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Abstract
Machine learning is increasingly used in govern-
ment programs to identify and support the most
vulnerable individuals, prioritizing assistance for
those at greatest risk over optimizing aggregate
outcomes. This paper examines the welfare im-
pacts of prediction in equity-driven contexts, and
how they compare to other policy levers, such as
expanding bureaucratic capacity. Through math-
ematical models and a real-world case study on
long-term unemployment amongst German resi-
dents, we develop a comprehensive understanding
of the relative effectiveness of prediction in sur-
facing the worst-off. Our findings provide clear
analytical frameworks and practical, data-driven
tools that empower policymakers to make princi-
pled decisions when designing these systems.

1. Introduction
Faced with pressure to modernize, large bureaucracies are
increasingly adopting risk prediction tools to improve ef-
ficiency and better serve their populations. Beyond opti-
mizing aggregate outcomes, investments in these programs
often aim to address historical inequities and prioritize the
needs of the worst-off. For instance, in 2012, Wiscon-
sin launched a risk prediction system to explicitly address
deep racial disparities in academic achievement and im-
prove high school graduation rates amongst underserved
students. More broadly, such systems are particularly rel-
evant in settings where normative considerations demand
prioritizing those at the greatest risk of adverse outcomes,
and where well-established downstream interventions can
meaningfully benefit these vulnerable individuals.

From a design perspective, these risk predictors are chal-
lenging to evaluate because their value cannot be assessed
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without reference to the broader social context. The value
of a risk predictor is ultimately determined by its impact
on bottom-line welfare (e.g., graduation rates) and how
these welfare impacts compare to those of other bureau-
cratic alternatives (Johnson & Zhang, 2022). For example,
to understand whether investments in prediction are truly
valuable in Wisconsin, we need to assess how much better
the risk predictor is at identifying at-risk students relative
to existing policies. We also need to understand whether
sophisticated prediction systems yield higher graduation
rates amongst the underserved than structural investments
in teacher training or better facilities.

Equity-driven programs are pervasive in applications like
social housing, poverty targeting, and unemployment as-
sistance. In these contexts, many government agencies are
exploring how algorithmic prediction systems may be an
improvement over their current profiling processes (Körtner
& Bonoli, 2023). Yet, due to the absence of an overarching
framework that allows the systematic assessment of the rela-
tive impacts of different design decisions, efforts to improve
predictive accuracy are rarely studied in concert with other
policy levers such as expanding screening capacity.

Building on recent work in a budding area of learning in
resource allocation contexts, we develop tools to evaluate
the design and broader impact of prediction systems that
aim to identify the worst-off members of a population. We
develop a holistic understanding of the value of statistical
prediction in these contexts through theoretical insights into
foundational statistical models and a real-world case study
on identifying long-term unemployment. Our results estab-
lish clear theoretical and empirical criteria characterizing
the relative value of core design decisions within these prob-
lems. Specifically, we identify when improving prediction
provides a higher marginal benefit in helping an institution
identify the worst-off. This is compared to alternative strate-
gies, such as keeping prediction accuracy fixed, expanding
bureaucratic capacity and screening a larger population.

Interestingly, we show that prediction is a first and last-mile
effort. The impacts of improving prediction are always
outweighed by those of expanded screening capacity, except
for when the system explains either none or almost all of the
variance in outcomes. While this relationship is moderated
by costs, it still largely holds when prediction improvements
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are more cost-efficient than measures that expand access.

These results are counternarrative to current efforts in em-
pirical public policy where agencies focus on incremental
improvements within complex prediction systems, start-
ing from the solid baseline performances of their current
processes (Desiere et al., 2019; Desiere & Struyven, 2021).
Furthermore, implementing more complex profiling systems
at scale comes with operational costs (such as staff training
and data collection) which need to be contextualized by the
cost-benefit ratio of expanding access. Our empirical case
study explicates how to systematically assess the relative
gains of these design components in a real-world application
setting, translating formal insights into critical guidance for
designers of these systems.

Our results provide theoretically principled and empirically
grounded tools for policymakers to make informed decisions
when designing prediction systems to identify the worst-off.
They also offer a practical framework to help determine
how much should be invested in prediction relative to other
interventions and how to decide when prediction systems
are “good enough” for deployment.

1.1. Overview of Framework and Contributions

Setup. We consider a scenario where a decision-maker
seeks to identify worst-off members of a population, as de-
termined by a real-valued welfare metric Y ∈ R, with the
goal of prioritizing them for further screening and support.
The population is represented by a distribution D over fea-
tures X and outcomes Y . The planner aims to identify all
individuals whose outcomes Y fall below some threshold
t(β), Y ⩽ t(β). Here, β ∈ [0, 1] is a parameter (quantile)
that determines the size of the population that is at risk,
Pr[Y ⩽ t(β)] = β. For instance, in poverty prediction,
Y is income, and the goal is to identify everyone whose
income is below some value.

To solve this problem, the social planner has access to data
(X,Y ) ∼ D and builds a screening policy π : X → {0, 1}
that determines whether an individual with features x is
screened from the broader population to see if they belong
to the worst-off group. Learning plays a fundamental role
since the optimal policy is to predict each person’s expected
outcome, f(x) = Ŷ ≈ E [Y | X = x] and screen those in
the bottom fraction, πf (x) = 1{f(x) ⩽ t(α)}.

Unpacking this further, α ∈ [0, 1], is a design parameter
that determines how many people the planner can screen,
Pr[f(x) ⩽ t(α)] = α. The amount of resources α need not
be equal to the size of the target population β. For instance,
an organization might have normative goal of identifying
the poorest 5% of individuals, but only have the resource to
screen 1% of the population. Conversely, they might realize
that predictions are not perfect, and that to identify the bot-

tom 5%, they might have to screen 10% of the population.

Given a predictor f , a screening budget of α, and a target
parameter β, the value of a prediction system is equal to the
fraction of the at-risk population that it identifies,

V (α, f ;β) = PrD[f(x) ⩽ t(α) | Y ⩽ t(β)],

where again t(α), t(β) are chosen to respect the design
constraints. We focus on this notion of value since our
driving motivation is to analyze domains like unemployment
assistance, or poverty prediction, where there is no harm
in the prediction system raising a false positive (π(x) =
1, Y > t(β)). By and large, the true value of the system
is equal to the extent that it helps an institution efficiently
identify the needy amongst a large, diverse population.

The focus of our work is to build a holistic understanding
of prediction in these contexts by evaluating the relative
impacts of different design parameter, such as expanding
screening capacity or improving prediction, on this notion
of bottom-line value V (α, f ;β). We develop these insights
through theoretical investigations as well as in-depth empir-
ical case study.

Mathematical Results. Following Perdomo (2024), we
formalize the relative value of prediction for the worst-off
by studying the prediction-access ratio or PAR. Intuitively,
the PAR measures the relative change in value achieved by
optimizing different policy levers.

PAR =
Marginal Value of Expanding Access
Marginal Value of Better Prediction

.

We formally define this quantity in Equation 3. While ini-
tially developed to specifically study the value of prediction
in allocation problems where allocating goods to individu-
als had heterogeneous effects, here we extend this concept
to analyze the value of prediction in a related, but distinct,
setting where we aim to identify the worst-off.

Small values of the PAR (i.e. PAR < 1) indicate that small
improvements in prediction yield a much larger (relative)
impact in the ability to target the worst-off than a small
expansion in screening capacity. The opposite is true if the
PAR is greater than 1. Calculating this quantity is a funda-
mental step in deciding which policy lever makes economic
sense.

Costs. A full cost-benefit analysis requires combining the
prediction-access ratio with the (marginal) costs of improve-
ments in capacity CAccess and prediction CPred. Once we
factor in costs, it is easy to decide what to focus on. A social
planner should expand access whenever

CAccess

CPred
< PAR

and invest in better prediction otherwise. The (marginal)
costs that competing policy levers carry are inherently
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context-dependent and will vary across application domains.
In many applied settings the cost ratio is comparatively well
understood, for example, the salary of an additional case-
worker or the cost of a household survey. By presenting
PAR separately from costs, we isolate the welfare side of
the equation; domain experts can then plug in their own
cost estimates to reach a policy decision. In particular, the
PAR tells us how much we should be willing to pay for
improvements in prediction versus expanding access.

