

000 INFERRING THE INVISIBLE: NEURO-SYMBOLIC RULE 001 DISCOVERY FOR MISSING VALUE IMPUTATION 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 One of the central challenges in artificial intelligence is reasoning under partial
010 observability, where key values are missing but essential for understanding and
011 modeling the system. This paper presents a neuro-symbolic framework for latent
012 rule discovery and missing value imputation. In contrast to traditional latent variable
013 models, our approach treats missing grounded values as latent predicates to be
014 inferred through logical reasoning. By interleaving neural representation learning
015 with symbolic rule induction, the model iteratively discovers—both conjunctive
016 and disjunctive rules—that explain observed patterns and recover missing entries.
017 Our framework seamlessly handles heterogeneous data, reasoning over both dis-
018 crete and continuous features by learning soft predicates from continuous values.
019 Crucially, the inferred values not only fill in gaps in the data but also serve as
020 supporting evidence for further rule induction and inference—creating a feedback
021 loop in which imputation and rule mining reinforce one another. Using coordinate
022 gradient descent, the system learns these rules end-to-end, enabling interpretable
023 reasoning over incomplete data. Experiments on both synthetic and real-world
024 datasets demonstrate that our method effectively imputes missing values while
025 uncovering meaningful, human-interpretable rules that govern system dynamics.
026

027 1 INTRODUCTION 028

029 Neural-symbolic reasoning combines the pattern recognition power of neural networks with the
030 precision and interpretability of symbolic reasoning (Hitzler & Sarker, 2022; Yang et al., 2024).
031 This hybrid paradigm enables AI systems to detect complex patterns in unstructured data while
032 reasoning about them in a structured and explainable manner.

033 Traditional rule induction methods extract explicit patterns from observed data but often fail when
034 *some observations are missing or incomplete* (Campero et al., 2018; Claire Glanois, 2022). These
035 approaches can effectively learn surface-level rules, yet their ability to fully explain the underlying
036 system is limited when essential data points are absent. For example, in healthcare diagnostics,
037 critical measurements may be missing or noisy, making accurate imputation necessary for reliable
038 reasoning.

039 Probabilistic models such as Markov Logic Networks (MLNs) (Richardson & Domingos, 2006)
040 handle missing data by treating unobserved facts as latent predicates. However, they typically rely
041 on a *fixed rule base* and *expensive joint inference*, limiting scalability and adaptability in large or
042 heterogeneous datasets (Oltramari et al., 2020). In contrast, we propose a neuro-symbolic system
043 that *co-learns rules and imputations* in a single differentiable loop, enabling fast forward-chaining
044 inference and end-to-end learning.

045 Our core idea is *a closed loop between imputation and rule discovery*. Given partially observed
046 tables with discrete and continuous attributes, we treat each missing, entity-specific entry as an un-
047 known fact and apply learned rules in a *forward-chaining* pass to predict it. These predictions are
048 compared to the observed entries via a supervised loss, and backpropagation updates the rule param-
049 eters and soft predicates. Crucially, improved imputations provide additional evidence for discover-
050 ing and refining rules in subsequent passes. This self-reinforcing loop leads to better imputations,
improved rule induction, and stronger downstream inference.

051 To enable multi-hop reasoning at scale, many targets require compositional explanations in the form
052 of chains and disjunctions. We optimize rule embeddings using *asynchronous coordinate gradient*
053 *descent*, updating one rule or clause at a time while holding others fixed. This mirrors step-wise
reasoning and ensures monotone loss progress on a smooth surrogate. For disjunctive heads, we

054 adopt a sequential covering strategy to harvest diverse clauses, followed by joint fine-tuning using a
 055 soft-OR aggregator (LogSumExp) to reconcile interactions. This staged procedure reliably recovers
 056 long chains and disjunctive theories under high missingness while keeping computation tractable.
 057

058 Our framework handles heterogeneous data by learning *soft predicates* for continuous features (us-
 059 ing sigmoid thresholds and slopes) and combining them with discrete predicates through differen-
 060 tiable logical operators. Specifically, we use soft-min to approximate logical AND and soft-max
 061 to approximate logical OR. This approach enables uniform forward chaining over mixed data types
 062 without requiring pre-discretization.

063 **Contributions.** We summarize our contributions as follows: (i) We introduce a closed-loop neuro-
 064 symbolic framework in which imputation and rule discovery mutually reinforce each other, rather
 065 than treating imputation as a preprocessing step. (ii) We develop a scalable coordinate gradient
 066 descent scheme, combined with sequential covering and joint fine-tuning, that enables multi-hop
 067 and disjunctive rule learning even under high missingness. (iii) We design a unified differentiable
 068 forward-chaining engine that handles both discrete and continuous attributes through soft predicates
 069 and smooth logical operators. (iv) We empirically validate our approach on synthetic chain and dis-
 070 junction tasks, as well as real-world datasets (Birds, Heart, SPECT), demonstrating that it recovers
 071 human-interpretable rules while achieving strong imputation accuracy and downstream prediction
 072 performance.

073 2 RELATED WORK

074 Our work is at the intersection of neuro-symbolic Inductive Logic Programming (ILP) and missing
 075 value imputation.

076 **Neural Embedding-based ILP.** Embedding-based models are widely used for Knowledge Base
 077 (KB) completion like TransE (Bordes et al., 2013), TransH (Wang et al., 2014), and TransR (Lin
 078 et al., 2015). Complex (Trouillon et al., 2016) introduces complex-valued embeddings for asym-
 079 metric relations, while multi-hop reasoning methods like Guu et al. (2015) leverage path-based
 080 embeddings for traversing knowledge graphs. However, these approaches often face limitations in
 081 reasoning power.

082 Recent advances in ILP integrate symbolic logic with neural networks. Rocktäschel & Riedel (2017)
 083 propose *Neural Theorem Proving (NTP)*, which uses a differentiable backward-chaining method.
 084 Then, Campero et al. (2018) introduces a neural forward-chaining differentiable rule induction
 085 network. However, both rely on hand-designed templates. Claire Glanois (2022) advances these models
 086 by incorporating a hierarchical structure, enabling more flexible rule induction. Nevertheless, these
 087 methods are primarily designed for fully-observed data and struggle to handle missing values.

088 **Interpretable Rule Learning.** Learning interpretable logical rules for classification has been a
 089 long-standing goal. Dash et al. (2018) propose **BRCG**, an integer programming approach that uses
 090 column generation to efficiently search the exponential space of candidate clauses, explicitly balanc-
 091 ing classification accuracy with rule simplicity. Wang et al. (2021) introduce **RRL**, which utilizes
 092 a Gradient Grafting mechanism to learn non-fuzzy rule lists within a deep learning framework,
 093 ensuring scalability. Qiao et al. (2021) propose **DR-NET** to learn independent decision rules in
 094 Disjunctive Normal Form (DNF) by jointly optimizing rule generation and weight learning. More
 095 recently, Barbiero et al. (2022) present **LEN**, an end-to-end differentiable neuro-symbolic method
 096 that leverages an entropy-based criterion to extract concise First-Order Logic explanations from
 097 neural networks. Unlike these methods, which focus primarily on classification tasks with complete data
 098 with binary features, our framework integrates rule learning directly with the handling of missing
 099 values.

100 **Rule-Based Missing Value Imputation.** Traditional missing data imputation methods, ranging
 101 from statistical techniques like **MICE** (Multivariate Imputation by Chained-Equations) (van Bu-
 102 ren & Groothuis-Oudshoorn, 2011), **MissForest** (Random Forest based) (Stekhoven & Bühlmann,
 103 2012), and SOFT-IMPUTE (Mazumder et al., 2010) to deep learning models like **GAIN** (GAN-
 104 based) (Yoon et al., 2018), **MissDiff** (Diffusion-based)(Ouyang et al., 2023), **mDAE** (DAE-
 105 based)(Dupuy et al., 2024), **VAE-based**(Veldkamp et al., 2025) and MMDL (Li et al., 2020), typ-
 106 ically rely on statistical patterns and do not leverage explicit logical rules to govern inter-variable
 107 relationships (see Appendix A for a detailed overview).

108 Recent works have started to bridge rule-based reasoning and missing value imputation. For in-
 109 stance, Chen et al. (2023) employ various interpretable machine learning techniques to address the
 110 missing value problem, but their methods are not explicitly rule-based. Closer to our approach,

108 MINTY (Stempfle & Johansson, 2024) utilizes a rule-based model to handle missing data; however,
 109 it does not leverage neuro-symbolic reasoning to learn the intricate relationships between observed
 110 and missing values as we do. Other non-neural approaches, such as the work by Wang et al. (2017)
 111 on synthesizing data completion, also tackle the problem but lack of the representation learning
 112 capabilities of neural networks. Our work is distinct in its tight integration of neural learning for
 113 representation and symbolic reasoning for both rule discovery and imputation, forming a feedback
 114 loop where each component enhances the other.

3 BACKGROUND

117 **Predicate.** In the context of logic-based AI systems, a predicate is a fundamental Boolean logic
 118 variable used to describe properties of or relationships between entities. Predicate variables are
 119 grounded by data, being True or False, and serve as the basic building blocks for logical expressions.
 120 For instance, a predicate like *Has_Fever(Patient)* denotes whether a patient has a fever, while
 121 *Use_Drug(Patient)* specifies whether a drug treats a particular patient. These predicates capture
 122 essential aspects of the system’s state and relationships.

123 **Logic Rules and Forward Chaining.** We represent knowledge with **Horn clauses**

$$f : Q \leftarrow P_1 \wedge P_2 \wedge \dots \wedge P_h, \quad (1)$$

124 where P_1, \dots, P_h (the *body*) are conditions and Q (the *head*) is the conclusion. Given observed
 125 facts (the evidence set \mathcal{E}), we perform *forward chaining*: whenever all body predicates of a rule
 126 are (approximately) satisfied by facts in \mathcal{E} , the rule *fires* and adds Q to \mathcal{E} . Importantly, newly
 127 inferred facts are *immediately recycled as evidence*, enabling *multi-hop reasoning*—cascades of rule
 128 applications that derive conclusions not reachable in a single step.

129 **Latent Predicates and Rule Learning.** We use the term *latent predicate* to denote an unobserved
 130 fact tied to concrete entities (and, when relevant, timestamps) within the same relational schema as
 131 observed predicates. Latent predicates may be Boolean or soft-valued (degrees of truth); they repre-
 132 sent missing-but-specific facts we wish to infer. Our goal is to learn *Horn rules* of the form Eq. (1)
 133 that capture regularities among observed predicates and support inference about latent ones—i.e.,
 134 rules whose heads or intermediate conclusions may involve latent predicates, enabling principled
 135 completion of missing facts.

136 **Expressive Rule Forms.** We consider rules that capture rich logical structure, including conjunc-
 137 tions (AND), disjunctions (OR via multiple clauses), and *chained dependencies*. For example, a
 138 latent predicate Q_k may be characterized by

$$Q_k = (P_1 \wedge P_2) \vee (P_3 \wedge P_4),$$

139 or by multi-hop compositions such as

$$Q_1 = P_1 \wedge P_2, \quad Q_2 = P_3 \wedge P_4, \quad Q_3 = (Q_1 \wedge P_5) \vee (Q_2 \wedge P_6).$$

140 This view accommodates both single-step and multi-step (multi-hop) reasoning patterns within a
 141 unified Horn-rule framework. We also allow *predicate invention*: introducing unlabeled latent pre-
 142 dictates that are not predefined in the schema but are useful intermediates for explaining the data.
 143 These invented predicates participate in rules just like observed ones. After rules are discovered,
 144 their roles can be *post-hoc interpreted* by inspecting the clauses in which they appear and their
 145 relationships to observed predicates.

4 MODEL: NEURO-SYMBOLIC FORWARD CHAINING NETWORK

146 Consider problems where some information or
 147 features are incomplete. Our goal is to learn a
 148 set of logical rules that explain how each predi-
 149 cate with information can be imputed based on
 150 evidence from feature space \mathbf{X} .

151 These missing variables are inferred through a
 152 rule-learning process, allowing the model to un-
 153 cover hidden relationships in the data. For clar-
 154 ity, we identify the predicates with missing in-
 155 formation as \mathbf{U} , also named as “latent predi-
 156 cate” in our setting. Though in our experiments, we do not strictly distinguish between feature
 157 predicates, as any of them can be incomplete and serve as latent predicates. In more general settings
 158 with a predictive label Y , we can view Y as one of the latent predicates, making the rule learning
 159 and prediction for Y equivalent to inferring latent predicates \mathbf{U} with rules.

153 Figure 1: Example of missing variables imputation
 154 with rule discovery. X_i with *nan* is the pre-
 155 dictates with missing information, which can be in-
 156 ferred by the logic rules from \mathbf{X} .

