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ABSTRACT

World models have emerged as promising neural simulators for autonomous driv-
ing, with the potential to supplement scarce real-world data and enable closed-
loop evaluations. However, current research primarily evaluates these models
based on visual realism or downstream task performance, with limited focus
on fidelity to specific action instructions. Although some studies address ac-
tion fidelity, their evaluations rely on closed-source mechanisms, limiting repro-
ducibility. To address this gap, we develop an open-access evaluation frame-
work, ACT-BENCH, for quantifying action fidelity, along with a baseline world
model, TERRA. Our framework includes a large-scale dataset pairing short con-
text videos from nuScenes with corresponding future trajectories, which provide
conditional inputs for generating future video frames and enable evaluation of ac-
tion fidelity for executed motions. Leveraging this framework, we demonstrate
that the state-of-the-art model does not fully adhere to given instructions, while
TERRA demonstrates better action fidelity. All components of our benchmark
framework are publicly available at https://turingmotors.github.
io/actbench/ to support future research.

1 INTRODUCTION

Autonomous driving has advanced rapidly in recent years (Yurtsever et al., 2020; Grigorescu et al.,
2020; Chen et al., 2024a), aiming for safe navigation in complex and dynamic environments. How-
ever, achieving this goal still requires addressing significant challenges, such as collecting extensive
real-world data especially for safety-critical scenarios and adapting to unpredictable road conditions.

One promising approach to addressing these challenges is through the use of world models (Ha &
Schmidhuber, 2018; LeCun, 2022). In autonomous driving, world models are expected to serve
as neural simulators (Zhu et al., 2024) that generate synthetic scenarios, supplementing real-world
data, which can be difficult to collect, and enabling closed-loop evaluations of autonomous driving
systems. In earlier research, world models for autonomous driving were developed and validated in
simplified simulation environments to circumvent the complexity and risks involved in real-world
data collection (Pan et al., 2022; Hu et al., 2022; Gao et al., 2024b). However, as the field matures,
growing interest in accurately capturing real-world complexity has driven recent efforts to construct
world models from actual driving (Wang et al., 2023; Hu et al., 2023a; Wang et al., 2024b; Lu et al.,
2025; Wang et al., 2024b; Gao et al., 2024a).

Despite these advancements, practical applications still lack fidelity to action instructions—crucial
for reliable, safety-critical simulations. Recently, Vista (Gao et al., 2024a) introduced an action
fidelity-aware model that allows for a broad range of conditional inputs. However, its generated
scenes do not fully follow the given instructions (Figure 1), suggesting insufficient fidelity.

To advance action fidelity-aware world models, open-access evaluation benchmarks are needed.
DriveGAN (Kim et al., 2021) is the first work to measure fidelity by comparing ground-truth ac-
tions against those inferred from generated scenes. Later, GenAD (Yang et al., 2024a) introduced
a trajectory-based metric. However, neither method has publicly released the evaluation models,
limiting reproducibility. Similarly, DrivingDojo Dataset (Wang et al., 2024a) uses trajectory-based
metric but does not disclose essential details—such as which (scene, action) pairs are used or
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Figure 1: ACT-BENCH assesses the action controllability of world models by estimating actions,
trajectories, and their deviations from the generated driving scenes using our motion estimator, ACT-
ESTIMATOR. In the upper example, TERRA successfully follows the instruction to “curving to left.”
In contrast, the lower example illustrates that Vista fails to follow the instruction.

video length to be evaluated—and lacks comparisons with public models, further restricting repro-
ducible benchmarking. Although Vista (Gao et al., 2024a) has made its world model public, it still
depends on a closed benchmark. Beyond these concerns about non-open evaluation methods, there
is also a critical lack of publicly available baseline models. While several promising approaches
have been proposed, many are not publicly available or share only partial resources. This lack of
open-access benchmarks and baseline models restricts broader research efforts in this domain.

To bridge these gaps, we introduce ACT-BENCH (Action Controllability Test Benchmark) to eval-
uate action fidelity in driving world models. This benchmark is built on a nuScenes (Caesar et al.,
2020)-based dataset, where each video clip is annotated with multiple trajectories and their corre-
sponding high-level actions (e.g., “curving to right”). These annotations serve as ground truth for
systematic evaluation. We also develop ACT-ESTIMATOR, a motion estimator model, to estimate
action labels and reconstruct trajectories from generated scenes, which are subsequently compared
to ground-truth ones to quantify how accurately a world model follows driving instructions.

Additionally, we introduce a baseline world model, TERRA. The model architecture of TERRA
follows GAIA-1 (Hu et al., 2023a), but as GAIA-1 is not publicly accessible, TERRA represents
the first open-access model sharing the GAIA-1’s philosophy. To enhance action fidelity, TERRA is
trained on three datasets: OpenDV-YouTube (Yang et al., 2024a), nuScenes (Caesar et al., 2020) and
CoVLA (Arai et al., 2024). The use of a larger training dataset allows TERRA to better capture action
fidelity, leveraging more annotated scenes than Vista, which was trained on two datasets, OpenDV-
YouTube and nuScenes. Using the proposed benchmark and baseline model, we examine how well
existing world models follow instructions. First, we confirm that our evaluator model achieves
sufficient performance in assessment tasks. Our empirical studies show that TERRA outperforms
Vista in action fidelity. Notably, in terms of the match rate between instructed high-level actions and
their executions, Vista achieves a 30.72% match, while TERRA reaches 63.21%.

Our contributions include:

• A novel benchmark, ACT-BENCH, for evaluating action fidelity in driving world models.

• A baseline world model, TERRA, demonstrating state-of-the-art action fidelity.

• Empirical evidence that the model with state-of-the-art visual quality still falls short of
faithfully following given instructions.

