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Abstract

Antibody function depends on a distribution of structural conformations, with dif-
ferent states exhibiting distinct binding properties. Accurately characterizing these
ensembles is critical for therapeutic design, yet current experimental data are sparse
and noisy, and molecular simulations are computationally expensive. This frames
antibody dynamics as a posterior inference and sampling problem: efficiently ex-
ploring high-dimensional conformational space and estimating probable structures
with quantified uncertainty. Solving this problem would transform antibody design,
advance machine learning for high-dimensional, multimodal inference, and bridge
theory and experiment with rigorous structural confidence estimates.

1 Scientific Context

Antibodies are flexible proteins whose biological function (binding disease or autoimmune targets
called antigens [[1]]) depends not on a single static structure, but on a distribution of conformations [3].
This conformational ensemble is naturally expressed as a probability distribution over structures in
high-dimensional space. Different conformational states can exhibit different binding characteristics
[3} 12} 4], which have profound implications for antibody therapeutic engineering. Indeed, antibody
therapeutics are among the most successful modern drugs, with applications in oncology, infectious
disease, and autoimmune disorders [5]. However, the relationship between conformational dynamics
and binding function remains expensive to simulate and challenging to represent with Al [8,[10]. To
design effective therapeutics, it is essential to infer and sample from the full ensemble of antibody
structures, rather than relying on single-point predictions [9]], raising a fundamental research question:

Given sparse and noisy experimental data (e.g., cryogenic electron microscopy
(cryo-EM) maps) and computationally expensive simulations (e.g., molecular
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dynamics (MD) trajectories), our goal is to infer a distribution (ensemble) of
plausible antibody conformations over millions of structures, with quantified
uncertainty and tractable computational cost. In particular, we seek methods that
either approximate the full conformational ensemble or, at minimum, recover a
functionally meaningful subset of conformations sufficient to guide the engineering
of surface-dependent properties (i.e. solubility, binding, etc.).

This makes antibody structural dynamics a problem in sampling and probabilistic inference from and
inferring complex posteriors:

» Sampling: Exploring the high-dimensional space of antibody conformations (the posterior
distribution)

* Inference: Estimating which conformations are probable given data (e.g., Bayesian updat-

ing)
A model that manage to incorporate both sampling and inference of antibody dynamics would enable
the discovery of realistic, meaningful, conformations, in addition to the possibility of covering the

entire conformational landscape. In turn, such data would boost the success rate in both practical and
theoretical approaches of drug design.

2 Limitations of the Current Approaches

Available methods include physics-based and data-driven techniques,such as:

* Molecular simulations (classical MD): Produces samples from the Boltzmann distribution
but is inefficient in exploring rare conformations

* Enhanced Sampling (e.g., metadynamics, replica exchange): Attempts to accelerate
sampling but lacks principled uncertainty quantification

¢ Al-based Predictors (Bioemu [7], AlphaFlow [6]): Provide single-point estimates rather
than full posterior distributions

— generate structures that fall outside any meaningful posterior over conformations
— can contain clear structural violations or energetically implausible geometries

— in some cases simply yield oversimplified, nonphysical, or biologically unrealistic
states

These approaches are limited due to one of the following issues: 1) fail to provide a well-characterized
posterior over conformations, 2) produce samples without clear inferential guarantees, or 3) lack
explainable and benchmarked biological, chemical, and physical outputs.

Key computational bottlenecks include:

1. Multimodal Posteriors: Antibody energy landscapes contain multiple basins (e.g., distinct
antibody binding loop conformations). Classical samplers get trapped in local modes

2. Rare Event Inference: Functionally relevant states correspond to low-probability but
biologically critical regions of the posterior

3. Likelihood Evaluations: Evaluating Boltzmann weights via force fields is computationally
expensive, making naive Markov chain Monte Carlo (MCMC) impractical

4. Integration of Heterogeneous Evidence: Observational data (e.g., cryo-EM maps, nuclear
magnetic resonance (NMR) restraints) are partial and noisy, requiring Bayesian inference to
combine with simulations

Current limitations reinforce why posterior inference remains crucial: without a principled uncertainty
model, we cannot reliably distinguish meaningful conformations from artifacts. In addition, they give
rise to another problem of filtering predicted conformations afterwards.

We believe that any successful model must discover realistic, biophysically plausible conformations,
not just aim for exhaustive exploration of the energy landscape. This way we highlight both the
theoretical ambition (full posterior) and the practical utility (usable, physically grounded ensembles).
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Figure 1: Limitations and opportunities of accurate conformational sampling

3 Opportunities for Progress

Several directions hold promise for advancing computational antibody modeling and improving
ensemble sampling efficiency (Table|[I):

1. Scaling Laws for Ensemble Sampling: Understanding how sampling efficiency scales with
compute, dataset size, and model capacity will clarify what’s required to robustly capture
antibody ensembles

2. Simulation—Experiment Integration: Scaling inference methods to combine MD with
cryo-EM, NMR, and mutational scans across thousands of antibodies would transform
therapeutic design from case-by-case modeling to systematic prediction

3. Generative Samplers: Flows and diffusion models enable efficient proposals, providing up
to 100x faster conformational exploration

4. Bayesian Enhanced Sampling: Adaptive methods such as sequential Monte Carlo (SMC)
or reinforcement-learning-guided MD improve coverage of rare but critical states

5. Approximate Inference: Variational approaches provide tractable posteriors and allow
real-time updates as experimental data are collected

6. Hierarchical Data Fusion: Unified probabilistic models generate principled ensembles
from noisy, heterogeneous experimental and computational data

Appendix

A Probabilistic Inference Tasks

Table [I| summarizes key tasks in probabilistic inference for antibody structural dynamics, outlining
their goals, primary challenges, commonly used methods, and potential impact on therapeutic design
and structural biology.



Table 1: Antibody structural dynamics probabilistic inference tasks.

Task Goal Challenges Methods Impact
Posterior Estimate distribu- High dimensional- Variational Inference Avoids overconfi-
Approxima- tion of plausible ity, multi-modality  (VI), Normalizing dent predictions;
tion conformations Flows captures uncertainty
(posterior)
Rare-Event  Efficiently sample Metastable states, Metadynamics, SMC, Critical states may
Sampling rare states (e.g., high energy barriers Diffusion Models determine biologi-
binding-competent cal function (e.g.,
conformations) antigen binding)
Uncertainty ~ Quantify confi- Noisy/sparse data Bayesian Neural Net- Enables risk-aware
Propaga- dence in predictions  (cryo-EM, NMR), works, Posterior Cali- antibody design
tion (e.g., per-residue force-field errors bration
uncertainty)
Data Inte- Combine MD, Conflicting data, Hierarchical Bayesian Maximizes informa-
gration cryo-EM, and heterogeneous Models,  Likelihood- tion from expensive
Al (Bioemu [7]], noise/resolution Free Inference experiments
AlphaFlow e,
and similar) into a
unified model
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