2 , G

(t)
n )

...
...

. . .
...

cnc1Θ
(L)(G

(t)
n , G

(t)
1 ) cnc2Θ

(L)(G
(t)
n , G

(t)
2 ) . . . cncnΘ

(L)(G
(t)
n , G

(t)
n )

 ∈ Rm×m

(22)
whose (i, j)th entry is an mi ×mj matrix cicjΘ

(L)(G
(t)
i , G

(t)
j ) and Θ(L)(G

(t)
i , G

(t)
j ) is the kernel

matrix defined iteratively via Eq. 11 for all pair of nodes from G
(t)
i and G

(t)
j . We can regard O

(defined in Eq. 22) as the “node-view” expansion of K in Eq. 19.

As a1, . . . , am ∈ R, and Θ(L) is the kernel matrix constructed on feature vector of each pair of nodes
of G(t)

1 ∪ · · · ∪G
(t)
n , so the last inequality in Eq. 21 holds, as Θ(L) is positive semi-definite on the

space of node features vector [19].
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Finally, we conclude that
n∑

i=1

n∑
j=1

cicjK(G
(t)
i , G

(t)
j ) =

m∑
v=1

m∑
v′=1

ava
′
vΘ

(L)(G
(t)
1 ∪G

(t)
2 ∪ · · · ∪G(t)

n , G
(t)
1 ∪G

(t)
2 ∪ · · · ∪G(t)

n )v,v′ ≥ 0

(23)

Therefore, the proof for Theorem 5.2 is completed.

▷ Option #2:

Proof. In order to prove that Temp-G3NTK is positive semi-definite, we need to prove the following
statement. Given n temporal graphs G1, . . . , Gn and any c1, . . . , cn ∈ R then

n∑
i=1

n∑
j=1

cicjK(G
(t)
i , G

(t)
j ) ≥ 0 (24)

We re-write Eq. 24 as follows

n∑
i=1

n∑
j=1

cicjK(G
(t)
i , G

(t)
j ) =

=

( n∑
i=1

n∑
j=1

c2iK(G
(t)
i , G

(t)
i ) + c2jK(G

(t)
j , G

(t)
j ) + cicjK(G

(t)
i , G

(t)
j ) + cjciK(G

(t)
j , G

(t)
i )

)

+

n∑
i=1

n∑
j=1

(−c2i )K(Gi, Gi) + (−c2j )K(Gj , Gj) + (−cicj)K(Gi, Gj)

⇔ 2

n∑
i=1

n∑
j=1

cicjK(G
(t)
i , G

(t)
j ) =

n∑
i=1

n∑
j=1

(−c2i )K(Gi, Gi) + (−c2j )K(Gj , Gj)

+

( n∑
i=1

n∑
j=1

c2iK(G
(t)
i , G

(t)
i ) + c2jK(G

(t)
j , G

(t)
j ) + cicjK(G

(t)
i , G

(t)
j ) + cjciK(G

(t)
j , G

(t)
i )

)

⇔ 2

n∑
i=1

n∑
j=1

cicjK(G
(t)
i , G

(t)
j ) = 2n

n∑
i=1

(−c2i )K(Gi, Gi)

+

( n∑
i=1

n∑
j=1

c2iK(G
(t)
i , G

(t)
i ) + c2jK(G

(t)
j , G

(t)
j ) + cicjK(G

(t)
i , G

(t)
j ) + cjciK(G

(t)
j , G

(t)
i )

)

Next, we aim to prove that (1) for each i, j ∈ {1, . . . , n},

( n∑
i=1

n∑
j=1

c2iK(G
(t)
i , G

(t)
i )+c2jK(G

(t)
j , G

(t)
j )+cicjK(G

(t)
i , G

(t)
j )+cjciK(G

(t)
j , G

(t)
i )

)
≥ 0 (25)

by proving that for each i, j ∈ {1, . . . , n}

c2iK(G
(t)
i , G

(t)
i ) + c2jK(G

(t)
j , G

(t)
j ) + cicjK(G

(t)
i , G

(t)
j ) + cjciK(G

(t)
j , G

(t)
i ) ≥ 0

and (2) for each i ∈ {1, . . . , n},
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2n

n∑
i=1

(−c2i )K(G
(t)
i , G

(t)
i ) ≥ 0 (26)

by proving that for each i ∈ {1, . . . , n},

(−c2i )K(G
(t)
i , G

(t)
i ) ≥ 0

▷ ▷ For proving (1):

For each i, j ∈ {1, . . . , n}, suppose that Gi, Gj have p, q nodes, respectively, then we have the
following equality

c2iK(G
(t)
i , G

(t)
i ) + c2jK(G

(t)
j , G

(t)
j ) + cicjK(G

(t)
i , G

(t)
j ) + cjciK(G

(t)
j , G

(t)
i ) =

= c2i

p∑
v=1

p∑
v′=1

Θ(L)(G
(t)
i , G

(t)
i )vv′ + c2j

q∑
v=1

q∑
v′=1

Θ(L)(G
(t)
j , G

(t)
j )vv′+

cicj

p∑
v=1

q∑
v′=1

Θ(L)(G
(t)
i , G

(t)
j )vv′ + cjci

q∑
v′=1

p∑
v=1

Θ(L)(G
(t)
j , G

(t)
i )v′v

=

p+q∑
v=1

p+q∑
v′=1

ava
′
vΘ

(L)(G
(t)
i ∪G

(t)
j , G

(t)
i ∪G

(t)
j )vv′ ≥ 0

Here, we can regard G
(t)
i ∪ G

(t)
j as a graph, whose vertex, edge set is the union of G(t)

i ’s vertex,

edge set and G
(t)
j ’s vertex, edge set, respectively, while av, a

′
v is either ci or cj . Therefore, since

a1, . . . ap+q ∈ R, and Θ(L)(G
(t)
i ∪G

(t)
j , G

(t)
i ∪G

(t)
j )vv′ ,∀v, v′ ∈ {1, . . . , (p+ q)} is equivalent to

constructing a kernel matrix on the (p+ q) node feature vectors of G(t)
i ∪G

(t)
j , so the last inequality

holds, as Θ(L) is positive semi-definite on the space of node features vector [19]. Therefore, we can
infer that

( n∑
i=1

n∑
j=1

c2iK(G
(t)
i , G

(t)
i )+c2jK(G

(t)
j , G

(t)
j )+cicjK(G

(t)
i , G

(t)
j )+cjciK(G

(t)
j , G

(t)
i )

)
≥ 0 (27)

▷ ▷ For proving (2):

Next, for each i, suppose Gi has k nodes then

(−c2i )K(G
(t)
i , G

(t)
i ) = (−c2i )

k∑
v=1

k∑
v′=1

Θ(L)(G
(t)
i , G

(t)
i )vv′ =

k∑
v=1

k∑
v′=1

bvbv′Θ(L)(G
(t)
i , G

(t)
i )vv′ ≥ 0

(28)

where b1 = · · · = bk = (−c2i ).

