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ABSTRACT

One of the central challenges in artificial intelligence is reasoning under partial
observability, where key values are missing but essential for understanding and
modeling the system. This paper presents a neuro-symbolic framework for latent
rule discovery and missing value imputation. In contrast to traditional latent vari-
able models, our approach treats missing grounded values as latent predicates to be
inferred through logical reasoning. By interleaving neural representation learning
with symbolic rule induction, the model iteratively discovers—both conjunctive
and disjunctive rules—that explain observed patterns and recover missing entries.
Our framework seamlessly handles heterogeneous data, reasoning over both dis-
crete and continuous features by learning soft predicates from continuous values.
Crucially, the inferred values not only fill in gaps in the data but also serve as
supporting evidence for further rule induction and inference—creating a feedback
loop in which imputation and rule mining reinforce one another. Using coordinate
gradient descent, the system learns these rules end-to-end, enabling interpretable
reasoning over incomplete data. Experiments on both synthetic and real-world
datasets demonstrate that our method effectively imputes missing values while
uncovering meaningful, human-interpretable rules that govern system dynamics.

1 INTRODUCTION

Neural-symbolic reasoning combines the pattern recognition power of neural networks with the
precision and interpretability of symbolic reasoning (Hitzler & Sarker, 2022} |Yang et al., 2024).
This hybrid paradigm enables Al systems to detect complex patterns in unstructured data while
reasoning about them in a structured and explainable manner.

Traditional rule induction methods extract explicit patterns from observed data but often fail when
some observations are missing or incomplete (Campero et al., 2018} (Claire Glanois, [2022)). These
approaches can effectively learn surface-level rules, yet their ability to fully explain the underlying
system is limited when essential data points are absent. For example, in healthcare diagnostics,
critical measurements may be missing or noisy, making accurate imputation necessary for reliable
reasoning.

Probabilistic models such as Markov Logic Networks (MLNs) (Richardson & Domingos) [2006)
handle missing data by treating unobserved facts as latent predicates. However, they typically rely
on a fixed rule base and expensive joint inference, limiting scalability and adaptability in large or
heterogeneous datasets (Oltramari et al., 2020). In contrast, we propose a neuro-symbolic system
that co-learns rules and imputations in a single differentiable loop, enabling fast forward-chaining
inference and end-to-end learning.

Our core idea is a closed loop between imputation and rule discovery. Given partially observed
tables with discrete and continuous attributes, we treat each missing, entity-specific entry as an un-
known fact and apply learned rules in a forward-chaining pass to predict it. These predictions are
compared to the observed entries via a supervised loss, and backpropagation updates the rule param-
eters and soft predicates. Crucially, improved imputations provide additional evidence for discover-
ing and refining rules in subsequent passes. This self-reinforcing loop leads to better imputations,
improved rule induction, and stronger downstream inference.

To enable multi-hop reasoning at scale, many targets require compositional explanations in the form
of chains and disjunctions. We optimize rule embeddings using asynchronous coordinate gradient
descent, updating one rule or clause at a time while holding others fixed. This mirrors step-wise
reasoning and ensures monotone loss progress on a smooth surrogate. For disjunctive heads, we
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adopt a sequential covering strategy to harvest diverse clauses, followed by joint fine-tuning using a
soft-OR aggregator (LogSumExp) to reconcile interactions. This staged procedure reliably recovers
long chains and disjunctive theories under high missingness while keeping computation tractable.

Our framework handles heterogeneous data by learning soft predicates for continuous features (us-
ing sigmoid thresholds and slopes) and combining them with discrete predicates through differen-
tiable logical operators. Specifically, we use soft-min to approximate logical AND and soft-max
to approximate logical OR. This approach enables uniform forward chaining over mixed data types
without requiring pre-discretization.

Contributions. We summarize our contributions as follows: (i) We introduce a closed-loop neuro-
symbolic framework in which imputation and rule discovery mutually reinforce each other, rather
than treating imputation as a preprocessing step. (ii) We develop a scalable coordinate gradient
descent scheme, combined with sequential covering and joint fine-tuning, that enables multi-hop
and disjunctive rule learning even under high missingness. (iii) We design a unified differentiable
forward-chaining engine that handles both discrete and continuous attributes through soft predicates
and smooth logical operators. (iv) We empirically validate our approach on synthetic chain and dis-
junction tasks, as well as real-world datasets (Birds, Heart, SPECT), demonstrating that it recovers
human-interpretable rules while achieving strong imputation accuracy and downstream prediction
performance.

2 RELATED WORK

Our work is at the intersection of neuro-symbolic Inductive Logic Programming (ILP) and missing
value imputation.

Neural Embedding-based ILP. Embedding-based models are widely used for Knowledge Base
(KB) completion like TransE (Bordes et al., [2013), TransH (Wang et al., 2014), and TransR (Lin
et al.| [2015). Complex (Trouillon et al.l 2016) introduces complex-valued embeddings for asym-
metric relations, while multi-hop reasoning methods like |Guu et al.| (2015) leverage path-based
embeddings for traversing knowledge graphs. However, these approaches often face limitations in
reasoning power.

Recent advances in ILP integrate symbolic logic with neural networks. [Rocktaschel & Riedel|(2017)
propose Neural Theorem Proving (NTP), which uses a differentiable backward-chaining method.
Then, |Campero et al.|(2018)) introduces a neural forward-chaining differentiable rule induction net-
work. However, both rely on hand-designed templates. [Claire Glanois|(2022)) advances these models
by incorporating a hierarchical structure, enabling more flexible rule induction. Nevertheless, these
methods are primarily designed for fully-observed data and struggle to handle missing values.

Interpretable Rule Learning. Learning interpretable logical rules for classification has been a
long-standing goal. Dash et al.| (2018) propose BRCG, an integer programming approach that uses
column generation to efficiently search the exponential space of candidate clauses, explicitly balanc-
ing classification accuracy with rule simplicity. [Wang et al.[(2021) introduce RRL, which utilizes
a Gradient Grafting mechanism to learn non-fuzzy rule lists within a deep learning framework,
ensuring scalability. |Qiao et al.[(2021) propose DR-NET to learn independent decision rules in
Disjunctive Normal Form (DNF) by jointly optimizing rule generation and weight learning. More
recently, [Barbiero et al.|(2022) present LEN, an end-to-end differentiable neuro-symbolic method
that leverages an entropy-based criterion to extract concise First-Order Logic explanations from neu-
ral networks. Unlike these methods, which focus primarily on classification tasks with complete data
with binary features, our framework integrates rule learning directly with the handling of missing
values.

Rule-Based Missing Value Imputation. Traditional missing data imputation methods, ranging
from statistical techniques like MICE (Multivariate Imputation by Chained-Equations) (van Bu-
uren & Groothuis-Oudshoorn, [201 1)), MissForest (Random Forest based) (Stekhoven & Biihlmann)
2012), and SOFT-IMPUTE (Mazumder et al.l 2010) to deep learning models like GAIN (GAN-
based) (Yoon et all 2018), MissDiff (Diffusion-based)(Ouyang et al. 2023), mDAE (DAE-
based)(Dupuy et al.l [2024), VAE-based(Veldkamp et al., [2025) and MMDL (Li1 et al., [2020), typ-
ically rely on statistical patterns and do not leverage explicit logical rules to govern inter-variable
relationships (see Appendix [A]for a detailed overview).

Recent works have started to bridge rule-based reasoning and missing value imputation. For in-
stance, (Chen et al.| (2023) employ various interpretable machine learning techniques to address the
missing value problem, but their methods are not explicitly rule-based. Closer to our approach,
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MINTY (Stempfle & Johansson,|2024) utilizes a rule-based model to handle missing data; however,
it does not leverage neuro-symbolic reasoning to learn the intricate relationships between observed
and missing values as we do. Other non-neural approaches, such as the work by Wang et al.|(2017)
on synthesizing data completion, also tackle the problem but lack of the representation learning
capabilities of neural networks. Our work is distinct in its tight integration of neural learning for
representation and symbolic reasoning for both rule discovery and imputation, forming a feedback
loop where each component enhances the other.

3 BACKGROUND

Predicate. In the context of logic-based Al systems, a predicate is a fundamental Boolean logic
variable used to describe properties of or relationships between entities. Predicate variables are
grounded by data, being True or False, and serve as the basic building blocks for logical expressions.
For instance, a predicate like Has_Fever(Patient) denotes whether a patient has a fever, while
Use_Drug(Patient) specifies whether a drug treats a particular patient. These predicates capture
essential aspects of the system’s state and relationships.

Logic Rules and Forward Chaining. We represent knowledge with Horn clauses

fZ Q(—Pl/\PQ/\-“/\Ph, (D
where Py, ..., Py (the body) are conditions and @ (the head) is the conclusion. Given observed
facts (the evidence set &), we perform forward chaining: whenever all body predicates of a rule
are (approximately) satisfied by facts in &, the rule fires and adds @) to £. Importantly, newly
inferred facts are immediately recycled as evidence, enabling multi-hop reasoning—cascades of rule
applications that derive conclusions not reachable in a single step.

Latent Predicates and Rule Learning. We use the term latent predicate to denote an unobserved
fact tied to concrete entities (and, when relevant, timestamps) within the same relational schema as
observed predicates. Latent predicates may be Boolean or soft-valued (degrees of truth); they repre-
sent missing-but-specific facts we wish to infer. Our goal is to learn Horn rules of the form Eq. (I)
that capture regularities among observed predicates and support inference about latent ones—i.e.,
rules whose heads or intermediate conclusions may involve latent predicates, enabling principled
completion of missing facts.

Expressive Rule Forms. We consider rules that capture rich logical structure, including conjunc-
tions (AND), disjunctions (OR via multiple clauses), and chained dependencies. For example, a
latent predicate Q) may be characterized by
Qr = (PLAPy) V (P3A\Py),

or by multi-hop compositions such as

Qi=PiNPy, Q2=P3ANPy, Q3=(Q1AP5)V (Q2AFs).
This view accommodates both single-step and multi-step (multi-hop) reasoning patterns within a
unified Horn-rule framework. We also allow predicate invention: introducing unlabeled latent pred-
icates that are not predefined in the schema but are useful intermediates for explaining the data.
These invented predicates participate in rules just like observed ones. After rules are discovered,
their roles can be post-hoc interpreted by inspecting the clauses in which they appear and their
relationships to observed predicates.

4 MODEL: NEURO-SYMBOLIC FORWARD CHAINING NETWORK

Consider problems where some information or
features are incomplete. Our goal is to learn a
set of logical rules that explain how each predi-
cate with information can be imputed based on
evidence from feature space X.

These missing variables are inferred through a
rule-learning process, allowing the model to un-
cover hidden relationships in the data. For clar-
ity, we identify the predicates with missing in-
formation as U, also named as “latent predi-
cate” in our setting. Though in our experiments, we do not strictly distinguish between feature
predicates, as any of them can be incomplete and serve as latent predicates. In more general settings
with a predictive label Y, we can view Y as one of the latent predicates, making the rule learning
and prediction for Y equivalent to inferring latent predicates U with rules.
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Figure 1: Example of missing variables imputa-
tion with rule discovery. X; with nan is the pred-
icates with missing information, which can be in-
ferred by the logic rules from X.
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To summarize, our model learns logical rules to infer latent predicates U by discovering hidden
structures within data, as an example illustrated in Figure [I] This rule induction process identifies
logical relationships among observable predicates X and other inferred latent predicates. By explic-
itly learning these structures, our approach enhances both inference capability and interpretability,
offering clear insights into complex, otherwise hidden dependencies. The key idea is summarized
in Figure 2] with details presented in the following sections.
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Figure 2: Model framework. Rule embeddings © are optimized using coordinate gradient descent.
In each learning step, predicate values are inferred via the Softmin-Softmax operation (Eqs. (3] E[3)).
For disjunctive (OR) rule learning, sequential hard covering is applied, followed by fine-tuning of
the learned rule embeddings (Section [5.2). Errors are back-propagated using MSE loss between
inferred predicate values and the small portion of observed latent predicate samples, constituting a
weak-supervision setting.

4.1 MODEL PREPARATION: PRETRAINED PREDICATE EMBEDDINGS

We begin by defining two sets of predicates: X = {X7,..., X,,} represents the set of observable
predicate variables, and U = {Uj,...,U,,} denotes the set of predicate variables with missing
information that the model aims to discover and define. Our framework is designed to handle both
binary (categorical) and continuous features within a unified logical structure. Binary features
are treated as standard logical predicates. For continuous features, we introduce a mechanism to
derive a “soft” truth value, effectively creating learnable predicates from them. This allows the
model to reason over heterogeneous data types, as detailed in Section

As mentioned before, we do not distinguish X and U in the experiment, as any predicates can be
the predicate with missing information. We just use separate notations for model description. We
initialize a fixed, unique embedding for each predicate, whether observable or missing. For example,
these embeddings can be instantiated as one-hot vectors within an embedding space of dimension d.
We denote the collection of embeddings for observable predicates as K x and incomplete predicates
as K. These predicate embeddings remain frozen throughout the rule learning phase and serve as
a foundational dictionary, enabling the interpretation of the composition of learned rules by relating
rule components back to specific predicates.

With the predicate representations defined, we next describe the core of our model: the representa-
tion of logical rules and the mechanism by which inferences are drawn.

4.2 MODEL BACKBONE: RULE REPRESENTATION AND INFERENCE

In our NS-FCN framework, logical rules are materialized as learnable rule embeddings, which are
the primary trainable parameters. Our model employs an asynchronous coordinate descent learning
process. This learning scheme is particularly well-suited for discovering complex logical structures
such as chained dependencies (where one latent predicate forms part of the definition of another)
and disjunctive rules (where a latent predicate can be satisfied by one of several distinct conditions).

4.2.1 SPECIFICATION OF RULE EMBEDDINGS ©

Let F be the set of rules/clauses, and let © = {©} rc r be their embeddings. Each © ; encodes one
rule with head predicate Uj, and a single head predicate U; may be associated with multiple rules
(OR-0f-ANDs).
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Conjunctive Rule Embedding. For a latent predicate U; that is defined by a single conjunctive
rule (e.g., U; = X, A Xy), its corresponding rule embedding ©; = [01,...,0,] € R¥*". Here,
h represents the number of predicates forming the body of the conjunctive rule (the arity of the
conjunction, e.g., h = 2 for X, A X3), and d is the dimensionality of the predicate embeddings.
Each of the h rows in this matrix is learned to align with the embedding of one of the constituent
predicates in the rule’s body.