To summarize, our model learns logical rules to infer latent predicates \mathbf{U} by discovering hidden structures within data, as an example illustrated in Figure 1. This rule induction process identifies logical relationships among observable predicates \mathbf{X} and other inferred latent predicates. By explicitly learning these structures, our approach enhances both inference capability and interpretability, offering clear insights into complex, otherwise hidden dependencies. The key idea is summarized in Figure 2, with details presented in the following sections.

Figure 2: Model framework. Rule embeddings Θ are optimized using coordinate gradient descent. In each learning step, predicate values are inferred via the Softmin-Softmax operation (Eqs. (3, 4,5)). For disjunctive (OR) rule learning, sequential hard covering is applied, followed by fine-tuning of the learned rule embeddings (Section 5.2). Errors are back-propagated using MSE loss between inferred predicate values and the small portion of observed latent predicate samples, constituting a weak-supervision setting.

4.1 MODEL PREPARATION: PRETRAINED PREDICATE EMBEDDINGS

We begin by defining two sets of predicates: $\mathbf{X} = \{X_1, \dots, X_n\}$ represents the set of *observable* predicate variables, and $\mathbf{U} = \{U_1, \dots, U_m\}$ denotes the set of predicate variables with *missing information* that the model aims to discover and define. Our framework is designed to handle **both binary (categorical) and continuous features within a unified logical structure**. Binary features are treated as standard logical predicates. For continuous features, we introduce a mechanism to derive a “soft” truth value, effectively creating learnable predicates from them. This allows the model to reason over heterogeneous data types, as detailed in Section 4.2.

As mentioned before, we do not distinguish \mathbf{X} and \mathbf{U} in the experiment, as any predicates can be the predicate with missing information. We just use separate notations for model description. We initialize a fixed, unique embedding for each predicate, whether observable or missing. For example, these embeddings can be instantiated as one-hot vectors within an embedding space of dimension d . We denote the collection of embeddings for observable predicates as \mathbf{K}_X and incomplete predicates as \mathbf{K}_U . These predicate embeddings remain frozen throughout the rule learning phase and serve as a foundational dictionary, enabling the interpretation of the composition of learned rules by relating rule components back to specific predicates.

With the predicate representations defined, we next describe the core of our model: the representation of logical rules and the mechanism by which inferences are drawn.

4.2 MODEL BACKBONE: RULE REPRESENTATION AND INFERENCE

In our NS-FCN framework, logical rules are materialized as learnable rule embeddings, which are the primary trainable parameters. Our model employs an asynchronous coordinate descent learning process. This learning scheme is particularly well-suited for discovering complex logical structures such as chained dependencies (where one latent predicate forms part of the definition of another) and disjunctive rules (where a latent predicate can be satisfied by one of several distinct conditions).

4.2.1 SPECIFICATION OF RULE EMBEDDINGS Θ

Let \mathcal{F} be the set of rules/clauses, and let $\Theta = \{\Theta_f\}_{f \in \mathcal{F}}$ be their embeddings. Each Θ_f encodes one rule with head predicate U_j , and a single head predicate U_j may be associated with multiple rules (OR-of-ANDs).

Conjunctive Rule Embedding. For a latent predicate U_j that is defined by a single conjunctive rule (e.g., $U_j = X_a \wedge X_b$), its corresponding rule embedding $\Theta_f = [\theta_1, \dots, \theta_h] \in \mathbb{R}^{d \times h}$. Here, h represents the number of predicates forming the body of the conjunctive rule (the arity of the conjunction, e.g., $h = 2$ for $X_a \wedge X_b$), and d is the dimensionality of the predicate embeddings. Each of the h rows in this matrix is learned to align with the embedding of one of the constituent predicates in the rule’s body.

Disjunctive Rule Embeddings. If a latent predicate U_k is defined by a disjunction of R_k distinct conjunctive clauses (e.g., $U_k = \bigvee_{r=1}^{R_k} (\text{clause}_r)$), it will be associated with a set of R_k distinct rule embeddings, denoted $\{\Theta_{k,1}, \dots, \Theta_{k,R_k}\}$. Each individual rule embedding $\Theta_{k,r}$ is itself an $h_r \times d$ matrix, representing the r -th conjunctive clause, where h_r is the arity of that specific clause.

All rule embeddings are initialized randomly prior to training and are subsequently optimized as described in Section 5. Given these rule embeddings, the model infers the truth values (or continuous approximations thereof) of latent predicates through a carefully defined inference mechanism.

Parameters for Continuous Predicates. For each continuous feature $f \in \mathcal{F}_C$, where \mathcal{F}_C is the set of continuous features, the model learns two additional scalar parameters: a threshold θ_f and a slope β_f . These parameters are used to define a learnable soft predicate function that maps the continuous feature value to a probabilistic truth value, as explained next.

4.2.2 INFERRING PREDICATE VALUES

The latent predicates is inferred based on the current state of observable predicates, any previously inferred latent predicate values, and the learned rule embeddings Θ .

Predicate Matching. Each column $\theta_j (j = 1, \dots, h)$ in the rule embedding Θ_f is matched with a corresponding predicate embedding. This matching is achieved by finding the predicate embedding most similar to θ_j using cosine similarity:

$$K_j^* = \underset{K \in \mathbf{K}}{\operatorname{argmax}} \cos(K, \theta_j), \quad j = 1, \dots, h \quad (2)$$

where $\mathbf{K} = \mathbf{K}_X \cup \mathbf{K}_U$ represents the set of all available predicate embeddings. The inverse mapping $I(K)$ maps a predicate embedding $K \in \mathbb{R}^d$ back to its corresponding index. Thus, indices $1, \dots, (n+m)$ correspond to $n+m$ predicate embeddings.

Predicate Truth Values. Once the best matching predicate K_j^* is identified for a rule component θ_j , we determine its truth value, denoted as t_j . The calculation depends on whether the corresponding feature is binary or continuous:

1) For a *binary feature* (e.g., from one-hot encoding), its truth value is its current value in the data tensor: $t_j = v^t(I(K_j^*))$.

2) For a *continuous feature*, its truth value is computed using a learnable **soft predicate** function (a sigmoid): $t_j = \sigma(\beta_{f_j} \cdot (v_{f_j} - \epsilon_{f_j}))$ where v_{f_j} is the value of the feature corresponding to K_j^* (i.e. $v_{f_j} = v^t(I(K_j^*))$), ϵ_{f_j} and β_{f_j} are its learned parameters, and $\sigma(\cdot)$ is the sigmoid function. This allows learning soft boundaries like “ $v_{f_j} > \epsilon_{f_j}$ ”.

Conjunctive Clause Inference (Soft-AND). The value for a conjunctive clause is then computed by aggregating the contributions of all its components, modeling a Soft-AND operation. The contribution of each component j is the product of its similarity score and its truth value. The aggregated value is:

$$v = \prod_{j=1, \dots, h} \cos(K_j^*, \theta_j) \cdot t_j, \quad (3)$$

where v^t is the current value for observable predicates or any previously imputed values. At the beginning, v^t is all from observable predicates. With the optimization steps of coordinate descent, v^t is updated based on the refined Θ .

To address the potential issue of diminishing values, we can use the min function instead: $v = \min_{j=1, \dots, h} \{\cos(K_j^*, \theta_j), t_j\}$.

However, to make this function *differentiable*, we approximate the min function using the softmax function. For each component j , there are two terms: the similarity score $\cos(K_j^*, \theta_j)$ and the truth value t_j . The softmax is applied to the set of all $2h$ such terms:

$$\text{softmax}(x_1, \dots, x_{2h}; \Theta) = -\frac{1}{\tau} \log \left(\frac{1}{2h} \sum_{i=1}^{2h} e^{-x_i/\tau} \right) \quad (4)$$

where each x_i represents one of the $2h$ terms (all similarity scores and all truth values), and τ is

270 a temperature parameter controlling the smoothness of the approximation. As τ approaches 0, the
 271 softmin function approximates the behavior of the hard min function.

272 **Disjunctive Rule Inference (Soft-OR).** When a latent predicate U_k is defined by a disjunction
 273 of multiple conjunctive clauses, $U_k = \bigvee_{r=1}^{R_k} \text{clause}_{k,r}$, its final inferred value v_{U_k} is determined
 274 by aggregating the values of its individual clauses $\{v_{\text{clause}_{k,1}}, \dots, v_{\text{clause}_{k,R_k}}\}$. This aggregation is
 275 performed using the LogSumExp (LSE) function, which serves as a differentiable soft-OR operator:

$$277 \quad v_{U_k} = \frac{1}{\beta} \log \sum_{r=1}^{R_k} \exp(\beta \cdot v_{\text{clause}_{k,r}}), \quad (5)$$

279 where β is a temperature parameter. As $\beta \rightarrow \infty$, the LSE function increasingly approximates
 280 the true max operator, thereby hardening the OR logic. Conversely, smaller values of β yield a
 281 softer aggregation. The model’s ability to discover meaningful rules and infer latent predicate states
 282 accurately hinges on an effective learning procedure. We now outline the training methodology
 283 employed to optimize the rule embeddings Θ .

284 5 MODEL LEARNING

286 The core of our model learning process involves training the rule embeddings Θ by minimizing a
 287 loss function that quantifies the discrepancy between the inferred values of latent predicates and
 288 their partially observed truth values. Our approach leverages a sequential and staged optimization
 289 strategy, drawing parallels with coordinate descent and incorporating elements of rule covering,
 290 particularly for disjunctive rules. This is typically followed by a joint fine-tuning phase for rules
 291 involving disjunctions.

292 5.1 COORDINATE GRADIENT DESCENT FOR RULE OPTIMIZATION

294 We employ a **block** coordinate gradient descent approach, iteratively optimizing the embedding Θ_j
 295 for each predicate U_j (**treated as a disjoint parameter block**) while holding the embeddings of other
 296 predicates fixed. The order in which predicates U_j are selected for optimization is randomized in
 297 each complete pass (cycle) through all learnable latent predicates. Such optimization progress is
 298 similar to human thinking strategy, as we humans usually draw conclusions step by step.

299 During the optimization step for a specific predicate U_j within a cycle, the inferred value v_{U_j} is ob-
 300 tained by Eq. 3 or Eq. 4 as mentioned in the previous Section. The Mean Squared Error (MSE) loss
 301 is computed between the inferred value v_{U_j} and its observed value $U_{j,\text{obs}}$, exclusively for instances
 302 where U_j is observed, which can be viewed as a **weak supervision** setting:

$$302 \quad \mathcal{L}_{U_j} = \text{mean}((v_{U_j} \odot \text{mask}_j - U_{j,\text{obs}} \odot \text{mask}_j)^2), \quad (6)$$

303 where mask_j is a binary vector indicating observed instances of U_j ($\text{mask}_j = 1$ indicates the obser-
 304 vation). The rule embedding Θ_j is then updated using gradients from this loss while all other blocks
 305 are kept fixed, which implements a **Gauss–Seidel block coordinate gradient method** on the smooth
 306 objective $\mathcal{L}(\Theta) = \sum_j \mathcal{L}_{U_j}(\Theta)$. A brief convergence discussion is provided in Appendix B.

307 After its training epochs within a cycle, if Θ_j meets the criteria for a “perfect rule” (i.e., the impu-
 308 tation accuracy of missing variables is larger than 0.99 and a marginal loss drop is less than 10^{-3}),
 309 the parameters of Θ_j will be frozen for efficient computing in subsequent cycles.

311 5.2 SEQUENTIAL COVERING AND FINE-TUNING OF DISJUNCTIVE RULES

312 **Sequential Covering.** When a latent predicate U_k is hypothesized to be formed by a disjunction of
 313 multiple clauses (e.g., $U_k = \text{clause}_{k,1} \vee \text{clause}_{k,2} \vee \dots \vee \text{clause}_{k,R_k}$), its constituent rule embeddings
 314 ($\Theta_{k,1}, \Theta_{k,2}, \dots, \Theta_{k,R_k}$) are learned in a sequential manner. This iterative procedure—training a rule
 315 embedding for a clause and then conceptually “covering” the samples it explains—is repeated for
 316 all R_k rule clauses intended for the disjunctive predicate U_k .

317 The process begins by training the first rule embedding, $\Theta_{k,1}$, to capture one set of conditions
 318 that satisfy U_k . The inferred value $v_{\text{clause}_{k,1}}$ is computed, and the loss $\mathcal{L}_{\text{clause}_{k,1}}$ (as per Eq. 6) is
 319 minimized against the partially observed $U_{k,\text{obs}}$.