2 RELATED WORK

This section reviews the existing driving world models and evaluation metrics they utilized. The
brief summary of these world models and metrics are summarized in Table 1.
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2.1 DRIVING WORLD MODEL

World models offer agents a latent representation of the environment, enabling them to simulate
potential futures and explore outcomes of various actions within this learned space (Ha & Schmid-
huber, 2018; Hu et al., 2023b; LeCun, 2022; Zhu et al., 2024). The predictive capability of world
models allows them to simulate and evaluate complex scenarios efficiently, in domains like represen-
tation learning (Wu et al., 2024; Bardes et al., 2024; Gupta et al., 2023; Schwarzer et al., 2021; Wu
et al., 2023b), model-based reinforcement learning (Ha & Schmidhuber, 2018; Hafner et al., 2019a;
2021; 2023; Wu et al., 2023a), and model predictive control (Finn & Levine, 2017; Hafner et al.,
2019b; Mendonca et al., 2023; Huang et al., 2024; Ebert et al., 2018), supporting advancements
in areas such as game AI (Bruce et al., 2024; Łukasz Kaiser et al., 2020; Hafner et al., 2021; 2023;
Micheli et al., 2023; Robine et al., 2023; Zhang et al., 2024; Alonso et al., 2024) and robotics (Hafner
et al., 2019b;a; Huang et al., 2024; Wu et al., 2023a; Piergiovanni et al., 2019; Mendonca et al., 2023;
Ma et al., 2024; Yang et al., 2024b).

Over the past two years, world models for autonomous driving have emerged and rapidly evolved,
with recent advancements introducing models that emphasize different strengths: high-quality video
generation (Hu et al., 2023a; Gao et al., 2024a; Jia et al., 2023; Yang et al., 2024a), consistent multi-
view outputs (Wang et al., 2023; 2024b; Lu et al., 2025), and the ability to incorporate diverse con-
ditional inputs (Hu et al., 2023a; Yang et al., 2024a; Lu et al., 2025; Wang et al., 2023; 2024b; Jia
et al., 2023), such as text prompts, bounding boxes, and map information. Together, these develop-
ments enable visually realistic driving simulations across various scenarios, significantly expanding
their utility for training and testing autonomous systems in more flexible and robust ways.

2.2 EVALUATION METRICS FOR DRIVING WORLD MODEL

Visual Quality Metric. A core task of driving world model is video generation. In recent years,
evaluation of video generation models has commonly relied on metrics such as Fréchet Inception
Distance (FID) (Heusel et al., 2017), Fréchet Video Distance (FVD) (Unterthiner et al., 2018; 2019),
and CLIPSIM (Radford et al., 2021).

Action Fidelity. Evaluating how well generated driving videos adhere to action-based conditioning
has been explored in prior works. DriveGAN (Kim et al., 2021) introduced a CNN-based action
estimator to infer the driving action that caused a transition between frames, but its closed-source
nature limits reproducibility. GenAD (Yang et al., 2024a) and Vista (Gao et al., 2024a) instead
leverage monocular visual odometry (VO) to estimate the executed instruction and compare it with
the intended input; however, their VO models and evaluation datasets remain unavailable, making
standardized assessment difficult. Similarly, DrivingDojo (Wang et al., 2024a) employs a Structure-
from-Motion (SfM) approach to reconstruct trajectories and compare them against conditioning
trajectories, yet its evaluation data and conditions are not disclosed.

These methods rely solely on trajectory comparison, reducing diverse trajectory patterns to a sin-
gle numerical metric. This oversimplification limits fidelity evaluation from multiple aspects. In
contrast, our approach combines trajectory analysis with high-level action classification, enabling
broader assessment and identifying performance differences across various driving behaviors, such
as whether a model executes left turns more reliably than right turns.

3 ACT-BENCH

To establish an open benchmark for action fidelity in driving world models, we present Action
Controllability Test Benchmark (ACT-BENCH), a dataset with annotated actions and trajectories,
along with an evaluation mechanism. ACT-BENCH also includes TERRA, a baseline model for
performance comparison.

3.1 BENCHMARK DATASET

We construct a benchmark dataset designed specifically to assess how well generated frame se-
quences align with given trajectory instructions. This dataset leverages a subset of the validation
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Table 1: Comparison of Evaluation Metrics used for Autonomous Driving World Models.
“N/A” indicates that either the evaluation has not been conducted or that only qualitative assess-
ment is available. Highlighted models and evaluation metrics are not publicly available.

Method Evaluation Metrics
Visual Quality Action Fidelity

DriveGAN (Kim et al., 2021) FID, FVD action estimator
GAIA-1 (Hu et al., 2023a) N/A N/A
DriveDreamer (Wang et al., 2023) FID, FVD N/A
WoVoGen (Lu et al., 2025) FID, FVD N/A
ADriver-I (Jia et al., 2023) FID, FVD N/A
DriveWM (Wang et al., 2024b) FID, FVD N/A
GenAD (Yang et al., 2024a) FID, FVD, CLIPSIM VO-based
Vista (Gao et al., 2024a) FID, FVD VO-based
DrivingDojo (Wang et al., 2024a) FID, FVD SfM-based

split from widely used nuScenes (Caesar et al., 2020) dataset, augmented with trajectory templates
for precise conditional generation tasks.

Our dataset comprises short video segments captured from the CAM FRONT camera in nuScenes.
Although nuScenes contains various data modalities, such as multi-camera footage and LiDAR point
clouds, we limit our focus to the front-facing camera view, as it captures the vehicle’s immediate
forward path—essential for action-following evaluation and sufficient for our purposes. Each video
segment is paired with one or more trajectory templates, allowing a single context video to support
multiple trajectory conditions. To obtain relevant video segments, we extract short intervals of 10
frames from 20-second nuScenes scenes, focusing on sequences where specific trajectory templates
can be applied.