Disjunctive Rule Embeddings. If a latent predicate Uy is defined by a disjunction of Rj distinct
conjunctive clauses (e.g., U, = \/f:’“l(clauser)), it will be associated with a set of R}, distinct rule
embeddings, denoted {Oy, 1, ..., O g, }. Each individual rule embedding Oy, , is itself an h, x d
matrix, representing the r-th conjunctive clause, where h,. is the arity of that specific clause.

All rule embeddings are initialized randomly prior to training and are subsequently optimized as
described in Section@ Given these rule embeddings, the model infers the truth values (or continuous
approximations thereof) of latent predicates through a carefully defined inference mechanism.

Parameters for Continuous Predicates. For each continuous feature f € F¢, where F¢ is the set
of continuous features, the model learns two additional scalar parameters: a threshold ; and a slope
By. These parameters are used to define a learnable soft predicate function that maps the continuous
feature value to a probabilistic truth value, as explained next.

4.2.2 INFERRING PREDICATE VALUES

The latent predicates is inferred based on the current state of observable predicates, any previously
inferred latent predicate values, and the learned rule embeddings ©.

Predicate Matching. Each column 6,(j = 1,...,h) in the rule embedding O is matched with a
corresponding predicate embedding. This matching is achieved by finding the predicate embedding
most similar to §; using cosine similarity:

K} = argmaxcos (K,0;), j=1,...,h )

KcK

where K = Kx U Ky represents the set of all available predicate embeddings. The inverse
mapping I(K) maps a predicate embedding K € R back to its corresponding index. Thus, indices
1,...,(n 4+ m) correspond to n + m predicate embeddings.
Predicate Truth Values. Once the best matching predicate K? is identified for a rule component 6,
we determine its truth value, denoted as ¢;. The calculation depends on whether the corresponding
feature is binary or continuous:

1) For a binary feature (e.g., from one-hot encoding), its truth value is its current value in the data
tensor: t; = v' (I (K7)).

2) For a continuous feature, its truth value is computed using a learnable soft predicate function
(asigmoid): t; = o(By, - (vy; —€y,)) where vy, is the value of the feature corresponding to K} (i.e.
vy, = v'(I(K}))), €7, and By, are its learned parameters, and o (-) is the sigmoid function. This
allows learning soft boundaries like “vy, > €f.”.

Conjunctive Clause Inference (Soft-AND). The value for a conjunctive clause is then computed
by aggregating the contributions of all its components, modeling a Soft-AND operation. The contri-
bution of each component j is the product of its similarity score and its truth value. The aggregated
value is:

v = H COS(K;,Hj)-tj, 3)

j=1,...,h

where v? is the current value for observable predicates or any previously imputed values. At the
beginning, v! is all from observable predicates. With the optimization steps of coordinate descent,
v? is updated based on the refined ©.
To address the potential issue of diminishing values, we can use the min function instead: v =
minjzl,_“’h {COS (K]*, QJ) ,tj} .
However, to make this function differentiable, we approximate the min function using the softmin
function. For each component j, there are two terms: the similarity score cos (K 5 Hj) and the truth
value t;. The softmin is applied to the set of all 2/ such terms:

2h
1 1
softmin (x1,...,T2,;0) = —= log <2h @wi/7> (4)
pu E
i=1

where each x; represents one of the 2h terms (all similarity scores and all truth values), and 7 is
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a temperature parameter controlling the smoothness of the approximation. As 7 approaches 0, the
softmin function approximates the behavior of the hard min function.

Disjunctive Rule Inference (Soft-OR). When a latent predicate Uy, is defined by a disjunction
of multiple conjunctive clauses, U, = \/f‘il clausey, ., its final inferred value vy, is determined
by aggregating the values of its individual clauses {vclausek_’l, -+« s Uclausey, }. This aggregation is
performed using the LogSumExp (LSE) function, which serves as a differentiable soft-OR operator:

1, &
=3 logZexp(ﬁ “ Velause, ) ®)

where [ is a temperature parameter. As 5 — oo, the LSE function increasingly approximates
the true max operator, thereby hardening the OR logic. Conversely, smaller values of /3 yield a
softer aggregation. The model’s ability to discover meaningful rules and infer latent predicate states
accurately hinges on an effective learning procedure. We now outline the training methodology
employed to optimize the rule embeddings O.

5 MODEL LEARNING

The core of our model learning process involves training the rule embeddings © by minimizing a
loss function that quantifies the discrepancy between the inferred values of latent predicates and
their partially observed truth values. Our approach leverages a sequential and staged optimization
strategy, drawing parallels with coordinate descent and incorporating elements of rule covering,
particularly for disjunctive rules. This is typically followed by a joint fine-tuning phase for rules
involving disjunctions.

5.1 COORDINATE GRADIENT DESCENT FOR RULE OPTIMIZATION

We employ a block coordinate gradient descent approach, iteratively optimizing the embedding O ;
for each predicate U; (treated as a disjoint parameter block) while holding the embeddings of other
predicates fixed. The order in which predicates U; are selected for optimization is randomized in
each complete pass (cycle) through all learnable latent predicates. Such optimization progress is
similar to human thinking strategy, as we humans usually draw conclusions step by step.

During the optimization step for a specific predlcate U; within a cycle, the inferred value vy, is ob-
tained by Eq. 3or Eq. [4]as mentioned in the previous Sectlon The Mean Squared Error (MSE) loss
is computed between the inferred value vy, and its observed value Uj s, €xclusively for instances
where Uj is observed, which can be viewed as a weak supervision setting:

Ly, = mean((vy; © mask; — Ujobs © mask;)?), (6)
where mask; is a binary vector indicating observed instances of U; (mask; = 1 indicates the obser-
vation). The rule embedding ©; is then updated using gradients from this loss while all other blocks
are kept fixed, which implements a Gauss—Seidel block coordinate gradient method on the smooth
objective L(©) = >_, Ly, (O). A brief convergence discussion is provided in Appendlx

After its training epochs within a cycle, if ©; meets the criteria for a “perfect rule” (i.e., the impu-
tation accuracy of missing variables is larger than 0.99 and a marginal loss drop is less than 1073),
the parameters of ©; will be frozen for efficient computing in subsequent cycles.

5.2 SEQUENTIAL COVERING AND FINE-TUNING OF DISJUNCTIVE RULES

Sequential Covering. When a latent predicate Uy, is hypothesized to be formed by a disjunction of
multiple clauses (e.g., Uy, = clausey, 1 Vclausey o V- - - Vclausey g, ), its constituent rule embeddings
(©k,1,0k,2,...,0y Rr,) are learned in a sequential manner. This iterative procedure—training a rule
embedding for a clause and then conceptually “covering” the samples it explains—is repeated for
all Ry, rule clauses intended for the disjunctive predicate Uy.

The process begins by training the first rule embedding, ©y 1, to capture one set of conditions
that satisfy Uy. The inferred value Uclausey, 1 is computed, and the loss Eddusek , (as per Eq. @) 18
minimized against the partially observed Uy, qps.

The learning of multiple rule clauses for a predicate Uy, proceeds sequentially. After an initial clause,
Oy,1, is trained to a point where it effectively explains a subset of positive instances for Uy, a hard
covering step is employed. Specifically, training instances are considered “well-explained” if the
output of O 1 (i.e., Uclause,, ;) for these instances exceeds a high confidence threshold (e.g., 0.99).
These “well-explained” instances are then removed from the active training set. The training of O, ;
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concludes at this stage, and the subsequent rule clause Oy, o is then trained on the remaining, unex-
plained instances of Uy. This iterative hard covering approach encourages further clause discovery
of distinct rules that satisfy Uy.

Joint Fine-tuning of Disjunctive Rules. After the individual rule clauses for a disjunctive predicate
U}, have been initialized through the sequential training and covering strategy, a joint fine-tuning
phase is employed to refine these rules collectively. In this phase, the optimizer simultaneously
updates all associated rule embeddings {@kJ, ...,0O.g, } for Ug. The MSE loss is computed
between the combined soft-OR output vy, (obtained using Eq. [5] which aggregates the evidence
from all R;, clauses) and the observed values Uy, obs. Given that latent predicates are, by definition,
not always directly measurable, this MSE is calculated based on the small fraction of instances
where the true state of the hidden predicate U}, is actually observed in the training data, which is a
weakly supervised scenario: Ly, fineune = mean((vy, © masky — Ug obs © masky)?).

The optimization details, including Adam optimizer parameters and rule embedding normalizations,
are illustrated in the Appendix [C.1]

6 EXPERIMENTS

6.1 SYNTHETIC DATA EXPERIMENTS

{Xs i;ﬂo(Xo/\Xl)} {Xs i;ﬂo(Xo/\Xl)} {X4=P1(X2AX7)] { X3 : po(Xo A X1) ] {X43P1(X2/\X7)} (Xsim(XBAXv)}

i i v v
(X5 ipz(Xs/\Xs)} [Xz 3P3(X4/\X0)}

{Xs 1p2(X3 A Xe)} [Xa 1p3(Xa A XU)}

X4 p1(X2 A Xs)

@ [Xs:m(Xa/\Xs)\/Pa(Xa/\XU)} { Xs - pa(Xs A Xo) ¥ pa(Xs) ¥ pa(Xo A Xn) J

(a) Chain (b) Disjunctive (OR) Chain (¢) Long Chain with Multiple Disjunctive (OR)

Figure 3: Example rule structures of synthetic experiments.
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Figure 4: An example of loss and imputation accuracy during coordinate optimization (Obs. Ratio
= 0.2, seed = 42). We assume the training order is X3, X4, X5. Epochs 0—19 correspond to rule
learning for X3; epochs 20-39 for X,; and epochs 40-end for X5. Remaining samples identified
how many samples are “well-explained” during the hard covering phase.

Table 1: Results for synthetic data example Figre b) with an observation ratio of 0.2. Metrics are
averaged over 20 random seeds on a dataset of 50,000 samples. Ground truth rules are underlined.

Imp. Acc. Imp. Acc. Train Loss Train Loss
(Before FT)  (After FT)  (Before FT)  (After FT) 1-¢arned Rules Rule Acc.
X5 1.00 = 0.000 / 0.005 + 0.000 / Xo A X, 1.00
X1 0.95+0.010 / 0.041 + 0.005 / Xo A X, Xo A Xr. Xa 0.80

(Xo A X4) V(X3 A X6)
X5 0.934+0.003 0.96 £ 0.002 0.063 £0.003 0.067 £0.001 (X3 A X4)V (X3 A Xé) 0.40
(XoAX1) V (Xo A Xa)

We use synthetic datasets to evaluate our model’s ability to learn chained and disjunctive rules under
partial observability (Figure[3). Each dataset is built from observable Bernoulli variables, with miss-
ing predicates defined by ground truth rules and made partially available (10%-30% observability)
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under an MCAR setting. The task is to learn rule embeddings that capture the ground truth logic,
evaluated by Rule Discovery Accuracy (i.e. the proportion of runs which learn the truth rules) and
Imputation Accuracy. Our method is also robust to MAR and MNAR mechanisms (Appendix [E).

Table 2: Ablation Study: Effect of Fine-tuning on X5 (Disjunctive Rule) Learning

Metric for X5

Recovered Rule Structure

Before Fine-tuning After Fine-tuning
(Xo A X2) V (Xo A Xa) (X3 A X6) V (Xo A Xa)
Imputation Accuracy for X5 (Unobserved) 0.8729 1.0

Results and Analysis. We analyze example (b) from Figure [3] (full results of observation ratio
at 0.1 and 0.3 are in Appendix [J.T). Table [I] shows that our model achieves near-perfect recovery
for simple conjunctive rules (X3, X4) and high imputation accuracy for the complex disjunctive
rule (X5). Figure [d[a)-(b) illustrates stable training dynamics. For X5, the model uses sequential
covering (Figure[d{c)), with “well-explained” examples reducing the remaining set. The fine-tuning
(FT) phase is followed, which corrects the rule structure and boosts accuracy (Figure d)—(e)).
The corresponding ablation study (Table[2) confirms that fine-tuning is critical for disjunctive rules,
increasing unobserved imputation accuracy for X5 from 0.87 to 1.00.

Table 3: Impact of rule optimization order on learning progress. Use the example (a) of Figure
Note: v~ denotes successful learning for the respective predicate.

Cycle | Metric Run 1 Run 2 Run 3
Optimization Order  [X5, X4, X3] [ X3, X5, X4] [ X3, X4, X5]
Cycle 1 Rule Accu. X3 \/, X4, X5 X3 \/, X4 \/, X5 X3 \/, X4 \/, X5 v
Imputation Accu., X3 :1.00,0.005 X3 :1.00,0.005 X3 :1.00,0.005
Train Loss X4 :0.87,0.074 X4 :1.00,0.004 X4 :1.00,0.004
X5 :0.94,0.053 X5 :0.94,0.035 X5 :1.00,0.003
Optimization Order [Xg, X5, X4] [X5, X3, X4] —
Cycle 2 | Rule Accu. X3V, XaV, X5 X3V, XuV, X5V —
Imputation Accu., X3 :1.00,0.005 X3 :1.00,0.005 —
Train Loss X4 :1.00,0.004 X4 :1.00,0.004
X5:0.94,0.035 X5 :1.00,0.003
Optimization Order  [X3, X4, X5] — —
Cycle 3 | Rule Accu. Xs vV, XuV, Xs vV — —
Imputation Accu., X3 :1.00,0.005 — —
Train Loss X4 :1.00,0.004
X5 :1.00,0.003

Our asynchronous coordinate descent is robust to different rule optimization orders (Table |3] Ap-
pendix Figures [0TT) and is data-efficient, recovering complex rules with as few as 4,000 samples
(Appendix Figure[8). While coordinate descent requires different cycle numbers, Appendix Table 9]
demonstrate minimal time and memory costs.

Convergence Analysis of Asynchronous Coordinate Descent. Exact rule-set induction reduces
to the minimum-set-cover problem (NP-hard), so like any practical rule learner, we do not claim
global optimality. Instead, we frame search as asynchronous block-coordinate descent on a smooth
surrogate loss: at each step, we update a single rule embedding in closed form, which guarantees
the loss never increases yet keeps each move computationally cheap. To guard against poor local
minima, we (i) freeze a rule only after this rule is perfectly learned, and (ii) launch diverse initializa-
tions. Across 20 runs on synthetic datasets (Tables , this strategy delivers < 1.3% imputation
performance variance, and the top-ranked learned rules consistently match ground truth rules. More
theoretical discussions are provided in Appendix

6.2 REAL-WORLD DATA EXPERIMENTS

We validate our approach on three real-world datasets, comparing it with (i) statistical models
(MICE(van Buuren & Groothuis-Oudshoorn, 2011), MissForest(Stekhoven & Biihlmann, 2012)),
(ii) deep generative models (MLP, GAIN(Yoon et al., [2018), MissDiff(Ouyang et al., [2023),
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mDAE(Dupuy et al.| 2024), VAE(Veldkamp et al., 2025)) and (iii) rule-based interpretable models
(BRCG(Dash et al., 2018), RRL(Wang et al., 2021), DR-NET(Qiao et al.| 2021}, LEN(Barbiero
et al.; 2022)). For each dataset, we randomly miss some features. We then evaluated the models
on their ability to impute these missing values, as well as their performance on a downstream target
classification task. Preprocessing and baselines details are provided in Appendix and

Table 4: Comparison of imputation accuracy and learned rules on the Birds dataset.