320 The learning of multiple rule clauses for a predicate U_k proceeds sequentially. After an initial clause,
 321 $\Theta_{k,1}$, is trained to a point where it effectively explains a subset of positive instances for U_k , a hard
 322 covering step is employed. Specifically, training instances are considered “well-explained” if the
 323 output of $\Theta_{k,1}$ (i.e., $v_{\text{clause}_{k,1}}$) for these instances exceeds a high confidence threshold (e.g., 0.99).
 These “well-explained” instances are then removed from the active training set. The training of $\Theta_{k,1}$

concludes at this stage, and the subsequent rule clause $\Theta_{k,2}$ is then trained on the remaining, unexplained instances of U_k . This iterative hard covering approach encourages further clause discovery of distinct rules that satisfy U_k .

Joint Fine-tuning of Disjunctive Rules. After the individual rule clauses for a disjunctive predicate U_k have been initialized through the sequential training and covering strategy, a joint fine-tuning phase is employed to refine these rules collectively. In this phase, the optimizer simultaneously updates all associated rule embeddings $\{\Theta_{k,1}, \dots, \Theta_{k,R_k}\}$ for U_k . The MSE loss is computed between the combined soft-OR output v_{U_k} (obtained using Eq. 5, which aggregates the evidence from all R_k clauses) and the observed values $U_{k,\text{obs}}$. Given that latent predicates are, by definition, not always directly measurable, this MSE is calculated based on the small fraction of instances where the true state of the hidden predicate U_k is actually observed in the training data, which is a weakly supervised scenario: $\mathcal{L}_{U_k,\text{finetune}} = \text{mean}((v_{U_k} \odot \text{mask}_k - U_{k,\text{obs}} \odot \text{mask}_k)^2)$.

The optimization details, including Adam optimizer parameters and rule embedding normalizations, are illustrated in the Appendix C.1.

6 EXPERIMENTS

6.1 SYNTHETIC DATA EXPERIMENTS

Figure 3: Example rule structures of synthetic experiments.

Figure 4: An example of loss and imputation accuracy during coordinate optimization (Obs. Ratio = 0.2, seed = 42). We assume the training order is X_3, X_4, X_5 . Epochs 0–19 correspond to rule learning for X_3 ; epochs 20–39 for X_4 ; and epochs 40–end for X_5 . Remaining samples identified how many samples are “well-explained” during the hard covering phase.

Table 1: Results for synthetic data example Figure 3(b) with an observation ratio of 0.2. Metrics are averaged over 20 random seeds on a dataset of 50,000 samples. Ground truth rules are underlined.

	Imp. Acc. (Before FT)	Imp. Acc. (After FT)	Train Loss (Before FT)	Train Loss (After FT)	Learned Rules	Rule Acc.
X_3	1.00 ± 0.000	/	0.005 ± 0.000	/	<u>$X_0 \wedge X_1$</u>	1.00
X_4	0.95 ± 0.010	/	0.041 ± 0.005	/	<u>$X_2 \wedge X_7$</u> , <u>$X_0 \wedge X_7$</u> , <u>X_2</u>	0.80
X_5	0.93 ± 0.003	0.96 ± 0.002	0.063 ± 0.003	0.067 ± 0.001	$(X_0 \wedge X_4) \vee (X_3 \wedge X_6)$ $(X_3 \wedge X_4) \vee (X_3 \wedge X_6)$ $(X_0 \wedge X_1) \vee (X_0 \wedge X_4)$	0.40

We use synthetic datasets to evaluate our model’s ability to learn chained and disjunctive rules under partial observability (Figure 3). Each dataset is built from observable Bernoulli variables, with missing predicates defined by ground truth rules and made partially available (10%-30% observability)

under an MCAR setting. The task is to learn rule embeddings that capture the ground truth logic, evaluated by *Rule Discovery Accuracy* (i.e. the proportion of runs which learn the truth rules) and *Imputation Accuracy*. Our method is also robust to MAR and MNAR mechanisms (Appendix E).

Table 2: Ablation Study: Effect of Fine-tuning on X_5 (Disjunctive Rule) Learning

Metric for X_5	Before Fine-tuning	After Fine-tuning
Recovered Rule Structure	$(X_0 \wedge X_2) \vee (X_0 \wedge X_4)$	$(X_3 \wedge X_6) \vee (X_0 \wedge X_4)$
Imputation Accuracy for X_5 (Unobserved)	0.8729	1.0

Results and Analysis. We analyze example (b) from Figure 3 (full results of observation ratio at 0.1 and 0.3 are in Appendix J.1). Table 1 shows that our model achieves near-perfect recovery for simple conjunctive rules (X_3, X_4) and high imputation accuracy for the complex disjunctive rule (X_5). Figure 4(a)-(b) illustrates stable training dynamics. For X_5 , the model uses sequential covering (Figure 4(c)), with “well-explained” examples reducing the remaining set. The fine-tuning (FT) phase is followed, which corrects the rule structure and boosts accuracy (Figure 4(d)-(e)). The corresponding ablation study (Table 2) confirms that fine-tuning is critical for disjunctive rules, increasing unobserved imputation accuracy for X_5 from 0.87 to 1.00.

Table 3: Impact of **rule optimization order** on learning progress. Use the example (a) of Figure 3. Note: ✓ denotes successful learning for the respective predicate.

Cycle	Metric	Run 1	Run 2	Run 3
Cycle 1	Optimization Order	$[X_5, X_4, X_3]$	$[X_3, X_5, X_4]$	$[X_3, X_4, X_5]$
	Rule Accu.	$X_3 \checkmark, X_4, X_5$	$X_3 \checkmark, X_4 \checkmark, X_5$	$X_3 \checkmark, X_4 \checkmark, X_5 \checkmark$
	Imputation Accu., Train Loss	$X_3 : 1.00, 0.005$ $X_4 : 0.87, 0.074$ $X_5 : 0.94, 0.053$	$X_3 : 1.00, 0.005$ $X_4 : 1.00, 0.004$ $X_5 : 0.94, 0.035$	$X_3 : 1.00, 0.005$ $X_4 : 1.00, 0.004$ $X_5 : 1.00, 0.003$
Cycle 2	Optimization Order	$[X_3, X_5, X_4]$	$[X_5, X_3, X_4]$	—
	Rule Accu.	$X_3 \checkmark, X_4 \checkmark, X_5$	$X_3 \checkmark, X_4 \checkmark, X_5 \checkmark$	—
	Imputation Accu., Train Loss	$X_3 : 1.00, 0.005$ $X_4 : 1.00, 0.004$ $X_5 : 0.94, 0.035$	$X_3 : 1.00, 0.005$ $X_4 : 1.00, 0.004$ $X_5 : 1.00, 0.003$	—
Cycle 3	Optimization Order	$[X_3, X_4, X_5]$	—	—
	Rule Accu.	$X_3 \checkmark, X_4 \checkmark, X_5 \checkmark$	—	—
	Imputation Accu., Train Loss	$X_3 : 1.00, 0.005$ $X_4 : 1.00, 0.004$ $X_5 : 1.00, 0.003$	—	—

Our asynchronous coordinate descent is robust to different rule optimization orders (Table 3, Appendix Figures 9-11) and is data-efficient, recovering complex rules with as few as 4,000 samples (Appendix Figure 8). While coordinate descent requires different cycle numbers, Appendix Table 9 demonstrate minimal time and memory costs.

Convergence Analysis of Asynchronous Coordinate Descent. Exact rule-set induction reduces to the minimum-set-cover problem (*NP-hard*), so like any practical rule learner, we do not claim global optimality. Instead, we frame search as asynchronous block-coordinate descent on a smooth surrogate loss: at each step, we update a single rule embedding in closed form, which guarantees the loss never increases yet keeps each move computationally cheap. To guard against poor local minima, we (i) freeze a rule only after this rule is perfectly learned, and (ii) launch diverse initializations. Across 20 runs on synthetic datasets (Tables 23-28), this strategy delivers $< 1.3\%$ imputation performance variance, and the top-ranked learned rules consistently match ground truth rules. [More theoretical discussions are provided in Appendix B.](#)

6.2 REAL-WORLD DATA EXPERIMENTS

We validate our approach on three real-world datasets, comparing it with (i) *statistical models* (**MICE**(van Buuren & Groothuis-Oudshoorn, 2011), **MissForest**(Stekhoven & Bühlmann, 2012)), (ii) *deep generative models* (**MLP**, **GAIN**(Yoon et al., 2018), **MissDiff**(Ouyang et al., 2023),

432 **mDAE**(Dupuy et al., 2024), **VAE**(Veldkamp et al., 2025)) and *(iii) rule-based interpretable models*
 433 **(BRCG**(Dash et al., 2018), **RRL**(Wang et al., 2021), **DR-NET**(Qiao et al., 2021), **LEN**(Barbiero
 434 et al., 2022)). For each dataset, we randomly miss some features. We then evaluated the models
 435 on their ability to impute these missing values, as well as their performance on a downstream target
 436 classification task. Preprocessing and baselines details are provided in Appendix D.2 and D.3.

437
438 Table 4: Comparison of imputation accuracy and learned rules on the Birds dataset.
439

Method	Imp Acc.	Learned Rules
LEN	0.57	$abnormal_bird \leftarrow (ostrich \wedge \neg wounded) \vee (bird \wedge wounded)$
	0.55	$can_fly \leftarrow (bird \wedge \neg ostrich) \vee (\neg ostrich \wedge \neg wounded)$
RRL	0.53	$abnormal_bird \leftarrow (bird \wedge \neg wounded) \vee (bird \wedge ostrich)$
	0.51	$can_fly \leftarrow (\neg ostrich \wedge \neg wounded) \vee (bird \wedge \neg ostrich)$
BRCG	0.50	$abnormal_bird \leftarrow bird \wedge ostrich$
	0.47	$can_fly \leftarrow bird \wedge \neg abnormal_bird$
DR-NET	0.56	$abnormal_bird \leftarrow (bird \wedge \neg ostrich \wedge wounded) \vee (bird \wedge ostrich \wedge \neg wounded)$
	0.53	$can_fly \leftarrow (bird \wedge \neg ostrich \wedge \neg abnormal_bird) \vee (bird \wedge \neg ostrich \wedge \neg wounded)$
NS-FCN	1.00	$abnormal_bird \leftarrow ostrich \vee (bird \wedge wounded)$
	1.00	$can_fly \leftarrow bird \wedge \neg abnormal_bird$

450
451 Table 5: Comparison of imputation accuracy and learned rules on the Heart Disease dataset.
452

Method	Imp Acc.	Learned Rules
LEN	0.65	$trestbps_high \leftarrow (\neg st_mild \wedge cp_atypical_angina) \vee (chol_low \wedge cp_asymptomatic)$
	0.53	$chol_high \leftarrow (sex_female \wedge ca_2) \vee (bp_normal \wedge cp_asymptomatic)$
	0.62	$hr_high \leftarrow (cp_asymptomatic \wedge target) \vee (chol_low \wedge ca_1)$
	0.70	$st_severe \leftarrow (cp_non_anginal \wedge \neg fbs_normal) \vee (age_old \wedge chol_low)$
RRL	0.28	$trestbps_high \leftarrow (sex_female \wedge \neg cp_typical_angina) \vee (exang_yes \wedge \neg thal_normal)$
	0.33	$hr_high \leftarrow (age_middle \wedge sex_male) \vee (\neg restecg_stt_abnormality \wedge slope_upsloping)$
	0.33	$thalach \leftarrow (age < 60) \wedge (restecg = 0)$
	0.32	$st_severe \leftarrow (\neg exang_yes \wedge \neg slope_flat) \vee (chol_low \wedge cp_asymptomatic)$
BRCG	0.53	$trestbps_high \leftarrow \neg age_young \wedge \neg ca_4$
	0.35	$chol_high \leftarrow \neg age_young \wedge \neg restecg_hypertrophy$
	0.33	$hr_high \leftarrow \neg cp_typical_angina \wedge \neg ca_4$
	0.32	$st_severe \leftarrow \neg age_young \wedge \neg slope_upsloping$
DR-NET	0.53	$trestbps_high \leftarrow (chol_low \wedge \neg hr_low \wedge \neg fbs_high) \vee (slope_flat \wedge ca_1 \wedge thal_normal)$
	0.33	$chol_high \leftarrow sex_male \wedge slope_upsloping \wedge ca_3$
	0.33	$hr_high \leftarrow \neg age_old \wedge \neg cp_typical_angina \wedge fbs_high$
	0.32	$st_severe \leftarrow hr_high \wedge \neg sex_male \wedge \neg fbs_normal$
NS-FCN	0.86	$trestbps_high \leftarrow (age > 60) \wedge (chol > 250)$
	0.85	$chol_high \leftarrow (sex = 1 \wedge age > 55) \vee (trestbps > 150)$
	0.90	$hr_high \leftarrow (trestbps > 145) \vee (age > 57 \wedge cp = 3)$
	0.76	$st_severe \leftarrow (slope = 2) \wedge (thalach < 150)$

472 For *logical reasoning*, we used the Birds dataset (Tafjord et al., 2021) with a 90% missing ratio
 473 for two key predicates. As shown in Table 4, under some random seeds, NS-FCN achieves per-
 474 fect imputation accuracy (1.00) and, crucially, **perfectly recovers the ground truth logical rules**,
 475 highlighting its superior capability in deciphering underlying logical structures. Table 6 compares
 476 our approach with non-interpretable baselines. While a MLP achieve optimal performance given
 477 the simplicity of the Birds dataset, our model remains highly competitive; more importantly, it
 478 demonstrates robustness across diverse random initializations, successfully recovering the correct
 479 ground-truth rules in the majority of cases. Table 20 further show that the a few hundred samples
 480 are sufficient for the model to converge to the correct logical truth.