The trajectory templates span eight driving maneuver categories, each offering multiple curvature
and speed options, ensuring broad coverage. Details of each category and the corresponding number
of video-trajectory pairs are listed in Table 2. Each extracted interval consists of a 10-frame context
video and the associated trajectory instructions.

Table 2: The number of Video-trajectory pairs for each action category. HS and LS represent
high speed and low speed respectively.

Action Curv L Curv R Starting Stopping Accel Const@HS Const@LS Decel Total

Number of Pairs 162 188 89 508 273 303 238 218 1979

We employ two filtering steps. First, we discard segment–trajectory pairs where the initial speed
in the context video differs from the template’s starting speed by over 10 km/h. Second, through
visual inspection, we exclude any segment that involves object interactions likely to impact evalu-
ation or generation. This process yields 1,979 carefully selected video–trajectory pairs. To support
world models operating on a per-frame action-input basis, we provide trajectory instructions for
each frame. We adjust each template for ideal vehicle orientation over the sequence to align natu-
rally with each action. These multi-frame trajectories come from CoVLA dataset (Arai et al., 2024),
which provides pre-processed per-frame trajectory annotations. See Appendix C for visualizations
of the eight template trajectories.

3.2 BENCHMARK METRICS

To capture different aspects of action fidelity, we introduce two distinct metrics: instruction-
execution consistency (IEC) and trajectory alignment (TA). IEC quantifies the degree of alignment
between the given instructions and the executed high-level actions, while TA measures the distance
between the estimated trajectory and its ground truth corresponding to the given instruction.

Instruction-Execution Consistency. Let ains
j represent the instruction provided as a prior for gen-

erating a scene with the world model to be evaluated, and aest
j represent the estimated action derived

from the generated scene. Both ains
j and aest

j belong to the set of high-level actions, denoted as A,
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such that ains
j , aest

j ∈ A. For n samples, IEC can be assessed as follows:

IEC =
1

n

n∑
j=1

1{ains
j = aest

j } (1)

where 1{·} is the indicator function, which returns 1 if ains
j and aest

j match, and 0 otherwise.

Trajectory Alignment. Let τ ins ∈ RT×d denote the intended trajectory provided as a condition-
ing input, where T represents the number of points in the trajectory and d represents the dimen-
sionality of each point. Similarly, let τ est ∈ RT×d denote the estimated trajectory derived from
the generated video. The alignment between τ ins and τ est is quantified using a distance function
D : (RT×d,RT×d) → R that takes two trajectories as input and returns a scalar value, expressed
as D(τ ins, τ est). Common choices for D include Average Displacement Error (ADE) and Final Dis-
placement Error (FDE) (Phong et al., 2023), which provide meaningful evaluations of trajectory
closeness. A smaller value indicates closer alignment.

ADE =
1

T

T∑
t=1

∥τ ins
t − τ est

t ∥2 (2)

FDE = ∥τ ins
T − τ est

T ∥2 (3)

3.3 ACT-ESTIMATOR

Our approach uses a model that performs high-level action classification and vehicle trajectory es-
timation on generated camera frames, forming the basis for our automated evaluation metric. We
refer to trajectory estimation in this work as reconstruction of past vehicle positions from visual
observations rather than prediction of future trajectories.
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Figure 2: Architecture of ACT-
ESTIMATOR. The model jointly
performs high-level action classi-
fication and trajectory regression
from an input video.

Dataset. The training dataset of ACT-ESTIMATOR is con-
structed independently of ACT-BENCH dataset. Each sam-
ple comprises a 4-second sequence of frames from nuScenes
dataset, along with corresponding trajectory and a high-
level action class label. The trajectories are derived from
ego pose information associated with CAM FRONT sensor,
and action labels are generated using a rule-based algorithm
categorizing trajectories into nine classes. We also include a
“Stopped” class to capture scenarios where predicted motion
remains completely stationary, ensuring comprehensive cover-
age of potential behaviors and preserving diversity in the train-
ing data. Details on the labeling methodology are in the Ap-
pendix A.

Joint Optimization. ACT-ESTIMATOR employs a multi-task
framework that jointly classifies high-level vehicle movements
(e.g., left or right turns) and predicts vehicle trajectories, lever-
aging shared representations from trajectory estimation to im-
prove classification accuracy. The loss function is expressed
as follows:

Ltotal = β · Lclassification + (1− β) · Ltrajectory (4)

where β is a weighting factor that controls the relative importance of each task. We employ the
cross-entropy loss as Lclassification and smooth L1 loss (Girshick, 2015) as Ltrajectory.

Model Architecture. The architecture of ACT-ESTIMATOR is shown in Figure 2. ACT-
ESTIMATOR utilizes proven I3D (Carreira & Zisserman, 2017) architecture as its backbone, ex-
tracting spatiotemporal features from input videos. These features are then flattened and passed
through self-attention (Vaswani, 2017) layers to focus on critical parts within the video. Following
this, the processed information is passed to dual-task heads, each tailored for one of the two tasks.

1. Classification Head: A multi-layer perceptron (MLP) predicts high-level action classes
based on the features pooled through Global Average Pooling (Lin, 2013).
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Figure 3: TERRA’s architecture overview. TERRA follows the same design philosophy as GAIA-
1 (Hu et al., 2023a) but omits text conditioning capability to maintain simplicity.

2. Trajectory Prediction Head: A GRU (Cho et al., 2014)-based unit with cross-
attention (Bahdanau et al., 2015) that autoregressively predicts 2D trajectory coordinates
(x, y) for each point in the path.