Method Imp Acc. Learned Rules
0.57 abnormal_bird <+ (ostrich A —wounded) \/ (bird N wounded)

LEN 0.55 can_fly < (bird \ —ostrich) V (—ostrich N\ —wounded)
RRL 0.53 abnormal_bird < (bird N —wounded) V (bird N ostrich)
0.51 can_fly « (—ostrich N —wounded) \/ (bird \ —ostrich)
BRCG 0.50 abnormallai'rd < bird A ostrich
0.47 can_fly <— bird \ ~abnormal_bird
DR.NET 0.56 abnormal_bird < (bird \ —ostrich A\ wounded) \/ (bird A ostrich A —wounded)
0.53 can_fly < (bird N\ —ostrich N —abnormal_bird) V (bird A\ —ostrich A —wounded)
NS-FCN 1.00 abnormal_bird < ostrich V (bird N\ wounded)

1.00 can_fly < bird \ —abnormal_bird

Table 5: Comparison of imputation accuracy and learned rules on the Heart Disease dataset.

Method Imp Acc. Learned Rules

0.65 trestbps_high < (—st_mild N\ cp_atypical_angina) V (chol_low A\ cp_asymptomatic)
0.53 chol_high + (sex_female A ca_2) vV (bp_normal N cp_asymptomatic)

LEN 0.62 hr_high < (cp-asymptomatic A target) V (chol_low A ca_l)
0.70 st_severe < (cp_non_anginal N\ —fbs_normal) V (age_old N chol_low)
0.28 trestbps_high < (sex_female N\ —cp_typical_angina) V (exang_yes A —thal_normal)
RRL 0.33 hr_high < (age_middle N\ sex_male) \/ (—restecg_stt_abnormality N\ slope_upsloping)
0.33 thalach < (age < 60) A (restecg = 0)
0.32 st_severe < (—exang_yes N\ —slope_flat) V (chol_low A cp_asymptomatic)
0.53 trestbps_high <— —age_young N\ —ca_4
BRCG 0.35 chol_high < —age_young N —restecg_hypertrophy
0.33 hr_high < —cp_typical_angina \ —ca_4
0.32 st_severe <— —age_young N\ —slope_upsloping
0.53 trestbps_high < (chol_low N\ —hr_low N\ —fbs_high) V (slope flat \ ca_I A thal_normal)
DR-NET 0.33 chol_high <+ sex_male N\ slope_upsloping N\ ca_3
0.33 hr_high <— —age_old \ —cp_typical_angina N fbs_high
0.32 st_severe <— hr_high \ —sex_male N\ —fbs_normal
0.86  trestbps_high < (age > 60) A (chol > 250)
NS-FCN 0.85 chol_high < (sex = 1 A age > 55) V (trestbps > 150)

0.90  hr_high < (trestbps > 145) V (age > 57 A cp = 3)
0.76 st_severe < (slope = 2) A (thalach < 150)

For logical reasoning, we used the Birds dataset (Tafjord et al. 2021) with a 90% missing ratio
for two key predicates. As shown in Table ] under some random seeds, NS-FCN achieves per-
fect imputation accuracy (1.00) and, crucially, perfectly recovers the ground truth logical rules,
highlighting its superior capability in deciphering underlying logical structures. Table [6] compares
our approach with non-interpretable baselines. While a MLP achieve optimal performance given
the simplicity of the Birds dataset, our model remains highly competitive; more importantly, it
demonstrates robustness across diverse random initializations, successfully recovering the correct
ground-truth rules in the majority of cases. Table [20] further show that the a few hundred samples
are sufficient for the model to converge to the correct logical truth.

In medical diagnosis, we use Heart Disease (Detrano et al.,[1989) and SPECT Heart (Kurgan et al.,
2001])) datasets, introducing 30% missingness. We also vary the observation ratio from 0.3 to 0.9, and
the results in Tables[I8]and[T9]shows comparable performance with only 30% of the data observed.
On the Heart Disease dataset, with its mix of continuous and categorical features, NS-FCN’s direct
handling of continuous values led to superior imputation (e.g., 90% accuracy for thalach) and
the discovery of clinically relevant rules with numerical thresholds (e.g., age > 60, chol > 250),
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as shown in Tables [5] and [32] NS-FCN attains imputation accuracy comparable to the advanced
statistical and generative baselines, yet distinguishes itself by offering full interpretability, a criti-
cal advantage over these black-box approaches. Compared with rule-based models, our evaluation
highlights NS-FCN’s unique ability to handle heterogeneous data types. A key distinction is that
NS-FCN directly models continuous features, whereas baseline methods are restricted to binary
inputs, forcing discretization (e.g., for t restbps, binning values into < 120, 120 — 140, > 140
mmHg as low, normal, and high).

On the binary SPECT dataset, we randomly miss all 22 features, thus we report the diagnosis ac-
curacy after imputation. When the imputed features are used for diagnosis, NS-FCN outperforms
all baselines on both Heart Disease and SPECT, as shown in Table[7] Unlike baseline models that
train a classifier on previously imputed samples, where imputation errors inevitably propagate to the
downstream task, our method jointly optimizes rule discovery and target inference. Furthermore,
our use of soft-logic relaxation prevents the model from overfitting to noise (such as incorrect fea-
tures), enabling it to capture dominant logical structures. This robustness is further supported by the
comprehensive noise sensitivity analysis in Appendix [L.] (Tables [I6] and [I7), which demonstrates
that the model learns valid rule approximations (e.g. capturing one correct clause) and maintains
strong predictive performance even as noise levels increase.

Detailed rules and LLM assessments are in Appendix Tables [30} [3T] and [32}

Table 6: Imputation accuracy of missing feature value comparison across Heart Disease and Bird
datasets on non-interpretable baselines. Results are over 10 random seeds.

Heart Disease Birds
Method
trestbps chol thalach oldpeak abnormal_bird can_fly

MICE 0.84+0.016 0.83+0.014 0.88+0.011 0.874+0.015 0.88+0.006 0.86+0.011
MissForest  0.88+0.015 0.84+0.012  0.91+0.004 0.88+0.016 0.38+0.123 0.68+0.086
MLP 0.88+0.009 0.85+0.016 0.88+0.014 0.80+0.025 0.96+0.059 0.99+0.003
GAIN 0.85+0.022 0.84+0.011 0.90+0.014  0.89+0.014 0.83+0.102 0.82+0.083
MissDiff 0.824+0.017 0.83+£0.019 0.8940.018  0.84+0.030 0.8340.020 0.8640.007
mDAE 0.88+0.011 0.84+0.012 0.90+0.015 0.87+0.015 0.87+0.002 0.87+0.004

VAE-based 0.85+0.015 0.84£0.021 0.90£0.015 0.86+0.015 0.62+0.006 0.87£0.004
NS-FCN 0.87+£0.025  0.85+0.017 0.88+0.014 0.78+0.020 0.95+0.064 0.95+0.064

Table 7: Medical diagnosis after missing value imputation. Results are over 10 random seeds.

Method Heart Disease SPECT
Accuracy Fl Accuracy Fl

MICE(van Buuren & Groothuis-Oudshoorn| [2011) 0.83+0.010 0.81+0.012 0.78+0.019 0.87+0.013
MissForest(Stekhoven & Biihimann, [2012) 0.83+0.013 0.81£0.014 0.79+£0.012 0.87+0.008
MLP 0.84+0.010 0.82+£0.012 0.92+0.007 0.90+0.005
GAIN(Yoon et al.l 2018| 0.84+0.004 0.82+0.006 0.764+0.019 0.85+0.013
MissDiff(Ouyang et al.|[2023) 0.84+0.010 0.82+0.011 0.774£0.023 0.86+0.016
mDAE(Dupuy et al.| 2024 0.8440.009 0.82+0.010 0.80£0.013 0.88+0.009
VAE-based(Veldkamp et al.| [2025) 0.83£0.009 0.81£0.009 0.754+0.016 0.85+0.011
BRCGDash etal. 2018 0.77£0.006 0.74£0.034 0.8540.046 0.90+0.035

0.78+0.002 0.80£0.003 0.90£0.005 0.94+0.005
0.85+0.005 0.824+0.005 0.894+0.025 0.924+0.017
0.69+0.007 0.80£0.000 0.76+0.035 0.85+0.017
0.914+0.009 0.91+0.009 0.92+0.009 0.96+0.009

7 CONCLUSION

Our NS-FCN framework effectively learns interpretable rules for missing value imputation, demon-
strating strong performance across a diverse range of synthetic and real-world datasets. A key
strength is its ability to seamlessly reason over heterogeneous data, handling both binary predi-
cates (e.g., Birds) and continuous features in complex domains like medical diagnosis (SPECT,
Heart Disease). It successfully handles missing data and learns hierarchical rule structures, offering
significant potential for trustworthy diagnostics and transparent decision-making.

10
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. The complete description
of both synthetic dataset generation and real-world dataset preprocessing methods are illustrated in
Appendix [E] and Details of the computational setup, including hardware configuration and
software environment, as well as the choice of hyper-parameters are documented in Appendix
and We will release our code in the camera-ready stage to facilitate replication and further
research.
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A RELATED WORK SUPPLEMENT

Traditional Inductive Logic Programming (ILP) Methods. Inductive Logic Programming learns
logical rules from relational data. |Cohen|(1995) proposed RIPPER, a fast rule induction algorithm
using separate-and-conquer strategy. [Quinlan|(1990) developed FOIL, which generates clauses it-
eratively. [Dash et al.| (2018) introduced Boolean decision rules using column generation. Wei et al.
(2019) proposed GLRM integrating decision rules into linear models. |Cropper & Morel| (2021))
presented LFF implemented in Popper. These approaches rely on heuristics but may not guarantee
optimal solutions. [Pellegrina & Vandin| (2024) proposed SamRuLe for near-optimal rule lists via
sampling.

Differentiable ILP Methods. Traditional ILP models struggle with noisy data and scalability. Dif-
ferentiable approaches address these issues by integrating continuous relaxation, which allows gra-
dient descent for optimization. [Shindo et al.| (2021)) proposed OILP, which represents logic rules in
a differentiable form and combines neural networks with symbolic logic. Manhaeve et al.|(2018)) in-
troduced DeepProbLog, extending ProbLog with neural predicates. Neural Logic Machines (NLMs)
(Dong et al.,[2019) combine MLPs with logic programming to improve computational efficiency but
reduce interpretability.

Broader Missing Data Imputation Methods. Missing data imputation methods range from global
model-based techniques to localized and hybrid strategies, extending to deep and ensemble frame-
works.

At the global end, nonparametric bootstrap methods (Efron, |1994) provide bias-corrected estimates
via repeated sampling, while spectral regularization approaches like SOFT-IMPUTE (Mazumder
et al.l [2010) solve a nuclear-norm minimization through iterative soft-thresholded SVD. Classi-
cal multivariate imputation schemes such as MICE (van Buuren & Groothuis-Oudshoorn, [2011))
construct a sequence of conditional models for each variable with missingness and iteratively sam-
ple from these chained regressions until convergence, thereby approximating draws from the joint
posterior and naturally propagating uncertainty across multiple imputations. Tree-based ensemble
methods such as MissForest (Stekhoven & Biihlmann, [2012) adopt an iterative refinement strategy
in which random forests are trained per variable using the currently imputed data as predictors,
updating missing entries via out-of-bag predictions until changes stabilize, thus capturing complex
nonlinearities and high-order interactions without requiring parametric distributional assumptions.

Moving toward local adaptation, decision tree-based EM (DMI) (Rahman & Islaml 2011} parti-
tions complete cases via C4.5 and imputes within each leaf, and clustering-based random imputation
(CRI) (Zhang et al.,[2006)) applies kernel-weighted estimation in the nearest k-means cluster. Hybrid
similarity learners, such as KI and its fuzzy extension FCKI (Fouad et al., 2021)), refine this idea by
dynamically selecting neighborhood sizes before multivariate imputation. For high-dimensional or
heterogeneous data, deep architectures like GAIN (Yoon et al., 2018)) cast imputation as a generative
adversarial game where a generator proposes imputations conditioned on an observed-mask vector
and a discriminator learns to distinguish observed from imputed components, while VAE-based im-
puters (Veldkamp et al., [2025)) treat the complete feature matrix as generated from low-dimensional
latent variables and learn to reconstruct missing entries via amortized variational inference under
a probabilistic encoder—decoder architecture. Building on denoising autoencoders, mDAE (Dupuy
et al} |2024) modifies the reconstruction loss to ignore pre-imputed values at missing positions and
couples this with an overcomplete hidden representation, which empirically improves RMSE over
standard DAEs and several classical imputers across multiple UCI datasets (Dupuy et al., 2024)). In
the same spirit of generative modeling, MissDiff (Ouyang et al.l [2023) trains a diffusion model on
tabular data with missing values by injecting noise along a forward stochastic process and learning
a reverse denoising process that is explicitly conditioned on the observed-mask pattern, thereby pro-
ducing imputations through iterative refinement from pure noise. Models such as MMDL (Li et al.,
2020) align stacked autoencoder embeddings across modalities to exploit cross-view correlations.
Ensemble schemes like FIMUS (Rahman & Islam) |2014)) combine co-appearance, correlation, and
similarity in a weighted-voting framework. Despite their varied focuses—ranging from global in-
ference to localized and multimodal learning—these methods uniformly rely on statistical patterns
and do not leverage explicit logical rules to govern inter-variable relationships.
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B CONVERGENCE ANALYSIS OF COORDINATE GRADIENT DESCENT

For clarity, we analyze an simplified version of our learning algorithm in which each head predicate
U; is associated with a single parameter block ©,. Let © = (©4,...,0,,) collect all parameters.
The global training objective is

L(O) = Z Ly, (©), Ly,(©) = mean((vy, (0) ® mask; — Uj ons © mask;)*),  (7)
=1

where vy, (©) is computed by forward chaining using the differentiable operators introduced in the
main text (e.g., Eq. [).