481 In *medical diagnosis*, we use Heart Disease (Detrano et al., 1989) and SPECT Heart (Kurgan et al.,
 482 2001) datasets, introducing 30% missingness. We also vary the observation ratio from 0.3 to 0.9, and
 483 the results in Tables 18 and 19 shows comparable performance with only 30% of the data observed.

484 On the Heart Disease dataset, with its mix of continuous and categorical features, NS-FCN’s direct
 485 handling of continuous values led to superior imputation (e.g., 90% accuracy for *thalach*) and
 the discovery of **clinically relevant rules with numerical thresholds** (e.g., *age > 60, chol > 250*),

as shown in Tables 5 and 32. NS-FCN attains imputation accuracy comparable to the advanced statistical and generative baselines, yet distinguishes itself by offering full interpretability, a critical advantage over these black-box approaches. Compared with rule-based models, our evaluation highlights NS-FCN’s unique ability to handle heterogeneous data types. A key distinction is that NS-FCN directly models continuous features, whereas **baseline methods are restricted to binary inputs**, forcing discretization (e.g., for `trestbps`, binning values into < 120 , $120 - 140$, > 140 mmHg as low, normal, and high).

On the binary SPECT dataset, we randomly miss all 22 features, thus we report the diagnosis accuracy after imputation. When the imputed features are used for diagnosis, NS-FCN outperforms all baselines on both Heart Disease and SPECT, as shown in Table 7. **Unlike baseline models that train a classifier on previously imputed samples, where imputation errors inevitably propagate to the downstream task, our method jointly optimizes rule discovery and target inference.** Furthermore, our use of soft-logic relaxation prevents the model from overfitting to noise (such as incorrect features), enabling it to capture dominant logical structures. This robustness is further supported by the comprehensive noise sensitivity analysis in Appendix I.1 (Tables 16 and 17), which demonstrates that the model learns valid rule approximations (e.g. capturing one correct clause) and maintains strong predictive performance even as noise levels increase.

Detailed rules and LLM assessments are in Appendix Tables 30, 31, and 32.

Table 6: Imputation accuracy of missing feature value comparison across Heart Disease and Bird datasets on non-interpretable baselines. Results are over 10 random seeds.

Method	Heart Disease				Birds	
	<code>trestbps</code>	<code>chol</code>	<code>thalach</code>	<code>oldpeak</code>	<code>abnormal_bird</code>	<code>can_fly</code>
MICE	0.84 \pm 0.016	0.83 \pm 0.014	0.88 \pm 0.011	0.87 \pm 0.015	0.88 \pm 0.006	0.86 \pm 0.011
MissForest	0.88\pm0.015	0.84 \pm 0.012	0.91\pm0.004	0.88 \pm 0.016	0.38 \pm 0.123	0.68 \pm 0.086
MLP	0.88\pm0.009	0.85\pm0.016	0.88 \pm 0.014	0.80 \pm 0.025	0.96\pm0.059	0.99\pm0.003
GAIN	0.85 \pm 0.022	0.84 \pm 0.011	0.90 \pm 0.014	0.89\pm0.014	0.83 \pm 0.102	0.82 \pm 0.083
MissDiff	0.82 \pm 0.017	0.83 \pm 0.019	0.89 \pm 0.018	0.84 \pm 0.030	0.83 \pm 0.020	0.86 \pm 0.007
mDAE	0.88\pm0.011	0.84 \pm 0.012	0.90 \pm 0.015	0.87 \pm 0.015	0.87 \pm 0.002	0.87 \pm 0.004
VAE-based	0.85 \pm 0.015	0.84 \pm 0.021	0.90 \pm 0.015	0.86 \pm 0.015	0.62 \pm 0.006	0.87 \pm 0.004
NS-FCN	0.87 \pm 0.025	0.85\pm0.017	0.88 \pm 0.014	0.78 \pm 0.020	0.95 \pm 0.064	0.95 \pm 0.064

Table 7: Medical diagnosis after missing value imputation. Results are over 10 random seeds.

Method	Heart Disease		SPECT	
	Accuracy	<i>F1</i>	Accuracy	<i>F1</i>
MICE(van Buuren & Groothuis-Oudshoorn, 2011)	0.83 \pm 0.010	0.81 \pm 0.012	0.78 \pm 0.019	0.87 \pm 0.013
MissForest(Stekhoven & Bühlmann, 2012)	0.83 \pm 0.013	0.81 \pm 0.014	0.79 \pm 0.012	0.87 \pm 0.008
MLP	0.84 \pm 0.010	0.82 \pm 0.012	0.92\pm0.007	0.90 \pm 0.005
GAIN(Yoon et al., 2018)	0.84 \pm 0.004	0.82 \pm 0.006	0.76 \pm 0.019	0.85 \pm 0.013
MissDiff(Ouyang et al., 2023)	0.84 \pm 0.010	0.82 \pm 0.011	0.77 \pm 0.023	0.86 \pm 0.016
mDAE(Dupuy et al., 2024)	0.84 \pm 0.009	0.82 \pm 0.010	0.80 \pm 0.013	0.88 \pm 0.009
VAE-based(Veldkamp et al., 2025)	0.83 \pm 0.009	0.81 \pm 0.009	0.75 \pm 0.016	0.85 \pm 0.011
BRCG(Dash et al., 2018)	0.77 \pm 0.006	0.74 \pm 0.034	0.85 \pm 0.046	0.90 \pm 0.035
RRL(Wang et al., 2021)	0.78 \pm 0.002	0.80 \pm 0.003	0.90 \pm 0.005	0.94 \pm 0.005
DR-NET(Qiao et al., 2021)	0.85 \pm 0.005	0.82 \pm 0.005	0.89 \pm 0.025	0.92 \pm 0.017
LEN(Barbiero et al., 2022)	0.69 \pm 0.007	0.80 \pm 0.000	0.76 \pm 0.035	0.85 \pm 0.017
NS-FCN	0.91\pm0.009	0.91\pm0.009	0.92\pm0.009	0.96\pm0.009

7 CONCLUSION

Our NS-FCN framework effectively learns interpretable rules for missing value imputation, demonstrating strong performance across a diverse range of synthetic and real-world datasets. A key strength is its ability to seamlessly reason over heterogeneous data, handling both binary predicates (e.g., Birds) and continuous features in complex domains like medical diagnosis (SPECT, Heart Disease). It successfully handles missing data and learns hierarchical rule structures, offering significant potential for trustworthy diagnostics and transparent decision-making.

540 REPRODUCIBILITY STATEMENT
541

542 We have made extensive efforts to ensure the reproducibility of our results. The complete description
543 of both synthetic dataset generation and real-world dataset preprocessing methods are illustrated in
544 Appendix E and D.2. Details of the computational setup, including hardware configuration and
545 software environment, as well as the choice of hyper-parameters are documented in Appendix J.4
546 and K.3. We will release our code in the camera-ready stage to facilitate replication and further
547 research.

548 REFERENCES
549

550 Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Pietro Lió, Marco Gori, and Stefano
551 Melacci. Entropy-based logic explanations of neural networks. In *Proceedings of the AAAI
552 Conference on Artificial Intelligence*, volume 36, pp. 6046–6054, 2022.

553 Dimitri P Bertsekas. Nonlinear programming. *Journal of the Operational Research Society*, 48(3):
554 334–334, 1997.

555 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
556 Translating embeddings for modeling multi-relational data. In *Advances in Neural Information
557 Processing Systems*, volume 26, 2013.

559 Andres Campero, Aldo Pareja, Tim Klinger, Josh Tenenbaum, and Sebastian Riedel. Logical rule
560 induction and theory learning using neural theorem proving. *arXiv preprint arXiv:1809.02193*,
561 2018.

562 Zhi Chen, Sarah Tan, Urszula Chajewska, Cynthia Rudin, and Rich Caruna. Missing values and
563 imputation in healthcare data: Can interpretable machine learning help? In *Conference on Health,
564 Inference, and Learning*, pp. 86–99. PMLR, 2023.

566 Xueling Feng, Paul Weng, Matthieu Zimmer, Dong Li, Wulong Liu, Jianye Hao, Claire Glanois, Zhao-
567 hui Jiang. Neuro-symbolic hierarchical rule induction. In *International Conference on Machine
568 Learning (ICML)*, pp. 7583–7615. PMLR, 2022.

569 William W Cohen. Fast effective rule induction. In *Machine learning proceedings 1995*, pp. 115–
570 123. Elsevier, 1995.

572 Andrew Cropper and Rolf Morel. Learning programs by learning from failures. *Machine Learning*,
573 110(4):801–856, 2021.

575 Sanjeeb Dash, Oktay Gunluk, and Dennis Wei. Boolean decision rules via column generation.
576 *Advances in neural information processing systems*, 31, 2018.

577 Robert Detrano, Andras Janosi, Walter Steinbrunn, Matthias Pfisterer, Johann-Jakob Schmid, Sar-
578 bjit Sandhu, Kern H Guppy, Stella Lee, and Victor Froelicher. International application of a
579 new probability algorithm for the diagnosis of coronary artery disease. *The American journal of
580 cardiology*, 64(5):304–310, 1989.

582 Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
583 machines. *arXiv preprint arXiv:1904.11694*, 2019.

584 Mariette Dupuy, Marie Chavent, and Remi Dubois. mdae: modified denoising autoencoder for
585 missing data imputation. *arXiv preprint arXiv:2411.12847*, 2024.

587 Bradley Efron. Missing data, imputation, and the bootstrap. *Journal of the American Statistical
588 Association*, 89(426):463–475, 1994.

590 Khaled M Fouad, Mahmoud M Ismail, Ahmad Taher Azar, and Mona M Arafa. Advanced methods
591 for missing values imputation based on similarity learning. *PeerJ Computer Science*, 7:e619,
592 2021.

593 Kelvin Guu, John Miller, and Percy Liang. Traversing knowledge graphs in vector space. *arXiv
preprint arXiv:1506.01094*, 2015.

594 Pascal Hitzler and Md Kamruzzaman Sarker. Neuro-symbolic artificial intelligence: The state of
 595 the art. 2022.

596

597 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 598 *arXiv:1312.6114*, 2013.

599 Lukasz A Kurgan, Krzysztof J Cios, Ryszard Tadeusiewicz, Marek Ogiela, and Lucy S Goodenday.
 600 Knowledge discovery approach to automated cardiac spect diagnosis. *Artificial intelligence in*
 601 *medicine*, 23(2):149–169, 2001.

602

603 Linchao Li, Bowen Du, Yonggang Wang, Lingqiao Qin, and Huachun Tan. Estimation of missing
 604 values in heterogeneous traffic data: Application of multimodal deep learning model. *Knowledge-
 605 Based Systems*, 194:105592, 2020.

606 Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation em-
 607 beddings for knowledge graph completion. In *Proceedings of the AAAI Conference on Artificial*
 608 *Intelligence*, volume 29, 2015.

609

610 Robin Manhaeve, Sebastian Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
 611 DeepProbLog: Neural probabilistic logic programming. *Advances in neural information process-
 612 ing systems*, 31, 2018.

613 Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for learn-
 614 ing large incomplete matrices. *The Journal of Machine Learning Research*, 11:2287–2322, 2010.

615

616 Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer
 617 Science & Business Media, 2013.

618 Alessandro Oltramari, Jonathan Francis, Cory Henson, Kaixin Ma, and Ruwan Wickramarachchi.
 619 Neuro-symbolic architectures for context understanding. In *Knowledge Graphs for Explainable*
 620 *Artificial Intelligence: Foundations, Applications and Challenges*, pp. 143–160. IOS Press, 2020.

621

622 Yidong Ouyang, Liyan Xie, Chongxuan Li, and Guang Cheng. Missdiff: Training diffusion models
 623 on tabular data with missing values. *arXiv preprint arXiv:2307.00467*, 2023.

624

625 Leonardo Pellegrina and Fabio Vandin. Scalable rule lists learning with sampling. In *Proceedings of*
 626 *the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2352–2363,
 627 2024.

628

629 Litao Qiao, Weijia Wang, and Bill Lin. Learning accurate and interpretable decision rule sets from
 630 neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35,
 631 pp. 4303–4311, 2021.