We encourage future work to explore scenarios with more
complex or less clearly defined cost structures. For instance,
many practical applications involve recurring costs, such
as ongoing staff salaries or periodic data collection, and
fixed costs, such as initial investments in infrastructure
or predictive model development. Analyzing how these
cost structures affect welfare decisions over time, including
amortization of fixed investments or identifying the point at
which specific improvements become cost-effective, would
significantly enhance our understanding of the relative value
of prediction.

To build intuition for the value of prediction in identifying
the worst-off, we examine the prediction access ratio in
one of the most basic statistical models. The outcomes
Y are Gaussian, and the learner has access to a predictor
f(x) = Ŷ such that the errors Y − Ŷ are also Gaussian
and independent of Ŷ . While extremely simple, the model
yields surprisingly precise numerical insights that exactly
match up in our real-world case study, where, of course,
none of these assumptions hold. In this setting the quality of
Ŷ is fully summarized by the coefficient of determination
R2 = corr(Y, Ŷ )2.

Our first result identifies when local improvements in pre-
diction have the highest impact:

Theorem 1.1 (Informal, see Theorem 3.2). If α is at least
a constant, the local improvements in V with respect to R2

diverge in two regimes: (1) R2 → 1 and α = β, or (2)
R2 → 0. In both cases, the prediction-access ratio satisfies
PAR(α, β) = 0.

Predictions have the highest marginal impact at low and
high R2-values, making them a first- and last-mile effort.
Our second result characterizes when the opposite is true.
We prove that whenever screening capacities are severely
limited relative to the size of the population one aims to iden-
tify α ≪ β , the benefits of increasing α are overwhelming.
Furthermore, it shows that the impacts of improving access
are still relatively larger exactly in the regime where most
current systems operate: f explains ≈ 20% of the variance
and α is equal to, or even slightly larger, than β.

Theorem 1.2 (Informal, see Theorem 3.1, Proposition 3.3).
If the predictor f explains an R2 fraction of the variance,
where R2 is at least a constant, then the prediction access

ratio is at least Ω(α−1/(1−R2)). Furthermore, if 0.15 ⩽
R2 ⩽ 0.85 and α ⩽ β or 0.2 ⩽ R2 ⩽ 0.5, β ⩾ 0.15, and
α ⩽ 0.5 then the local prediction-access ratio is at least 1.

Empirical Results. We complement our theoretical dis-
cussion by presenting a methodology for policymakers to
evaluate the prediction-access ratio in practice. Using a
real-world administrative dataset on hundreds of thousands
of jobseekers in Germany, we show that our theoretical find-
ings generalize to a more complex, real-world context that
closely resembles algorithmic profiling systems widely im-
plemented in many countries. Notably, our results reveal
that when considering non-local improvements, expanding
screening capacity has an even greater impact compared to
enhancing prediction accuracy.

1.2. Related Work

Machine learning is increasingly used in the public sec-
tor to allocate support by predicting individuals at risk of
adverse outcomes (Fischer-Abaigar et al., 2024), with ap-
plications spanning a wide range of problem domains (De-
siere et al., 2019; Blumenstock, 2016; Perdomo et al., 2023;
Chan et al., 2012; Potash et al., 2015; Chouldechova et al.,
2018). A large methodological literature draws on deci-
sion theory, operations research, economics, and machine
learning to learn allocation rules from data (Elmachtoub &
Grigas, 2022; Kitagawa & Tetenov, 2018; Manski, 2004;
Fernández-Lorı́a & Provost, 2022), with recent work in
causal inference focusing on learning treatment policies
from observational data (Athey & Wager, 2021; Kallus,
2021). However, many decision-makers rely on separately
trained predictive risk scoring-systems to solve “prediction
policy problems” (Kleinberg et al., 2015). Recently, this
work has been extended using causal inference to train and
evaluate these systems (Coston et al., 2023; Guerdan et al.,
2023; Boehmer et al., 2024).

The widespread use of risk-scoring systems has raised con-
cerns regarding their tradeoffs, pitfalls, and validity (Wang
et al., 2024; Coston et al., 2023; Fischer-Abaigar et al.,
2024). These concerns include not only questions of em-
pirical performance but also of fairness and equity in how
predictive systems shape access to public services (Baro-
cas et al., 2023). Recent work explores alternative de-
sign choices—such as employing aggregate rather than
individual-level predictions (Shirali et al., 2024), balanc-
ing immediate needs with information-gathering (Wilder
& Welle, 2024), and introducing randomization (Jain et al.,
2024)—to improve downstream outcomes.

Perdomo (2024) studies the prediction-access ratio under
both linear and probit models, with the latter closely related
to our work. While they focus on binary welfare outcomes,
we adopt a continuous welfare metric and a distinct policy
objective: rather than evaluating changes in overall expected
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welfare, we measure the fraction of truly worst-off individ-
uals who are identified. This captures a mathematically
and conceptually distinct setting frequently encountered in
the public sector. For instance, employment agencies often
prioritize identifying and assisting individuals in greatest
need, rather than optimizing average employment outcomes
across all jobseekers. In addition, we introduce a set of
empirical tools to analyze these tradeoffs in practice, while
the work of Perdomo (2024) is purely theoretical.

2. Formal Framework
We start by formally defining our screening problem.
Definition 2.1 (Screening Problem). The screening problem
seeks to identify a decision rule π : R → {0, 1} that fraction
of the worst-off population that is identified while adhering
to resource constraints α ∈ (0, 1) that bound the percentage
of the population that can be screened by the social planner:

max
π : R→{0,1}

E
[
π(Ŷ ) = 1 | Y ⩽ F−1

Y (β)
]

s.t.E
[
π(Ŷ )

]
⩽ α

The quantile F−1
Y (β) denotes the welfare cutoff that identi-

fies the worst-off β ∈ (0, 1) fraction of the population.

Given perfect knowledge of the welfare outcomes Ŷ = Y ,
the optimal decision policy is simple: rank individuals based
on their outcomes Y and intervene in the bottom α-fraction
of the population. In the general case, we have:
Proposition 2.2. The optimal policy π∗ : R → {0, 1} to
solve the screening problem (Definition 2.1) is equal to
π∗(Ŷi) = 1{s(Ŷi) ⩾ F−1

s (1− α)} where F−1
s (1 − α) is

the (1− α)-quantile of s(Ŷ ) = Pr[Y ⩽ F−1
Y (β) | Ŷ ].

Policy Value in Gaussian Setting. For the theoretical in-
vestigation, we assume independent, identically distributed
errors ε = Y −Ŷ

iid∼ N (0, γ2) that are independent of Ŷ . In
this setting, the screening problem can be solved by ranking
individuals in ascending order of their predicted outcomes
Ŷ and screening the bottom α-fraction (see Proposition C.1),
achieving the policy value:

V (π∗) = Pr[Ŷ ⩽ F−1

Ŷ
(α) | Y ⩽ F−1

Y (β)] (1)

In addition, we assume welfare outcomes Y ∼ N (µ, η2).
Because ε is independent of Ŷ , this implies that Y and Ŷ
follow a bivariate normal distribution.
Proposition 2.3. (Policy Value in Gaussian Setting) Let
Y − Ŷ

iid∼ N (0, γ2) and Y ∼ N (µ, η2), then the value
V (π∗) of the optimal screening policy π∗ is given by

V (π∗) = V (α, β,R2) =
Φ2(Φ−1(α),Φ−1(β);ρ)

β (2)

where Φ2 (·) denotes the bivariate standard normal CDF
with correlation ρ =

√
η2 − γ2/η and Φ−1 (·) is the quantile

function of the standard normal distribution.

In this model, the goodness of the predictions Ŷ are en-
tirely captured by the coefficient of determination R2, which
equals the squared correlation ρ2 between Y and Ŷ .