B.1 ASSUMPTIONS

We make the following standard assumptions for smooth block coordinate descent (e.g.,
[2001}, Bertsekas), (1997 [Nesterov}, 2013))
Assumption 1 The objective £ : R? — R is

1. bounded below: infg L(©) > —o0,

2. continuously differentiable in ©, and

3. has block-wise Lipschitz-continuous gradients: for each j there exists L; < oo such that,
forall © and all h;,

Ve, L(© +e;h;) — Ve, LO)|| < Ljlhyl, ®)

where e;h; denotes the vector obtained by changing only block j.

These conditions hold in our setting because L is built from smooth operations (e.g., linear maps,
sigmoid, softmin, log-sum-exp) composed with a squared loss, and training is restricted to bounded
level sets.

B.2 IDEALIZED FULL-BATCH BLOCK COORDINATE GRADIENT DESCENT

Consider the following idealized algorithm. At iteration ¢ we pick a block index j; € {1,...,m}
(e.g., by cycling through {1, ..., m}) and perform a gradient step on that block only:
5" = 8], —1Ve, L(8"), ©)
e)f' =0,  forall ¢ # j, (10)

where 17 > 0 is a step size. This matches the idealized version of the rule update in Section [5.1}
when we update Uj,, all other predicates Uy are kept fixed.

Lemma 1 (Monotone decrease for small steps) Suppose Assumption[I| holds. If the step size sat-
isfies 0 < n < 1/Lj, at iteration t, then

et < c(@t)—guv@hc(@t)uz. (11)

In particular, the sequence {L(0")};>¢ is monotonically non-increasing and convergent.

Proof 1 (Proof sketch) By block-wise Lipschitz continuity of Ve, L,
L(O) =L(6" +¢;, (0 —0)) (12)
L.
< L(0") 4 (Ve, £(6"),0 -6} ) + %H@;ﬁ G (13)
Substituting the update @;jl — O}, = —n Ve, L(O") and rearranging gives
L
(e < £ — (1 - )| Ve, £(©)]". (14)

2
Ifn <1/Lj,, then1 —nL;, /2 > 1/2, yielding the claimed inequality.

Lemma([T]implies that the loss decreases at every iteration and the gradients on updated blocks cannot
stay large forever. Combined with a mild assumption that each block is selected infinitely often, we
obtain convergence to a block-stationary point.
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Proposition 1 (Convergence to a block-stationary point) Assume |I| holds, the level set {©
L(©) < L(O°)} is bounded, each block j is selected infinitely often, and the step sizes satisfy
0 < n < min; 1/L;. Then any limit point ©* of the sequence {©"} generated by the above block
coordinate gradient method is block-stationary:

Ve,L(©%) =0 forallj=1,...,m. (15)
Equivalently, no single block © ; can be perturbed to decrease L while all other blocks are fixed.

Proof 2 (Proof sketch) Summing the inequality from Lemmall|over t shows that
> [Ve, L@ < ox,
t=0

so the block gradients must tend to zero along the subsequence where a given block j is updated.
Since each block is selected infinitely often and the iterates remain in a bounded level set, standard
arguments for block coordinate descent (Tseng| |2001) imply that any limit point has zero gradient
in every block.

Thus, in the ideal full-batch setting with sufficiently small steps, our predicate-wise coordinate up-
dates produce a non-increasing loss sequence {£(©%)} and converge to a point where no single
predicate block ©; can further reduce the global objective.

B.3 STOCHASTIC MINI-BATCH VARIANT AND ADAM

In practice, our implementation uses mini-batches and the Adam optimizer for each block update (as
described in Section I?p In this case, the gradient Vg, L is replaced by a stochastic estimate com-
puted on a mini-batch, and the step uses Adam’s adaptive preconditioning. This yields a stochastic
block-coordinate gradient scheme: the loss is no longer guaranteed to decrease at every single up-
date, but under standard assumptions stochastic block-coordinate methods are known to approach
a neighborhood of a stationary point in expectation (see, e.g., (Richtarik & Takacl 2014; Wright,
2015)).

C MODEL SUPPLEMENT DESCRIPTION

C.1 OPTIMIZATION DETAILS

Throughout all training stages, each rule embedding (or set of embeddings during joint fine-tuning)
is optimized using the Adam optimizer. A crucial step following each gradient update is the normal-
ization of the rule embeddings. This involves applying a Rectified Linear Unit (ReLU) activation to
the embedding data (ensuring non-negative values, which can aid interpretability for positive pred-
icate contributions) followed by L, normalization of each row vector within the rule embedding
matrix. This normalization helps stabilize the training process and maintains consistent magnitudes
for the embedding components.

D DATASETS AND BASELINES

D.1 DATASETS

Heart Disease. We use the widely-cited Cleveland Clinic dataset from the UCI Heart Disease
database (Detrano et al.,[1989). This dataset contains 303 patient records, each with 13 features—a
mix of continuous and categorical variables—such as age, cholesterol level, and resting blood pres-
sure. The task is to predict the presence of heart disease, which is indicated by the target variable on
a scale from O (absence) to 4 (severe). Following standard practice, we simplify this into a binary
classification problem: predicting presence (values 1-4) versus absence (value 0).

SPECT. The SPECT (Single Proton Emission Computed Tomography) dataset presents a binary
classification task to diagnose cardiac conditions (normal/abnormal) based on 22 binary patient fea-
tures. The dataset describes the diagnosis of cardiac SPECT images. Each of the patients is classified
into two categories: normal and abnormal. The 267 SPECT image sets (patients) database were pro-
cessed to extract features that summarize the original SPECT images. As a result, 44 continuous
feature patterns were created for each patient. The pattern was further processed to obtain 22 binary
feature patterns. The CLIP3 algorithm was used to generate classification rules from these patterns
(Kurgan et al., 2001). The CLIP3 algorithm generated rules that were 84.0% accurate (as compared
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with cardiologists’ diagnoses). A key challenge in this domain is the prevalence of missing data,
making it an ideal testbed for our model’s imputation and rule-learning capabilities.

Birds. Bird’s Rulebase is a well-known logic problem designed to assess an AI’s ability to learn and
reason with hierarchical logical rules that mimic common-sense knowledge (Tafjord et al.,|2021)). It
has the ground truth single theory of six rules[ﬂas follows.

can_fly(X) <« bird(X), not abnormal_bird(X)
bird(X) + ostrich(X)
abnormal _bird(X') < ostrich(X)
not can_fly(X) « ostrich(X)
abnormal_bird(X) <« bird(X ), wounded(X)
not can_fly(X) < wounded(X)
Figure 3] further illustrates the structure of these rules.

[not abnormal_bird(X)J [ bird(X) J wounded(X) | ¥ ostrich(X)
l I |
l !

can_fly: p(bird(X) AND abnormal_bird: p(bird(X)
not abnormal_bird(X)) AND wounded(X))

not can_{fly:

abnormal_bird: bird:
p(w?):?r(iicel?((;(()))OR p(ostrich(X)) (ostrich(X))

or )« |

abnormal_bird: p(p[ostrich(X)] OR
p[bird(X) AND wounded(X)])

Figure 5: Ground truth rules for Bird dataset.

D.2 PREPROCESSING OF DATASETS

Heart Disease. The UCI Heart Disease dataset contains a mix of 13 continuous and categorical fea-
tures with 303 samples. To create a challenging imputation task, we introduced a 30% missing ratio
independently into four key continuous variables: resting blood pressure (t restbps), cholesterol
(chol), maximum heart rate (thalach), and ST depression (o1dpeak). Following the protocol
in MissDiff(Ouyang et al., [2023), we generate missing values under a Missing Completely At Ran-
dom (MCAR) mechanism. Let x € R denote the complete data vector. We generate a binary mask
vectorm € {0, 1}‘1’, where m; = 1 indicates that x; is observed, and m; = 0 indicates it is missing.
The observed data is represented as X = x ® m + na ®(1 — m), where ©® denotes element-wise
multiplication.

For our NS-FCN framework, the task is to directly impute these missing continuous values. For
deep learning baselines, continuous features are standardized using Z-score normalization, and
categorical features are one-hot encoded. For tree-based and statistical baselines (MissForest,
MICE), categorical variables are treated as factors. However, to accommodate the baseline mod-
els which only support binary inputs, we first discretized these four variables into three cate-
gorical bins based on clinical thresholds: blood pressure (< 120,120 — 140, > 140), choles-
terol (< 200,200 — 240, > 240), max heart rate (< 100,100 — 160, >160), and ST depression
(£1.0,1.0 — 2.0, > 2.0). The baselines were then tasked with imputing the correct category. Con-
sequently, we evaluate the imputation accuracy on the discretized bins.

SPECT Heart. The dataset’s 22 binary features were randomly masked with a 30% probability to
simulate missing data. Our framework was then applied to a two-stage task: first, to impute the
missing features, and second, to perform the final patient diagnosis based on the completed feature
set. The diagnostic performance is compared against five baseline methods, including four rule-
based approaches and an MLP.

Birds. Following the ground truth logical rules, we generated a dataset of 1,500 samples. To create
a difficult logical reasoning challenge, we introduced a 90% missing ratio for two crucial latent

"https://www.doc.ic.ac.uk/ mjs/teaching/KnowledgeRep491/ExtendedLLP 491-2x1.pdf, p5
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predicates: can_fly and abnormal _bird. The task for all models was to impute these missing
binary values based on the observed predicates. The imputation accuracy is compared against the
same set of baselines.

D.3 BASELINE MODELS

To rigorously evaluate performance, we compare our method against 11 established baselines, rang-
ing from classical statistical methods, to advanced deep generative models, and interpretable models.

Statistical Models.
e MICE (van Buuren & Groothuis-Oudshoornl 2011

Multivariate Imputation by Chained Equations (MICE) is a widely used statistical method
based on Fully Conditional Specification (FCS). It iteratively imputes missing values by
modeling each feature with missing data as a function of other features using linear re-
gression (for continuous variables) or logistic regression (for categorical variables). We
generate m = 5 imputed datasets and report results from the first completion.

e MissForest (Stekhoven & Biihlmannl, 2012)

MissForest is a non-parametric method that handles mixed-type data using an iterative Ran-
dom Forest approach. It treats the missing data problem as a prediction task, training a ran-
dom forest on the observed parts of the data to predict the missing values. It is particularly
effective at capturing non-linear interactions without explicit distributional assumptions.

Deep Generative Models.
¢ MLP (Multilayer Perceptron)
We use a simple feed-forward neural network with fully connected layers and ReLLU acti-
vations as a deterministic imputation baseline. Given an input vector x € R? and a binary
mask m € {0, 1}¢ indicating observed entries (m; = 1if z; is observed, 0 otherwise), we
first obtain X = x ® m + na ®(1 — m), and use the observed mask for input gating:
hy=x®m.
The network fp takes hy as input and outputs a reconstruction X = fp(hg). Training is
performed under weak supervision by minimizing the Mean Squared Error (MSE) only on
observed entries:
Lyip = (% —x) © m3,
so that gradients are propagated only through coordinates with ground-truth observations;
at test time, the missing entries (m; = 0) are imputed using the corresponding components
of X.

e VAE (Variational Autoencoder)
Our VAE-based imputer follows the amortized inference framework of Kingma & Welling]|
(2013)), adapted to incomplete tabular data as in recent work on VAE with missingness (e.g.
[Veldkamp et al.|(2025)). Given (x, m), we construct a gated and masked input
x=xOm+na®(l —m), hy=x%xOm,
and feed the concatenated vector [hy, 1—m] into the encoder to obtain a Gaussian posterior
o(z | x,m) = N (py, diag(a3)).
A latent sample z is drawn via the reparameterization trick and passed through a decoder
po(x | z) to produce X¢(z). The model is trained by maximizing the Evidence Lower
Bound (ELBO), where the reconstruction term only involves observed entries:

Lvag = ||(>29(Z) - X) © m||; + KL(%(Z | x,m) ||p(z)) :

reconstruction on observed data KL regularization
At inference time, missing values are imputed by the decoder output Xy(z) at coordinates
where m; = 0.
DAE / mDAE (modified Denoising Autoencoder)

For the autoencoder baseline, we adopt a denoising autoencoder architecture with a modi-
fication of the loss function proposed in the mDAE Dupuy et al|(2024). Given (x, m), we
first perform a simple pre-imputation to obtain a complete input X, and then apply masking
noise with rate p only on originally observed entries:

X=xOm+na®(l—m), c~Ber(p)d, =z = (xom)o (1-com).
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The corrupted input (%) is fed into an encoder—decoder network gy that outputs a recon-
struction X = g,, (X)), Crucially, following the modified-loss idea of mDAE (Dupuy
et al., [2024), the reconstruction loss is computed only on truly observed entries, and pre-
imputed missing values are ignored:

Lupag = || (% —x) © ml,.
This prevents the autoencoder from overfitting arbitrary pre-imputed values at missing po-
sitions while still benefiting from denoising training; at test time, imputations for missing
entries (m; = 0) are taken from the corresponding components of x.

* GAIN (Generative Adversarial Imputation Nets) (Yoon et al., 2018)

GAIN adapts the Generative Adversarial Network framework for imputation. The gen-
erator G imputes missing components, while the discriminator D attempts to distinguish
between observed and imputed components. A hint mechanism is introduced to provide D
with partial information about the mask distribution, forcing G to learn the true underlying
data distribution. We utilize a hybrid loss function combining adversarial loss with MSE
for continuous features and cross-entropy for categorical features.
e MissDiff (Diffusion Imputation Nets)(Ouyang et al., 2023)

We employ a diffusion probabilistic model specifically adapted for tabular missing data.
The model is trained to reverse a noise-adding process. During inference (imputation), we
utilize the guided sampling or conditioning strategy: at each denoising step ¢, the known
observed values x°** (x°** = x ® m + na ® (1 — m)) are re-injected into the sample to
ensure consistency with the ground truth. The model effectively samples x*™? from the
conditional distribution p(x"™%$%|x°b*).

Interpretable Models.

* BRCG (Dash et al., 2018)) is an integer program designed to trade classification accuracy
for rule simplicity. It uses column generation to search over an exponential number of
candidate clauses efficiently.

* LEN (Barbiero et al 2022) is an end-to-end differentiable method for extracting logical
explanations from neural networks using First-Order Logic.

* DR-NET (Qiao et al.} 2021) is a method for learning independent logical rules in disjunc-
tive standard form as an interpretable model for classification.