632

633 J. Ross Quinlan. Learning logical definitions from relations. *Machine learning*, 5:239–266, 1990.

634

635 Md Geaur Rahman and Md Zahidul Islam. A decision tree-based missing value imputation technique
 636 for data pre-processing. In *The 9th Australasian Data Mining Conference: AusDM 2011*, pp. 41–
 637 50. Australian Computer Society Inc, 2011.

638

639 Md Geaur Rahman and Md Zahidul Islam. Fimus: A framework for imputing missing values using
 640 co-appearance, correlation and similarity analysis. *Knowledge-Based Systems*, 56:311–327, 2014.

641

642 Matthew Richardson and Pedro Domingos. Markov logic networks. *Machine learning*, 62:107–136,
 643 2006.

644

645 Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
 646 methods for minimizing a composite function. *Mathematical Programming*, 144(1):1–38, 2014.

647

648 Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. *Advances in neural*
 649 *information processing systems*, 30, 2017.

650

651 Hikaru Shindo, Masaaki Nishino, and Akihiro Yamamoto. Differentiable inductive logic program-
 652 ming for structured examples. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 653 volume 35, pp. 5034–5041, 2021.

648 Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for
 649 mixed-type data. *Bioinformatics*, 28(1):112–118, 2012.

650

651 Lena Stempfle and Fredrik Johansson. Minty: Rule-based models that minimize the need for im-
 652 puting features with missing values. In *International Conference on Artificial Intelligence and*
 653 *Statistics*, pp. 964–972. PMLR, 2024.

654 Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. Proofwriter: Generating implications, proofs, and
 655 abductive statements over natural language. In *Findings of the Association for Computational*
 656 *Linguistics: ACL-IJCNLP 2021*, pp. 3621–3634, 2021.

657

658 Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
 659 plex embeddings for simple link prediction. In *International conference on machine learning*, pp.
 660 2071–2080. PMLR, 2016.

661 Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
 662 *Journal of optimization theory and applications*, 109(3):475–494, 2001.

663

664 Stef van Buuren and Catharina Gerarda Maria Groothuis-Oudshoorn. mice: Multivariate imputation
 665 by chained equations in r. *Journal of statistical software*, 45(3), 2011.

666 Karel Veldkamp, Raoul Grasman, and Dylan Molenaar. Handling missing data in variational autoen-
 667 coder based item response theory. *British Journal of Mathematical and Statistical Psychology*, 78
 668 (1):378–397, 2025.

669

670 Xinyu Wang, Isil Dillig, and Rishabh Singh. Synthesis of data completion scripts using finite tree
 671 automata. *Proceedings of the ACM on Programming Languages*, 1(OOPSLA):1–26, 2017.

672

673 Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by trans-
 674 lating on hyperplanes. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
 675 ume 28, 2014. doi: 10.1609/aaai.v28i1.8870. URL <https://doi.org/10.1609/aaai.v28i1.8870>.

676

677 Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Scalable rule-based representation learning
 678 for interpretable classification. *Advances in Neural Information Processing Systems*, 34:30479–
 679 30491, 2021.

680

681 Dennis Wei, Sanjeeb Dash, Tian Gao, and Oktay Gunluk. Generalized linear rule models. In
 682 *International conference on machine learning*, pp. 6687–6696. PMLR, 2019.

683

684 Stephen J Wright. Coordinate descent algorithms. *Mathematical programming*, 151(1):3–34, 2015.

685

686 Yang Yang, Chao Yang, Boyang Li, Yinghao Fu, and Shuang Li. Neuro-symbolic temporal point
 687 processes. *arXiv preprint arXiv:2406.03914*, 2024.

688

689 Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative
 690 adversarial nets. In *International conference on machine learning*, pp. 5689–5698. PMLR, 2018.

691

692 Chengqi Zhang, Yongsong Qin, Xiaofeng Zhu, Jilian Zhang, and Shichao Zhang. Clustering-based
 693 missing value imputation for data preprocessing. In *2006 4th IEEE International Conference on*
 694 *Industrial Informatics*, pp. 1081–1086. IEEE, 2006.

695

696

697

698

699

700

701

702 A RELATED WORK SUPPLEMENT
703
704
705
706

707 **Traditional Inductive Logic Programming (ILP) Methods.** Inductive Logic Programming learns
708 logical rules from relational data. Cohen (1995) proposed RIPPER, a fast rule induction algorithm
709 using separate-and-conquer strategy. Quinlan (1990) developed FOIL, which generates clauses it-
710 eratively. Dash et al. (2018) introduced Boolean decision rules using column generation. Wei et al.
711 (2019) proposed GLRM integrating decision rules into linear models. Cropper & Morel (2021)
712 presented LFF implemented in Popper. These approaches rely on heuristics but may not guarantee
713 optimal solutions. Pellegrina & Vandin (2024) proposed SamRuLe for near-optimal rule lists via
714 sampling.

715 **Differentiable ILP Methods.** Traditional ILP models struggle with noisy data and scalability. Dif-
716 ferentiable approaches address these issues by integrating continuous relaxation, which allows gra-
717 dient descent for optimization. Shindo et al. (2021) proposed ∂ ILP, which represents logic rules in
718 a differentiable form and combines neural networks with symbolic logic. Manhaeve et al. (2018) in-
719 troduced DeepProbLog, extending ProbLog with neural predicates. Neural Logic Machines (NLMs)
720 (Dong et al., 2019) combine MLPs with logic programming to improve computational efficiency but
721 reduce interpretability.

722 **Broader Missing Data Imputation Methods.** Missing data imputation methods range from global
723 model-based techniques to localized and hybrid strategies, extending to deep and ensemble frame-
724 works.

725 At the global end, nonparametric bootstrap methods (Efron, 1994) provide bias-corrected estimates
726 via repeated sampling, while spectral regularization approaches like SOFT-IMPUTE (Mazumder
727 et al., 2010) solve a nuclear-norm minimization through iterative soft-thresholded SVD. **Classi-**
728 **cal multivariate imputation schemes such as MICE** (van Buuren & Groothuis-Oudshoorn, 2011)
729 **construct a sequence of conditional models for each variable with missingness and iteratively sam-**
730 **ple from these chained regressions until convergence, thereby approximating draws from the joint**
731 **posterior and naturally propagating uncertainty across multiple imputations.** Tree-based ensemble
732 **methods such as MissForest** (Stekhoven & Bühlmann, 2012) **adopt an iterative refinement strategy**
733 **in which random forests are trained per variable using the currently imputed data as predictors,**
734 **updating missing entries via out-of-bag predictions until changes stabilize, thus capturing complex**
735 **nonlinearities and high-order interactions without requiring parametric distributional assumptions.**

736 Moving toward local adaptation, decision tree-based EM (DMI) (Rahman & Islam, 2011) partitions
737 complete cases via C4.5 and imputes within each leaf, and clustering-based random imputation
738 (CRI) (Zhang et al., 2006) applies kernel-weighted estimation in the nearest k-means cluster. Hybrid
739 similarity learners, such as KI and its fuzzy extension FCKI (Fouad et al., 2021), refine this idea by
740 dynamically selecting neighborhood sizes before multivariate imputation. For high-dimensional or
741 heterogeneous data, deep architectures like **GAIN** (Yoon et al., 2018) **cast imputation as a generative**
742 **adversarial game where a generator proposes imputations conditioned on an observed-mask vector**
743 **and a discriminator learns to distinguish observed from imputed components, while VAE-based**
744 **imputers** (Veldkamp et al., 2025) **treat the complete feature matrix as generated from low-dimensional**
745 **latent variables and learn to reconstruct missing entries via amortized variational inference under**
746 **a probabilistic encoder-decoder architecture.** Building on denoising autoencoders, **mDAE** (Dupuy
747 et al., 2024) **modifies the reconstruction loss to ignore pre-imputed values at missing positions and**
748 **couples this with an overcomplete hidden representation, which empirically improves RMSE over**
749 **standard DAEs and several classical imputers across multiple UCI datasets** (Dupuy et al., 2024). In
750 the same spirit of generative modeling, **MissDiff** (Ouyang et al., 2023) **trains a diffusion model on**
751 **tabular data with missing values by injecting noise along a forward stochastic process and learning**
752 **a reverse denoising process that is explicitly conditioned on the observed-mask pattern, thereby pro-**
753 **ducing imputations through iterative refinement from pure noise.** Models such as **MMDL** (Li et al.,
754 2020) align stacked autoencoder embeddings across modalities to exploit cross-view correlations.
755 Ensemble schemes like **FIMUS** (Rahman & Islam, 2014) combine co-appearance, correlation, and
similarity in a weighted-voting framework. Despite their varied focuses—ranging from global
inference to localized and multimodal learning—these methods uniformly rely on statistical patterns
and *do not leverage explicit logical rules to govern inter-variable relationships*.

756 B CONVERGENCE ANALYSIS OF COORDINATE GRADIENT DESCENT

757 For clarity, we analyze a simplified version of our learning algorithm in which each head predicate
 758 U_j is associated with a single parameter block Θ_j . Let $\Theta = (\Theta_1, \dots, \Theta_m)$ collect all parameters.
 759 The global training objective is

$$760 \quad \mathcal{L}(\Theta) = \sum_{j=1}^m \mathcal{L}_{U_j}(\Theta), \quad \mathcal{L}_{U_j}(\Theta) = \text{mean}((v_{U_j}(\Theta) \odot \text{mask}_j - U_{j,\text{obs}} \odot \text{mask}_j)^2), \quad (7)$$

761 where $v_{U_j}(\Theta)$ is computed by forward chaining using the differentiable operators introduced in the
 762 main text (e.g., Eq. 4).

763 B.1 ASSUMPTIONS

764 We make the following standard assumptions for smooth block coordinate descent (e.g., (Tseng,
 765 2001; Bertsekas, 1997; Nesterov, 2013))

766 **Assumption 1** *The objective $\mathcal{L} : \mathbb{R}^d \rightarrow \mathbb{R}$ is*

- 767 1. *bounded below: $\inf_{\Theta} \mathcal{L}(\Theta) > -\infty$,*
- 768 2. *continuously differentiable in Θ , and*
- 769 3. *has block-wise Lipschitz-continuous gradients: for each j there exists $L_j < \infty$ such that,
 770 for all Θ and all h_j ,*

$$771 \quad \|\nabla_{\Theta_j} \mathcal{L}(\Theta + e_j h_j) - \nabla_{\Theta_j} \mathcal{L}(\Theta)\| \leq L_j \|h_j\|, \quad (8)$$

772 where $e_j h_j$ denotes the vector obtained by changing only block j .

773 These conditions hold in our setting because \mathcal{L} is built from smooth operations (e.g., linear maps,
 774 sigmoid, softmax, log-sum-exp) composed with a squared loss, and training is restricted to bounded
 775 level sets.

776 B.2 IDEALIZED FULL-BATCH BLOCK COORDINATE GRADIENT DESCENT

777 Consider the following idealized algorithm. At iteration t we pick a block index $j_t \in \{1, \dots, m\}$
 778 (e.g., by cycling through $\{1, \dots, m\}$) and perform a gradient step on that block only:

$$779 \quad \Theta_{j_t}^{t+1} = \Theta_{j_t}^t - \eta \nabla_{\Theta_{j_t}} \mathcal{L}(\Theta^t), \quad (9)$$

$$780 \quad \Theta_{\ell}^{t+1} = \Theta_{\ell}^t \quad \text{for all } \ell \neq j_t, \quad (10)$$

781 where $\eta > 0$ is a step size. This matches the idealized version of the rule update in Section 5.1:
 782 when we update U_{j_t} , all other predicates U_{ℓ} are kept fixed.