As b1, . . . , bk ∈ R, and Θ(L)(G
(t)
i , G

(t)
i )vv′ ,∀v, v′ ∈ {1, . . . , k} is equivalent to the pair-wise kernel

matrix constructed on the set of node features of Gi, so the inequality holds, due to the positive
semi-definite on the node feature space property of Θ(L) [19]. This results in

2n

n∑
i=1

(−c2i )K(G
(t)
i , G

(t)
i ) ≥ 0 (29)

From Eq. 29 and Eq. 27, we now have
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2

n∑
i=1

n∑
j=1

cicjK(G
(t)
i , G

(t)
j ) = 2n

n∑
i=1

(−c2i )K(Gi, Gi)

+

( n∑
i=1

n∑
j=1

c2iK(G
(t)
i , G

(t)
i ) + c2jK(G

(t)
j , G

(t)
j ) + cicjK(G

(t)
i , G

(t)
j ) + cjciK(G

(t)
j , G

(t)
i )

)
≥ 0

⇒
n∑

i=1

n∑
j=1

cicjK(G
(t)
i , G

(t)
j ) ≥ 0

Therefore, the proof for Theorem 5.2 is now completed.

C Genralization Bound of Temp-G3NTK

In this section, we provide the full proof for Theorem 5.3. We first provide some background
knowledge on the Sequential Rademacher Complexity measures [38, 26], and then we derive at the
full proof of Theorem 5.3.

C.1 Preliminaries

In our Temporal Graph Classification setting, given a temporal G and its label y, if we want to make
predictions about G at time t then we apply our predictor on the snapshot G(t), i.e., we leverage all
information at previous timestamps t̄ (t̄ < t).

Suppose that G has T unique timestamps t1, . . . , tT , then we can obtain T snapshots G1, . . . , GT ,
where Gi = G(ti). Therefore, we can re-formulate our setting as follows: we consider a general time
series prediction, where the predictor receives a realization ((G1, t1), . . . , (GT , tT )) generated by
some stochastic processes.

To simplify notations, we let f be the regression kernel predictor, i.e., fkernel.
The objective of our predictor f is, at any timestamp ti, achieving a small error
E[ℓ(f((Gi, ti)), y)|((G1, t1), . . . , (Gi−1, ti−1))] conditioned on previous snapshots, given a loss
function ℓ : R× R→ R.

For shorter notation, we let g(Z) = ℓ(f((Gi, ti), y) for Z = ((Gi, ti), y) ∈ Z and let the family
function G = {((Gi, ti), y) → ℓ(f((Gi, ti), y)} contain such functions g. We assume a bounded,
α−Lipschitz loss function, that is g(Z) ∈ [0, 1] for any Z ∈ Z . Finally, we use Zb

a to denote the
sequences Za, Za+1, . . . , Zb, where Zi = ((Gi, ti), y).

In order to derive the Sequential Rademacher Complexity, we first introduce the definition of a
complete binary tree.

We adopt the following definition of a complete binary tree from [38, 26]: a Z−valued complete
binary tree z is a sequence of (z1, . . . , zT ) of T mappings, where zi : {±1}i−1 → Z . A path in the
tree is σ = (σ1, . . . , σT−1). To simplify the notation, we write zi(σ) = (σ1, . . . , σi−1).

Next, we introduce how to sample sequential data Z1, . . . , Zi using the aforementioned binary tree.
We adopt the sampling process from [38, 26] as follows: given a stochastic process distributed to
the distribution P with Pi(.|zi−1

1 ), denoting the conditional distribution based on z1, . . . , zi−1, we
sample a Z ×Z based on the following procedure. We start by drawing two independent samples
Z1, Z

′
1 from P1, then, in the left child of the root we sample Z2, Z

′
2 ∼ P2(.|Z1) and in the right child

of the root, we sample Z2, Z
′
2 ∼ P2(.|Z ′

1).

More generally, for a node that can be reached by a path (σ1, . . . , σi−1), we draw Zi, Z
′
i ∼

Pi(.|I1(σ1), . . . , Ii−1(σi−1), where the indicator Ij(1) = Zj , Ij(−1) = Z ′
j . In this manner, we

derive at the Sequential Rademacher Complexity of a function class G that acts on z is defined as
follows [38]:

Rseq
T (G, z) = E

[
sup
g∈G

1

T

T∑
i=1

g(zi(σ))

]
(30)
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where z is an Z−valued complete binary trees with depth T and σ is a sequence of Rademacher
random variables.

As stated in Theorem 5.3, the key quantity of interest in our analysis is

sup
ℓ∈L

[
1

T

T∑
i=1

E[ℓ(f((Gi, ti)), y)|((G1, , t1), . . . , (Gi−1, ti−1))]− ℓ(f((Gi, ti)), y)

]
and we can re-write this quantity as follows and establish a data-dependent bound for this term in
Appendix C.2

sup
g∈G

[
1

T

T∑
i=1

E[g(Zi)|Z(i−1)
1 ]− g(Zi)

]
(31)

For more details about the Sequential Complexity measure, we defer readers to [38] and [26].

