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Abstract

Incorporation of resolution modelling (RM) into iterative reconstruction produces Gibbs
ringing artefacts which adversely affect clinically used metrics such as SUVmax. We pro-
pose the use of a null space network as a regulariser to compensate for these artefacts
without introducing bias.
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1. Introduction

Maximum likelihood expectation maximisation (MLEM) is a versatile iterative algo-
rithm frequently used in clinical PET image reconstruction. Incorporating resolution mod-
elling (RM) into MLEM results in resolution recovery but also introduces Gibbs ringing
artefacts. Since these artefacts affect clinically important metrics such as maximum stan-
dardised uptake values (SUVmax), there is debate as to whether RM should be used at all
(Alessio, Rahmim, and Orton 2013).

Ringing artefacts are caused by a sharp drop in recovery of high frequency components.
The unrecoverable data exists in the null space of the imaging system. We propose the use
of a deep null space network (Schwab, Antholzer, and Haltmeier 2019a) to fill in this null
space, thereby removing artefacts in a data-consistent manner. Null nets have recently been
applied to filtered backprojection (FBP) of sparse photoacoustic tomography (PAT) (Li et
al. 2019) and undersampled Radon transforms (Schwab, Antholzer, and Haltmeier 2019b).

2. Methods

Data consistency (more specifically, model consistency) is enforced by incorporating
MLEM reconstruction into the training of the proposed network. Once trained, the network
can be applied as a post-reconstruction step to test data. Due to the presence of noise in
real data, full consistency is not desirable. Instead, consistency is only enforced here with
respect to resolution degradation and recovery.

Data: 20 BrainWeb phantoms are modified to have PET-like intensities and spherical
lesions of diameters ranging from 2 to 15 mm as described in da Costa-Luis (2019). The
BigBrain FDG PET phantom (Belzunce 2018) was also registered with the BrainWeb data
and Poisson noise added corresponding to 30 M counts. Resolution degradation is achieved
by Gaussian smoothing with 5 mm full width at half maximum (FWHM). This data is then
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reconstructed using 300 MLEM iterations . In the case of purely performing resolution
recovery, MLEM is equivalent to the Richardson-Lucy (RL) algorithm (Appendix A).

Training: 18 noise-free BrainWeb phantoms are used for training, and 2 for validation.
The BigBrain phantom is used for testing. The task is to transform RL reconstructions
into artefact-free ground truth predictions in a data-consistent manner. Consistency means
the forward model (Gaussian smoothing) should produce identical results whether applied
to the input (RL reconstructions) or to the predictions.

The proposed post-processing step is:

P (x̂) = x̂ +N(x̂)−Rk(G(N(x̂))), (1)

where Rk represents k MLEM (Richardson-Lucy) iterations,
G applies the forward model (Gaussian smoothing),
N is a 4-layer convolutional network, and
x̂ is reconstructed (using Rk) data.

N consists of 4 fully 3D convolutional layers with unit stride, width 3, and zero-padding;
each of which are followed by a ReLU activation function. The first 3 layers have 32 kernels,
while the final layer has 1. The normalised root mean square error (NRMSE) is used as the
loss function:

L(P ;y) =
∑
n

√
‖yn − P (Rk(G(yn)))‖2/‖yn‖2, (2)

where yn is the nth ground truth volume.

The Adam optimiser is used with learning rate 10−3 and convolutional kernel regulari-
sation with weighting factor 10−4. Once trained, P satisfies G(P (x̂)) = G(x̂).

For comparison, a network C (with the same architecture as N) is trained on the same
data. NRMSE is also used as the loss for C, i.e. L(C;y). The network C thus performs
the same post-processing task as P , but without any consistency constraint.

3. Results

P has better generalisability than C due to the consistency constraint. Similar qualita-
tive results (not shown) were observed for real data. Future work will consider incorporating
the PET forward and backprojectors into the reconstruction.
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Figure 1: Results for test (top row) data (not used during training). Training data is also
shown in the bottom row.
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Appendix A. Richardson-Lucy Iterative Reconstruction

Algorithm 1: Richardson-Lucy (RL)

Input: m: blurred image, σ: Gaussian blur parameter, k: number of iterations
Output: y: reconstructed image
y ← ones(shape(m))
for i← 1 to k do

y ← y ×Gσ(m÷Gσ(y)) // G is a Gaussian blur function

end
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