783 **Lemma 1 (Monotone decrease for small steps)** *Suppose Assumption 1 holds. If the step size sat-
 784 isfies $0 < \eta \leq 1/L_{j_t}$ at iteration t , then*

$$785 \quad \mathcal{L}(\Theta^{t+1}) \leq \mathcal{L}(\Theta^t) - \frac{\eta}{2} \|\nabla_{\Theta_{j_t}} \mathcal{L}(\Theta^t)\|^2. \quad (11)$$

786 In particular, the sequence $\{\mathcal{L}(\Theta^t)\}_{t \geq 0}$ is monotonically non-increasing and convergent.

787 **Proof 1 (Proof sketch)** *By block-wise Lipschitz continuity of $\nabla_{\Theta_{j_t}} \mathcal{L}$,*

$$788 \quad \mathcal{L}(\Theta^{t+1}) = \mathcal{L}(\Theta^t + e_{j_t}(\Theta_{j_t}^{t+1} - \Theta_{j_t}^t)) \quad (12)$$

$$789 \quad \leq \mathcal{L}(\Theta^t) + \langle \nabla_{\Theta_{j_t}} \mathcal{L}(\Theta^t), \Theta_{j_t}^{t+1} - \Theta_{j_t}^t \rangle + \frac{L_{j_t}}{2} \|\Theta_{j_t}^{t+1} - \Theta_{j_t}^t\|^2. \quad (13)$$

790 *Substituting the update $\Theta_{j_t}^{t+1} - \Theta_{j_t}^t = -\eta \nabla_{\Theta_{j_t}} \mathcal{L}(\Theta^t)$ and rearranging gives*

$$791 \quad \mathcal{L}(\Theta^{t+1}) \leq \mathcal{L}(\Theta^t) - \eta \left(1 - \frac{\eta L_{j_t}}{2}\right) \|\nabla_{\Theta_{j_t}} \mathcal{L}(\Theta^t)\|^2. \quad (14)$$

792 If $\eta \leq 1/L_{j_t}$, then $1 - \eta L_{j_t}/2 \geq 1/2$, yielding the claimed inequality.

793 Lemma 1 implies that the loss decreases at every iteration and the gradients on updated blocks cannot
 794 stay large forever. Combined with a mild assumption that each block is selected infinitely often, we
 795 obtain convergence to a block-stationary point.

810
 811 **Proposition 1 (Convergence to a block-stationary point)** *Assume 1 holds, the level set $\{\Theta : \mathcal{L}(\Theta) \leq \mathcal{L}(\Theta^0)\}$ is bounded, each block j is selected infinitely often, and the step sizes satisfy $0 < \eta \leq \min_j 1/L_j$. Then any limit point Θ^* of the sequence $\{\Theta^t\}$ generated by the above block coordinate gradient method is block-stationary:*

$$\nabla_{\Theta_j} \mathcal{L}(\Theta^*) = 0 \quad \text{for all } j = 1, \dots, m. \quad (15)$$

812 *Equivalently, no single block Θ_j can be perturbed to decrease \mathcal{L} while all other blocks are fixed.*

813
 814 **Proof 2 (Proof sketch)** *Summing the inequality from Lemma 1 over t shows that*

$$\sum_{t=0}^{\infty} \|\nabla_{\Theta_{j_t}} \mathcal{L}(\Theta^t)\|^2 < \infty,$$

815 *so the block gradients must tend to zero along the subsequence where a given block j is updated.*
 816 *Since each block is selected infinitely often and the iterates remain in a bounded level set, standard*
 817 *arguments for block coordinate descent (Tseng, 2001) imply that any limit point has zero gradient*
 818 *in every block.*

819 Thus, in the ideal full-batch setting with sufficiently small steps, our predicate-wise coordinate up-
 820 dates produce a non-increasing loss sequence $\{\mathcal{L}(\Theta^t)\}$ and converge to a point where no single
 821 predicate block Θ_j can further reduce the global objective.

822 B.3 STOCHASTIC MINI-BATCH VARIANT AND ADAM

823 In practice, our implementation uses mini-batches and the Adam optimizer for each block update (as
 824 described in Section 5.1). In this case, the gradient $\nabla_{\Theta_j} \mathcal{L}$ is replaced by a stochastic estimate com-
 825 puted on a mini-batch, and the step uses Adam’s adaptive preconditioning. This yields a *stochastic*
 826 block-coordinate gradient scheme: the loss is no longer guaranteed to decrease at every single up-
 827 date, but under standard assumptions stochastic block-coordinate methods are known to approach
 828 a neighborhood of a stationary point in expectation (see, e.g., (Richtárik & Takáč, 2014; Wright,
 829 2015)).

830 C MODEL SUPPLEMENT DESCRIPTION

831 C.1 OPTIMIZATION DETAILS

832 Throughout all training stages, each rule embedding (or set of embeddings during joint fine-tuning)
 833 is optimized using the Adam optimizer. A crucial step following each gradient update is the normal-
 834 ization of the rule embeddings. This involves applying a Rectified Linear Unit (ReLU) activation to
 835 the embedding data (ensuring non-negative values, which can aid interpretability for positive pred-
 836 icate contributions) followed by L_2 normalization of each row vector within the rule embedding
 837 matrix. This normalization helps stabilize the training process and maintains consistent magnitudes
 838 for the embedding components.

839 D DATASETS AND BASELINES

840 D.1 DATASETS

841 **Heart Disease.** We use the widely-cited Cleveland Clinic dataset from the UCI Heart Disease
 842 database (Detrano et al., 1989). This dataset contains 303 patient records, each with 13 features—a
 843 mix of continuous and categorical variables—such as age, cholesterol level, and resting blood pres-
 844 sure. The task is to predict the presence of heart disease, which is indicated by the target variable on
 845 a scale from 0 (absence) to 4 (severe). Following standard practice, we simplify this into a binary
 846 classification problem: predicting presence (values 1-4) versus absence (value 0).

847 **SPECT.** The SPECT (Single Proton Emission Computed Tomography) dataset presents a binary
 848 classification task to diagnose cardiac conditions (normal/abnormal) based on 22 binary patient fea-
 849 tures. The dataset describes the diagnosis of cardiac SPECT images. Each of the patients is classified
 850 into two categories: normal and abnormal. The 267 SPECT image sets (patients) database were pro-
 851 cessed to extract features that summarize the original SPECT images. As a result, 44 continuous
 852 feature patterns were created for each patient. The pattern was further processed to obtain 22 binary
 853 feature patterns. The CLIP3 algorithm was used to generate classification rules from these patterns
 854 (Kurgan et al., 2001). The CLIP3 algorithm generated rules that were 84.0% accurate (as compared

with cardiologists' diagnoses). A key challenge in this domain is the prevalence of missing data, making it an ideal testbed for our model's imputation and rule-learning capabilities.

Birds. Bird’s Rulebase is a well-known logic problem designed to assess an AI’s ability to learn and reason with hierarchical logical rules that mimic common-sense knowledge (Tafjord et al., 2021). It has the ground truth single theory of six rules¹ as follows.

```

can_fly(X) ← bird(X), not abnormal_bird(X)
bird(X) ← ostrich(X)
abnormal_bird(X) ← ostrich(X)
not can_fly(X) ← ostrich(X)
abnormal_bird(X) ← bird(X), wounded(X)
not can_fly(X) ← wounded(X)

```

Figure 5 further illustrates the structure of these rules.

Figure 5: Ground truth rules for Bird dataset.

D.2 PREPROCESSING OF DATASETS

Heart Disease. The UCI Heart Disease dataset contains a mix of 13 continuous and categorical features with 303 samples. To create a challenging imputation task, we introduced a 30% missing ratio independently into four key continuous variables: resting blood pressure (`trestbps`), cholesterol (`chol`), maximum heart rate (`thalach`), and ST depression (`oldpeak`). Following the protocol in MissDiff(Ouyang et al., 2023), we generate missing values under a Missing Completely At Random (MCAR) mechanism. Let $\mathbf{x} \in \mathbb{R}^d$ denote the complete data vector. We generate a binary mask vector $\mathbf{m} \in \{0, 1\}^d$, where $m_i = 1$ indicates that x_i is observed, and $m_i = 0$ indicates it is missing. The observed data is represented as $\tilde{\mathbf{x}} = \mathbf{x} \odot \mathbf{m} + \mathbf{n} \mathbf{a} \odot (1 - \mathbf{m})$, where \odot denotes element-wise multiplication.

For our NS-FCN framework, the task is to directly impute these missing continuous values. For deep learning baselines, continuous features are standardized using Z-score normalization, and categorical features are one-hot encoded. For tree-based and statistical baselines (MissForest, MICE), categorical variables are treated as factors. However, to accommodate the baseline models which only support binary inputs, we first discretized these four variables into three categorical bins based on clinical thresholds: blood pressure (< 120 , $120 - 140$, > 140), cholesterol (< 200 , $200 - 240$, ≥ 240), max heart rate (< 100 , $100 - 160$, ≥ 160), and ST depression (≤ 1.0 , $1.0 - 2.0$, > 2.0). The baselines were then tasked with imputing the correct category. Consequently, we evaluate the imputation accuracy on the discretized bins.

SPECT Heart. The dataset's 22 binary features were randomly masked with a 30% probability to simulate missing data. Our framework was then applied to a two-stage task: first, to impute the missing features, and second, to perform the final patient diagnosis based on the completed feature set. The diagnostic performance is compared against five baseline methods, including four rule-based approaches and an MLP.

Birds. Following the ground truth logical rules, we generated a dataset of 1,500 samples. To create a difficult logical reasoning challenge, we introduced a 90% missing ratio for two crucial latent

¹<https://www.doc.ic.ac.uk/~mjs/teaching/KnowledgeRep491/ExtendedLP%20491-2x1.pdf>, p5

918 predicates: `can_fly` and `abnormal_bird`. The task for all models was to impute these missing
 919 binary values based on the observed predicates. The imputation accuracy is compared against the
 920 same set of baselines.

921 D.3 BASELINE MODELS

923 To rigorously evaluate performance, we compare our method against 11 established baselines, ranging
 924 from classical statistical methods, to advanced deep generative models, and interpretable models.

925 Statistical Models.

- 927 • **MICE** (van Buuren & Groothuis-Oudshoorn, 2011)

928 Multivariate Imputation by Chained Equations (MICE) is a widely used statistical method
 929 based on Fully Conditional Specification (FCS). It iteratively imputes missing values by
 930 modeling each feature with missing data as a function of other features using linear re-
 931 gression (for continuous variables) or logistic regression (for categorical variables). We
 932 generate $m = 5$ imputed datasets and report results from the first completion.

- 933 • **MissForest** (Stekhoven & Bühlmann, 2012)

934 MissForest is a non-parametric method that handles mixed-type data using an iterative Ran-
 935 dom Forest approach. It treats the missing data problem as a prediction task, training a ran-
 936 dom forest on the observed parts of the data to predict the missing values. It is particularly
 937 effective at capturing non-linear interactions without explicit distributional assumptions.

938 Deep Generative Models.

- 939 • **MLP (Multilayer Perceptron)**

940 We use a simple feed-forward neural network with fully connected layers and ReLU activa-
 941 tions as a deterministic imputation baseline. Given an input vector $\mathbf{x} \in \mathbb{R}^d$ and a binary
 942 mask $\mathbf{m} \in \{0, 1\}^d$ indicating observed entries ($m_j = 1$ if x_j is observed, 0 otherwise), we
 943 first obtain $\tilde{\mathbf{x}} = \mathbf{x} \odot \mathbf{m} + \mathbf{n} \odot (1 - \mathbf{m})$, and use the observed mask for input gating:

$$944 \mathbf{h}_0 = \tilde{\mathbf{x}} \odot \mathbf{m}.$$

945 The network f_θ takes \mathbf{h}_0 as input and outputs a reconstruction $\hat{\mathbf{x}} = f_\theta(\mathbf{h}_0)$. Training is
 946 performed under weak supervision by minimizing the Mean Squared Error (MSE) *only* on
 947 observed entries:

$$948 \mathcal{L}_{\text{MLP}} = \|(\hat{\mathbf{x}} - \mathbf{x}) \odot \mathbf{m}\|_2^2,$$

949 so that gradients are propagated only through coordinates with ground-truth observations;
 950 at test time, the missing entries ($m_j = 0$) are imputed using the corresponding components
 951 of $\hat{\mathbf{x}}$.

- 952 • **VAE (Variational Autoencoder)**

953 Our VAE-based imputer follows the amortized inference framework of Kingma & Welling
 954 (2013), adapted to incomplete tabular data as in recent work on VAE with missingness (e.g.
 955 Veldkamp et al. (2025)). Given (\mathbf{x}, \mathbf{m}) , we construct a gated and masked input

$$956 \tilde{\mathbf{x}} = \mathbf{x} \odot \mathbf{m} + \mathbf{n} \odot (1 - \mathbf{m}), \quad \mathbf{h}_0 = \tilde{\mathbf{x}} \odot \mathbf{m},$$

957 and feed the concatenated vector $[\mathbf{h}_0, \mathbf{1} - \mathbf{m}]$ into the encoder to obtain a Gaussian posterior

$$958 q_\phi(\mathbf{z} \mid \mathbf{x}, \mathbf{m}) = \mathcal{N}(\boldsymbol{\mu}_\phi, \text{diag}(\boldsymbol{\sigma}_\phi^2)).$$

959 A latent sample \mathbf{z} is drawn via the reparameterization trick and passed through a decoder
 960 $p_\theta(\mathbf{x} \mid \mathbf{z})$ to produce $\hat{\mathbf{x}}_\theta(\mathbf{z})$. The model is trained by maximizing the Evidence Lower
 961 Bound (ELBO), where the reconstruction term only involves *observed* entries:

$$962 \mathcal{L}_{\text{VAE}} = \underbrace{\|(\hat{\mathbf{x}}_\theta(\mathbf{z}) - \mathbf{x}) \odot \mathbf{m}\|_2^2}_{\text{reconstruction on observed data}} + \underbrace{\text{KL}(q_\phi(\mathbf{z} \mid \mathbf{x}, \mathbf{m}) \parallel p(\mathbf{z}))}_{\text{KL regularization}}.$$

963 At inference time, missing values are imputed by the decoder output $\hat{\mathbf{x}}_\theta(\mathbf{z})$ at coordinates
 964 where $m_j = 0$.