* RRL (Wang et al., [2021) learns interpretable non-fuzzy rules for data representation and
classification using a novel training method called Gradient Grafting.

E PERFORMANCE UNDER DIFFERENT MISSINGNESS MECHANISMS

We compare three general missingness mechanisms for dataset generation:

* MCR (Missing Completely at Random): The probability of being missing is the same
for all cases, which is the missingness mechanism in other experiments on our paper.

* MAR (Missing at Random): Missingness depends on observed variables. We can indicate
which observed variable to use for missingness; the default is Xy. Then, we set a higher
probability of missing when the dependency variable is 1.

* MNAR (Missing Not at Random): Missingness depends on unobserved variables or the
missing values themselves. Take X3 for example, we set it is more likely to be missing
when X3 = 1 (positive values are harder to observe).

We show an observation ratio = 0.2 and a sample size = 50,000 as a representative case in Table|[g]
We run 20 random seeds. Since the seeds are different from those used in Tables 23] and [24] the
results are slightly different.

Table 8: Comparison of inference accuracy and rule accuracy under different missing mechanisms.

\ MCAR \ MAR \ MNAR

| Imputation Accu.  Rule Accu. | Imputation Accu.  Learned Rules | Imputation Accu.  Rule Accu.
X3 1.00 £ 0.00 1.0 1.00 £ 0.00 1.0000 1.00 + 0.00 1.0000
X4 1.00 £ 0.00 1.0 1.00 £ 0.00 1.0000 1.00 £ 0.00 1.0000
X5 0.95 +0.07 0.6 0.95 +0.07 0.6000 0.93 +0.05 0.4000
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The results show that MAR and MNAR show comparable results to MCAR, which demonstrates
our method’s effectiveness across the full spectrum of missing data scenarios.

F RUNNING TIME AND MEMORY COST ANALYSIS

F.1 SYNTHETIC DATASET

While coordinate descent requires different cycle numbers (Table[3), our method demonstrates effi-
cient performance on standard CPU configurations. We conducted experiments using an Apple M4
chip with 10 cores and 16GB memory, taking observation ratio = 0.2 as an example. Results over
20 runs on setting (b) of Figure 3]

Table 9: Running time and memory cost of our model with varying sample sizes. Results over 20
seeds on the example (b) of Figure @

Sample size 2500 5000 10,000 25,000 50,000 100,000

Running time (s) 15.66+3.48 30.17£2.12 54.49+15.98 130.36+45.80 194.59+£98.53 493.99+£152.81
Memory cost (MB) 64.84+£10.72 71.92+0.82 78.55£1.96 95.81£12.13 126.99+26.97 175.644+33.93

Overall, we observe minimal time and memory costs. Time complexity scales near-linearly with
increasing sample size, while memory requirements remain modest even for large datasets. Process-
ing 100,000 samples in under 9 minutes demonstrates strong efficiency for CPU-based execution.

F.2 REAL-WORLD DATASET

Table 10: Comparison of running time and memory cost across different methods in SPECT dataset.

Method Running time (s) Memory cost (MB)
MLP 0.16 + 0.02 158.60 +0.10
LEN 0.20 + 0.00 102.78 +0.01
RRL 16.23 + 0.01 132.59 +0.01
BRCG 2.65 +0.27 135.11 +0.08
DR-NET 89.01 = 0.06 45.93 +0.30
NS-FCN (Ours) 10.34 + 0.30 61.42 +£1.02

We conducted a comparative analysis of our proposed NS-FCN model against baseline methods,
focusing on computational efficiency. We take SPECT dataset as an example. The results in Table
[T0] demonstrate that NS-FCN achieves a competitive balance between performance and resource
consumption. While methods like MLP and LEN offer the fastest execution times, they use higher
memory costs. Our NS-FCN, though not the fastest, maintains a considerably minimal memory cost
and running time.

G ASSESSMENT OF RULE QUALITY

G.1 STRUCTURAL STABILITY.

To quantify the structural stability and reliability of the learned rules, we measure the consistency
of rule predicates across different random seeds using the Jaccard index. For each rule, we treat
the set of instances that satisfy its predicates in a given run as a binary mask, and compute pairwise
Jaccard indices between runs obtained under different random seeds and observation probabilities.
The Jaccard index, defined as the intersection over union of two predicate sets, provides a natural
measure of similarity between rule structures learned across independent runs. High mean Jaccard
scores (close to 1.0) indicate that the learned rules are structurally stable and robust to stochasticity
in training and sampling, whereas lower scores reveal predicates whose semantics are more sensitive
to noise or initialization.

Synthetic Dataset (Figure [3|(b)). As shown in Table [IT} rules X5 and X, achieve perfect Jac-
card indices of 1.0 across all observation probabilities, demonstrating complete structural stability.
In contrast, the aggregated X5 rule exhibits more variability (ranging from 0.60 to 0.76), reflecting
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the increased complexity of learning disjunctive rule structures. In this way, structural stability—
measured via the Jaccard index of predicates across runs—provides a complementary notion of reli-
ability that focuses on the consistency of the learned logical structure rather than solely on predictive
performance.

Table 11: Jaccard index of learned rule predicates on synthetic data under different observation
probabilities. Example (b) of FigureElwith 50,000 samples over 20 seeds.

Obs. Ratio X3 X4 X5

0.1 1.0000 £ 0.0000  1.0000 £ 0.0000  0.7572 £ 0.2526
0.2 1.0000 £ 0.0000  1.0000 £ 0.0000  0.5987 +£ 0.2837
0.3 1.0000 £ 0.0000  1.0000 £ 0.0000  0.6726 + 0.2385

Table 12: Jaccard Index of learned predicates across different sample sizes on the Birds dataset.
Results over 10 seeds.

Sample Size abnormal_clausel abnormal_clause2 can_fly
(ostrich) (bird AN wounded)  (bird N —abnormal_bird)
100 0.8000 £ 0.2449  0.5000 + 0.3162 0.5000 £ 0.3162
500 0.8000 £ 0.2449  0.8000 £ 0.2449 0.7000 £ 0.2449
1000 0.8000 £+ 0.2449  0.6000 £ 0.3000 0.6000 £ 0.3000
1500 0.8187 £0.2404  0.6868 % 0.3024 0.7967 £ 0.2670
2000 0.8000 £ 0.2449  0.6000 £ 0.3000 0.6000 =£ 0.3000

Birds Dataset. We analyze the consistency of learned rule structures in Birds Dataset (Figure [3).
Table [I2] presents the Jaccard indices across all pairwise comparisons between seeds for different
sample sizes, where abnormal_clausel and abnormal_clause2 correspond to the two conjunctive
clauses in the disjunctive rule for abnormal_bird: abnormal_bird < ostrich \/ (bird \ wounded).
The results demonstrate that, with the exception of n = 100 where the sample size is insufficient, the
model achieves good consistency (Jaccard index > 0.60) across all rules and sample sizes. Overall,
n = 1500 yields the best consistency, with abnormal_clausel reaching 0.8187 and can_fly reaching
0.7967, indicating that this sample size provides an optimal balance between data availability and
model stability.

Table 13: Structural stability of learned prediction rules on the Heart Disease dataset.

Metric Value

0.4151 £ 0.0994

Mean Pairwise Jaccard Index

Most Frequently Selected Features

restecg_1.0 (ST-T wave abnormality) 9/10 runs
thal_3.0 (normal thalassemia) 8/10 runs
ca_3.0 (3 major vessels colored) 8/10 runs
thalach (maximum heart rate achieved) 7/10 runs

Heart Disease dataset. For this real-world dataset, where ground-truth rules are unknown, we
evaluate structural stability by computing the Jaccard index of selected features across all predic-
tion rules learned under different random seeds. Table [13|shows that the model achieves moderate
consistency (Jaccard index 0.4151 + 0.0994), indicating that while different seeds may select vary-
ing feature combinations, there is substantial overlap in the most important features. The most fre-
quently selected features include restecg_1.0 (ST-T wave abnormality on resting electrocardiogram),
thal_3.0 (normal thalassemia, a blood disorder), ca_3.0 (three major vessels colored by fluoroscopy,
indicating severe coronary artery disease), and thalach (maximum heart rate achieved during exer-
cise). These features align with established clinical risk factors for heart disease, suggesting that the
model successfully identifies medically relevant features despite the lack of explicit rule supervision.
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G.2 RULE LENGTH ANALYSIS

To understand the sensitivity of our framework to the rule structure hyperparameters, we conduct
ablation studies on the Heart Disease dataset, systematically varying the arity of conjunction (h) and
the number of conjunctive clauses (1).

We find that both h and Rj, show optimal performance in a wide range. For instance, h € [3, 9] and
Ry, € [5,20], showing that except for very small & and Ry, our model is able to capture the logic
structure within the dataset. Besides, the number of disjunctive clauses is more critical than the arity
of individual conjunctions for this dataset. This aligns with the intuition that complex real-world
decision boundaries often require multiple alternative rules rather than highly complex single rules.

Effect of Conjunctive Clauses Number on Test Accuracy Effect of Conjunctive Clauses Number on Test F1
0.90 0.90
20.85 0 0.85
@© o
5 &
S 0.80 - 0.80
< [T
0 0.75 ?0.75
& e
0.70 —e— Test Accuracy 0.70 Test F1
+1 std +1 std
0.65 0.65
5 10 15 20 5 10 15 20
Number of Conjunctive Clauses Number of Conjunctive Clauses

Figure 6: Classification accuracy for heart disease risk under the effect of the number of conjunction
arity (h). Results are over 10 seeds.
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Figure 7: Classification accuracy for heart disease risk under the effect of the number of conjunctive
Clauses (R}). Results are over 10 seeds.

H ANALYSIS OF TEMPERATURE IN SOFT OPERATORS AT EQUATIONS

To validate robustness, we conducted a sensitivity analysis on Figure [3[b) with 20,000 samples and
0.2 observation ratio.

Soft-AND (7). Table [T4] shows that the model maintains high accuracy when 7 is small (e.g.,
7 € [0.01,0.20]). This is expected because as 7 — 0, Softmin approximates the hard min logic
required for strict conjunctions. Performance degrades only when 7 becomes too large (7 > 1.0),
where the operator becomes too “soft” to capture the decisive logical boundaries. Thus, a small
constant temperature (e.g., 7 = 0.1) is a safe and effective default.

Soft-OR (/5). Table[I5|reports the imputation accuracy under varying constant 5 values. The re-
sults demonstrate that our model is highly robust to /3: it achieves near-perfect accuracy for all latent
predicates (X3, X4, X5) across a wide range, specifically for 8 > 3. This aligns with the theoretical
property that as § — oo, the LogSumExp function approximates the hard max operator. In prac-
tice, any sufficiently large provides a strong gradient signal for discrimination while maintaining
differentiability.
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Table 14: Imputation accuracy for latent predicates X3, X4, X5 under different softmin temperatures

(with fixed 8 = 10 over 20 random seeds).

7 in Equation 4]

Imputation Acc. X3

Imputation Acc. X4

Imputation Acc. X5

0.01 1.000 £ 0.000 1.000 £ 0.000 0.965 £ 0.063
0.02 1.000 £ 0.000 1.000 £ 0.000 0.987 £ 0.034
0.05 1.000 £ 0.000 1.000 £ 0.000 0.939 = 0.061
0.10 1.000 £ 0.000 1.000 £ 0.000 0.958 £ 0.076
0.20 1.000 £ 0.000 1.000 £ 0.000 1.000 £ 0.000
0.50 1.000 4 0.000 1.000 £ 0.000 0.858 £0.038
1.00 0.928 £0.122 0.892 £ 0.134 0.776 £ 0.027
2.00 0.751 £ 0.002 0.839 £ 0.157 0.786 £ 0.008
5.00 0.769 £0.111 0.750 £ 0.003 0.772 £0.083
10.00 0.752 £ 0.003 0.770 £0.111 0.802 £ 0.064
20.00 0.697 £ 0.098 0.733 £0.046 0.799 £ 0.064
50.00 0.733 £ 0.049 0.733 £0.046 0.798 £ 0.077
100.00 0.750 £ 0.004 0.698 £ 0.064 0.803 £ 0.069

Table 15: Imputation accuracy for latent predicates X3, X4, X5 under different constant temperature

values (3 (with fixed 7 = 0.1 over 20 random seeds).

[ of Equation Imputation Acc. X3  Imputation Acc. X4 Imputation Acc. X5
0.1 1.000 £ 0.000 1.000 % 0.000 0.218 £0.002
0.2 1.000 £ 0.000 1.000 £ 0.000 0.218 £ 0.002
0.5 1.000 £ 0.000 1.000 % 0.000 0.218 £0.002

1 1.000 £ 0.000 1.000 % 0.000 0.217 £0.002

2 1.000 £ 0.000 1.000 £ 0.000 0.870 £0.117

3 1.000 £ 0.000 1.000 % 0.000 0.942 £ 0.056

4 1.000 4 0.000 1.000 % 0.000 0.866 =+ 0.057

5 0.965 £+ 0.093 1.000 £ 0.000 0.894 + 0.056
10 0.965 £ 0.093 1.000 % 0.000 0.915 £ 0.040
15 0.965 £+ 0.092 1.000 % 0.000 0.899 £ 0.072
20 0.966 £+ 0.091 1.000 £ 0.000 0.928 £ 0.057
25 0.965 £ 0.092 1.000 % 0.000 0.886 =+ 0.060
30 1.000 4 0.000 1.000 % 0.000 0.899 + 0.088
35 0.965 £ 0.093 1.000 £ 0.000 0.880 £ 0.076
40 1.000 £ 0.000 1.000 % 0.000 0.889 £ 0.075
45 0.964 £+ 0.094 0.965 £ 0.093 0.909 £ 0.051
50 1.000 £ 0.000 1.000 £ 0.000 0.917 £ 0.064
100 0.965 £ 0.094 1.000 % 0.000 0.916 £ 0.064
200 1.000 £ 0.000 1.000 £ 0.000 0.908 £ 0.070

Conclusion. Our framework does not rely on carefully hyperparameter tuning. A moderate

to large 3 for Soft-OR and a small 7 for Soft-AND consistently yield optimal results. Thus, we
use 7 = 0.1 and 8 = 10 as temperature parameters for all our experiments. Furthermore, complex
scheduling strategies like cosine annealing can be employed if constant temperature are not good
enough.

I SENSITIVITY ANALYSIS WITH LABEL NOISE AND MISSING RATIO

I.1 ROBUSTNESS ANALYSIS WITH LABEL NOISE

To assess the robustness of our framework against data inconsistencies and imperfect logical depen-
dencies, we conducted experiments by injecting label noise into the latent predicates.