C.2 Detailed Proofs

We first bound Eq. 31 by the Sequential Rademacher complexity of F , the family function class
contains functions such as our kernel regression predictor, fkernel, (Lemma C.1) then continue to
bound the Sequential Rademacher complexity of F by the data-dependent term (Lemma. C.2).
Lemma C.1.

sup
g∈G

[
1

T

T∑
i=1

E[g(Zi)|Z(i−1)
1 ]− g(Zi)

]
≤ 2αRseq

T (F) (32)

Proof. We first state that the following inequalities hold: E[g(Zi)|Zi−1
1 ] = E[g(Z ′

i)|Z
i−1
1 )], since

Zi, Z
′
i are indepedently drawn from Pi(.|Zi−1

1 )) and E[g(Zi)|Zi−1
1 ] = E[g(Zi)|ZT

1 ], and g(Zi) only
depends on Zi−1

1 . Therefore, we obtain the following:

E

[
sup
g∈G

[
1

T

T∑
i=1

E[g(Zi)|Z(i−1)
1 ]− g(Zi)

]]

= E

[
sup
g∈G

1

T
E

[
T∑

i=1

(g(Z ′
i)− g(Zi))|ZT

1

]]

≤ E

[
1

T
E

[
sup
g∈G

T∑
i=1

(g(Z ′
i)− g(Zi))

]]

=
1

T
E

[
sup
g∈G

T∑
i=1

(g(Z ′
i)− g(Zi))

]
where the first inequality holds by using Jensen’s inequality, and the last expectation is taken over all
joint sequences ZT

1 ,Z
′T
1 .

Since g(Zi) = ℓ(f((Gi, ti), y) and ℓ is α−Lipschitz, thus we obtain the following:

E

[
sup
g∈G

T∑
i=1

(g(Z ′
i)− g(Zi))

]

= E

[
sup
ℓ∈L

T∑
i=1

ℓ(f((G′
i, t

′
i)), y)− ℓ(f((Gi, ti), y)

]

≤ E

[
sup
f∈F

α

T∑
i=1

((f((G′
i, t

′
i))− f((Gi, ti)) + (y − y)

]

= αE

[
sup
f∈F

T∑
i=1

((f(X ′
i)− f(Xi))

]
(33)
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The first inequality holds, due to the fact that ℓ is α−Lipschitz.

where Xi = (Gi, ti), X
′
i = (G′

i, t
′
i). Note that since y is fixed with respect to i (1 ≤ i ≤ T ),

so Zi = (Xi, y). Therefore, we can derive at a X -valued complete binary tree x, xi(σ), and the
sequences XT

1 , X′T
1 that are similar to the manner of deriving at z, zi(σ),ZT

1 ,Z
′T
1 , respectively.

Simply say, x is z when omitting the label y. Since the last expectation is taken over all joint
sequences XT

1 ,X
′T
1 , so given Rademacher random variables, σ1, . . . , σT ,

E

[
sup
f∈F

T∑
i=1

(f(X ′
i)− f(Xi))] = E[sup

f∈F

T∑
i=1

σi(f(X
′
i)− f(Xi))

]
Thus, we have:

E

[
sup
f∈F

T∑
i=1

(f(X ′
i)− f(Xi))

]

= E

[
sup
f∈F

T∑
i=1

σi(f(X
′
i)− f(Xi))

]

= EX1,X′
1∼P1

. . .EXT ,X′
T∼Pi(.|I1(σ1),...IT (σT ))

[
sup
f∈F

T∑
i=1

σi(f(X
′
i)− f(Xi))

]

= EσEx∼T (P)

[
sup
f∈F

T∑
i=1

σi(f(X
′
i)− f(Xi))

]

= EσE(x,x′)∼T (P)

[
sup
f∈F

T∑
i=1

σi(f(x
′
i(σ))− f(xi(σ))

]
where x ∼ T (P) denotes sampling a X -valued complete binary tree x with a given stochastic process
P. Thus, Eq. 33 is equivalent to:

αE

[
sup
f∈F

T∑
i=1

(f(X ′
i)− f(Xi))

]

= αEσE(x,x′)∼T (P)

[
sup
f∈F

T∑
i=1

σi(f(x
′
i(σ))− f(xi(σ))

]

≤ αEσE(x,x′)∼T (P)

[
sup
f∈F

T∑
i=1

σif(x
′
i(σ)) + sup

f∈F

T∑
i=1

−σif(xi(σ))

]

= αEσE(x,x′)∼T (P)

[
sup
f∈F

T∑
i=1

σif(x
′
i(σ))

]
+ EσE(x,x′)∼T (P)

[
sup
f∈F

T∑
i=1

−σif(xi(σ))

]

= 2αEσEx∼T (P)

[
sup
f∈F

T∑
i=1

σif(xi(σ))

]

= 2αEx∼T (P)

[
Rseq

T (F ,x)

]

(34)

which completes the proof for Lemma C.1.

Next, we establish a data-dependent bound for the Sequential Complexity measure Rseq.
Lemma C.2. Given n i.i.d time series samples drawn from an underlying stochastic processes P,
{(X(j), yj)}nj=1. Then

1

n

n∑
j=1

Rseq
T (F ,x(j)) ≤ 2

n

T∑
i=1

√
yT [K(i)]−1y · tr(K(i)) (35)
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where, x(j) is the binary tree corresponding to the time series X(j), K(i) is the n× n kernel gram
matrix, whose pq-th entry is the Temp-G3NTK value of the i−th snapshot of X(p) and the i-th
snapshot of X(q), and y is the vector of labels, in which the j-th entry is [y]j = yj .

Proof.

1

n

n∑
j=1

Rseq
T (F ,x(j)) =

1

n

n∑
j=1

sup
f∈F

T∑
i=1

σjif(x
(j)
i (σj))

=

T∑
i=1

sup
f∈F

1

n

n∑
j=1

σjif(X
(j)
i ) =

T∑
i=1

R̂n(F , i)

where R̂n(F , i) is the empirical Rademacher complexity of F with the i-th snapshot of n i.i.d
samples X(1)

i , . . . , X
(n)
i . Since F is a function class of kernel regression function, as proven in [4],

we can bound R̂n(F , i) as follows:

R̂n(F , i) ≤
2

n

√
yT [K(i)]−1y · tr(K(i))

which completes the proof for Lemma C.2.

Thus, using the results of Lemma C.2, we can bound Eq. 34 as follows:

2αEx∼T (P)

[
Rseq

T (F ,x)

]
= 2αEx∼T (P)

[
1

n

n∑
j=1

Rseq
T (F ,x(j))

]

≤ 2αE

[
2

n

T∑
i=1

√
yT [K(i)]−1y · tr(K(i))

]

≤ α sup
i

4

n

√
yT [K(i)]−1y · tr(K(i))

which completes the proof for Theorem 5.3.