3.4 TERRA: A BASELINE WORLD MODEL

As a baseline world model, we introduce TERRA, an open-access world model designed for flexible
trajectory control. TERRA shares the same design principles as GAIA-1 (Hu et al., 2023a), yet it
is trained on three open datasets: OpenDV-YouTube (Yang et al., 2024a), nuScenes (Caesar et al.,
2020) and CoVLA dataset (Arai et al., 2024). Notably, TERRA allows trajectory-based instructions
to be input at each frame during conditioning, enabling precise control over the generated video.
The brief architecture of TERRA is illustrated in Figure 3, and additional details are provided in the
Appendix D. Table 3 reports the results of visual fidelity evaluation.

Table 3: Comparison of visual fidelity metrics on nuScenes validation set. For Vista, we re-
produce the metric calculation and list the results in parentheses. For TERRA, we report the value
computed using the same procedure.

Model FID ↓ FVD ↓
DriveGAN (Kim et al., 2021) 73.4 502.3
DriveDreamer (Wang et al., 2023) 52.6 452.0
WoVoGen (Lu et al., 2025) 27.6 417.7
Drive-WM (Wang et al., 2024b) 15.8 122.7
GenAD (Yang et al., 2024a) 15.4 184.0
Vista (Gao et al., 2024a) 6.9 (6.9) 89.4 (162.1)
TERRA (Ours) 17.8 233.3

4 ESTIMATOR VALIDATION

We validate the performance of ACT-ESTIMATOR by assessing how reliably it performs against
ground truth and related evaluation methods. The evaluations in the following subsections are con-
ducted on a validation split consisting of 8,407 randomly selected samples from the dataset described
in Section 3.3. This split is used exclusively for evaluation and is not included in the training process.

4.1 HIGH-LEVEL ACTION CLASSIFICATION

Figure 4 (Left) shows the results of high-level action classification, with accuracy exceeding 94%.
This highlights the model’s strong capability to identify intended actions. Furthermore, ACT-
ESTIMATOR maintains consistently high performance across all classes, demonstrating robust dis-
tinctions among various driving maneuvers and underscoring its reliability.
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Figure 4: Validation results of ACT-ESTIMATOR. (Left) Confusion matrix for high-level action
classification on the validation dataset. (Right) Examples of estimated vehicle trajectories. DROID-
SLAM (DS) tends to overestimate the trajectory length while our model demonstrates higher align-
ment with the ground truth (GT) trajectories.

Table 4: Fidelity of Estimated Vehicle Trajectories. Comparison of ADE(↓) and FDE(↓) between
our model and DROID-SLAM (DS), for estimated trajectories from video sequences. Our model
shows consistently lower errors.

Action Curv L Curv R Starting Stopped Stopping Accel Const@HS Const@LS Decel Avg.

Ours (ADE) 0.82 0.78 0.81 0.76 0.73 0.78 0.83 0.84 0.79 0.81
DS (ADE) 9.91 9.51 3.25 0.06 7.15 7.67 6.92 8.39 9.03 7.52

Ours (FDE) 1.61 1.54 1.61 1.48 1.41 1.52 1.64 1.64 1.58 1.59
DS (FDE) 18.70 18.44 8.85 0.09 9.98 14.62 11.46 15.04 14.82 13.75

4.2 VEHICLE TRAJECTORY ESTIMATION

We measure ADE (Eq. 2) and FDE (Eq. 3) to quantify how the estimated trajectories align with
their ground truths. As a baseline for comparison, we employ DROID-SLAM (Teed & Deng, 2021),
a well-established SLAM (Durrant-Whyte & Bailey, 2006) approach. To adapt DROID-SLAM to
our monocular setup, we combine it with Metric3D (Hu et al., 2024; Yin et al., 2023) for monocular
depth estimation.

Vista (Gao et al., 2024a) and GenAD (Yang et al., 2024a) utilize an XVO (Lai et al., 2023)-based
mechanism, namely inverse dynamics estimation, to infer trajectories from the generated scenes;
however, the details of the mechanism are not disclosed yet (as discussed in Table 1). Due to this,
we employ DROID-SLAM as the baseline even though there is a target domain gap.

Table 4 shows that our model outperforms this adapted DROID-SLAM setup on both ADE and FDE
metrics, indicating superior precision in predicting vehicle trajectories. Figure 4 (Right) illustrates
four estimated trajectories. DROID-SLAM tends to overestimate the trajectory length, especially in
curving and high-speed scenarios. Our model demonstrates higher alignment with the ground truth
trajectory, as reflected by lower ADE and FDE values.

5 ACTION CONTROLLABILITY EXPLORATION

This section explores action controllability for existing open-access world models: Vista and our
model TERRA. Section 5.1 and 5.2 analyzes IEC performance and TA performance respectively.

We first summarize the process for generating action-conditioned scenes using Vista and TERRA.
To effectively capture driving actions, a minimum duration of four seconds is considered essential.
Vista is designed to generate sequences with a fixed input of three conditioning frames, producing
22 frames per round. Thus, we generate sequences over two rounds, resulting in a total of 44 frames
(equivalent to 4.4 seconds of video). TERRA adopts the same setup as Vista for consistency.
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Figure 5: Confusion Matrices and Visualized Trajectories for Vista and Terra. (Left) These
confusion matrices indicates that Vista struggles with curving actions, whereas TERRA achieves a
higher match rate with the ground-truth actions. (Right) Visualized trajectories comparing estimated
and instructed trajectories for different actions. Vista exhibits greater deviation from the intended
trajectory, particularly in curving actions, while Terra more effectively follows the target trajectory’s
curvature.

Table 5: Trajectory Alignment across Action Categories. ADE(↓) and FDE(↓) are measured to
evaluate how accurately each model generates motions that adheres to the conditioned trajectories
across various high-level action categories. TERRA results in better alignment to the conditioned
trajectories against Vista.

Action Curv L Curv R Start Stopping Accel Const@HS Const@LS Decel Avg.