Specifically, we first generate the ground-truth latent predicates X3, X4, X5 following the perfect
logical rules (e.g., X3 = Xy A X1). Then, we introduce stochasticity by flipping the binary labels
of these latent predicates with a probability p,.ise € {0.0,0.1,0.2,0.3,0.4,0.5}. This setup simu-
lates real-world scenarios where logical rules may have exceptions or where the observed data
contains errors, directly challenging the model’s ability to distill consistent symbolic rules from
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noisy supervision. Tables[I6]and [[7] present the learned rule structures and their corresponding im-
putation accuracies under varying noise ratios. We use Figure [3] (b) as the representative example
with an observation ratio of 0.3 and sample sizes of 20,000.

In the noise-free setting (Pnoise = 0.0), our model perfectly recovers the ground-truth rules for
the simpler conjunctive predicates X3 and X, (with rule accuracy 1.00), achieving perfect imputa-
tion accuracy (1.000). For the more complex disjunctive rule X5, the model achieves a rule accu-
racy of 0.50 and an imputation accuracy of 0.955 after fine-tuning, indicating that while the exact
ground-truth structure is harder to isolate, the learned approximations maintain strong predictive
performance.

Remarkably, the model demonstrates strong robustness at low-to-moderate noise levels (ppoise <
0.3). At ppoise = 0.1 and 0.2, the ground-truth rules (underlined in the table) for X3 and X, are
perfectly recovered (rule accuracy 1.00) with near-perfect imputation accuracies; for the complex
multi-hop rules of X5, the ground-truth rules frequently emerge as the dominant learned structures
(with rule accuracy above 0.5). Even at p,, ;s = 0.3, the model maintains high rule accuracy (0.85)
for both X3 and X, with imputation accuracies above 0.95; for X35, the rule accuracy decreases to
0.2 at ppoise = 0.3, but the imputation accuracy remains at 0.828, suggesting that the model learns
valid approximations (e.g., capturing one correct disjunctive branch) that preserve predictive
power.

As noise increases beyond 0.3, the performance degrades more significantly. At p,o;se = 0.4, rule
accuracies drop to 0.85 and 0.6 for X3 and X, respectively, while X5 fails to recover the correct
structure (rule accuracy 0.00). At p,,0i5e = 0.5, the model struggles to learn meaningful rules, with
rule accuracies in [0.0,0.1] for all predicates. However, the imputation accuracies remain above
0.70 even at these high noise levels, indicating that the learned approximations, while not perfectly
matching the ground-truth rules, still provide useful predictive signals.

The imputation accuracy degrades gracefully as noise increases, rather than collapsing abruptly,
indicating that the soft-logic relaxation effectively prevents the model from overfitting to noise,
allowing it to capture the dominant logical signals within the data. The fine-tuning step for X5
consistently improves imputation accuracy across all noise levels, demonstrating the effectiveness
of the iterative refinement process.

Table 16: Impact of label noise on rule learning and missing value imputation performance. Results
are over 20 random seeds.

Noise Avg. Imputation Accu. Avg. Imputation Accu. Train Loss Train Loss

Ratio (Before Fine-tune) (After Fine-tune) (Before Fine-tune)  (After Fine-tune)
0.0 X3 :1.000 4 0.000 / X3 :0.001 £ 0.000 /
X4 :1.000 4+ 0.000 / X4 :0.001 £+ 0.000 /

X5 :0.907 4+ 0.050 X5 :0.955 4+ 0.049 X5:0.089 +0.035 X5 :0.067 +0.031
0.1 X3 :1.000 4 0.000 / X3 :0.098 +0.003 /
X4 :1.000 4 0.000 / X4 :0.099 £+ 0.004 /

X5 :0.948 +0.042 X5 :0.946 4+ 0.038 X5:0.168 £0.026 X5 :0.123 +£0.021
0.2 X3:0.975 4+ 0.076 / X3:0.193 £ 0.005 /
X4 :0.987 +0.057 / X4 :0.193 +£0.007 /

X5 :0.894 4+ 0.050 X5 :0.902 4+ 0.046 X5 :0.260 £ 0.008 X5 :0.204 +0.012
0.3 X3 :0.950 +0.103 / X3 :0.282 4+ 0.006 /
X4 :0.987 +0.056 / X4 :0.282 +0.008 /

X5 :0.822 +0.046 X5 :0.824 4+ 0.066 X5:0.320 £ 0.006 X5 :0.266 4= 0.006
04 X3:0.863 +0.127 / X3 :0.360 £+ 0.009 /
X4 :0.8624+0.128 / X4 :0.357 £ 0.008 /

X5:0.792 +£0.078 X5 :0.786 + 0.065 X5:0.370 £ 0.006 X5 :0.311 4+ 0.006
0.5 X3 :0.745 + 0.085 / X3:0.418 £0.007 /
X4 :0.725 +£0.077 / X4 :0.421 +£0.007 /

X5 :0.761 +0.057 X5 :0.767 £ 0.072 X5:0.421 £0.007 X5 :0.349 £+ 0.007

1.2 MISSING RATIO

In three synthetic datasets, we have varied the missing ratio in {0.7,0.8,0.9} in the above results.
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Table 17: Learned rule structures under label noise. Ground truth rules are indicated with underlines.
Results are over 20 random seeds.

Noise Ratio  Learned Rule Structure Rule Accu.
0.0 X3: Xo A Xy X3 :1.00
X4 Xo A Xy X4 :1.00

X5 (Xo AXy) V(X5 A Xg), (X3 AXa) V(X3 A Xe), (XoAXa)V (XoAXa), (XoAXg) V(X1 AXe), (X1 AX3)V(X3AXg)  X5:0.50

0.1 X3 : XoN Xy X3 :1.00
Xy Xo AN X7 X, :1.00

X5 0 (Xo A Xa) V(X3 A Xg), (X3 AXy) V(X5 A Xe), (XoAXa)V(XoAXa), (XoAXa)V (XA X3), (XoAXo)V(X35AXg)  X5:0.55

0.2 X3: XoA X, X3 :1.00
Xi: Xo N X7 X, :1.00

X5 (Xo A Xa) V(X3 A Xe), (XoAXa) V(X3 AXy),(XoAX1) V(X3 A Xe), (Xo A Xg) V(X0 A X7), (Xo AXy)V(XgAXg)  Xs:0.60

0.3 X3: XogAX1, Xy A Xy, X1 A Xy, Xy A Xy X;5:0.85
Xy Xo A X7, Xo A X, Xo A Xo X4:0.85

X5 : (Xo A Xa) V(X3 A X), (XoAX7) V(X3 A Xe), (Xo A X3) V (Xo A Xa), (X3 A Xe) V (Xa A X7), (Xo A X))V (XoAXe)  X5:0.20

0.4 X3: Xo A X1, X1 A X1, X1 A Xa, Xo A Xe, Xo A Xo X3 :0.60
Xy Xy A Xq, X7 A X7, Xo A Xo, Xo A Xo, Xo A X X, :0.60

X5 : (Xo AX2) V(X4 A Xg), (XoAXp) V(X3 A X3), (XoAXo)V (XoAX3), (XoAXe) V(X1 AX7), (X1 AXg)V (XaAXy)  X5:0.00

0.5 X3: X1 A X7, Xo A Xo, Xg A X, Xo A Xa, Xo A Xy X3:0.10
Xyt Xg A X, Xo A Xe, Xo A X7, Xg A X, X1 A Xo X4:0.05

X5 ¢ (Xo A X3) V (X1 A Xg), (Xo A Xa) V (Xo A X7), (Xo A Xo) V (Xa A X7), (Xo A X3) V(X4 A X7), (Xo A X7)V (X6 AX7)  X5:0.00

In real-world datasets, to assess the model’s robustness under different levels of data scarcity, we
evaluated its performance on the SPECT and Heart Disease dataset while varying the observation
ratio from 0.3 to 0.9 (i.e. missing ratio from 0.1 to 0.7).

As shown in Tables[T8and [T9] the model’s accuracy remains acceptable and improves consistently
as more data becomes available. Notably, in SPECT, even with only 30% of the data observed (a
70% missing ratio), the model maintains a high F1 score of 0.751, demonstrating its capability to
learn meaningful diagnostic rules from highly incomplete datasets.

For the Birds Dataset, we fix the observation ratio as 0.1 (i.e. 90% missingness) and show results
over different number of training samples. Results in Table[20[show that a few hundred samples are
sufficient for the model to converge to the correct logical truth.

Table 18: Performance on the SPECT dataset with varying observation ratios.

Observation Ratio Imputation Acc. Diagnosis Acc. Diagnosis F1
0.3 0.501 0.679 0.751
0.5 0.630 0.765 0.808
0.7 0.763 0.920 0.958
0.9 0.791 0.929 0.960

Table 19: Imputation accuracy for Heart Disease under different observation ratios.

Observation Ratio Overall trestbps chol thalach oldpeak
0.3 0.6444  0.7129  0.6304 0.7393  0.4950
0.5 0.7434  0.8053 0.7558 0.7954  0.6172
0.7 0.8432  0.8647 0.8482 09043  0.7558
0.9 0.9439 09439 0.9307 0.9769 09241

J  ADDITIONAL SYNTHETIC EXPERIMENTS RESULTS

J.1 MAIN RESULTS SUPPLEMENT OF EXAMPLE (B) OF FIGURE

Dataset Generation. The base variables { X, X1, X2, X, X7} are independently generated from a
Bernoulli distribution, each with p = 0.5. Subsequently, the values for { X3, X4, X5} are determin-
istically derived using the ground truth logical rules depicted in Figure 3] Specifically, these rules
are:

X3+ XogN Xy
X4(—X2/\X7
X5 (Xg/\Xg)\/(X4/\X0>
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Table 20:

Impact of training sample size on the imputation accuracy of latent predicates

(abnormal, £1ly) in the Birds domain. Results are reported as mean =+ std over 10 random seeds,
evaluated with 10% observation probability.

# Samples  Acc. Abnormal Bird ~ Acc. Can Fly
100 0.896 £ 0.058 0.845 £+ 0.148
500 0.976 £ 0.054 0.928 £ 0.066
1000 0.951 £ 0.067 0.928 £ 0.066
1500 0.949 £ 0.070 0.952 £ 0.066
2000 0.951 £ 0.067 0.928 £ 0.066

Finally, to introduce missing information, a portion of the values for X3, X4, and X5 are randomly
masked. These masked variables become the targets for imputation. In our experiments, we vary the
level of missingness, applying masking probabilities of 70%, 80%, and 90% to these target variables
(corresponding to observation ratios of 30%, 20%, and 10%, respectively).

Main Results. As demonstrated in a previous case study (Table [3| which shows three runs using
the same seed but different internal rule optimization orders), variations in the rule optimization
sequence within a single seed can affect training efficiency. We thus show the coordinate descent
training progress under a different random optimization order from Figure[dhere in Figure[9] In this
run, the optimization order is [X5, X4, X3] for cycle 1 and [X4, X5, X3] for cycle 2. Given such
different learning trajectories, our model still discovers the correct rules successfully.

Furthermore, random initialization across different seeds can lead to the discovery of varied rule
sets, and occasionally, the model might converge to a local optimum. However, as the analysis of
convergence before, performing multiple runs with different initializations enhances the probability
of identifying the global optimal solution. Our findings indicate that the model can finds global
optima several times within 20 random seeds (Tables [23]and [24).

Learning Efficiency. As the observation ratio decreases, the guidance signal becomes less infor-
mative, reducing both rule structure recovery and missing value imputation. We also evaluated the
model’s performance with a smaller training set of 10,000 samples. The results, detailed in Tables
and demonstrate that our model maintains high accuracy for simple AND rule learning and
predicate inference. Even for challenging OR rule learning, the model successfully identifies most
body predicates. We further investigated the impact of dataset sample size, varying it from 1,000
to 20,000 samples. As shown in Figure [8| the most efficient setting we can recover the OR rule for
X5 is to use an observation ratio of 0.1 and a dataset of 4,000 samples. For the simpler AND rules
governing X3 and Xy, correct rule structures could be learned with 1,000 or even smaller samples
and a 0.1 observation ratio.

Table 21: Summary of synthetic data experiment results for example (b) of the Figure Each
observation ratio is evaluated using 10,000 samples and results are averaged over 20 random seeds.

Obs.  Avg. Imputation Accu. Avg. Imputation Accu. Train Loss Train Loss
Ratio (Before Fine-tune) (After Fine-tune) (Before Fine-tune) (After Fine-tune)
0.3 X3:0.91+0.014 / X3 :0.069 & 0.007 /
X4:0.934+0.013 / X4 :0.054 £0.006 /
X5 : 0.87+0.003 X5 :0.88 4 0.002 X5:0.110+£0.002 X5 :0.103 & 0.000
0.2 X3:0914+0.014 / X3 :0.067 £0.007 /
X4:0.90£0.015 / X4 :0.072 £ 0.007 /
X5 :0.86 & 0.003 X5 : 0.87+£0.003 X5:0.116 £ 0.002 X5 :0.105 £0.001
0.1 X3:0.90£0.015 / X3 :0.075 £ 0.007 /
X4 :0.91+0.014 / X4 :0.063 &+ 0.006 /
X5 :0.85+0.003 X5 :0.88+0.002 X5:0.124 £0.002 X5 :0.107 £0.001
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Table 22: Summary of learned rule structures and accuracy for example (b) of Figure Each
observation ratio is evaluated using 10,000 samples, with results averaged over 20 random seeds.
We present the top 3 learned rule structures in order of discovery accuracy. Rule accuracy indicates
the percentage of 20 runs in which a rule was learned completely correctly.