Our analysis extends to the log-normal distribution log Y ∼
N (µ, η2) under a a multiplicative error model Y = Ŷ · u
with log u ∼ N (0, γ2). Taking logarithms, leads to
log Y = log Ŷ + log u. Since the logarithm is strictly in-
creasing, the ordering of Y and Ŷ is preserved under trans-
formation. This allows us to apply the same framework to
the log-transformed variables log Y and log Ŷ . This exten-
sion is particularly useful because many welfare outcomes,
such as income distributions (Clementi & Gallegati, 2005),
can be approximated by a log-normal distribution.

Visualization. For a given screening capacity α and R2

value, we can illustrate the corresponding screening policy
by plotting the probability Pr

{
Ŷ ⩽ F−1

Ŷ
(α) | Y = y

}
that

an individual with welfare outcome Y = y is screened. As
shown in Figure 1, lower values of Y correspond to higher
probabilities of being screened. We focus on evaluating how
effectively the screening policy identifies individuals in the
worst-off segment of the population (i.e., on the left side of
the β cutoff).

3. Theoretical Results
The decision-maker has (at least) two pathways to raise the
policy value, which we refer to as policy levers:

• Expanding Access Increasing the screening threshold
from α to α + ∆α. If full screening were possible
(α = 1), the β-fraction would be fully identified, as

V (π∗) =
Φ2(Φ−1(α),Φ−1(β);ρ)

β =
Φ(Φ−1(β))

β = 1.
• Improving Predictions Investing in better predic-

tive models, modeled as increasing R2 to R2 +
∆R2 . Perfect predictions (R2 = 1) leads to op-
timal allocation of available capacities: V (π∗) =
1
βΦ
(
min(Φ−1 (α) ,Φ−1 (β))

)
.

Figure 1 showcases improvements in access and prediction.
Increasing capacity expands the fraction of the population
screened, while improving R2 shifts probability mass across
the β threshold, enhancing targeting accuracy.

Following Perdomo (2024), a key quantity of interest is the
prediction-access ratio (PAR), which quantifies the relative
improvements in policy value from enhancing predictions
versus improving access to screening. Specifically, the PAR
is defined as:

PAR = V (α+∆α,β,R2)−V (α,β,R2)
V (α,β,R2+∆R2 )−V (α,β,R2) (3)

In other words, the PAR can inform a social planner how
much more they should be willing to pay for improvements
in screening capacity relative to prediction. For example, a
PAR > 2 implies that expanding the screening capacity by
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Figure 1. Screening Policy in Gaussian Setting. (Left) Probability of being screened for an individual with a specific welfare outcome Y ,
given R2 = 0.25, α = 0.2, and β = 0.2. The dashed line represents the unconstrained oracle policy, which perfectly screens those in
need. (Middle) Policy with expanded screening capacity, where α increases by ∆α = 0.2. (Right) Policy under an improved prediction
model with R2 +∆R2 , where ∆R2 = 0.2. The shaded area under Pr[Ŷ ⩽ F−1

Ŷ
(α) | Y = y], weighted by fY (y) and normalized by

Pr[Y ⩽ F−1
Y (β)], corresponds to the policy value.

∆α yields at least twice the increase in policy value com-
pared to investing in improved predictions by ∆R2 . Conse-
quently, the social planner should prioritize investments in
screening capacity, provided the costs of doing so are not
more than double those of improving predictions.

3.1. Theoretical Bounds for the Prediction-Access Ratio

In our setting, direct calculation of the PAR is challenging
due to the policy value being analytically intractable and the
problem featuring strong non-linearities. We derive bounds
for specific cases and regimes that we consider particularly
insightful, with a focus on marginal local improvements. In
our empirical investigation, we find that the main results
generalize well to a more complex, real-world setting.

What should priorities be if screening is very limited?
Theorem 3.1 (PAR for Small Screening Capacities). For
any 0 < R2 < 1, ∆R2 ,∆α > 0 and 0 < β ⩽ 0.5 there
exists a threshold t(β,R2,∆R2) such that for any α+∆α ⩽
t, PAR(α,R2,∆α,∆R2) is at least

∆α

∆R2

√
R2(1−R2)

(
5.1 · αΦ−1 (1− α)

)− 1
1−R2 +o(1)

where o(1) goes to zero as α approaches zero.

Suppose the available screening capacity α + ∆α is very
small (α+∆α ≪ β), and assume there is a baseline level
of predictability (i.e., R2 is bounded away from 0). Then
Theorem 3.1 implies that the PAR can become very large.
Specifically, for small α, Φ−1 (1− α) grows asymptotically
like

√
log (1/α). Consequently, the polynomial growth of

α−1/(1−R2) drives the PAR to increase rapidly as α de-
creases. It follows that in the scarce capacity regime, ex-
panding the screening capacity has a far greater impact than
improvements in prediction accuracy.

When does prediction have the highest impact?
Theorem 3.2 (Maximally Effective (Local) Prediction Im-
provements). Let 0 < β < 1 be fixed and 0 < α < 1.
Consider the points that maximize the local rate of change

in policy value V with respect to improvements in R2:

(α∗, R
2
∗) = argmax

(α,R2)∈(0,1)×(0,1)

lim
∆→0

V (α,β,R2+∆)−V (α,β,R2)
∆

The local improvements in V diverge—and are maximized—
in two regimes: (1) R2

∗ → 1, α∗ = β, and (2) R2
∗ → 0. For

both regimes, setting ∆R2 = ∆α = ∆, the local prediction-
access ratio satisfies lim∆→0 PAR(α, β,∆) → 0.

According to Theorem 3.2, marginal improvements in pre-
diction are most impactful in two distinct regimes. First,
when predictive capacity is very low, even a small initial in-
vestment can lead to disproportionately large improvements,
provided that a minimal baseline of screening capacity is
present. Second, as R2 approaches one, further marginal
improvements can also have a significant relative impact,
specifically around the point where the screening capacity α
matches the requirements for screening the entire β-segment
of the population. See Figure 2.

When are small increases in screening capacity more
impactful than improving predictions?
Proposition 3.3 (PAR for Local Improvements). Let R2,
β, and α satisfy either R2 ∈ (0.15, 0.85), β ∈ (0.03, 0.5),
and α ⩽ β, or R2 ∈ (0.2, 0.5), β ⩾ 0.15, and α ⩽ 0.5. If
∆R2 = ∆α = ∆, then lim∆→0 PAR(α, β,∆) ⩾ 1.

We find that the PAR remains above one as long as α ⩽ β
and R2 is not too extreme. For larger β values (i.e., β ⩾
0.15) the PAR stays above one even for large α provided
R2 remains in a moderate range. Crucially, this represents
the standard parameter regime in which most allocation
programs operate, characterized by a moderate baseline of
predictions and resource levels comparable to β.

Numerical Simulations. We complement our theoretical
investigation with numerical simulations of the PAR for
different α, β and R2 values (see Figure 2). Consistent with
our theoretical results, the PAR becomes large for small
screening capacities (α ≪ β) and remains above one for
α ⩽ β, provided a small baseline level of predictive perfor-
mance has been established. The bounds in Proposition 3.3
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are conservative, with PAR > 1 observed for a broad range
of R2 values. Prediction improvements are particularly im-
pactful when R2 is small. Although the PAR falls below
one in the high-R2 and high-α regime, allocation is nearly
perfect, making further improvements a “last mile” effort.

Discussion. We found several insights relevant to policy-
makers aiming to iteratively improve a screening system.
First, establishing a baseline level of predictive performance
is usually a good starting point. Once this is achieved, ex-
panding the screening capacity becomes the next priority.
For very small capacities, Theorem 3.1 tell us that the PAR
can increase significantly, making investments in screening
capacity highly impactful.

Generally, expanding capacity to at least the level where
everyone in need could hypothetically be screened (α ⩾
β) is likely cost-efficient. Once both screening capacity
and predictive accuracy are high and the allocation system
is close to optimal, improvements in prediction become
relatively more valuable again for perfecting the system.
However, this regime may rarely be reached in practice.

In Figure 2, we display the PAR for a cost ratio of 1/4.
As expected, the regions where investing in R2 is more
efficient expand, and some of the earlier nonquantitative
bounds no longer apply. Nevertheless, the key insights
remain consistent: when screening capacities are small,
investments in expanding them are very effective, while
improvements in R2 are more important when predictive
accuracy is low.