D Convergence to Graphon Neural Tangent Kernel

In this section, we first provide some background knowledge on Graphons, Graphons Neural Net-
works, and Graphons Neural Tangent Kernel, and then derive at the full proof for Theorem. 5.4.

D.1 Preliminaries

We adopt the definition of Graphons, Graphons Neural Networks (WNN) [24], and Graphons Neural
Tangent Kernel (WNTK) [24], and then extend these concepts to the settings of CTDGs.

Graphons

Graphons are defined as bounded, symmetric, measurable function W : [0, 1]2 → [0, 1] representing
limits of sequences of dense graphs.

Given a graph sequence {Gn}, where the i-th graph in the sequence Gi has i nodes, let F = (V ′, E′)
be an undirected graph, then the graph sequence {Gn} is said to converge to the graphon W in the
sense that

lim
n→∞

t(F, Gn) = t(F,W ) (36)

where t(F, Gn) = hom(F, Gn)/n
|V ′|, where hom(F, Gn) is the number of homomorphisms be-

tween F and Gn, and t(F,W ) can be similarly defined.

Thus, t(F, Gn) is the density of homomorphisms between F and Gn. We can think of F as motifs
such as k−cycles, or k−cliques, so if the graph sequence {Gn} converges to the graphon W , then
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we can think of G1, . . . , Gn of the graph sequence {Gn} belongs to a graph family that has a certain
amount of density of homomorphisms from F, and that graph family is represented by W .

Therefore, the graphon W can be seen as a generative model for stochastic graphs. In order to use W
to generate a graph Gn = (Vn, En) with n nodes, we first map each node i ∈ Vn(1 ≤ i ≤ n) to the
unit interval, i.e. [0, 1], by uniformly sampling points ui(ui ∈ [0, 1]), and the probability of nodes i, j
are connected in Gn is W (ui, uj), hence we can regard W is a weighted adjacency matrix for Gn.

Graphons Neural Network

Next, we would define a continuous message passing framework for graphon that corresponds to the
neural architecture proposed in Section 3.1.

Firstly, we introduce the definition of Graphon signals as follows: Graphon signals are function
X : [0, 1]2 → R, and X has finite energy, i.e., X ∈ L2([0, 1]

2). In this way, we can think of
X(ui, uj) as the edge representation of an edge (i, j). We adopt the definition of graphon signals
from [24] and extend it to edge features, instead of graphon signals function for node feature as stated
in [24].

Analogous to the sum neighborhood aggregation operation in equation (1), the aggregation operation
for graphon W and graphon signal X can be defined as the function TWX : [0, 1]→ Rd:

TWX(u) =

∫ 1

0

W (u, v)X(u, v)dv (37)

Let h ≡ TWX . If the aggregated information is further transformed by L layers of MLPs (similar to
Eq. 2) then for l ∈ [L], h(l) is determined as follows:

h(l)(u) = σ(H(l)h(l−1)) (38)

where h(0) = h, H is the linear transformation and σ is the non-linear ReLU activation function.

Induced Graphon Neural Network for CTDGs

We adopt the definition of induced graphon and induced graphon signals from [24], extend them
to the CTDGs setting, and determine an induced graphon neural network that correspond to our
proposed temporal graph learning algorithm in Section 3.1.

Given a CTDG G and the graphon W that represents a graph family of G, we would leverage
the aforementioned graphon W to determine the induced graphon and induced graphon signals
that correspond to snapshots of a CTDG. At time t, let the number of nodes of G(t) be n(t), let
W (t) : [0, 1]2 → [0, 1] and X(t) : [0, 1]2 → Rd denotes the induced graphon and induced graphon
signals correspond to G(t), respectively. We determine W (t) and X(t) as the followings:

For any u, v ∈ [0, 1], let Ii =
[
(i − 1)/n(t), i/n(t)

)
, 1 ≤ i ≤ n(t) and Īi =

[
(i −

1)/n(t̄), i/n(t̄)
)
, 1 ≤ i ≤ n(t̄). If u ∈ Ii, v ∈ Ij , where 1 ≤ i, j ≤ n(t), then

W (t)(u, v) =
W (t̄)(uī, uj̄)I(i ≤ n(t̄))I(j ≤ n(t̄)) +A(t)(ui, uj)

2 · I(i ≤ n(t̄))I(j ≤ n(t̄))
(39)

where t̄ < t, ui = (i − 1)/n(t), uī = (i − 1)/n(t̄), I is the indicator function, and A(t)(ui, uj) ∼
Ber(W (ui, uj)), where Ber indicates the Bernoulli distribution. The initial state, i.e., t = 0 would
simply be W (0) = A(0)(ui, uj), and we define the temporal graphon signal function at time t as:

X(t)(u, v) =

∫ t

0

A(t̄)(uī, uj̄)I(i ≤ n(t̄))I(j ≤ n(t̄))dt̄ (40)

and we let the graphon signals function that associated with W be X(u, v) = W (u, v).

In a similar manner to Equation (1), the sum aggregation opertaion at time t would be:

TW (t)X(t)(u) =

∫ 1

0

W (t)(u, v)X(t)(u, v)dv (41)
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and the final result is TW (t)X(t) after L layers of MLP transformation, similar as Eq. 2.

Graphon NTK and Induced Graphon Temp-G3NTK

Let fwnn be the WNN defined by Eq. 37, 38, and ftemp−wnn be the induced graphon neural
networks defined by Eq. 39, 41, and 40. Similar to Eq. 6, given 2 graphons W,W ′ and their signals
X,X ′ that correspond to 2 CTDGs G,G′, respectively, also given parameters H, then the NTK of
fwnn(X,W,H) and fwnn(X

′,W ′,H) would be:

Θwnn(X,X ′,W,W ′) = EH∼N (0,1)

〈
∂fwnn(X,W,H)

∂H
,
∂fwnn(X

′,W ′,H)

∂H

〉
and the Temp-G3NTK of the induced graphon neural network at time t would be:

Θtemp−wnn(X
(t), X ′(t),W (t),W ′(t)) = EH∼N (0,1)

〈
∂ftemp−wnn(X

(t),W (t),H)

∂H
,
∂ftemp−wnn(X

′(t),W ′(t),H)

∂H

〉

D.2 Detailed Proofs

We let KW (W,W ′) ≡ Θwnn(X,X ′,W,W ′) and KW (W (t),W ′(t)) ≡
Θtemp−wnn(X

(t), X ′(t),W (t),W ′(t)), as we derive at the graphon signals X,X ′ by W,W ′

and the induced graphon signals X(t), X ′(t) by W (t),W ′(t), so in Theorem Section 5.4, we decide
to denote the NTK by KW (W,W ′) and the induced NTK by KW (W (t),W ′(t)) for simpler notation.
For simplicity, we let the number of BLOCK operations be L = 1.