- 965 • **DAE / mDAE (modified Denoising Autoencoder)**

966 For the autoencoder baseline, we adopt a denoising autoencoder architecture with a modi-
 967 fication of the loss function proposed in the mDAE Dupuy et al. (2024). Given (\mathbf{x}, \mathbf{m}) , we
 968 first perform a simple pre-imputation to obtain a complete input $\tilde{\mathbf{x}}$, and then apply masking
 969 noise with rate ρ *only* on originally observed entries:

$$970 \tilde{\mathbf{x}} = \mathbf{x} \odot \mathbf{m} + \mathbf{n} \odot (1 - \mathbf{m}), \quad \mathbf{c} \sim \text{Ber}(\rho)^d, \quad \tilde{\mathbf{x}}^{(\text{noisy})} = (\tilde{\mathbf{x}} \odot \mathbf{m}) \odot (1 - \mathbf{c} \odot \mathbf{m}).$$

972 The corrupted input $\tilde{\mathbf{x}}^{(\text{noisy})}$ is fed into an encoder–decoder network g_ψ that outputs a reconstruction $\hat{\mathbf{x}} = g_\psi(\tilde{\mathbf{x}}^{(\text{noisy})})$. Crucially, following the modified-loss idea of mDAE (Dupuy et al., 2024), the reconstruction loss is computed *only on truly observed entries*, and pre-imputed missing values are ignored:
 973
 974
 975
 976

$$\mathcal{L}_{\text{mDAE}} = \|(\hat{\mathbf{x}} - \mathbf{x}) \odot \mathbf{m}\|_2^2.$$

977 This prevents the autoencoder from overfitting arbitrary pre-imputed values at missing positions while still benefiting from denoising training; at test time, imputations for missing
 978 entries ($m_j = 0$) are taken from the corresponding components of $\hat{\mathbf{x}}$.
 979
 980

- **GAIN (Generative Adversarial Imputation Nets) (Yoon et al., 2018)**

981 GAIN adapts the Generative Adversarial Network framework for imputation. The generator G imputes missing components, while the discriminator D attempts to distinguish
 982 between observed and imputed components. A hint mechanism is introduced to provide D
 983 with partial information about the mask distribution, forcing G to learn the true underlying
 984 data distribution. We utilize a hybrid loss function combining adversarial loss with MSE
 985 for continuous features and cross-entropy for categorical features.
 986

- **MissDiff (Diffusion Imputation Nets) (Ouyang et al., 2023)**

987 We employ a diffusion probabilistic model specifically adapted for tabular missing data.
 988 The model is trained to reverse a noise-adding process. During inference (imputation), we
 989 utilize the *guided sampling* or *conditioning* strategy: at each denoising step t , the known
 990 observed values \mathbf{x}^{obs} ($\mathbf{x}^{obs} = \mathbf{x} \odot \mathbf{m} + \mathbf{na} \odot (1 - \mathbf{m})$) are re-injected into the sample to
 991 ensure consistency with the ground truth. The model effectively samples \mathbf{x}^{imp} from the
 992 conditional distribution $p(\mathbf{x}^{miss} | \mathbf{x}^{obs})$.
 993

994 **Interpretable Models.**
 995

- **BRCG** (Dash et al., 2018) is an integer program designed to trade classification accuracy for rule simplicity. It uses column generation to search over an exponential number of candidate clauses efficiently.
- **LEN** (Barbiero et al., 2022) is an end-to-end differentiable method for extracting logical explanations from neural networks using First-Order Logic.
- **DR-NET** (Qiao et al., 2021) is a method for learning independent logical rules in disjunctive standard form as an interpretable model for classification.
- **RRL** (Wang et al., 2021) learns interpretable non-fuzzy rules for data representation and classification using a novel training method called Gradient Grafting.

1005 **E PERFORMANCE UNDER DIFFERENT MISSINGNESS MECHANISMS**
 1006

1007 We compare three general missingness mechanisms for dataset generation:

- **MCR (Missing Completely at Random)**: The probability of being missing is the same for all cases, which is the missingness mechanism in other experiments on our paper.
- **MAR (Missing at Random)**: Missingness depends on observed variables. We can indicate which observed variable to use for missingness; the default is X_0 . Then, we set a higher probability of missing when the dependency variable is 1.
- **MNAR (Missing Not at Random)**: Missingness depends on unobserved variables or the missing values themselves. Take X_3 for example, we set it is more likely to be missing when $X_3 = 1$ (positive values are harder to observe).

1016 We show an observation ratio = 0.2 and a sample size = 50,000 as a representative case in Table 8.
 1017 We run 20 random seeds. Since the seeds are different from those used in Tables 23 and 24, the
 1018 results are slightly different.

1019 Table 8: Comparison of inference accuracy and rule accuracy under different missing mechanisms.
 1020

	MCAR		MAR		MNAR	
	Imputation Accu.	Rule Accu.	Imputation Accu.	Learned Rules	Imputation Accu.	Rule Accu.
X_3	1.00 ± 0.00	1.0	1.00 ± 0.00	1.0000	1.00 ± 0.00	1.0000
X_4	1.00 ± 0.00	1.0	1.00 ± 0.00	1.0000	1.00 ± 0.00	1.0000
X_5	0.95 ± 0.07	0.6	0.95 ± 0.07	0.6000	0.93 ± 0.05	0.4000

1026 The results show that MAR and MNAR show comparable results to MCAR, which demonstrates
 1027 our method’s effectiveness across the full spectrum of missing data scenarios.
 1028

1029 F RUNNING TIME AND MEMORY COST ANALYSIS

1030 F.1 SYNTHETIC DATASET

1032 While coordinate descent requires different cycle numbers (Table 3), our method demonstrates effi-
 1033 cient performance on standard CPU configurations. We conducted experiments using an Apple M4
 1034 chip with 10 cores and 16GB memory, taking observation ratio = 0.2 as an example. Results over
 1035 20 runs on setting (b) of Figure 3.

1036 Table 9: Running time and memory cost of our model with varying sample sizes. Results over 20
 1037 seeds on the example (b) of Figure 3.
 1038

1039 Sample size	1040 2500	1041 5000	1042 10,000	1043 25,000	1044 50,000	1045 100,000
1046 Running time (s)	15.66 \pm 3.48	30.17 \pm 2.12	54.49 \pm 15.98	130.36 \pm 45.80	194.59 \pm 98.53	493.99 \pm 152.81
1047 Memory cost (MB)	64.84 \pm 10.72	71.92 \pm 0.82	78.55 \pm 1.96	95.81 \pm 12.13	126.99 \pm 26.97	175.64 \pm 33.93

1048 Overall, we observe **minimal time and memory costs**. Time complexity scales near-linearly with
 1049 increasing sample size, while memory requirements remain modest even for large datasets. Process-
 1050 ing 100,000 samples in under 9 minutes demonstrates strong efficiency for CPU-based execution.

1051 F.2 REAL-WORLD DATASET

1052 Table 10: Comparison of running time and memory cost across different methods in SPECT dataset.

1053 Method	1054 Running time (s)	1055 Memory cost (MB)
1056 MLP	0.16 \pm 0.02	158.60 \pm 0.10
1057 LEN	0.20 \pm 0.00	102.78 \pm 0.01
1058 RRL	16.23 \pm 0.01	132.59 \pm 0.01
1059 BRCG	2.65 \pm 0.27	135.11 \pm 0.08
1060 DR-NET	89.01 \pm 0.06	45.93 \pm 0.30
1061 NS-FCN (Ours)	10.34 \pm 0.30	61.42 \pm 1.02

1062 We conducted a comparative analysis of our proposed NS-FCN model against baseline methods,
 1063 focusing on computational efficiency. We take SPECT dataset as an example. The results in Table
 1064 demonstrate that NS-FCN achieves a competitive balance between performance and resource
 1065 consumption. While methods like MLP and LEN offer the fastest execution times, they use higher
 1066 memory costs. Our NS-FCN, though not the fastest, maintains a considerably minimal memory cost
 1067 and running time.

1068 G ASSESSMENT OF RULE QUALITY

1069 G.1 STRUCTURAL STABILITY.

1070 To quantify the structural stability and reliability of the learned rules, we measure the consistency
 1071 of rule predicates across different random seeds using the Jaccard index. For each rule, we treat
 1072 the set of instances that satisfy its predicates in a given run as a binary mask, and compute pairwise
 1073 Jaccard indices between runs obtained under different random seeds and observation probabilities.
 1074 The **Jaccard index**, defined as the intersection over union of two predicate sets, provides a natural
 1075 measure of similarity between rule structures learned across independent runs. High mean Jaccard
 1076 scores (close to 1.0) indicate that the learned rules are structurally stable and robust to stochasticity
 1077 in training and sampling, whereas lower scores reveal predicates whose semantics are more sensitive
 1078 to noise or initialization.

1079 **Synthetic Dataset (Figure 3 (b)).** As shown in Table 11, rules X_3 and X_4 achieve perfect Jac-
 1080 card indices of 1.0 across all observation probabilities, demonstrating complete structural stability.
 1081 In contrast, the aggregated X_5 rule exhibits more variability (ranging from 0.60 to 0.76), reflecting

1080 the increased complexity of learning disjunctive rule structures. In this way, structural stability—
 1081 measured via the Jaccard index of predicates across runs—provides a complementary notion of reli-
 1082 ability that focuses on the consistency of the learned logical structure rather than solely on predictive
 1083 performance.

1084
 1085 Table 11: Jaccard index of learned rule predicates on synthetic data under different observation
 1086 probabilities. Example (b) of Figure 3 with 50,000 samples over 20 seeds.

Obs. Ratio	X_3	X_4	X_5
0.1	1.0000 ± 0.0000	1.0000 ± 0.0000	0.7572 ± 0.2526
0.2	1.0000 ± 0.0000	1.0000 ± 0.0000	0.5987 ± 0.2837
0.3	1.0000 ± 0.0000	1.0000 ± 0.0000	0.6726 ± 0.2385

1087
 1088
 1089
 1090 Table 12: Jaccard Index of learned predicates across different sample sizes on the Birds dataset.
 1091 Results over 10 seeds.

Sample Size	abnormal_clause1 (ostrich)	abnormal_clause2 (bird \wedge wounded)	can_fly (bird \wedge \neg abnormal_bird)
100	0.8000 ± 0.2449	0.5000 ± 0.3162	0.5000 ± 0.3162
500	0.8000 ± 0.2449	0.8000 ± 0.2449	0.7000 ± 0.2449
1000	0.8000 ± 0.2449	0.6000 ± 0.3000	0.6000 ± 0.3000
1500	0.8187 ± 0.2404	0.6868 ± 0.3024	0.7967 ± 0.2670
2000	0.8000 ± 0.2449	0.6000 ± 0.3000	0.6000 ± 0.3000

1092
 1093
 1094 **Birds Dataset.** We analyze the consistency of learned rule structures in Birds Dataset (Figure 5).
 1095 Table 12 presents the Jaccard indices across all pairwise comparisons between seeds for different
 1096 sample sizes, where *abnormal_clause1* and *abnormal_clause2* correspond to the two conjunctive
 1097 clauses in the disjunctive rule for *abnormal_bird*: $abnormal_bird \leftarrow ostrich \vee (bird \wedge wounded)$.

1098 The results demonstrate that, with the exception of $n = 100$ where the sample size is insufficient, the
 1099 model achieves good consistency (Jaccard index > 0.60) across all rules and sample sizes. Overall,
 1100 $n = 1500$ yields the best consistency, with *abnormal_clause1* reaching 0.8187 and *can_fly* reaching
 1101 0.7967, indicating that this sample size provides an optimal balance between data availability and
 1102 model stability.

1103
 1104 Table 13: Structural stability of learned prediction rules on the Heart Disease dataset.