4. Empirically Evaluating the PAR
While our theory offers broad intuition when expanding
screening capacity or improving predictions is most effec-
tive, policymakers need practical tools for their own systems.
To support this, we develop a methodology to compute and
interpret the prediction-access ratio using empirical data,
helping social planners identify the most efficient policy
levers for their unique problem context.

Policy Value. As before, we define the allocation policy’s
value as the probability that the worst-off individuals are
successfully identified:, i.e. V (α, β) = Pr[Ŷ ⩽ F−1

Ŷ
(α) |

Y ⩽ F−1
Y (β)]. In practice, this can be measured using a

recall-like metric, capturing the proportion of truly at-risk
individuals screened by the policy.

V (α, β) ≈
∑n

i=1 1{Ŷi⩽F−1

Ŷ ,n
(α)}1{Yi⩽F−1

Y,n(β)}∑n
i=1 1{Yi⩽F−1

Y,n(β)}

Increasing Screening Capacity. Given a chosen ∆α

the policy improvement can be directly computed V (α +
∆α, β)−V (α, β) by recalculating the empirical policy value
at the new threshold. For example, in cash transfer programs
(Blumenstock, 2016), a key question is how many resources

α∗ are required to reach a specified fraction p of poor house-
holds, i.e. α∗ = infα∈(0,1){α : V (α, β) ⩾ p}.

Improving Predictions. A decision-maker can improve a
model’s predictions through various pathways:

a) Data Collection Collect additional samples and in-
crease the frequency of data collection. Social pre-
diction systems are often vulnerable to distribution
shifts over time in dynamic and evolving environments
(Fischer-Abaigar et al., 2024; Aiken et al., 2023).

b) Data Quality Improve data quality (i.e., reduce errors
and missing data) by means such as standardizing data
collection processes, implementing centralized data
management systems, and offering targeted training
programs for staff.

c) Collect Additional Features In government, this may
involve integrating separate data sources across institu-
tions (Sun & Medaglia, 2019; Wirtz et al., 2019).

d) Advanced Modeling Techniques Utilize more sophis-
ticated modeling techniques, which might capture more
complex patterns in the data but are often more costly
to operationalize.

In resource-constrained settings, planners often focus on
incremental improvements rather than rebuilding entire sys-
tems. For instance, collecting a small amount of additional
data may boost R2 by a few points, uniformly reducing
errors. To simulate such minor gains, we scale the model’s
residuals Ŷ+ = Ŷ + δ(Y − Ŷ ), choosing δ ∈ (0, 1) so that
R2 increases by a target ∆R2 (see Appendix B.3). This pre-
serves the overall error structure, allowing us to gauge how a
“similar but slightly better” model affects policy outcomes.

This approach can be extended in several ways. For exam-
ple, residuals could be adjusted for specific subgroups to
account for uneven prediction improvements (e.g., targeted
data collection for rural or underrepresented populations).
Alternatively, planners could retrain models under different
conditions—such as sample size, feature set, or architec-
ture—and compare the resulting policy value.

5. Case Study: Identifying Long-Term
Unemployment in Germany

Public employment services (PES) across the globe make
use of profiling approaches to identify jobseekers at risk of
long-term unemployment to target preventative measures
(Loxha & Morgandi, 2014). Starting from traditional rule-
based approaches, many PES either test or already deploy
algorithmic profiling to identify jobseekers in need of sup-
port (Desiere et al., 2019; Körtner & Bonoli, 2023). While
these profiling tools assist in allocating programs that ac-
count for large shares of PES spending — making design
choices critical (Kern et al., 2024) — systematic assess-
ments of their relative value compared to other measures for
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Figure 2. Numerical Simulation of the Prediction-Access Ratio (PAR), Equation 3, for ∆R2 = ∆α = 0.01 and β = 0.2. (Left) The
PAR values. (Right) 1/4× PAR, representing a cost ratio of 1/4. Each point represents a screening capacity α (x-axis) and R2 value
(y-axis), with the color bar showing the PAR clipped to the range [0.5, 2.0]. Dotted black lines represent PAR = 1, where improvements
in α and R2 are equally effective. The purple line marks the region in the (α,R2) space where the policy value V (α, β,R2) exceeds 0.9.
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Figure 3. Prediction-Access Ratio for ∆R2 = ∆α = 0.1 across three regimes: (left) constant prediction (R2 = 0), (middle) trained
model (R2 = 0.15), and (right) near-perfect prediction (R2 = 0.9). As expected from our theoretical intuition, the PAR is large for small
α and in the middle plot, which represents the typical regime for allocation systems.

improving jobseekers’ outcomes remain absent.

We secured access to a dataset1 on German jobseekers de-
rived from German administrative labor market records that
cover a large portion of the German labor force. It merges
multiple administrative data sources, containing a wide spec-
trum of individual labor market information — including
records on employment histories, received benefits, unem-
ployment periods, participation in job training programs and
demographic information. Such administrative records are
the primary data source used by PES to build algorithmic
profiling models (Bach et al., 2023).

Experimental Setup. We train a model to predict how long
a newly registered jobseeker remains unemployed, defining
the target Y as unemployment duration in days (capped at
24 months). Following Bach et al. (2023), we use a set of
covariates capturing demographic information, labor market
history, and most recent job details. To ensure full 24-month
observations and mimic a realistic deployment scenario, we
focus on unemployment spells beginning between 2010 and

1The dataset is provided via a Scientific Use File by the Re-
search Data Centre (FDZ) of the German Federal Employment
Agency (BA) at the Institute for Employment Research (IAB)
(Schmucker & vom Berge, 2023a;b).

2015, resulting in data on 274,515 different jobseekers and
553,980 unemployment spells. We refer to Appendix B.1
for additional information on the experimental setup and
data.

Our focus is the β-fraction of jobseekers with the longest
expected unemployment durations, representing those most
at risk. In Germany, being unemployed for over one year
(about 15% of cases in our data; Figure 8) meets the legal
definition of long-term unemployment (Bach et al., 2023),
but some countries adopt different cutoffs (Desiere et al.,
2019).

5.1. Results

We train a CatBoost model (see Appendix B.2 for de-
tails), achieving an R2 of 0.15 on the test set. This level of
predictive power aligns well with what is typically observed
in social prediction tasks (Salganik et al., 2020) and similar
applied settings (Desiere et al., 2019).

How much does the screening capacity need to increase
to target a significant fraction of high-risk jobseek-
ers? As expected, larger screening capacities increase both
the policy value and the number of high-risk jobseekers
screened (see Figure 4(a)). Focusing on the (German) LTU
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cutoff (β ≈ 0.15), our policy value aligns well with findings
of previous studies2 (Bach et al., 2023).

A planner might begin by setting α = β, ensuring that, in
theory, enough capacity is provided to screen and support ev-
ery high-risk jobseeker. A natural question then arises: how
much additional capacity ∆α would be required to screen at
least a specified percentage of high-risk individuals? This
additional capacity represents the overhead that must be
invested to account for imperfect predictions. We observe
that the ∆α required to ensure at least 75% of high-risk
jobseekers are screened remains consistently around 0.25
across different β values. While the policy value increases
as α = β rises, the marginal improvements gained from
increasing access decrease for higher α, resulting in a some-
what stable ∆α across β. In practice, this means we need
to screen 25% more of the population to ensure adequate
coverage.

What is the impact of improving screening capacity ver-
sus prediction errors? We simulate small improvements
in the R2 value by uniformly scaling the residuals by a
multiplicative factor. To ensure that this approach approx-
imates a realistic pathway of (marginally) improving the
model, we train various models at different sample sizes.
We then verify that as R2 increases with the amount of
training data, the variance of the residuals decreases, while
the distribution remains largely unchanged in shape (see
Figure 12). We then evaluate the prediction-access ratio
for ∆R2 = ∆α = 0.1 in three scenarios : (1) the trained
CatBoost model with R2 = 0.15, (2) near-perfect pre-
dictions with R2 = 1 −∆R2 and (3) constant predictions
(R2 = 0), effectively randomizing screening decisions.