Vista (ADE) 3.59 3.73 3.23 3.50 6.46 5.72 2.79 6.37 4.50
TERRA (ADE) 3.67 3.31 2.91 3.41 5.37 4.07 2.35 5.33 3.85

Vista (FDE) 8.01 8.52 10.32 3.97 14.98 11.28 5.34 11.56 8.66
TERRA (FDE) 6.58 7.05 9.99 5.29 13.53 8.86 5.23 10.75 8.05

Action conditioning for Vista is restricted to a single action input per generation round, limiting
its flexibility. In contrast, TERRA allows action conditioning on every frame, enabling trajectory
inputs for each frame during the generation process. The frequency of instruction is determined by
the specific constraints of each world model. As a result, each world model generates 1,979 videos
using three conditioning frames and their corresponding trajectories from ACT-BENCH dataset.

5.1 INSTRUCTION-EXECUTION CONSISTENCY EVALUATION

Figure 5 (Left) illustrates the ratios of estimated action occurrences compared to their ground-truth
actions for Vista and TERRA, respectively. Vista achieves a match rate of 30.72%, while TERRA
achieves 63.21%. Although TERRA generally outperforms Vista across most action classes, partic-
ularly in turning maneuvers, it lags behind on “Accel” and “Const@LS,” where Vista demonstrates
relatively stronger performance. Nevertheless, Vista continues to struggle with other speed transi-
tions and curved driving actions, resulting in a lower overall accuracy.

5.2 TRAJECTORY ALIGNMENT EVALUATION

Table 5 shows ADE and FDE, which reveal how closely each model’s generated trajectories match
the intended paths. TERRA outperforms Vista in both ADE and FDE across most high-level action
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Figure 6: An example of an abrupt, unnatural result in generation by Vista. While the left three
frames generated in the first round show nearly straight movement, the right three frames generated
in the second round exhibit a significant shift to the right, resulting in a noticeably jerky motion
when connected sequentially.

“Stopping” Trajectory inserted!

t = 5 t = 15 t = 25 t = 35 t = 45

Car in front is moving ahead. CAR IN FRONT STOPPED!!!

Figure 7: An example of the Causal Misalignment in world models. Leading car stops in response
to the ”stopping” instruction given to the ego vehicle, but it is expected to continue its motion
independently of the ego vehicle’s actions.

classes, reflecting its superiority in responding to provided trajectory. Figure 5 (Right) shows tra-
jectory scatter plots for both models. Vista underperforms on curves, producing straighter paths,
while Terra follows the instructed trajectory more closely, indicating greater proficiency at curving
actions. These observations suggest that TERRA exhibits better action fidelity and controllability
in response to given instructions. However, it still faces challenges in maintaining consistent travel
distance.

5.3 NOTEWORTHY FINDINGS

We find two remarkable findings in the analysis of Vista and TERRA through our evaluation frame-
work. Firstly, we observe that Vista, which allows action conditioning only at each generation
round, exhibit abrupt and unnatural motion changes at round transitions (Figure 6). In contrast, no
such phenomenon is observed in TERRA.

Secondly, we discover cases where actions directed at the ego-vehicle appear to inadvertently influ-
ence other agents visible in the context, even though these actions are not intended to affect them.
For example, when given instructions for the ego-vehicle to gradually decelerate and stop while
following a car ahead, we observe that the car in front also came to an unexpected stop (Figure 7).
Such behavior, termed Causal Misalignment, which deviates from real-world dynamics, can pose
a significant challenge when utilizing world models as simulators. Notably, we find that this phe-
nomenon occurs in both models—highlighting the need for robust strategies to prevent ego-vehicle
actions from triggering unintended effects on other agents.

6 CONCLUSION

We introduced ACT-BENCH, an open evaluation framework for action fidelity, comprising an an-
notated dataset, ACT-ESTIMATOR, and a baseline model, TERRA. Our findings show that while
the state-of-the-art model struggled with adherence to instructions, TERRA demonstrated improved
fidelity and the ability to generate diverse action-conditioned scenes. We hope ACT-BENCH fosters
further research in driving world models.
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A DATASET CONSTRUCTION FOR ACT-ESTIMATOR

This section details the procedure for constructing the dataset used to train our ACT-ESTIMATOR.
The dataset is derived from nuScenes dataset, specifically using sequences from the CAM FRONT
sensor. Each sequence consists of 44 frames, corresponding to approximately four seconds of video,
and includes the associated trajectory data computed from ego pose information. To maximize
dataset size while maintaining temporal coherence, overlapping windows with a stride of one frame
are applied to slice nuScenes frames into 44-frame segments. The trajectory data, representing the
vehicle’s position and orientation, is transformed into a local coordinate system centered on the
initial frame of each segment for consistency.

High-level action labels are automatically assigned using a rule-based algorithm that categorizes
trajectories into eleven predefined classes (see Table 6). The algorithm uses thresholds for various
features, including changes in waypoint interval distances, trajectory curvature, and the angle be-
tween the trajectory tangent and the y-axis (0° representing straight ahead). These thresholds are
empirically calibrated to balance class distribution across the dataset. This automated labeling pro-
cess ensures accurate and consistent categorization of trajectories, making the dataset suitable for
training and evaluating ACT-ESTIMATOR.

B ACT-ESTIMATOR

Architecture. The architecture of ACT-ESTIMATOR, as shown in Figure 2, is designed with sim-
plicity and efficiency in mind. It combines I3D backbone, a Transformer Encoder to refine spatio-
temporal features, and task-specific heads to handle high-level action classification and trajectory
regression tasks effectively. This lightweight design strikes a balance between performance and
computational cost, enabling robust classification capability of high-level actions and trajectory esti-
mation while remaining computationally efficient for inference. The “Pred class” column in Table 6
indicates the action classes that are included in the classification task of ACT-ESTIMATOR. Notably,
the classes shifting towards left and shifting towards right are excluded from
the classification targets due to their very small sample sizes (each accounts for less than 1% of the
dataset), which would lead to severe class imbalance and potentially degrade overall classification
performance. However, these classes are still utilized in the trajectory reconstruction task.