Obs. Ratio Learned Rule Structure Rule Accu.
0.3 X3 Xo A X1, XA X6, X1 AN X7 X3 :0.65
Xq: Xo A X7, Xe N X7, X7 X4 :0.70

X5 (Xo AN X4) Vv (X3 A\ XG), (Xg A X4) Vv (X3 AN XG), (X() A Xl) V (Xo A X4) X5 :0.10

0.2 X3 ZXO/\Xl,Xo,Xo/\XQ X3 : 0.65

Xa: Xo AN X7, Xo, Xo N X7 X4 :0.60

X5 . (Xo A X4) Vv (Xg N Xa), (Xg A X4) Vv (X3 A XG), (Xo) Vv (X1 N X6) X5 : 010

0.1 X3 Xo A X1, X0 A X2, Xo N Xs X3 :0.60

X4 2X2/\X7,X2,X6/\X7 X4 : 0.65

X5 : (X3 A X4) \Y (X3 A Xe.), (Xo A Xl) \Y (Xo A X4), (X() A X4) \Y (X3 AN Xg) X5 :0.10

X3 Imputation Accuracy X4 Imputation Accuracy X5 Imputation Accuracy
1.00 1.00 1.00
0.95 0.95 0.95
5 0.90 —o— Seed 1 a —o— Seed 1 5
o Seed 3 © 0.90 Seed 3 © 0.90
e e go.
5 - Seed12 | 5 —e— Seed 12 5
8 0.85 —o— Seed 42 8 0.85 | —®— Seed 42 8
P 8- Seed88 | —— Seed 88 < 0.85 Lo Seed1
0.80 Seed 3
0.80 —&— Seed 12
0.75 -8 0.80 —e— Seed 42
: o 0.75 —o— Seed 88
2500 5000 7500 10000 12500 15000 17500 20000 2500 5000 7500 10000 12500 15000 17500 20000 2500 5000 7500 10000 12500 15000 17500 20000
n_samples n_samples n_samples

Figure 8: Imputation accuracy versus dataset sample size for Figure [3| (b). For these experiments,
10% of the data was observed (i.e., a 90% missing ratio) for predicates in X3, X4, and X5.

J.2 RESULTS OF EXAMPLE (A) OF FIGURE

Dataset Generation. The base variables {Xg, X1, X2, X4} are independently generated from a
Bernoulli distribution, each with p = 0.5. Subsequently, the values for { X3, X4, X5} are determin-
istically derived using the ground truth logical rules depicted in Figure 3] Specifically, these rules
are:

X3+ Xo N X3

X 4 X 2 N\ X 3

X5 X4 N Xg
Finally, to introduce missing information, a portion of the values for X3, X, and X5 are randomly
masked. These masked variables become the targets for imputation. In our experiments, we vary the

Table 23: Summary of synthetic data experiment results for example (b) of the Figure Evaluated
on 50,000 samples and results are averaged over 20 random seeds.

Obs.  Avg. Imputation Accu. Avg. Imputation Accu. Train Loss Train Loss
Ratio (Before Fine-tune) (After Fine-tune) (Before Fine-tune) (After Fine-tune)
0.3 X3 :0.98 +0.006 / X3 :0.024 £ 0.003 /
X4 :1.00 £ 0.000 / X4 :0.005 £ 0.000 /
X5 :0.94 +0.003 X5 :0.96 +0.003 X5 :0.0564 £0.002 X5 :0.065 =+ 0.001
0.2 X3 :1.00 £ 0.000 / X3 :0.005 £ 0.000 /
X4:0.95+0.010 / X4 :0.041 £ 0.005 /
X5 :0.93 +£0.003 X5 :0.96 £ 0.002 X5 :0.063 £0.003 X5 :0.067+0.001
0.1 X3 :1.00 % 0.000 / X3 :0.005 £ 0.000 /
X4 :1.00 £ 0.000 / X4 :0.005 £ 0.000 /
X5 :0.93 +0.003 X5 :0.94 £ 0.002 X5 :0.056 £0.002 X5 :0.073 +0.001
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(a) Predicate Rule Training Losses (Seed 12) (b) Unobserved Predicate Imputation Accuracies (Seed 12)
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Figure 9: Training dynamics for a representative run (Obs. Ratio = 0.3) of Figure |3| (b). The
optimization order: [ X5, X4, X3 ] for Cycle 1; [Xy4, X5, X3 ] for Cycle 2. Subplots display: (a)
training losses, (b) unobserved imputation accuracies, and (c) gradient norms for rule embeddings;
(d) overall imputation accuracies each cycle. Red dashed lines indicate the conclusion of training
blocks for X3 or X, (each allocated 30 epochs when active within a cycle). Purple dashed lines
delineate training phases for X5 (Rule 1, Rule 2, and Fine-tune); the epoch count for these X5
phases can vary per cycle due to the dynamic nature of the hard covering mechanism. Correct rule
structures were learned for X3 by the end of Cycle 1, and for X, and X5 by the end of Cycle 2.

Table 24: Summary of learned rule structures and accuracy for example (b) of Figure Each
observation ratio was evaluated using 50,000 samples, with results averaged over 20 random seeds.
We present the top 3 learned rule structures in order of discovery accuracy. Rule accuracy indicates
the percentage of 20 runs in which a rule was learned completely correctly.

Obs.Ratio Learned Rule Structure Rule Accu.
0.3 X3: Xo AN X1, XoAN Xo X3 :0.90

X4 : Xo AN X7 X4 :1.00

X5:(XoA X4) V (X3 A Xg), (Xg N X4) \Y (X3 N Xﬁ), (Xo AXH)V (XA X3) X5 :0.50

0.2 X3: Xo N X1 X3 :1.00
Xa: Xo AN X7, Xo AN X7, Xo X4 :0.80

X5 : (Xo AN X4) Vv (X3 A XG), (Xg A X4) V (Xg A X@), (Xo AN Xl) Vv (Xo A X4) X5 :0.40

0.1 X3 : Xo A X1 X3 :1.00
X4 : XQ A\ X7 X4 : 100

X5 (Xo AN X4) Vv (X3 A XG), (Xg A X4) V (Xg A XG), (Xo N Xl) Vv (Xo A X4) X5 :0.30

level of missingness, applying masking probabilities of 70%, 80%, and 90% to these target variables
(corresponding to observation ratios of 30%, 20%, and 10%, respectively).

Main Results. We show the coordinate descent training progress under different random optimiza-
tion order. Figure [T0] demonstrates the convergence in two cycles, while Figure [TT] requires three
cycles to complete training.

We summarize the results for example (a) of the Figure [3]in Tables 23] and [26] which demonstrate
both the effectiveness of our rule discovery approach and the precision of missing variables imputa-
tion. Our analysis reveals that learning the multi-step chain structure presents significant challenges,
primarily because the algorithm uses inferred predicate values vt from previous steps to update the
current values by Eq.[3] This creates a dependency chain where suboptimal rule embeddings learned
at earlier optimization steps can propagate errors to subsequent steps, potentially degrading overall
performance. Despite these challenges, our model successfully identifies the correct rules in the ma-
jority of experimental runs. This robustness indicates that with multiple random initializations, the
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(a) Predicate Rule Training Losses (Seed 42) (b) Unobserved Predicate Imputation Accuracies (Seed 42)
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Figure 10: Training dynamics for a representative run (Observation Ratio = 0.2) of Figure 3| (a).
Subplots display: (a) training losses, (b) unobserved imputation accuracies, and (c) gradient norms
for rule embeddings; (d) overall imputation accuracies each cycle. Purple dashed lines indicate
the conclusion of training blocks for one cycle (each allocated 30 epochs). The rule embedding
optimization order: [ X5, X3, X4 ] for Cycle 1; [ X5, X4, X3 ] for Cycle 2. Correct rule structures
were learned for X3 and X4 by the end of Cycle 1, for X5 by the end of Cycle 2. The learned rules:
X3 (—Xo/\Xl,X4 (—XQ/\X3,X5 — Xy N Xg.

algorithm reliably converges to the optimal rule structures like the results from Figures [T0]and [TT]
which effectively overcome the inherent difficulties of sequential dependency learning in chain-like
logical structures.

Table 25: Summary of synthetic data experiment results for example (a) of the Figure Each
observation ratio is evaluated using 50,000 samples and results are averaged over 20 random seeds.
No fine-tune phase since we assume no disjunctive rules.

Obs. Ratio  Avg. Imputation Accu. Train Loss

0.3 X3 :0.86£0.13 X3 :0.09£0.08
X4:0.91£0.06 X4:0.07£0.04
X5 :0.95+0.03 X5 :0.04+0.02

0.2 X3:0.85£0.13 X3:0.10 £0.08
X4:0.90=£0.05 X4:0.08£0.04
X5 :0.94 £0.02 X5 :0.04+0.02

0.1 X3:0.82£0.12 X3:0.10£0.07
X4 :0.90 £0.05 X, :0.08+0.04
X5:0.94£0.02 X5 :0.056£0.02

J.3 RESULTS OF EXAMPLE (C) OF FIGURE

Dataset Generation. The base variables { X, X1, X2, X4, X7} are independently generated from
a Bernoulli distribution, each with p = 0.5. Subsequently, the values for { X3, X4, X5, Xg} are
deterministically derived using the ground truth logical rules depicted in Figure 3] Specifically,
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(a) Predicate Rule Training Losses (Seed 42) (b) Unobserved Predicate Imputation Accuracies (Seed 42)
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Figure 11: Training dynamics for a representative run (Observation Ratio = 0.2) of Figure 3| (a).
Subplots display: (a) training losses, (b) unobserved imputation accuracies, and (c) gradient norms
for rule embeddings; (d) overall imputation accuracies each cycle. Purple dashed lines indicate
the conclusion of training blocks for one cycle (each allocated 30 epochs). The rule embedding
optimization order: [ X5, X4, X3 ] for Cycle 1,2; [ X3, X5, X4 ] for Cycle 3. Correct rule structures
were learned for X3 by the end of Cycle 1, for X, by the end of Cycle 2, and for X5 by the end of
Cycle 3. The learned rules: X3 <— Xo A X1, X4 ¢ Xo A X3, X5 +— Xy A Xg.

Table 26: Summary of learned rule structures and accuracy for example (a) of Figure Each
observation ratio is evaluated using 50,000 samples, with results averaged over 20 random seeds.
We present the top 3 learned rule structures in order of discovery accuracy. The rules that are truth
rules are indicated by underline. Rule accuracy indicates the percentage of 20 runs in which a rule
was learned completely correctly.

Obs. Ratio Learned Rule Structure Rule Accuracy
0.3 X3 : Xo/\Xl,Xo/\X4,X5 X3 : 0.60
X4 ZXQ/\Xg,Xg/\X5,XQ/\X5 X4 :0.40
X5 Xy N Xg, Xa AN Xy, Xa N Xy X5 :0.40

0.2 X3 ZX()/\X17X57X0/\X5 X3 :0.40
X4 2X2/\X3,X5/\X3,X5 X4 :0.30
X5 : X4 AN X6, X4, X3 /\X4 X5 :0.20
0.1 X3 ZXo/\Xl,Xo/\X4,X0/\X5 X3 :0.40
X4 Xo N X3, X5, Xo A X5 X4:040

X5IX4/\X6,X4/\X2,X3/\X6 X5010

these rules are:
X3+ Xo N Xy
Xy Xo N X7
Xg +— X4 N Xp
X5 < (X3 A Xe6) V(X)) V (X6 A X7)

Finally, to introduce missing information, a portion of the values for X3, X4, X5 and X5 are ran-
domly masked. These masked variables become the targets for imputation. In our experiments, we
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vary the level of missingness, applying masking probabilities of 70%, 80%, and 90% to these target
variables (corresponding to observation ratios of 30%, 20%, and 10%, respectively).

Main Results. We summarize the results for example (c) of the Figure |3|in the Tables [27] and
showcasing the effectiveness of rule discovery and the precision of missing variables imputation.
We have random coordinate descent training order for rule optimization.

This task is more challenging due to the chain-like structure of the disjunctive rules, particularly
with three clauses for X5, resulting in lower learning accuracy than in example (b). Nonetheless, our
method achieves the highest rule discovery accuracy for the ground-truth rules while maintaining
acceptable imputation accuracy. For the most difficult prediction task (X5), we obtain over 80%
accuracy across all three observation ratios. Other predicate predictions reach ~ 90% accuracy,
including the chain-derived predicate Xs. For the learned rules in Table 28] we can find most body
predicates are correct even for the complex three-clause rules governing X5, which include the
chain-derived predicate Xg. We also show the loss plot for one run in Figure

Table 27: Summary of synthetic data experiment results for example (c) of the Figure Each
observation ratio is evaluated using 50,000 samples and results are averaged over 20 random seeds.

Obs.  Avg. Imputation Accu. Avg. Imputation Accu. Train Loss Train Loss
Ratio (Before Fine-tune) (After Fine-tune) (Before Fine-tune) (After Fine-tune)

0.3 X3:0.86+£0.12 / X3:0.102 £+ 0.09 /
X4:087+0.13 / X4 :0.093 £0.09 /

X5 :0.79+0.09 X5 :0.84 £0.08 X5:0.111£0.06 X5:0.147 4+ 0.08
Xg:0.91+0.06 / Xg :0.060 £ 0.04 /

0.2 X3:0.89+0.12 / X3 :0.083 £0.09 /
X4:088+£0.12 / X, :0.087+£0.08 /

X5 :0.78 £0.08 X5 :0.82+0.09 X5:0.1194+0.06 X5:0.159 + 0.08
Xg:0.93£0.06 / Xg:0.046 £ 0.04 /

0.1 X3:0.89+0.12 / X3 :0.084 +0.09 /
X4:0.89+0.12 / X4 :0.084 £0.09 /
X5:0.78£0.10 X5:0.80£0.11 X5:0.133£0.07 X5:0.169 4+ 0.10
Xg:0.93+0.06 / Xg:0.048 +0.04 /

Training Loss Unobserved Accuracy Remaining Samples
0.25 101 —— 50000
47500
0.20 0.8 3
S 45000
015 Fo61 ﬁ {,,E" 42500
8 3 — x8 ME 40000
0.10 K041 — x5 g
€ 37500
0.05 0.2 2 35000
0.00 0.0 32500
T 20 40 60 0 20 40 60 0 20 40 60
Epoch Epoch Epoch

Figure 12: An example of loss and imputation accuracy during coordinate optimization (Obs. Ratio
=0.1, seed = 88, from example (c) of Figure. The training order is [ X35, X4, Xg, X5]. Epochs 0-19
correspond to rule learning for X3; epochs 20-39 for X,; epochs 40-59 for Xg, and epochs 60-end
for X5. Remaining samples identified how many samples are “well-explained” during hard covering
phase. As the imputation accuracy for missing X5 is 1.00, we do not go to the fine-tune phase. The
learned rules: X3 < )(()/\)(17 Xy )(2/\)(77 X5 (Xg/\X@) \/Xg\/(X@/\X7), Xg + X3NX,.

J.4 HYPER-PARAMETERS SETTING AND COMPUTING RESOURCE

Our model operates efficiently in a CPU environment utilizing the PyTorch library. The hyperpa-
rameters are configured as follows:
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Table 28: Summary of learned rule structures and accuracy for example (c) of Figure Each
observation ratio is evaluated using 50,000 samples, with results averaged over 20 random seeds.
We present the top 3 learned rule structures in order of discovery accuracy. The rules that are truth
rules are indicated by underline. Rule accuracy indicates the percentage of 20 runs in which a rule
was learned completely correctly.