We observe a rise in the PAR for small screening capaci-
ties α (see Figure 3), consistent with Theorem 3.1. Under
random allocation (R2 =0), the PAR stays below one for
α ⩾ 0.1. This result aligns somewhat with Theorem 3.2,
where we found that the (local) PAR approaches zero as
R2 → 0. Because we consider ∆ = 0.1 (rather than an
infinitesimal improvement, see Figure 13 for ∆ = 0.01), the
PAR remains large at small α. For the CatBoost model
(R2 = 0.15), capacity improvements stay relatively more
effective (i.e., PAR > 1) for larger α, matching Proposi-
tion 3.3, where we found that for moderate R2 and α ⩽ β,
the local PAR remains above one. Meanwhile, near-perfect
predictions (R2 = 0.9) make capacity investments highly
efficient, causing the PAR to diverge for α < β, then drop
sharply near α = β because the allocation becomes nearly
optimal. When α ⩾ β, the PAR stabilizes at one as numera-
tor and denominator both approach zero.

These observations broadly match our theoretical findings,

2For the percentage of correctly identified LTU episodes, they
report values of 0.29 at α ≈ 0.1 and 0.58 at α ≈ 0.25, compared
to our observed values of 0.28 and 0.56, respectively.

despite the non-local improvements and more complex resid-
ual structure. Notably, the theory’s focus on local improve-
ments offers a conservative perspective on capacity invest-
ments: even under random allocation (R2 = 0), securing a
modest screening capacity (5−10%) is often the first prior-
ity, while at very high R2, gains in policy value diminish
so rapidly once α ⩾ β that the relative advantage of further
prediction investments becomes negligible.

When do small improvements in prediction error have
the largest impact? From theory (Theorem 3.2), we expect
local policy value improvements from better predictions to
diverge as R2→ 0 and R2 → 1 when α = β. This aligns
with our results in Figure 4: for small ∆R2 , the rate of local
improvements in V (R2) with respect to R2 diverges. The
location of the maximum in α also follows from the theory:
as R2 → 1, the rate only diverges for α = β, while for
small R2 the maximum is at α ≈ 0.5.

What are the relative benefits and tradeoffs of using a
simpler vs more complex prediction model? We compare
a shallow 4-depth decision tree with the CatBoost model.
As expected, the simpler tree shows a small drop in pre-
dictive power (5% decrease in R2) which translates into a
1–8% reduction in policy value (see Figure 15). Compared
to a uniform 5% increase in R2 achieved by scaling the
residuals (see Figure 14), the differences in policy value
are only partially similar across α. The CatBoost model
does not provide a uniform improvement over the decision
tree; for instance, it performs better at distinguishing longer
unemployment spells.

Despite this performance gap, the simpler model offers
potential advantages: it fits on a single sheet of paper, de-
mands minimal computational infrastructure, can be easily
explained to frontline case workers and resembles the cat-
egorical prioritization rules common in public institutions.
(Johnson & Zhang, 2022). Because more complex models
incur higher costs, a planner might instead increase screen-
ing capacity. Formally, we define

∆∗
α = inf

∆α∈(0,1−β)

{
∆α : VTREE(α+∆α,β)−VTREE(α,β)

VCAT(α,β)−VTREE(α,β)
⩾ 1
}

the smallest ∆∗
α that matches the policy-value gains of the

CatBoost model. Empirically, ∆∗
α mostly rises with α

(see Figure 15), consistent with our finding that the PAR
decreases with α. By framing the difference between mod-
els in terms of additional screenings, planners can directly
compare the cost of increased capacity to that of deploying
a more complex model.

6. Conclusion
This paper develops a framework for quantifying the relative
value of prediction in identifying the worst-off. We formal-
ize tradeoffs between expanding screening capacity and
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Figure 4. (a) Policy value across different screening capacities (α) and worst-off fractions β evaluated on the test set using the CatBoost
regression model. A β value of 0.15 corresponds to the 12-month cutoff used to define long-term unemployment in Germany. (b, c)
The rate of local improvements in V (R2) with respect to small changes in R2. Panel (b) shows that the local improvements become
increasingly large as ∆R2 approaches zero. Panel (c) illustrates that improvements in prediction have the greatest impact when the
capacity precisely matches the targeted fraction of the population (α = β). Note that these are on a logarithmic scale.

0.0 0.1 0.2 0.3 0.4 0.5
Screening Capacity: α

0.01

0.02

0.03

0.04

0.05

0.06

0.07

S
cr

ee
ni

ng
C

ap
ac

it
y

G
ap

β values

0.05 (≈ 24 mos.)

0.15 (≈ 12 mos.)

0.25 (≈ 8 mos.)

Figure 5. The minimum additional screening capacity that would
need to be invested for the decision tree to achieve a policy value
comparable to that of the CatBoost model.

improving predictive models, and show through both mathe-
matical analysis and a real-world case study that prediction
is not always the most important piece of the puzzle in so-
cial allocation systems. Future work could examine more
specific application settings and cost structures, including
distinctions between fixed and recurring costs, and explore
policy levers that improve prediction unevenly, for example,
by reducing errors in high-risk subgroups or by increasing
robustness to distributional shifts. More broadly, we see a
need for clearer theoretical foundations to understand the
role of prediction in public-sector allocation, particularly
in relation to the institutional and administrative systems in
which it is embedded.
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A. Theoretical Investigation
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Figure 6. Normal welfare distribution, with vertical lines marking the quantile cutoff (β = 0.2). The shaded region to the left of the
vertical line represents the worst-off segment of the population.
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Figure 7. Numerical Simulation of the Prediction-Access Ratio (PAR), Equation 3, for ∆R2 = ∆α = 0.01 and β = 0.05. Each point
represents a screening capacity α (x-axis) and R2 value (y-axis), with the color bar showing the PAR clipped to the range [0.5, 2.0]. The
vertical black line marks β, indicating the threshold above which sufficient resources are available to screen everyone under perfect
prediction. Dotted black lines represent PAR = 1, where improvements in α and R2 are equally effective. The purple line marks the
region in the (α,R2) space where the policy value V (α, β,R2) exceeds 0.9. Values above 0.9 are located in the upper-right region
beyond the purple line.

B. Experiments
B.1. Experimental Setup and Labor Market Data

The dataset is provided via a Scientific Use File by the Research Data Centre (FDZ) of the German Federal Employment
Agency (BA) at the Institute for Employment Research (IAB) (Schmucker & vom Berge, 2023a;b). It is a 2% weakly
anonymized random sample of the complete German labor market records from 1975 to 2017 and contains information on
1,827,903 individuals across 62,340,521 observations (Schmucker & vom Berge, 2023b).

We follow the same set of covariates and aggregation procedure for individual unemployment spells as described in Bach
et al. (2023), incorporating demographic characteristics, labor market histories, and information about the most recent
job. This results in 56 numerical variables and 24 categorical variables, which are one-hot encoded for model training.
Figure 8 shows a histogram of individual unemployment durations, which we use as the basis for constructing the outcome
variables. The distribution is right-skewed, with a concentration on short durations near zero and a long tail. Such a pattern
is commonly observed in other welfare-related outcomes, such as health or income metrics. We define as prediction target
the duration of the unemployment period in days Y , capped at 24 months3. Differentiating tail values is less important for

3In practice, for a fixed β, the problem can also be framed as a classification task (see Appendix B.5).
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decision-making, and capping also allows training across years with varying observation windows.
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Figure 8. Unemployment duration The red line marks the 12 month threshold used to classify a jobseeking episode as long-term
unemployment (LTU).

To avoid the impact of significant labor market reforms in Germany and to ensure full observation of unemployment
durations up to 24 months, we restrict our analysis to unemployment episodes that began between 2010 and 2015. We use
records from 2010 and 2011 to build the training dataset, records from 2012 for validation, and evaluate test performance
on data from 2015 (see Figure 9). We left a gap between the training and test data periods to allow enough time for the
outcomes in the training data to have been fully observed at test time, in order to mimic a realistic deployment scenario
starting at the beginning of 2015.

2010 2011 2012 2013 2014 2015 2016 2017 2018

Training

Validation

Test

Figure 9. Stacked timeline diagram illustrating training (2010–2013), validation (2012–2014), and test (2015–2017) data periods. Red
dashed boundaries within each colored box indicate the possible start dates of unemployment episodes, while the full colored boxes
represent the entire observation phases for each dataset.