Training procedure. ACT-ESTIMATOR is trained for 30,850 iterations on four H100 GPUs with a
per-GPU batch size of 12 and gradient accumulation steps of 2, resulting in an effective batch size
of 96. We use AdamW optimizer (Loshchilov, 2017) along with OneCycleLR scheduler, setting the
maximum learning rate to 1.2× 10−4.

Table 6: Sample counts for each high-level action category in the dataset used to train the ACT-
ESTIMATOR. The Pred class column indicates whether the category is included in the classification
task, with excluded categories omitted due to class imbalance.

High-level Action Category #Samples Pred class

Curving to Left (Curv L) 7925 ✓
Curving to Right (Curv R) 8264 ✓
Shifting towards Left 285
Shifting towards Right 353
Starting 1952 ✓
Stopped 3958 ✓
Stopping 1809 ✓
Accelerating (Accel) 1912 ✓
Decelerating (Decel) 1903 ✓
Straight Const @ High Speed (Const@HS) 9055 ✓
Straight Const @ Low Speed (Const@LS) 8996 ✓

Total 46412
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Figure 8: Template Instruction Trajectories used in the proposed ACT-BENCH. The trajectories
represent eight categories with 32 variations in total, showcasing diverse movement patterns. Each
trajectory is manually selected and associated with a corresponding scene in ACT-BENCH to ensure
alignment with its intended instruction. These trajectories are carefully curated from CoVLA dataset
through a manual selection process to capture representative and meaningful motion behaviors.

C TEMPLATE INSTRUCTION TRAJECTORY

Template instruction trajectories are essential for defining the ground-truth vehicle movements in
ACT-BENCH and evaluating the fidelity of generated driving scenes. These trajectories act as
ground-truth references, paired with context videos extracted from nuScenes dataset. Figure 8 illus-
trates all the instruction trajectories used in ACT-BENCH. To ensure consistency, the initial speed
of each trajectory is matched with the starting speed of the vehicle in the context video.

To achieve comprehensive evaluation, we defined eight categories of instruction trajectories, such
as Curving to Left (Curv L), Curving to Right (Curv R), Starting, Stopping, Accelerating (Accel),
Decelerating (Decel), Straight Constant at High Speed, and Straight Constant at Low Speed. Each
category includes multiple variations based on curvature, speed, or displacement, resulting in 32
distinct trajectories. This diversity ensures that ACT-BENCH effectively assesses world models’
ability to generate realistic and instruction-adherent driving scenarios.

D TERRA WORLD MODEL DESIGN

As illustrated in Figure 3, TERRA is an autoregressive Transformer-based World Model that takes
a sequence of discretized image tokens and a vector sequence of trajectory instructions as input,
predicting the sequence of image tokens at future time steps. An Image Tokenizer is employed to
convert a sequence of image frames into a sequence of discrete tokens, while a frame-wise Decoder
is used to transform the sequence of discrete tokens back into image frames. These components cor-
respond to Encoder and Decoder of an Autoencoder, respectively. The vector sequence of trajectory
instructions is processed through Action Embedder for input representation. Additionally, TERRA
incorporates a post-hoc Video Refiner to enhance temporal consistency and resolution of the videos
predicted by the frame-wise Decoder. The following section, D.1, provides a detailed description of
the core components of the world model, while Section D.2 focuses specifically on the design and
functionality of the Video Refiner.
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D.1 WORLD MODELING THROUGH TOKEN PREDICTION

Image Tokenization. Given that our world model is constructed using an autoregressive Trans-
former, which works well with discrete token representations, we opt to represent the latent
codes as sequences of discrete tokens. Formally, we employ CNN based encoder network Eθ

to tokenize a sequence of frames X = (x1, . . . ,xT ) ∈ RT×H×W×3 into discrete latent codes
C = (c1, . . . , cT ) ∈ {1, 2, . . . ,K}T×H′×W ′

. Here, H denotes the height of the image, W the
width of the image, and K the codebook (vocabulary) size. Let H ′ and W ′ represent the down-
scaled dimensions, defined as H ′ = H/D and W ′ = W/D, where D is the downscaling factor.
Each ct is subsequently flattened into a one-dimensional sequence of discrete tokens in raster-scan
order before being input into the autoregressive Transformer.

Action-conditioning with Sequence of Trajectories. Since TERRA aims to be utilized as a sim-
ulator for autonomous driving, it is designed to accept future vehicle trajectories as input, a format
commonly adopted as the output by many autonomous driving planning algorithms (Hu et al., 2023c;
Jiang et al., 2023; Chen et al., 2024b; Weng et al., 2024). A trajectory is provided at each time step
t, represented as a sequence at = (at1, . . . ,a

t
L), where each point atl = (xl, yl, tl) indicates the ve-

hicle’s position in a vehicle-centered coordinate system tl seconds into the future, with the vehicle’s
position at time step t as the origin.

Interleaved Inputs. During training phase, it is assumed that trajectories a1, . . . , aT are available
at each time step corresponding to the discrete codes c1, . . . , cT of the T frames. In cases where
corresponding trajectory data is not available, a special trajectory a∗ = (a∗1, . . . , a∗

L) representing
an empty trajectory is used for all time steps t. Latent codes and trajectories are then arranged in an
interleaved format as (c1,a1, c2,a2, . . . , cT ,aT ). On the other hand, in the inference phase, we au-
toregressively predict the discrete codes ĉT ′+1, . . . , ĉT of the subsequent frames using the discrete
codes c1, . . . , cT ′ of the frame sequence provided as context, along with the trajectories a1, . . . ,aT
for T (> T ′) time steps. Initially, we provide (c1,a1, . . . , cT ′ ,aT ′) and predict the discrete code
sequence ĉT ′+1, generating one token at a time. After predicting N = H ′ × W ′ tokens, we in-
sert aT ′+1 afterward, reformulating the sequence as (c1,a1, . . . , cT ′ ,aT ′ , ĉT ′+1,aT ′+1), thereby
enabling the prediction of discrete tokens for the next frame.