Obs. Ratio Learned Rule Structure Rule Accu.
03 X3 2X0/\X1,X0/\X2,X1 /\XQ Xg 045
Xy Xo AN X7, X1 A Xo, Xo X4:0.5

X5 : (X3 N X6) Vv Xg V (X6 N X7), X4 V (X3 AN Xﬁ) Vv (X6 N X7), X5 : 015
(X3 A\ X4) VvV X3V (X3 A\ X7)

X81X4/\X0,X3/\X7,X2/\X0 X803
0.2 X3 : XoA X1, X1 A Xo, XoAN Xo X3 :0.55
X4 ZXQ/\X7, XO/\X2,X1 /\X2 X4 : 0.55

X5 : (X3 AN X@) V Xg V (X@ A X7),(X2 A X3) vV Xy V (X(j A X7), X5 :0.10
X4V Xs V(X3 A Xe)

Xg : Xy A Xo, X3 A Xy, X3 A X7 Xg:0.25
0.1 X3 : Xo A X1, Xo, Xo AN X7 X3 :0.55
X4 :XQ/\X7,X0/\X2,X1 /\X7 X4 : 0.55
X5: X4V XgV (Xa N X7), (Xg A Xe) VvV Xsg V (X@ A\ X7), X5 :0.10
X3V XyV (XG A X?)
Xs : Xy A Xo, Xo A Xy, X3 A X7 Xg:0.2

Rule Embedding and Fine-tuning Optimizer: Adam, learning rate: 0.01.

* Temperature of softmin and softmax: 0.1 (for Eq.[) and 10.0 for (Eq.[5).
“Well-explained” Threshold: 0.99 (for sequential hard covering in disjunctive rule learn-
ing).

* Batch Size: 64 .

K ADDITIONAL REAL WORLD DATA EXPERIMENTS RESULTS
K.1 SPECT

Short Axis Apical Short Axis Mid Short Axis Basal Horizontal Long Axis Vertical Long Axis
[ SEPTAL
S
A BASAL
5 -

Figure 13: The five slices consists of 22 regions of interest (ROI) for SPECT Diagnosis. The slices
are chosen according to the following: Three slices for short axis view-one slice near heart’s apex,
one in middle of the LV and one near the heart base; One slice corresponds to the center of the LV
cavity for horizontal long axis view; One slice corresponds to the center of the LV cavity for vertical
long axis view (Kurgan et al.,|2001).

We ask for an expertise from cardiovascular surgery of a hospital to give us domain knowledge, and
then we try to explain the learned rules. We select several meaningful rules to demonstrate.

The domain knowledge are as follows.
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* R1: The anterior wall and the septum of the left ventricle are adjacent and often simulta-
neously affected by the Left Anterior Descending artery (LAD). If both anterior wall and
septum show infarction, it strongly suggests an issue with the LAD. If both apical anterior
and mid-anterior show infarction, it indicates a more extensive problem within the LAD
territory, affecting both the apical and mid-portions of the anterior wall.

* R2: The apical lateral wall (typically LCX territory) and the apical inferior wall (typically
RCA or LCX territory) are adjacent. Infarction in both suggests a problem in this combined
region.

* R3: If both apical septal and apical septal show infarction, it indicates a more extensive
problem in the LAD territory, involving ischemia in multiple myocardial segments.

* R4: If apical lateral and apical lateral show infarction, it indicates a more extensive is-
chemic problem in the Left Circumflex artery (LCX) territory.

* RS: The apical anterior (ANT) and apical septal (SEPTAL) regions are primarily supplied
by the Left Anterior Descending artery (LAD); the apical lateral (LAT) region is primarily
supplied by the Left Circumflex artery (LCX); the apical inferior (INF) region is primarily
supplied by the Right Coronary Artery (RCA), but can sometimes be supplied by the LCX,
depending on the coronary artery dominance pattern.

Refer to Figure[I3] we can give some explanations of rules learned in Table [29]based on the domain
knowledge R1 to RS. For example,

e F5 < Fiy N\ Fy: F) and F3 are features from the first slice near the heart’s apex, while
F5 is from the second slice at the middle of the left ventricle (LV). According to clinical
knowledge R1 and RS, the anterior and septal regions are primarily supplied by the Left
Anterior Descending (LAD) artery. Therefore, this rule is clinically plausible: if partial
diagnosis (labeled as 1) is present in both F} and F5, it strongly suggests an LAD artery
problem. Since Fj is in the mid-anterior region, also supplied by the LAD, it has a high
probability of being affected as well.

* Diagnosis < F5 N\ Fg: From R1, we know that the anterior wall and the septum of the left
ventricle are adjacent. F5 and Fg both from middle of the LV (left ventricular), and they
are adjacent. Thus, if both these adjacent mid-ventricular regions (F5 and Fg) show signs
of infarction, it significantly increases the likelihood of an overall positive diagnosis.

Table 29: Example rules learned by NS-FCN for SPECT feature imputation and diagnosis.

Selected Feature Imputation Rules Learned by NS-FCN

F5 < F; A\ Fy: partial diagnosis of segment 1 and 2 causes the partial diagnosis of segment 5.
F6 — F11 A\ F19
Fi3 < Fas A\ Fio

Learned Diagnosis Rule Structure
Diagnosis < (F5 A Fg) V (Fo A F11) V (Fy A Fi3)

As detailed in Table [30] the learned rules for diagnosing cardiac abnormalities correspond closely
with established domain knowledge from cardiovascular surgery experts. For instance, the model
identified that infarcts in adjacent regions like F; and F5 are indicative of an issue in the Left
Anterior Descending (LAD) artery territory. Furthermore, the model learned a composite rule for
the final diagnosis, logically aggregating signals from multiple infarcted regions across different
coronary artery territories (LAD, LCX, RCA). This ability to synthesize information from disparate
features into a coherent diagnostic rule highlights the model’s capacity for complex reasoning. The
clinical relevance of these rules was further validated by a Large Language Model (LLM), which
confirmed their consistency with expert knowledge on ischemia propagation patterns.

Performance with varying missing ratios. To assess the model’s robustness under different levels
of data scarcity, we evaluated its performance on the SPECT dataset while varying the observation
ratio from 0.3 to 0.9. As shown in Table the model’s accuracy remains strong and improves
consistently as more data becomes available. Notably, even with only 30% of the data observed (a
70% missing ratio), the model maintains a high F1 score of 0.751, demonstrating its capability to
learn meaningful diagnostic rules from highly incomplete datasets.
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Table 30: Analysis of learned rules for the SPECT dataset, evaluated by human experts and LLM.

Rules Evaluation with Human Expert LLM Evaluation
Knowledge
Fg < FiNF, Matches R1 & R5: Fj and F; are in  Plausible: Both regions are LAD-
LAD territory. Infarction in both sug- supplied and adjacent; mid-anterior
gests LAD issue affecting apical and (F3) likely also affected if F} & F5
mid-anterior LV. show infarction. Clinically consistent.
Fy < Fi; N Related to R2 & R4: Fy; and Fig are  Valid: Matches adjacency and vascu-
Fig adjacent. Infarction implies LCX or lar territory logic (LCX-lateral, RCA-
RCA/LCX combined territory issue. inferior). Supports ischemia propaga-
tion in midventricular slices.
Fi3 < Fos A Partial link to R3 & RS5: Likely in- Reasonable: Suggests ischemia spread
Fiy volves basal/apical septal (Fh2) and ad-  in basal-septal regions (LAD) adjacent

jacent basal regions. Indicates LAD or
multi-segment ischemia.

to basal/anterior.
LAD pathology.

Fits multi-segment

Diagnosis <

Consistent with R1 & R4. Combines

Strong: Logical aggregation of ad-

(Fy N Fy) V. LAD (Fp), LCX/RCA (Fp), and adja- jacent infarcted regions across LAD,
(Fy A Fi1) V cent mixed regions. Multiple adjacent LCX, RCA territories. Matches expert
(Fs A Fi3) infarct pairs increase diagnosis likeli- ischemia propagation patterns.

hood.

K.2 HEART DISEASE

K.2.1 ASSESSMENT OF LEARNED RULES

For feature imputation, as shown in Table 31} our model discovers rules with clinically relevant
numerical thresholds by directly modeling continuous data. For instance, it learns to impute resting
blood pressure (t restbps) based on conditions like age > 60 and chol > 250. Similarly, it links
high cholesterol to factors like age > 55 in males or very high blood pressure (trestbps > 150). The
learned rule for ST depression (o 1dpeak) combines the slope of the ST segment with a maximum
heart rate threshold (thalach < 150), demonstrating the model’s ability to capture complex, non-
linear relationships within the data.

Beyond imputation, NS-FCN learns interpretable rules for the final diagnosis, classifying patients
into low-risk or high-risk categories.

Table presents several of these diagnostic rules. For example, the model learns that a com-
bination of factors such as an upsloping ST segment (slope_upsloping), a fixed thallium defect
(thal_fixed_defect), and exercise-induced angina (exang_yes) is strongly indicative of high risk. Con-
versely, it identifies that factors like the absence of exercise-induced angina (exang_no) and a flat
ST slope (slope_flat) in female patients suggest a low risk of coronary artery disease. These diag-
nostic rules were also evaluated by an LLM and deemed “Excellent” or ”Strong,” underscoring their
consistency with clinical practice.

K.3 HYPER-PARAMETERS SETTING AND COMPUTING RESOURCE
For NS-FCN (Ours):
* Rule embedding optimizer: Adam with learning rate of 0.01.
* Fine-tune optimizer: Adam with learning rate of 0.01.
* Temperature of softmin and softmax: 0.1 (for Eq.[) and 10.0 for (Eq.[5).
* Our model can run efficiently on a CPU environment with the PyTorch package.

Baselines:

* BRCG (Dash et al., 2018), LEN (Barbiero et al., |2022), DR-NET (Qiao et al., 2021)),
RRL (Wang et al.| 2021)) are trained with the default hyperparameter settings specified in
the original paper.

e MICE (van Buuren & Groothuis-Oudshoorn, 2011): We use m = 5 imputations and
maxit = b5 iterations with the default imputation methods in the mice R package.
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Table 31: Learned rules for feature imputation on the Heart dataset, with LLM assessments.

Feature Imputation Acc. Learned Rule LLM Assessment
trestbps 0.86 trestbps_high < Excellent: This rule captures the well-
(age > 60) A established link between age, high choles-

(chol > 250) terol, and hypertension. Both are primary

risk factors for cardiovascular disease and
often co-occur.

chol 0.85 chol_high < Excellent: The rule correctly identifies
(sex =1 Aage > two key risk profiles for high cholesterol:
55) V (trestbps > middle-aged to elderly males, and individ-

150) uals with significant hypertension. This
aligns perfectly with clinical understand-
ing of metabolic syndrome.

thalach 0.90 hr_high < Strong: This rule insightfully links fac-

(trestbps > tors that limit exercise capacity to the max-

145) Vv (age > imum heart rate achieved. Both hyper-

57 Acp =3) tension and severe asymptomatic coronary
disease can prevent a patient from reaching
a higher peak heart rate.

oldpeak 0.76 st_severe < Excellent: This rule identifies a classic

(slope = 2) A high-risk pattern. A downsloping ST seg-
(thalach < 150) ment is a strong positive finding, and its oc-

currence at a sub-maximal heart rate indi-
cates ischemia at a low workload, a sign of
severe coronary artery disease.

Table 32: Learned rules for disease prediction on the Heart dataset, with LLM assessments.

Learned Rule

LLM Assessment

high_risk —
restecg_stt_abnormality N ca =
3 A oldpeak > 1.49

Excellent: This rule identifies a high-risk profile by com-
bining three critical indicators of severe coronary artery
disease: significant ST depression, an abnormal resting
ECG, and extensive vessel blockage.

high_risk < slope_downsloping N
restecg _normal \trestbps > 145.68

Strong: A downsloping ST segment is a powerful predic-
tor of ischemia. Combining this with hypertension identi-
fies patients at high risk, even if their resting ECG appears
normal, highlighting the importance of stress-test indica-
tors.

high_risk < slope_flat \ oldpeak >
1.49 A restecg_hypertrophy

Excellent: This rule effectively combines signs of acute
ischemia (a flat ST slope with significant depression) with
evidence of chronic cardiac stress (left ventricular hyper-
trophy). This profile is strongly indicative of advanced
coronary artery disease.

» MissForest (Stekhoven & Biihlmannl [2012): We use the default hyperparameter settings
in the missForest R package.

* MLP: We train a 3-layer fully connected network (input-128-128-output) with batch size
32, learning rate 0.001, and 100 epochs using Adam optimizer.

* VAE(Veldkamp et al., 2025): We use a variational autoencoder with latent dimension 16,
encoder architecture (inputx2-128-64-latent), decoder architecture (latent-64-128-output),
batch size 32, learning rate 0.001, and 100 epochs.

* DAE (mDAE) (Dupuy et al., 2024): We use a denoising autoencoder with bottle-
neck dimension 16, encoder architecture (input-128-64-bottleneck), decoder architecture
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(bottleneck-64-128-output), corruption rate p = 0.2, batch size 32, learning rate 0.001, and
100 epochs.

¢ GAIN (Yoon et al.[2018): We use mini-batch size 128, hint rate py;,,; = 0.9, MSE loss
weight o = 100.0, cross-entropy loss weight f = 100.0, learning rate 0.001, and 1000
epochs.

» MissDiff (Ouyang et al.,2023): We use 1000 diffusion timesteps with Bs;qrt = 10~* and
Bena = 0.02, batch size 32, learning rate 0.001, and 100 epochs.

* All baseline models can run efficiently on CPU environment with PyTorch package (for
deep learning methods) or R packages (for statistical methods).

L LIMITATION

While our model shows promising performance, the ethical implications, such as potential over-
reliance or misuse for inferring sensitive information, require careful consideration.

Despite its strengths, NS-FCN has limitations. While effective, the asynchronous coordinate gra-
dient descent optimization can be computationally intensive. Besides, the negative predicates are
not well explored (we consider negative predicates as an independent predicate from positive pred-
icates). Furthermore, while our model can derive predicates from continuous features, the current
implementation learns a single threshold per feature, which may not capture more complex relation-
ships (e.g., intervals). Extending the framework to learn more expressive predicates from continuous
data is a promising direction for future work.

M USE OoF LLMs

In this paper, LLMs were used solely for writing polishing. The key idea, the model design, research
study, and all substantive writing are completed by human authors.

In the assessment of discovered rules, we use LLM to write the evaluation of rule quality, which we
have mentioned in the paper.
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