B.2. Training Details

We use CatBoost (https://catboost.ai) for model training. The model was trained for a maximum 5,000 iterations with
an early stopping criterion (early stopping rounds = 20) based on validation performance. Additionally, we train a
shallow Decision Tree (max depth = 4) using the scikit-learn package. All hyperparameters are kept at their default
settings unless otherwise specified.

B.3. Prediction Improvements

To simulate an increase in predictive power by a specified amount ∆R2 , we adjust the model’s predictions Ŷ using the
residuals Y − Ŷ . Starting with the original predictions Ŷ and true outcomes Y , we define the adjusted predictions as

Ŷ+ = Ŷ + δ(Y − Ŷ )

13
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We can then determine the δ corresponding to an increase of ∆R2 in the model’s R2:

δ = 1−
√
1−∆R2

∑n
i=1(Yi − Ȳ )2∑n
i=1(Yi − Ŷi)2

For a specified δ, the new residuals are

Y − Ŷ+ = (1− δ)(Y − Ŷ )

Consequently, the variance decreases by a multiplicative factor: Var(Y − Ŷ+) = (1− δ)2 Var(Y − Ŷ ).
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(a) ∆R2 = 0
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Figure 10. Residual Distribution Before and After Adjustment Figure (a) shows the residual distribution for the original predictions
(∆R2 = 0), while Figure (b) shows the residual distribution after increasing the R2-value (∆R2 = 0.1) for the CatBoost model. The
adjustment preserves the overall structure of the residuals.
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Figure 11. The R2 value on the test set for varying training set size (CatBoost Regression).
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Figure 12. Residual distributions on the test set for models trained with varying training set sizes.

B.4. Additional Figures
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Figure 13. Prediction-Access Ratio for R2 = 0 and ∆R2 = ∆α = 0.01.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Screening Capacity: α

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

V
(R

2
+

∆
R

2
)
−
V

(R
2
)

β values
0.05 (≈ 24 mos.)

0.15 (≈ 12 mos.)

0.25 (≈ 8 mos.)

Figure 14. V (R2 +∆R2)− V (R2) for CatBoost model and ∆R2 = 0.05.
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Figure 15. The difference in policy value between a 4-depth decision tree and CatBoost model.

B.5. Binary Classification

Instead of predicting the exact duration of unemployment, the problem can be reframed as a binary classification task. For a
fixed β, we can define a binary outcome: Y = 1{Y ⩾ F−1

Y,n(1− β)}. This approach more directly encodes the target of
interest: identifying individuals who may require further screening or assistance. If the chosen classifier provides estimates
of class probabilities p̂(x), it can be used to formulate a decision policy 1{p̂(x) ⩾ F−1

n,p̂(1− α)}. However, this forces us to
specify β and the resulting decision threshold prior to model training. This requirement reduces flexibility compared to a
continuous prediction setup, making classification more appropriate when the model is not intended for use in other tasks
and when β remains constant across the deployment context. Additionally, directly converting durations to labels discards
information on the precise unemployment durations that could be valuable for the modeling process.

As can be seen in Figure 16, the resulting policy values and true positive counts remain very similar compared to the
regression case.
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Figure 16. Policy Value and True Positive Count on Test Set (Classification).
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C. Additional Propositions
Proposition C.1. (Optimal Policy with Gaussian Error) If ε = Y − Ŷ ∼ N (0, γ2), then the optimal policy π∗ : R → {0, 1}
to solve the screening problem (Definition 2.1) is equal to:

π∗(Ŷi) = 1{Ŷi ⩽ F−1

Ŷ
(α)}

where F−1

Ŷ
(α) is the α-quantile of Ŷ . The value of the policy is V (π∗) = Pr[Ŷ ⩽ F−1

Ŷ
(α) | Y ⩽ F−1

Y (β)].

Proof. Since Y = Ŷ + ε where ε ∼ N (0, γ2), it follows for the conditional distribution Y | Ŷ ∼ N (Ŷ , γ2). Since Y | Ŷ
is Gaussian, we can express the conditional probability from Proposition 2.2 in terms of the CDF of the standard normal
distribution,

Pr[Y ⩽ F−1
Y (β) | Ŷ ] = Φ

(
F−1
Y (β)− Ŷ

γ

)

To reproduce the ranking induced by Pr[Y ⩽ F−1
Y (β) | Ŷ ], individuals can be ranked in ascending order of Ŷ . Thus, we

can express the optimal policy (Proposition 2.2) in terms of a ranking of Ŷ ,

π∗(Ŷi) = 1{Ŷi ⩽ F−1

Ŷ
(α)}

where F−1

Ŷ
(α) is the α-quantile of Ŷ . The value V (π∗) that can by achieved by the optimal screening policy π∗ can then be

expressed as:

V (π∗) = E
[
π∗(Ŷ ) = 1 | Y ⩽ F−1

Y (β)
]
= E

[
1{Ŷ ⩽ F−1

Ŷ
(α)} | Y ⩽ F−1

Y (β)
]

= Pr[Ŷ ⩽ F−1

Ŷ
(α) | Y ⩽ F−1

Y (β)]

■

D. Proofs
D.1. Optimal Policy for Screening Problem: Proof of Proposition 2.2

Proof. We rewrite the policy value,

E
[
π(Ŷi) = 1 | Y ⩽ F−1

Y (β)
]
=

E[π(Ŷi)1{Y⩽F−1
Y (β)}]

Pr[Y⩽F−1
Y (β)]

= 1
β E

[
π(Ŷi)E

[
1{Y ⩽ F−1

Y (β)} | Ŷi

]]
= 1

β E
[
π(Ŷi)Pr[Y ⩽ F−1

Y (β) | Ŷi]
]

To maximize the objective, individuals Ŷi with the largest scores s(Ŷi) = Pr[Y ⩽ F−1
Y (β) | Ŷi] should be prioritized. Thus,

the optimal policy is to intervene (π(Ŷi) = 1) for the top α-fraction of the population ranked by Pr[Y ⩽ F−1
Y (β) | Ŷ ]. ■

D.2. Optimal Policy Value in Gaussian Setting: Proof of Proposition 2.3

Following Proposition C.1, the value of the optimal screening policy π∗ can then be expressed as:

V (π∗) = Pr[Ŷ ⩽ F−1

Ŷ
(α) | Y ⩽ F−1

Y (β)]

We can rewrite the conditional probability in terms of the joint distribution of Y and Ŷ , and note that Pr
{
Y ⩽ F−1

Y (β)
}
=

FY (F
−1
Y (β)) = β,

Pr[Ŷ ⩽ F−1

Ŷ
(α) | Y ⩽ F−1

Y (β)] =
1

β
Pr[Ŷ ⩽ F−1

Ŷ
(α), Y ⩽ F−1

Y (β)]
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We then standardize Y ∼ N (µ, η2) and Ŷ ∼ N (µ, η2 − γ2) and make use that for a normal random variable with mean µ
and variance σ2 the quantile function is F−1(p) = µ+ σΦ−1 (p).