Before being fed into the autoregressive Transformer, the data are first transformed into embeddings
of d dimensions. The token sequences representing image frames, given their discrete nature, are
embedded through a learnable lookup table. In contrast, each trajectory at consists of L three
dimensional vectors representing future positions and timestamps, and is therefore converted into
embeddings via a multi-layer perceptron.

Learnable Positional Embedding. We apply learnable positional encodings decomposed into
temporal and spatial components. The temporal positional encoding provides d-dimensional em-
beddings that assign unique values at each time step t for the image frames. In contrast, the spatial
positional encoding assigns unique values to each of the N + L tokens within the same time steps.

Training Objective. The autoregressive Transformer is trained on next token prediction task. In
this process, the loss is computed only for the token sequences representing image frames, while
tokens representing trajectories are excluded from loss calculation. The loss function is formalized
as follows.

Lworld model = −
T∑

t=1

N∑
n=1

log p(ct,n|c<t, ct,m<n,a<t) (5)

D.2 VIDEO REFINER

When employing the world model as a simulator for camera-based autonomous driving systems, it
becomes necessary to decode predicted future states, represented as discrete token sequences, back
into video sequences. A straightforward approach to achieve this is to utilize the decoder from the
image tokenizer, which is typically adopt an Autoencoder architecture, to decode each frame individ-
ually. However, with this approach, the resulting video may exhibit low temporal consistency, even
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if the quality of individual frames is high. Furthermore, when downscaling is applied to the images
to reduce the sequence length input to the autoregressive model, the decoded images are also down-
scaled, which is suboptimal for use as a neural simulator. To address these issues and improve both
image resolution and temporal consistency, we employ a latent diffusion model (LDM) (Podell et al.,
2023; Rombach et al., 2022) based Video Refiner. Specifically, the Video Refiner is constructed
by fine-tuning the pre-trained model of Stable Video Diffusion (SVD) Blattmann et al. (2023), an
image-to-video model. In SVD, the conditioning image is first transformed into a latent represen-
tation z ∈ RCr×Hr×Wr , which is then concatenated along the channel axis with each frame of the
noise n ∈ RTr×Cr×Hr×Wr , resulting in a combined latent representation n′ ∈ RTr×2Cr×Hr×Wr .
By iteratively denoising n′ using the U-net model Dθ, a video is generated with reference to con-
ditioning image. On the other hand, we first decode images using the Autoencoder’s decoder, then
upscale it to the desired resolution, and use this sequence of frames as conditioning. Conditioning
images are transformed into latent representations z′ ∈ RTr×Cr×Hr×Wr by the VAE encoder of
SVD, which are then concatenated to the noise n. The training and inference process follows the
same flow as SVD.

E IMPLEMENTATION DETAILS OF TERRA

E.1 HYPER-PARAMETER SETTINGS

We set the size of the input images before passing them into the Image Tokenizer to H = 288
and W = 512. During training, we process 25 frames at a time (T = 25). Since we handle
videos at a frame rate of 10 Hz, this corresponds to 2.5 seconds of video. For algorithms that
convert image(s) into sequence(s) of discrete tokens, VQ-VAE (Van Den Oord et al., 2017) is widely
known; however, we employ a more expressive approach using Lookup-Free Quantization (Yu et al.,
2024). Specifically, we utilize the pre-trained weights1 of Open-MAGVIT2 (Luo et al., 2024) as our
tokenizer. The Image Tokenizer we utilize is configured with a codebook size of K = 262, 144 and
the downscaling parameter of D = 16. As a result, the number of discrete tokens used to represent
a single image is N = 288/16 × 512/16 = 576. The length of the vector sequence representing
actions is L = 6, resulting in a sequence length during training of (N +L)×T = (576+6)×25 =
14, 550. The dimensionality of the embedding input to the Transformer is set to d = 2048. As a
special trajectory a∗ used for padding, we employ a matrix where all elements are set to −1.0:

−1. −1. −1.
−1. −1. −1.
−1. −1. −1.
−1. −1. −1.
−1. −1. −1.
−1. −1. −1.


The values of tl vary depending on the training dataset, as shown below:

tl =

{
0.45 + 0.5× (l − 1), l = 1, 2, . . . , 6. (CoVLA)
0.5× l, l = 1, 2, . . . , 6. (nuScenes)

In the Video Refiner, the images are first upscaled from 288× 512 to 384× 640. Subsequently, the
latent variables compressed to Hr = 48 and Wr = 80 using the pre-trained Autoencoder from SVD
are utilized. The settings for Tr and Cr are kept consistent with those of SVD, using Tr = 25 and
Cr = 4.

E.2 TRAINING PROCEDURE

We conduct the training of the world model and the Video Refiner separately. As a preparation
step for training both models, videos from OpenDV-YouTube, nuScenes, and CoVLA dataset are
converted into sequences of image frames at 10 Hz. Each image frame is subsequently transformed

1https://huggingface.co/TencentARC/Open-MAGVIT2/blob/
2f7982b9d1d4c540645a5fb2c39e5892ebea15b7/imagenet_256_B.ckpt
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into a sequence of tokens using the pre-trained Image Tokenizer. For CoVLA dataset, since tra-
jectory data in the vehicle-centric coordinate systems is available for each time step up to 2.95
seconds ahead, trajectory instruction data is created by sampling six (x, y) coordinates. Similarly,
for nuScenes dataset, trajectory data in the vehicle-centric coordinate system is generated based on
the ego pose up to 3 seconds ahead, from which six (x, y) coordinates is sampled to create the
trajectory instruction data. The data is segmented into non-overlapping chunks of 25 frames each
and stored. Ultimately, OpenDV-YouTube dataset is divided into 1.67 million chunks, nuScenes
dataset into 25,000 chunks, and CoVLA dataset into 0.23 million chunks.