Proof.

||KW (W,W ′)−KW (W (t),W ′(t))|| =
||Θwnn(X,X ′,W,W ′,H)−Θtemp−wnn(X

(t), X ′(t),W (t),W ′(t),H)|| =
= ||σ′(HTWX)TWX · σ′(HTW ′X ′)TW ′X ′ − σ′(HTW (t)X(t))TW (t)X(t) · σ′(HTW ′(t)X ′(t))TW ′(t)X ′(t)||
= ||σ′(HTWX)TWX · σ′(HTW ′X ′)TW ′X ′ − σ′(HTW (t)X(t))TW (t)X(t) · σ′(HTW ′X ′)TW ′X ′

+ σ′(HTW (t)X(t))TW (t)X(t) · σ′(HTW ′X ′)TW ′X ′ − σ′(HTW (t)X(t))TW (t)X(t) · σ′(HTW ′(t)X ′(t))TW ′(t)X ′(t)||
≤ ||σ′(HTWX)TWX · σ′(HTW ′X ′)TW ′X ′ − σ′(HTW (t)X(t))TW (t)X(t) · σ′(HTW ′X ′)TW ′X ′||
+ ||σ′(HTW (t)X(t))TW (t)X(t) · σ′(HTW ′X ′)TW ′X ′ − σ′(HTW (t)X(t))TW (t)X(t) · σ′(HTW ′(t)X ′(t))TW ′(t)X ′(t)||

=
∣∣∣∣∣∣(σ′(HTWX)TWX − σ′(HTW (t)X(t))TW (t)X(t)

)
· σ′(HTW ′X ′)TW ′X ′

∣∣∣∣∣∣
+
∣∣∣∣∣∣(σ′(HTW ′X ′)TW ′X ′ − σ′(HTW ′(t)X ′(t))TW ′(t)X ′(t)

)
· σ′(HTW (t)X(t))TW (t)X(t)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣(σ′(HTWX)TWX − σ′(HTW (t)X(t))TW (t)X(t)

)∣∣∣∣∣∣ · ∣∣∣∣∣∣σ′(HTW ′X ′)TW ′X ′
∣∣∣∣∣∣

+
∣∣∣∣∣∣(σ′(HTW ′X ′)TW ′X ′ − σ′(HTW ′(t)X ′(t))TW ′(t)X ′(t)

)∣∣∣∣∣∣ · ∣∣∣∣∣∣σ′(HTW (t)X(t))TW (t)X(t)
∣∣∣∣∣∣
(42)

The first inequality holds due to the triangle inequality, and the second inequality holds due to the
property of the operator norm.

We can see that, in order to prove Theorem 5.4, it is sufficient to prove that:∣∣∣∣∣∣(σ′(HTWx)TWX − σ′(HTW (t)X(t))TW (t)X(t)
)∣∣∣∣∣∣→ 0 (43)

and ∣∣∣∣∣∣(σ′(HTW ′X ′)TW ′X ′ − σ′(HTW ′(t)X ′(t))TW ′(t)X ′(t)
)∣∣∣∣∣∣→ 0 (44)

25



Since Eq. 43 and Eq. 44 are essentially the same, we would focus on proving Eq. 43. We further
applying algebraic manipulation on Eq. 43 as follows:

∣∣∣∣∣∣σ′(HTWX)TWX − σ′(HTW (t)X(t))TW (t)X(t)
∣∣∣∣∣∣

=
∣∣∣∣∣∣σ′(HTWx)TWX − σ′(HTWX)TW (t)X(t) + σ′(HTWX)TW (t)X(t) − σ′(HTW (t)X(t))TW (t)X(t)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣σ′(HTWX)TWX − σ′(HTWX)TW (t)X(t)

∣∣∣∣∣∣+ ∣∣∣∣∣∣σ′(HTWX)TW (t)X(t) − σ′(HTW (t)X(t))TW (t)X(t)
∣∣∣∣∣∣

≤
∣∣∣∣∣∣σ′(HTWX)

∣∣∣∣∣∣ · ∣∣∣∣∣∣TWX − TW (t)X(t)
∣∣∣∣∣∣+ ∣∣∣∣∣∣σ′(HTWX)− σ′(HTW (t)X(t))

∣∣∣∣∣∣ · ∣∣∣∣∣∣TW (t)X(t)
∣∣∣∣∣∣

(45)

The first inequality holds due the triangle inequality, and the second inequality holds due to the
property of the operator norm.

Therefore, from here, in order to prove Eq. 43, it is sufficient to prove that∣∣∣∣∣∣TWX − TW (t)X(t)
∣∣∣∣∣∣→ 0 (46)

and ∣∣∣∣∣∣σ′(HTWX)− σ′(HTW (t)X(t))
∣∣∣∣∣∣→ 0 (47)

Since Eq .46 implies Eq. 47, so we would focus on proving Eq. 46. We further transform Eq. 46 as
follows: ∣∣∣∣∣∣TWX − TW (t)X(t)

∣∣∣∣∣∣
=
∣∣∣∣∣∣TWX − TWX(t) + TWX(t) − TW (t)X(t)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣TWX − TWX(t)

∣∣∣∣∣∣+ ∣∣∣∣∣∣TWX(t) − TW (t)X(t)
∣∣∣∣∣∣

≤ ||TW || · ||X −X(t)||+ ||TW − TW (t) || · ||X(t)||

(48)

Similar to Eq. 45, we first apply the triangle inequality to obtain the first inequality, and apply the
property of the operator norm to determine the second inequailty.

From here, it is sufficient if prove that

||X −X(t)|| → 0 (49)

and

||TW − TW (t) || → 0 (50)

We observe that

||X −X(t)|| ≤ ||W −W (t)|| (51)

the inequality holds due to the definition of X(t), thus by Lemma D.1, Eq. 49 holds.