1

β
Pr[Ŷ ⩽ F−1

Ŷ
(α), Y ⩽ F−1

Y (β)] =
Pr
{
Z1 ⩽

F−1

Ŷ
(α)−µ√

η2−γ2
, Z2 ⩽ F−1

Y (β)−µ

η

}
β

=
Pr
{
Z1 ⩽ Φ−1 (α) , Z2 ⩽ Φ−1 (β)

}
β

Z1 and Z2 are standard Gaussian with Cov(Z1, Z2) = E [Z1Z2] =
1

η
√

η2−γ2
Cov(Ŷ , Ŷ +ε) = Cov(Ŷ ,Ŷ )

η
√

η2−γ2
=

√
η2−γ2

η . Thus,

they are distributed according to a standard bivariate normal distribution with correlation ρ = Cov(Z1, Z2) =

√
η2−γ2

η .
Thus,

V (π∗) = E
[
π∗(Ŷ ) = 1 | Y ⩽ F−1

Y (β)
]
=

1

β
Φ2

(
Φ−1 (α) ,Φ−1 (β) ; ρ

)
where

Φ2

(
Φ−1 (α) ,Φ−1 (β)

)
=

∫ Φ−1(α)

−∞

∫ Φ−1(β)

−∞
ϕ2 (z1, z2; ρ) dz1 dz2

and

ϕ2 (z1, z2) =
1

2π
√

1− ρ2
e−1/2(z2

1−2ρz1z2+z2
2)/(1−ρ2)

D.3. Prediction-Access Ratio for Small Screening Capacities: Proof of Theorem 3.1

Using Taylor’s theorem,

V (α, β,R2 +∆R2)− V (α, β,R2) = ∆R2

∂

∂R2
V (α, β,R2 + pR2∆R2)

where pR2 ∈ (0, 1). We know from Lemma D.3,

∂

∂R2
V (α, β,R2

∗) ⩽
1

β
√
8πR2

∗(1−R2
∗)
ϕ

(
Φ−1 (α)−

√
R2

∗Φ
−1 (β)√

1−R2
∗

)

where R2
∗ := R2 + pR2∆R2 . For α < 0.5 and β ⩽ 0.5, we know Φ−1 (α) < 0 and Φ−1 (β) ⩽ 0. It follows, that for any

ε1 > 0, 0 < R2
∗ and 0 < β, there exists a threshold value t1 > 0, such that for all α ⩽ t1, we have

(1 + ε1)
Φ−1 (α)√
1−R2

∗
⩽

Φ−1 (α)−
√
R2

∗Φ
−1 (β)√

1−R2
∗

⩽ (1− ε1)
Φ−1 (α)√
1−R2

∗

If α < β we find Φ−1 (α)−
√
R2

∗Φ
−1 (β) < 0. Since ϕ(x) ⩽ ϕ(x′) for x ⩽ x′ < 0,

1

β
√
8πR2

∗(1−R2
∗)
ϕ

(
Φ−1 (α)−

√
R2

∗Φ
−1 (β)√

1−R2
∗

)
⩽

1

β
√
8πR2

∗(1−R2
∗)
ϕ

(
(1− ε1)

Φ−1 (α)√
1−R2

∗

)

=
1

β
√
8πR2

∗(1−R2
∗)
ϕ
(
κΦ−1 (α)

)
=

1

β
√
8πR2

∗(1−R2
∗)
ϕ
(
κΦ−1 (1− α)

)
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where κ := (1−ε1)√
1−R2

∗
. For any ε2 > 0, there exists a threshold t2 > 0, such that for all α ⩽ t2, we can apply Lemma B.5.

from Perdomo (2024) to arrive at the following inequality:

ϕ
(
κΦ−1 (1− α)

)
⩽

1√
2π

(
(1 + ε2)

√
2παΦ−1 (1− α)

)κ2

Thus,

V (α, β,R2 +∆R2)− V (α, β,R2) ⩽ ∆R2

1

β4π
√

R2
∗(1−R2

∗)

(
(1 + ε2)

√
2παΦ−1 (1− α)

)κ2

We can use Taylor’s theorem again and from Lemma D.1 we know that

V (α+∆α, β, R
2)− V (α, β,R2) = ∆α

∂

∂α
V (α+ pα∆α, β, R

2)

= ∆α
1

β
Φ

(
Φ−1 (β)−

√
R2Φ−1 (α+ pα∆α)√
1−R2

)

where pα ∈ (0, 1). Since 0 < β and 0 < R2 there will always be a small enough α+∆α such that

Φ−1 (β)−
√
R2Φ−1 (α+ pα∆α) ⩾ 0

Since Φ (x) ⩾ 1/2 for x ⩾ 0, it follows

∆α

2β
⩽ V (α+∆α, β, R

2)− V (α, β,R2)

It follows for the prediction-access ratio,

∆α

∆R2

2π
√
R2

∗(1−R2
∗)
(
(1 + ε2)

√
2παΦ−1 (1− α)

)−(1−ε1)
2 1

1−R2
∗ ⩽

V (α+∆α, β, R
2)− V (α, β,R2)

V (α, β,R2 +∆R2)− V (α, β,R2)

For small α, Φ−1 (1− α) grows asymptotically like
√
log (1/α). Consequently, the polynomial growth of α−1/(1−R2)

drives the PAR to increase rapidly as α decreases. Since 1
1−R2

∗
increases with R2

∗ and R2 ⩽ R2
∗, we can lower bound the

PAR by inserting R2 instead of R2
∗:

∆α

∆R2

2π
√
R2(1−R2)

(
(1 + ε2)

√
2παΦ−1 (1− α)

)−(1−ε1)
2 1

1−R2

⩽
V (α+∆α, β, R

2)− V (α, β,R2)

V (α, β,R2 +∆R2)− V (α, β,R2)

We can simplify the lower-bound by noting that 0 < ε1 and 0 < ε2 can be made arbitrarily small by selecting a sufficiently
small threshold t for α+∆α. Specifically, ε2 < 1 holds for α ⩽ 0.05 (see Lemma A.6 in Perdomo (2024)).

∆α

∆R2

√
R2(1−R2)

(
5.1 · αΦ−1 (1− α)

)− 1
1−R2 +o(1)

⩽
V (α+∆α, β, R

2)− V (α, β,R2)

V (α, β,R2 +∆R2)− V (α, β,R2)

D.4. Maximally Effective (Local) Prediction Improvements: Proof of Theorem 3.2

We know from Lemma D.2,

lim
∆→0

V (α, β,R2 +∆)− V (α, β,R2)

∆
=

∂

∂R2
V (α, β,R2)

=
1

2β
√
R2

ϕ2

(
Φ−1 (α) ,Φ−1 (β) ; ρ

)
19



The Value of Prediction in Identifying the Worst-Off

We insert ϕ2 (·) and arrive at

∂

∂R2
V (α, β,R2) =

1

4πβ
√

R2(1−R2)︸ ︷︷ ︸
T1

× exp

(
− 1

2(1−R2)
(Φ−1 (α)

2
+Φ−1 (β)

2 − 2
√
R2Φ−1 (α) Φ−1 (β))

)
︸ ︷︷ ︸

T2

The prefactor T1 diverges as R2 → 1 or R2 → 0.

If R2 → 1, the exponential term will generally suppress the polynomial growth of the prefactor. However for α = β, we
find for the exponent

− 1

2(1−R2)
(Φ−1 (α)

2
+Φ−1 (β)

2 − 2
√
R2Φ−1 (α) Φ−1 (β)) = −1−

√
R2

1−R2
Φ−1 (β)

2

= − 1

(1 +
√
R2)

Φ−1 (α)
2

R2→1
= −1

2
Φ−1 (β)

2

which is finite. Therefore, ∂
∂R2V (α, β,R2) becomes unboundedly large if α = β and R2 → 1.

If R2 → 0, the prefector T1 diverges again to +∞. The exponent then simplifies to

− 1

2(1−R2)
(Φ−1 (α)

2
+Φ−1 (β)

2 − 2
√
R2Φ−1 (α) Φ−1 (β)) = −1

2
(Φ−1 (α)

2
+Φ−1 (β)

2
)

If α and β are not set arbitrarily small or large ∂
∂R2V (α, β,R2) will diverge. The local PAR (Lemma D.1)

lim
∆→0

V (α+∆, β, R2)− V (α, β,R2)

V (α, β,R2 +∆)− V (α, β,R2)
=

∂
∂αV (α, β,R2)
∂

∂R2V (α, β,R2)

=
Φ
(

Φ−1(β)−
√
R2Φ−1(α)√

1−R2

)
1

2
√
R2

ϕ2 (Φ−1 (α) ,Φ−1 (β) ; ρ)

approaches zero in both regimes.