We employ a Transformer based on Llama (Touvron et al., 2023) architecture as the world model,
which is trained from a randomly initialized state. The training is conducted over 40k steps using
56 H100 80GB GPUs, with a per-GPU batch size of 1. Gradient accumulation steps is set to 4.
The world model is optimized using AdamW (Loshchilov, 2017) optimizer in combination with a
Cosine Decay learning rate schedule. The detailed parameter settings for the world model training
are provided in the Table 7.

The training of the Video Refiner is based on the first-stage training setup of Vista (Gao et al.,
2024a). In Vista, a dynamic prior is provided for the first three frames, and the initial frame is used
as a conditioning frame by concatenating it with a noise tensor n along the channel axis. However, in
our case, the goal is to refine the coarse predictions mode by the frame-wise Decoder. Therefore, we
do not include a dynamic prior. Instead, we concatenate the latent variables of the coarse predictions
for each frame, as predicted by the frame-wise Decoder, with the noise tensor n along the channel
axis. The training is conducted over 800k steps on 8 H100 80GB GPUs with a per-GPU batch size
of 1.

F VIDEO GENERATION SETTINGS

For video generation with Vista, we refer to the sample.py2 script in Vista and use the parameter
settings listed in the Table 8. However, in the case of multi-round generation with Vista, the same
instructions are repeatedly used for each generation round. In our dataset, corrected target trajecto-
ries are provided for each future frame, representing the position and orientation at each timestep
if the vehicle were to move faithfully along the target trajectory. Therefore, we modify the process
of multi-round generation to use the trajectory assigned to the frame at the start of each round as
illustrated in Figure 6.

In video generation with Terra, trajectory instructions are incorporated by appending the trajectory
instruction at corresponding to each frame to the sequence of image tokens ĉt generated for that
timestep. This approach is repeated for every frame during the generation process. To accelerate
inference, video generation is performed using vLLM (Kwon et al., 2023). We conduct generation
with the generation parameter settings temperature = 0.9, top p = 1.0 and top k = −1.

G VISUALIZATION

Figure 9 visualizes videos generated by Terra. While the movements do not exactly follow the
instructed trajectory, they demonstrate a reasonable level of adherence to the given instructions.

In Figure 10, the first row illustrates a case where the preceding and oncoming vehicles begin moving
unnaturally as the ego vehicle approaches. In contrast, the example in the second row depicts a
scenario where a parallel vehicle accelerates unnaturally. In Vista, instructions are inserted at the
transitions between rounds, making these transitions particularly prone to noticeable irregularities.

Figure 11 demonstrates an example where the oncoming vehicle gradually decelerates and comes
to a stop in response to the ego vehicle’s deceleration in the first-row example. In the second-row
example, the parallel vehicle, initially moving faster than the ego vehicle, similarly decelerates and
eventually stops as the ego vehicle reduces its speed.

2https://github.com/OpenDriveLab/Vista/blob/main/sample.py
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t = 10 t = 20 t = 30t = 1 t = 40Instruction

Figure 9: Generation Capability of TERRA. Examples of video generation results by TERRA,
showing its ability to generate realistic driving scenes that adhere to specific instructions. The left-
most column visualizes the provided instruction trajectory, and the subsequent columns depict gen-
erated frames corresponding to the instruction at various time steps.

Table 7: Hyper-parameter settings for the world model training
Model Parameters Value
vocab size 262145
hidden size 2048
intermediate size 5632
num hidden layers 22
num attention heads 32
num key value heads 4
max position embeddings 14550
activation function “relu”
attention dropout 0.0
attn implementation “flash attention 2”
pad token id 262144
bos token id 262144
eos token id 262144
Optimizer Parameters Value
type AdamW
learning rate 1.0e-4
betas (0.9, 0.999)
weight decay 0.0
eps 1e-8
Learning Rate Scheduler Parameters Value
type cosine
num warmup steps 0
num training steps 172440
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Table 8: Hyper-parameter Settings for Video Generation with Vista
Parameter Value
action “traj”
n rounds 2
n frames 25
n conds 1
seed 23
height 576
width 1024
cfg scale 2.5
cond aug 0.0
n steps 50

Instruction:
accelerating t = 15 t = 25 t = 35 t = 45t = 5

Buses are stopped Buses abruptly start to move
Instruction:
accelerating t = 15 t = 25 t = 35 t = 45t = 5

Constantly moving Abruptly accelerate

Figure 10: Causal Misalignment examples in generated videos of Vista. Example in the first
row illustrates a case where the preceding and oncoming vehicle starts moving unnaturally as the
ego vehicle approaches. In contrast, example in the second row depicts a scenario where a parallel
vehicle accelerates unnaturally. In Vista, instructions are inserted at the transitions between rounds,
making these transitions particularly prone to noticeable changes.

Instruction:
stopping t = 15 t = 25 t = 35 t = 45t = 5

Instruction:
stopping t = 15 t = 25 t = 35 t = 45t = 5

Oncoming vehicle also decelerates and stops

Moving faster than the ego vehicle The parallel vehicle also slow down as the ego vehicle reduce speed

Figure 11: Causal Misalignment examples in generated videos of TERRA. The example in the
first row demonstrates a scenario where the oncoming vehicle gradually decelerates and comes to
a stop in response to the deceleration of the ego vehicle. In the second-row example, the parallel
vehicle, initially moving faster than the ego vehicle, similarly decelerates and eventually stops as the
ego vehicle reduces its speed.
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