As proven in [24], if both ||X − X(t)|| and ||W −W (t)|| converges to 0 as t → ∞, then Eq. 50
holds.

Therefore, the proof for Theorem 5.4 is now completed.
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Lemma D.1. ||W −W (t)|| is bounded by 1/n(t)2 and 1/n(t̄)2 and thus,

||W −W (t)|| → 0, as t →∞ (52)

since 1/n(t)2 → 0 as t→∞

Proof. In order to prove the convergence of this lemma, we will need to prove the convergence in L2

norm, i.e.,
||W −W (t)||L2 → 0

We first prove that

||W −A(t)||L2 ≤
4β

n(t)2
(53)

||W −A(t)||L2
=

∫ 1

0

∫ 1

0

(W (u, v)−A(t)(u, v))2dudv =

=

n(t)∑
i=1

n(t)∑
j=1

∫ i/n(t)

(i−1)/n(t)

∫ j/n(t)

(j−1)/n(t)

(W (u, v)−A(t)(u, v))2dudv

=

n(t)∑
i=1

n(t)∑
j=1

∫ i/n(t)

(i−1)/n(t)

∫ j/n(t)

(j−1)/n(t)

(W (u, v)−W (ui, uj))
2dudv

≤ β

n(t)∑
i=1

n(t)∑
j=1

∫ i/n(t)

(i−1)/n(t)

∫ j/n(t)

(j−1)/n(t)

(|u− ui|+ |v − uj |)2dudv

≤ β

n(t)∑
i=1

n(t)∑
j=1

∫ i/n(t)

(i−1)/n(t)

∫ j/n(t)

(j−1)/n(t)

4

n(t)2
dudv

= β

n(t)∑
i=1

n(t)∑
j=1

4

n(t)4

= βn(t)2 · 4

n(t)4
= β

4

n(t)2

(54)

The first inequality holds due the fact that W,W ′ are β−Lipschitz.

Next, we prove the lemma using mathematical induction.

For t = 0, then W (0) = A(0), thus the lemma holds for W (0), since ||W −W (0)|| = ||W −A(0)|| is
bounded by 4β

n(0)2 . Therefore, the Lemma holds for t = 0.

Given that we fix some timestamp t̄, and suppose that the Lemma holds for every timestamp in the
interval [0, t̄]. We would focus on proving that the Lemma also holds for t > t̄

||W −W (t)||L2 =

=
1

2
||W −W (t̄) +W −A(t)||

≤ 1

2
||W −W (t̄)||+ 1

2
||W −A(t)||

≤ 1

2
||W −W (t)||+ 2β

n(t)2

(55)

The first term is bounded by 1/n(t̄)2 by our induction hypothesis, and the second term is also bounded
by 1/n(t)2, and as t → ∞, t̄ → ∞ then 1/n(t)2, 1/n(t̄)2 → 0 and thus ||W −W (t)||L2

→ 0 as
t→∞, which completes the proof.
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D.3 Detailed Comparison with Previous Work

In short, we break through the convergence limitations of previous work [24]. For instance, besides
temporal dependencies between snapshots of the evolving graphs, the work [24] that is most closely
related to our theoretical results does not account for any dependencies between static graphs and
does not establish a limit object for two different graphs. The detailed illustration is delivered as
follows.

• We first summarize the setting about the convergence of static graphs to graphons and the
theoretical findings of [24]: the previous work that is most closely to our theoretical findings
in Theorem 5.4 is [24]. [24] proves that if a graph sequence of static random graphs {Gn}
with growing number of nodes, i.e., the number of nodes in Gi is less than or equal Gj with
i < j, converges to a graphon W, and the graph signal sequences {xn}, {x′

n} converge
to the graphon signal X,X ′, respectively, then the induced graphon neural tangent kernel
between graph Gi with signal xi and graph Gi with signal x′

i converges to the graphon
neural tangent kernel between W with signal X and W with signal X ′, as the number of
nodes in the graphs of the sequence {Gn} goes to infinity.

• Therefore, we notice that the theoretical findings in [24] do not account for any dependencies
between static graphs in the graph sequence, and [24] establishes the results of convergence
for the neural tangent kernel between the same graph, but with different signals.

• Next, we point out how evolving graphs can be represented as a sequence of graphs with
a growing number of nodes. Suppose we have an evolving graphs G that has n snapshots,
G(t1), . . . , G(tn) and the number of nodes in G(ti) is less than or equal the number of nodes
in G(tj) if i < j. Then the snapshots of G can be regarded as a graph sequence with the
growing number of nodes. However, unlike the graph sequence in [24], there are temporal
dependencies between graphs in the graph sequence of G.

• Similar to the result of [24] for static graphs, we establish a limit object on the graph
sequence representation of the evolving graph, and overcome the limitations of [24], as
we take the temporal dependencies between graphs in the graph sequence of the evolving
graph into account, and derive at the limit object for the graphon neural tangent kernel of 2
different evolving graphs.

E Detailed Comparison with Previous Temporal Graph Representation
Learning Works

In this section, we provide detailed comparison between our Temp-G3NTK and previous traditional
temporal graph learning methods, DGNN [31], EvolveGCN [35], ROLAND [48], and SSGNN [7],
that rely on neural network training (e.g, stacking neural layers, gradient descent, and backpropaga-
tion) to obtain neural representations to support corresponding graph downstream tasks. However,
our Temp-G3NTK does not rely on neural network structure but can achieve the expressive power of
graph neural networks, as our theoretical analysis and experiments demonstrate.

To be specific, DGNN [31], EvolveGCN [35], ROLAND [48], and SSGNN [7] belong to the category
of recurrent graph neural architectures that handle temporal information (e.g., on the learnable weight
level like EvolveGCN [31] or hidden representation level like ROLAND [48]). This is indeed an
effective direction, but it requires heavy time complexity.

Facing this problem, an emerging direction appears, i.e., MLP-Mixer on Static Graphs [16] or
GraphMixer on temporal graphs [8]. Especially, GraphMixer aggregates information from recent
temporal neighbors and processes them with MLP-Mixer layers. Motivated by this direction, we
propose our temporal graph neural tangent kernel. Also, we would like to note that, even without
recurrent neural architectures, temporal information can also be preserved in our method.