D.5. Prediction-Access Ratio for Local Improvements: Proof of Proposition 3.3

We know

lim
∆→0

V (α+∆, β, R2)− V (α, β,R2)

V (α, β,R2 +∆)− V (α, β,R2)
=

∂
∂αV (α, β,R2)
∂

∂R2V (α, β,R2)

Using Lemma D.1 and Lemma D.3 we find a lower bound for the PAR:

√
8πR2(1−R2)︸ ︷︷ ︸

T1

Φ
(

Φ−1(β)−
√
R2Φ−1(α)√

1−R2

)
ϕ
(

Φ−1(β)−
√
R2Φ−1(α)√

1−R2

)
︸ ︷︷ ︸

T2

⩽
V (α+∆α, β, R

2)− V (α, β,R2)

V (α, β,R2 +∆R2)− V (α, β,R2)

We then denote z := Φ−1(β)−
√
R2Φ−1(α)√

1−R2
and T2 = Φ(z)

ϕ(z) . We know from Lemma D.4 that Φ(z)
ϕ(z) increases with z. It follows

that we need to find the smallest possible z to find a lower bound for T2. Generally, z decreases with α and increases with β.
We treat both cases separately:
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1. For α ⩽ β we find Φ−1(β)(1−
√
R2)√

1−R2
⩽ z. Since 1−

√
R2√

1−R2
decreases with R2 and β ⩽ 0.5 we can lower bound the

expression by setting R2 = 0.15 and β = 0.03. Thus, −1.25 ⩽ z and 0.59 ⩽ T2. Since 0.15 ⩽ R2 ⩽ 0.85 we can
lower bound the prefactor 1.79 ⩽ T1.

2. For α ⩽ 0.5, it follows Φ−1(β)√
1−R2

⩽ z by setting Φ−1 (α = 0.5) = 0. Since 0.15 ⩽ β and 0.2 ⩽ R2 ⩽ 0.5, it follows
0.52 ⩽ T2 and 2 ⩽ T1

In both cases, we can combine the lower bounds of T1 and T2 to find

1 ⩽
V (α+∆α, β, R

2)− V (α, β,R2)

V (α, β,R2 +∆R2)− V (α, β,R2)

D.6. Technical Lemmas

Lemma D.1 (Derivative w.r.t. α).

∂

∂α
V (α, β,R2) =

1

β
Φ

(
Φ−1 (β)−

√
R2Φ−1 (α)√

1−R2

)
(4)

Proof. In the Gaussian setting we find for the policy value (Proposition 2.3),

V (α, β,R2) =
Φ2

(
Φ−1 (α) ,Φ−1 (β) ; ρ

)
β

We first apply Leibniz integral rule,

∂

∂α
V (α, β,R2) =

∂

∂α

Φ2

(
Φ−1 (α) ,Φ−1 (β) ; ρ

)
β

=
1

β

∫ Φ−1(β)

−∞
ϕ2

(
z1,Φ

−1 (α) ; ρ
)
dz1

∂

∂α
Φ−1 (α)

=
1

βϕ (Φ−1 (α))

∫ Φ−1(β)

−∞
ϕ2

(
Φ−1 (α) , z2; ρ

)
dz2

We insert the bivariate density ϕ2 (·) and substitute z2 − ρΦ−1 (α) = u
√
1− ρ2

1

βϕ (Φ−1 (α))

∫ Φ−1(β)

−∞
ϕ2

(
Φ−1 (α) , z2; ρ

)
dz2

=
1

βϕ (Φ−1 (α))

1

2π
√
1− ρ2

∫ Φ−1(β)

−∞
e−1/2(z2

2−2ρz2Φ
−1(α)+Φ−1(α)2)/(1−ρ2) dz2

=
1

2πβϕ (Φ−1 (α))

∫ (Φ−1(β)−ρΦ−1(α))/
√

1−ρ2

−∞
e−1/2(u2(1−ρ2)+ρ2Φ−1(α)2+(1−ρ2)Φ−1(α)2)/(1−ρ2) du

=
1

2πβϕ (Φ−1 (α))
e−1/2Φ−1(α)2

∫ (Φ−1(β)−ρΦ−1(α))/
√

1−ρ2

−∞
e−1/2u2

du

=
1

β
Φ

(
Φ−1 (β)− ρΦ−1 (α)√

1− ρ2

)
=

1

β
Φ

(
Φ−1 (β)−

√
R2Φ−1 (α)√

1−R2

)
■

Lemma D.2 (Derivative w.r.t. R2).

∂

∂R2
V (α, β,R2) =

1

2β
√
R2

ϕ2

(
Φ−1 (α) ,Φ−1 (β)

)
(5)

where ϕ2 (·) is the standard bivariate density.
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Proof.

∂

∂R2
V (α, β,R2) =

∂

∂R2

Φ2

(
Φ−1 (α) ,Φ−1 (β) ; ρ

)
β

=
1

β

∂ρ

∂R2

∂

∂ρ
Φ2

(
Φ−1 (α) ,Φ−1 (β) ; ρ

)
=

1

2β
√
R2

∂

∂ρ
Φ2

(
Φ−1 (α) ,Φ−1 (β) ; ρ

)
=

1

2β
√
R2

ϕ2

(
Φ−1 (α) ,Φ−1 (β) ; ρ

)
where ϕ2 (·) is the standard bivariate density. We utilized R2 = ρ2, and in the final step applied the partial derivative of the
standard bivariate cumulative distribution with respect to its correlation ρ (Drezner & Wesolowsky, 1990). ■

Lemma D.3 (Upper bound of R2 derivative). Let 0 ⩽
√
R2 ⩽ 1. Then,

∂

∂R2
V (α, β,R2) ⩽

1

β
√
8πR2(1−R2)

ϕ

(
Φ−1 (β)−

√
R2Φ−1 (α)√

1−R2

)
(6)

∂

∂R2
V (α, β,R2) ⩽

1

β
√
8πR2(1−R2)

ϕ

(√
R2Φ−1 (β)− Φ−1 (α)√

1−R2

)
(7)

Proof. We know from Lemma D.2,

∂

∂R2
V (α, β,R2) =

1

2β
√
R2

ϕ2

(
Φ−1 (α) ,Φ−1 (β) ; ρ

)
=

1

4πβ
√
R2(1−R2)

× exp

(
− 1

2(1−R2)
(Φ−1 (α)

2
+Φ−1 (β)

2 − 2
√
R2Φ−1 (α) Φ−1 (β))

)
Since 0 ⩽

√
R2 ⩽ 1,

Φ−1 (α)
2
+Φ−1 (β)

2 − 2
√
R2Φ−1 (α) Φ−1 (β) ⩾ R2Φ−1 (α)

2
+Φ−1 (β)

2 − 2
√
R2Φ−1 (α) Φ−1 (β)

= (Φ−1 (β)−
√
R2Φ−1 (α))2 ⩾ 0

Similarly,

Φ−1 (α)
2
+Φ−1 (β)

2 − 2
√
R2Φ−1 (α) Φ−1 (β) ⩾ (

√
R2Φ−1 (β)− Φ−1 (α))2 ⩾ 0

Thus,

∂

∂R2
V (α, β,R2) ⩽

1

4πβ
√
R2(1−R2)

exp

(
− 1

2(1−R2)
(Φ−1 (β)−

√
R2Φ−1 (α))2

)

=
1

β
√
8πR2(1−R2)

ϕ

(
Φ−1 (β)−

√
R2Φ−1 (α)√

1−R2

)

and

∂

∂R2
V (α, β,R2) ⩽

1

β
√
8πR2(1−R2)

ϕ

(√
R2Φ−1 (β)− Φ−1 (α)√

1−R2

)

■
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Lemma D.4. The ratio

Φ (z)

ϕ (z)
(8)

is increasing in z.

Proof. We compute the derivative of the ratio Φ(z)
ϕ(z) ,

∂

∂z

Φ (z)

ϕ (z)
=

ϕ2(z) + zϕ (z) Φ (z)

ϕ2(z)
= 1 + z

Φ (z)

ϕ (z)

For z ⩾ 0 the derivative is clearly positive. For z < 0 we start by rewriting,

1 + z
Φ (z)

ϕ (z)
=

z

ϕ (z)

(
ϕ (z)

z
+Φ(z)

)
Since ∂

∂z

(
ϕ(z)
z +Φ(z)

)
= −z2ϕ(z)−ϕ(z)

z2 + ϕ (z) = −ϕ(z)
z2 < 0 and ϕ(z)

z + Φ(z)
z→−∞→ 0, it follows for z < 0 that(

ϕ(z)
z +Φ(z)

)
< 0. Thus for any z,

∂

∂z

Φ (z)

ϕ (z)
⩾ 0

■
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