To be more specific, in our method, temporal dependencies are captured in Eq. 1, where we construct
the temporal node representations for a node at time by aggregating information (e.g., node features,
edge features, and time difference) from its previous temporal neighbors. And the entire process
does not involve neural training but just depends on mathematical time kernel functions. In other
words, this process records the current state of based on its own neighborhood at the previous time
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and can be retrieved for future state computation. Besides theoretical derivation, especially, Table 2
and Figure 1 visualize our method’s effectiveness.

To support our above statement, we list the detailed illustration below.

• DGNN [31] is designed to execute the link prediction task (while ours is mainly for temporal
graph classification and can be easily adapted to temporal node classification). In order to
obtain the link predictions, nodes are categorized as interacting or influenced as follows. If
two nodes are involved in a (directed) interaction (u, v, t), then u, v are interacting nodes
and nodes that are nearby this interaction are referred to as “influenced nodes”. On the other
hand, If two nodes u and v interact at a certain time, then DGNN [31] updates their temporal
representation. First, process each of u and v separately by employing recurrent architecture
to their previous temporal representations and finally combine with time encoding the
difference between the current time and the last interaction time of that node. Then, merge
the two representations and obtain two new representations for u and v. If two nodes interact,
nearby nodes (“influenced nodes”) would be affected. DGNN [31] also updates “influenced
nodes”, i.e., applying recurrent architecture on their previous representation, combining with
two representations from interacting nodes, and the time encoding of difference between
current time and last interacting time.

• EvolveGCN [35] is a link prediction and node classification method. Specifically,
EvolveGCN [35] operates on graph snapshots and uses recurrent architecture (e.g., LSTM)
to update the weight of each neural layer across time. Then, at a certain time t, EvolveGCN
[35] gets node representation by applying the current snapshot’s adjacency matrix, learnable
weights, and representation from the previous recurrent layer.

• ROLAND [48] is also a method designed for link prediction. Different from EvolveGCN
[31], the the recurrent architectures in ROLAND [48] are added on the hidden representation
vectors other than learnable weights across timestamps. Then the components in recurrent
architectures get simplified in ROLAND [48], which can be mainly based on MLPs and
simple GNNs.

• SSGNN [7] is performs the time series forecasting task. To be more specific, SSGNN [7]
first uses a deep randomized recurrent neural network to encode the history of each node
encodings into high-dimensional vector embeddings, and then uses powers of the graph
adjacency matrix to build informative node representations of the spatiotemporal dynamics
at different scales. Then, the decoder maps the node representations into the desired output,
e.g., future values of the time series.

Next, we state the position of our method in temporal graph learning. A recent temporal graph
learning survey [30] reviewed temporal graph learning methods, including EvolveGCN [35], SSGNN
[7], and DGNN [31], in their taxonomy, as plotted in its Figure 2 [30].

In that taxonomy, according to the best of our knowledge, our method belongs to the category
“Event-based”, and is the child node of “Temporal Embedding” and “Temporal Neighborhood”, the
position is close to the work TGL [51].

However, different from TGL [51], a large-scale graph neural network, to our best knowledge, our
method is the first temporal graph neural tangent kernel method.

F Extra Temporal Graph-Level Experiments

F.1 Ablation Study of Temporal Graph Classification

We conduct an ablation study to investigate how different time encoding functions affect the perfor-
mance of Temp-G3NTK. We select the infectious dataset to perform our ablation study.

Here, we examine how the usage of the time encoding function and its variations affect the perfor-
mance of our predictor. Recall that we leverage tenc to encode the raw relative difference between
timestamps, (t− t̄) in Eq. 1. For our ablation study, instead of the relative time difference encoding,
i.e., tenc(t − t̄), we also consider the raw relative difference, (t − t̄), the absolute time encoding,
tenc(t̄), and the absolute timestamp, t̄. The results are presented in Table 5, and the best accuracy is
highlighted in bold. As we can see, the utilization of the time encoding function (first and second
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Table 5: Ablation Study of Different Time Encoding Functions on Classification Accuracy on the
INFECTIOUS Dataset.

METHOD ACCURACY

ABSOLUTE DIFFERENCE 0.600 ± 0.114
ABSOLUTE DIFFERENCE ENCODING 0.570 ± 0.081
RELATIVE DIFFERENCE 0.620 ± 0.060
TEMP-G3NTK (RELATIVE DIFFERENCE ENCODING) 0.740 ± 0.058

Table 6: Parameter Analysis of Different Number of Recent Neighbors on Classification Accuracy on
the INFECTIOUS Dataset.

NUMBER OF RECENT NEIGHBORS ACCURACY

5 NEIGHBORS 0.690 ± 0.115
10 NEIGHBORS 0.700 ± 0.126
15 NEIGHBORS 0.730 ± 0.103
20 NEIGHBORS 0.710 ± 0.097
25 NEIGHBORS 0.720 ± 0.103
TEMP-G3NTK (ALL NEIGHBORS) 0.740 ± 0.058

rows) yields higher accuracy than using raw timestamps, with 74% and 62% improvement, respec-
tively. This suggests the ability and efficiency of tenc in distinguishing different timestamps, which
enhances the classification result.

F.2 Parameter Analysis of Temporal Graph Classification

We conduct parameter analysis to investigate how different numbers of neighbors affect the perfor-
mance of Temp-G3NTK. We also select the infectious dataset to perform our parameter analysis.

Thus, we delve into how the Temp-G3NTK performs with respect to the number of temporal neighbors.
Specifically, in practice, most temporal graph representation learning methods aggregate information
from the most K recent neighbors [39, 8], instead of the full temporal neighborhood, N (t)(v). For
our parameter analysis, we vary the number of recent neighbors from {5, 10, 15, 20, 25}, perform the
neighborhood aggregation (Eq. 1) on these recent neighbors, and report the classification accuracy of
Temp-G3NTK for the infectious dataset. The results are shown in Table 6, and the best results are
highlighted in bold. Integrating all temporal neighbors into node representation yields higher accuracy
than accounting for some recent neighbors, as shown in Table 6. These findings further suggest
Temp-G3NTK is able to leverage and capture the information in the full temporal neighborhood.

F.3 Temporal Graph Similarity

Here, we use four unlabeled large real-world temporal graphs, WIKI, REDDIT, MOOC, and LASTFM
to demonstrate the scalability of our Temp-G3NTK, as shown in Figure 2 and Figure 3, where x-axis
is the timestamp, and the y-axis is the similarity between two temporal graphs at a certain timestamp.

For each pair of temporal graphs, we compute the neural tangent kernel values with respect to time and
plot the values as below. For each plot, the y-axis represents the Temp-G3NTK value and the x-axis
represents the timestamp. Although the timestamp ranges for each temporal graph are different, we
rescale the x-axis to [0; 1000] for a better illustration. For each pair of graphs, the corresponding plot
shows a different curve, suggesting that our Temp-G3NTK can distinguish different pairs of temporal
graphs. More interestingly, the corresponding observations align with our theoretical assumptions
that the similarity of different growing temporal graphs tends to converge.
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(a) WikiPedia and LastFM (b) WikiPedia and MOOC (c) WikiPedia and Reddit

Figure 2: Similarity of Different Temporal Graphs With Time Increased (Part I). y-axis represents the
Temp-G3NTK value, and the x-axis represents the timestamp

(a) Reddit and MOOC (b) MOOC and LastFM (c) Reddit and LastFM

Figure 3: Similarity of Different Temporal Graphs With Time Increased (Part II). y-axis represents
the Temp-G3NTK value, and the x-axis represents the timestamp

G Reproducibility

G.1 Datasets Details

The detailed statistics of small and large temporal graph datasets for graph-level experiments are
shown in Table 7 and Table 8.

Table 7: Small Temporal Graph Dataset Statistics

DATASET # GRAPHS # CLASSES # AVG NODES # AVG EDGES

INFECTIOUS 200 2 50.00 459.72
DBLP 755 2 52.87 99.78
FACEBOOK 995 2 95.72 101.72
TUMBLR 373 2 53.11 71.63

G.2 Temporal Graph Classification

Next, we provide details on how we conduct our experiments and the implementations of baseline
algorithms in Section 6.1. In general, upon obtaining the time representation as in Eq. 1, we let the
dimension of the time representation be dt = 25 and α = β =

√
dt.

In order to leverage Temp-G3NTK for graph classification, we employ C-SVM as a kernel regression
predictor with the gram matrix of pairwise Temp-G3NTK values of the training set as the pre-
computed kernel. The regularization parameter C of the SVM classifier is sampled evenly from
120 values in the interval [10−2, 104], in log scale, and set the number of maximum iterations to
5 · 105. For the number of BLOCK operations in our Temp-G3NTK formula, L, we search for L over
{1, 2, 3}, and we notice that the validation accuracy remains unchanged while the L varies.

For Graph Kernels and Graph Representation Learning methods, we first obtain the representation
of each graph in the training set and then compute the pair-wise gram matrix, where each entry
is the dot product of the representation of a graph pair. We then perform graph classification by
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Table 8: Large Temporal Graph Dataset Statistics

DATASET # USERS # ITEMS # INTERACTIONS

REDDIT 10,000 984 672,447
WIKIPEDIA 8,227 1,000 157,474
LASTFM 980 1,000 1,293,103
MOOC 7,047 97 411,749

leveraging C-SVM as our predictor and set the pre-compputed kernel as the aformentioned gram
matrix. For the classifier regularization parameter C, we also determine this value by even sampling
over the interval [10−2, 104], in log scale, and let the number of iterations be 5 · 105. We adopt
the implementations of Graph Kernels from GRAKEL library [43] and the implementations Graph
Representation Learning methods from the Karate Club library [40]. We adopt the default hyper-
parameters from implementations of both libraries.

For TGL methods, which are TGN and GraphMixer, we first obtain node representations in each
graph of the training set using the official code released by authors of TGN8 and GraphMixer9, then
we determine the graph representation by performing sum pooling over the node representations. In
the process of obtaining node representations, we adopt default hyper-parameters in the code of TGN
and GraphMixer. Finally, we implement a simple linear classifier that consists of 1 layer of linear
transformation and ReLU activation function, and the final output is determined by the Sigmoid
function, as all datasets are binary classification. We train and optimize these models by the Adam
optimizer, with the learning rate of 0.001, (β1, β2) = (0.9, 0.999), and the Binary Cross Entropy loss
function. We adopt all default hyper-parameters.

Figure 4: Plots of testing classification accuracy score of baseline algorithms with respect to different
stages of temporal graphs from the dblp and tumblr datasets. The y-axis in each plot states the
accuracy score, and the values in the x-axis represent how many percentages of timestamps have
been taken into account. For example, at x = 1/5, the score is obtained by performing classification
on the first 1/5 timestamps of each graph.

In addition, we also provide the plot that illustrates the performance of baseline algorithms at different
timestamps of the DBLP and TUMBLR datasets in Figure 4.

G.3 Temporal Node Property Prediction

In order to utilize Temp-G3NTK for node property prediction, we first compute the node pair-wise
gram matrix at the last MLP layer in the Temp-G3NTK formula, i.e the kernel matrix Θ(L) in (9).
Similar to performing graph classification task, we perform kernel regression with C-SVM and
employ Θ(L) as the pre-computed kernel, and C is also searched over [10−2, 104] in log scale. We

8The code for TGN is available at: https://github.com/twitter-research/tgn
9The code for GraphMixer is available at: https://github.com/CongWeilin/GraphMixer
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also vary the number of BLOCK Operations, L, by {1, 2, 3} to find the best NCDG score, which is
obtained by L = 1.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in Appendix If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the paper, the authors made clear statements for specifying the paper’s
contribution and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: To the best of the authors’ knowledge, there is no important limitation that
needs to be highlighted here.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The authors tried their best to provide sufficient assumption and proof for the
proposed theory in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in Appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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Justification: The paper shares the important information clearly for the experiment details.
The code is promised to be released after the paper’s publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The authors provide enough instructions for the main experimental results in
the main content and the Appendix The code is promised to be released after the paper’s
publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper contains those details. The code is promised to be released after the
paper’s publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in Appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The above factors are included in the paper, and the code is promised to be
released after the paper’s publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: The paper includes this kind of information, and the code is promised to be
released after the paper’s publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of the authors’ knowledge, the paper obeys the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: To the best of the authors’ knowledge, they did not see the important societal
impacts of the paper. However, the authors discuss the outcome of this work in the graph
learning community.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of the authors’ knowledge, the authors did not see this kind of risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The authors made clear citations.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: No new assets are in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work did not have crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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