Metric	Value
Mean Pairwise Jaccard Index	0.4151 ± 0.0994
Most Frequently Selected Features	
<i>restecg_1.0</i> (ST-T wave abnormality)	9/10 runs
<i>thal_3.0</i> (normal thalassemia)	8/10 runs
<i>ca_3.0</i> (3 major vessels colored)	8/10 runs
<i>thalach</i> (maximum heart rate achieved)	7/10 runs

1105
 1106
 1107 **Heart Disease dataset.** For this real-world dataset, where ground-truth rules are unknown, we
 1108 evaluate structural stability by computing the Jaccard index of selected features across all predic-
 1109 tion rules learned under different random seeds. Table 13 shows that the model achieves moderate
 1110 consistency (Jaccard index 0.4151 ± 0.0994), indicating that while different seeds may select vary-
 1111 ing feature combinations, there is substantial overlap in the most important features. The most
 1112 frequently selected features include *restecg_1.0* (ST-T wave abnormality on resting electrocardiogram),
 1113 *thal_3.0* (normal thalassemia, a blood disorder), *ca_3.0* (three major vessels colored by fluoroscopy,
 1114 indicating severe coronary artery disease), and *thalach* (maximum heart rate achieved during
 1115 exercise). These features align with established clinical risk factors for heart disease, suggesting that the
 1116 model successfully identifies medically relevant features despite the lack of explicit rule supervision.

1134
1135

G.2 RULE LENGTH ANALYSIS

1136 To understand the sensitivity of our framework to the rule structure hyperparameters, we conduct
 1137 ablation studies on the Heart Disease dataset, systematically varying the arity of conjunction (h) and
 1138 the number of conjunctive clauses (R_k).

1139 We find that both h and R_k show optimal performance in a wide range. For instance, $h \in [3, 9]$ and
 1140 $R_k \in [5, 20]$, showing that except for very small h and R_k , our model is able to capture the logic
 1141 structure within the dataset. Besides, the number of disjunctive clauses is more critical than the arity
 1142 of individual conjunctions for this dataset. This aligns with the intuition that complex real-world
 1143 decision boundaries often require multiple alternative rules rather than highly complex single rules.

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155 Figure 6: Classification accuracy for heart disease risk under the effect of the number of conjunction
 1156 arity (h). Results are over 10 seeds.

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
2222210
2222211
2222212
2222213
2222214
2222215
2222216
2222217
2222218
2222219
2222220
2222221
2222222
2222223
2222224
2222225
2222226
2222227
2222228
2222229
22222210
22222211
22222212
22222213
22222214
22222215
22222216
22222217
22222218
22222219
22222220
22222221
22222222
22222223
22222224
22222225
22222226
22222227
22222228
22222229
222222210
222222211
222222212
222222213
222222214
222222215
222222216
222222217
222222218
222222219
222222220
222222221
222222222
222222223
222222224
222222225
222222226
222222227
222222228
222222229
2222222210
2222222211
2222222212
2222222213
2222222214
2222222215
2222222216
2222222217
2222222218
2222222219
2222222220
2222222221
2222222222
2222222223
2222222224
2222222225
2222222226
2222222227
2222222228
2222222229
22222222210
22222222211
22222222212
22222222213
22222222214
22222222215
22222222216
22222222217
22222222218
22222222219
22222222220
22222222221
22222222222
22222222223
22222222224
22222222225
22222222226
22222222227
22222222228
22222222229
222222222210
222222222211
222222222212
222222222213
222222222214
222222222215
222222222216
222222222217
222222222218
222222222219
222222222220
222222222221
222222222222
222222222223
222222222224
222222222225
222222222226
222222222227
222222222228
222222222229
2222222222210
2222222222211
2222222222212
2222222222213
2222222222214
2222222222215
2222222222216
2222222222217
2222222222218
2222222222219
2222222222220
2222222222221
2222222222222
2222222222223
2222222222224
2222222222225
2222222222226
2222222222227
2222222222228
2222222222229
22222222222210
22222222222211
22222222222212
22222222222213
22222222222214
22222222222215
22222222222216
22222222222217
22222222222218
22222222222219
22222222222220
22222222222221
22222222222222
22222222222223
22222222222224
22222222222225
22222222222226
22222222222227
22222222222228
22222222222229
222222222222210
222222222222211
222222222222212
222222222222213
222222222222214
222222222222215
222222222222216
222222222222217
222222222222218
222222222222219
222222222222220
222222222222221
222222222222222
222222222222223
222222222222224
222222222222225
222222222222226
222222222222227
222222222222228
222222222222229
2222222222222210
2222222222222211
2222222222222212
2222222222222213
2222222222222214
2222222222222215
2222222222222216
2222222222222217
2222222222222218
2222222222222219
2222222222222220
2222222222222221
2222222222222222
2222222222222223
2222222222222224
2222222222222225
2222222222222226
2222222222222227
2222222222222228
2222222222222229
22222222222222210
22222222222222211
22222222222222212
22222222222222213
22222222222222214
22222222222222215
22222222222222216
22222222222222217
22222222222222218
22222222222222219
22222222222222220
22222222222222221
22222222222222222
22222222222222223
22222222222222224
22222222222222225
22222222222222226
22222222222222227
22222222222222228
22222222222222229
222222222222222210
222222222222222211
222222222222222212
222222222222222213
222222222222222214
222222222222222215
222222222222222216
222222222222222217
222222222222222218
222222222222222219
222222222222222220
222222222222222221
222222222222222222
222222222222222223
222222222222222224
222222222222222225
222222222222222226
222222222222222227
222222222222222228
222222222222222229
2222222222222222210
2222222222222222211
2222222222222222212
2222222222222222213
2222222222222222214
2222222222222222215
2222222222222222216
2222222222222222217
2222222222222222218
2222222222222222219
2222222222222222220
22222222

1188 Table 14: Imputation accuracy for latent predicates X_3, X_4, X_5 under different softmin temperatures
 1189 (with fixed $\beta = 10$ over 20 random seeds).

1190

τ in Equation 4	Imputation Acc. X3	Imputation Acc. X4	Imputation Acc. X5
0.01	1.000 \pm 0.000	1.000 \pm 0.000	0.965 \pm 0.063
0.02	1.000 \pm 0.000	1.000 \pm 0.000	0.987 \pm 0.034
0.05	1.000 \pm 0.000	1.000 \pm 0.000	0.939 \pm 0.061
0.10	1.000 \pm 0.000	1.000 \pm 0.000	0.958 \pm 0.076
0.20	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000
0.50	1.000 \pm 0.000	1.000 \pm 0.000	0.858 \pm 0.038
1.00	0.928 \pm 0.122	0.892 \pm 0.134	0.776 \pm 0.027
2.00	0.751 \pm 0.002	0.839 \pm 0.157	0.786 \pm 0.008
5.00	0.769 \pm 0.111	0.750 \pm 0.003	0.772 \pm 0.083
10.00	0.752 \pm 0.003	0.770 \pm 0.111	0.802 \pm 0.064
20.00	0.697 \pm 0.098	0.733 \pm 0.046	0.799 \pm 0.064
50.00	0.733 \pm 0.049	0.733 \pm 0.046	0.798 \pm 0.077
100.00	0.750 \pm 0.004	0.698 \pm 0.064	0.803 \pm 0.069

1205 Table 15: Imputation accuracy for latent predicates X_3, X_4, X_5 under different constant temperature
 1206 values β (with fixed $\tau = 0.1$ over 20 random seeds).

1207

β of Equation 5	Imputation Acc. X3	Imputation Acc. X4	Imputation Acc. X5
0.1	1.000 \pm 0.000	1.000 \pm 0.000	0.218 \pm 0.002
0.2	1.000 \pm 0.000	1.000 \pm 0.000	0.218 \pm 0.002
0.5	1.000 \pm 0.000	1.000 \pm 0.000	0.218 \pm 0.002
1	1.000 \pm 0.000	1.000 \pm 0.000	0.217 \pm 0.002
2	1.000 \pm 0.000	1.000 \pm 0.000	0.870 \pm 0.117
3	1.000 \pm 0.000	1.000 \pm 0.000	0.942 \pm 0.056
4	1.000 \pm 0.000	1.000 \pm 0.000	0.866 \pm 0.057
5	0.965 \pm 0.093	1.000 \pm 0.000	0.894 \pm 0.056
10	0.965 \pm 0.093	1.000 \pm 0.000	0.915 \pm 0.040
15	0.965 \pm 0.092	1.000 \pm 0.000	0.899 \pm 0.072
20	0.966 \pm 0.091	1.000 \pm 0.000	0.928 \pm 0.057
25	0.965 \pm 0.092	1.000 \pm 0.000	0.886 \pm 0.060
30	1.000 \pm 0.000	1.000 \pm 0.000	0.899 \pm 0.088
35	0.965 \pm 0.093	1.000 \pm 0.000	0.880 \pm 0.076
40	1.000 \pm 0.000	1.000 \pm 0.000	0.889 \pm 0.075
45	0.964 \pm 0.094	0.965 \pm 0.093	0.909 \pm 0.051
50	1.000 \pm 0.000	1.000 \pm 0.000	0.917 \pm 0.064
100	0.965 \pm 0.094	1.000 \pm 0.000	0.916 \pm 0.064
200	1.000 \pm 0.000	1.000 \pm 0.000	0.908 \pm 0.070

1227

1228 **Conclusion.** Our framework does not rely on carefully hyperparameter tuning. A moderate
 1229 to large β for Soft-OR and a small τ for Soft-AND consistently yield optimal results. Thus, we
 1230 use $\tau = 0.1$ and $\beta = 10$ as temperature parameters for all our experiments. Furthermore, complex
 1231 scheduling strategies like cosine annealing can be employed if constant temperature are not good
 1232 enough.

1233

I SENSITIVITY ANALYSIS WITH LABEL NOISE AND MISSING RATIO

1234

I.1 ROBUSTNESS ANALYSIS WITH LABEL NOISE

1235

To assess the robustness of our framework against data inconsistencies and imperfect logical dependencies, we conducted experiments by injecting label noise into the latent predicates.

1236

1237 Specifically, we first generate the ground-truth latent predicates X_3, X_4, X_5 following the perfect
 1238 logical rules (e.g., $X_3 = X_0 \wedge X_1$). Then, we introduce stochasticity by flipping the binary labels
 1239 of these latent predicates with a probability $p_{noise} \in \{0.0, 0.1, 0.2, 0.3, 0.4, 0.5\}$. This setup simu-
 1240 lates real-world scenarios where logical rules may have exceptions or where the observed data
 1241 contains errors, directly challenging the model’s ability to distill consistent symbolic rules from

1242
 1243 **noisy supervision.** Tables 16 and 17 present the learned rule structures and their corresponding im-
 1244 putation accuracies under varying noise ratios. We use Figure 3 (b) as the representative example
 1245 with an observation ratio of 0.3 and sample sizes of 20,000.

1246 In the noise-free setting ($p_{noise} = 0.0$), our model perfectly recovers the ground-truth rules for
 1247 the simpler conjunctive predicates X_3 and X_4 (with rule accuracy 1.00), achieving perfect imputa-
 1248 tion accuracy (1.000). For the more complex disjunctive rule X_5 , the model achieves a rule accu-
 1249 racy of 0.50 and an imputation accuracy of 0.955 after fine-tuning, indicating that while the exact
 1250 ground-truth structure is harder to isolate, the learned approximations maintain strong predictive
 1251 performance.

1252 Remarkably, the model demonstrates strong robustness at low-to-moderate noise levels ($p_{noise} \leq$
 1253 0.3). At $p_{noise} = 0.1$ and 0.2, the ground-truth rules (underlined in the table) for X_3 and X_4 are
 1254 perfectly recovered (rule accuracy 1.00) with near-perfect imputation accuracies; for the complex
 1255 multi-hop rules of X_5 , the ground-truth rules frequently emerge as the dominant learned structures
 1256 (with rule accuracy above 0.5). Even at $p_{noise} = 0.3$, the model maintains high rule accuracy (0.85)
 1257 for both X_3 and X_4 , with imputation accuracies above 0.95; for X_5 , the rule accuracy decreases to
 1258 0.2 at $p_{noise} = 0.3$, but the imputation accuracy remains at 0.828, suggesting that **the model learns**
 1259 **valid approximations (e.g., capturing one correct disjunctive branch) that preserve predictive**
 1260 **power.**

1261 As noise increases beyond 0.3, the performance degrades more significantly. At $p_{noise} = 0.4$, rule
 1262 accuracies drop to 0.85 and 0.6 for X_3 and X_4 respectively, while X_5 fails to recover the correct
 1263 structure (rule accuracy 0.00). At $p_{noise} = 0.5$, the model struggles to learn meaningful rules, with
 1264 rule accuracies in [0.0, 0.1] for all predicates. However, the imputation accuracies remain above
 1265 0.70 even at these high noise levels, indicating that the learned approximations, while not perfectly
 1266 matching the ground-truth rules, still provide useful predictive signals.

1267 The imputation accuracy degrades gracefully as noise increases, rather than collapsing abruptly,
 1268 indicating that **the soft-logic relaxation effectively prevents the model from overfitting to noise**,
 1269 allowing it to capture the dominant logical signals within the data. The fine-tuning step for X_5
 1270 consistently improves imputation accuracy across all noise levels, demonstrating the effectiveness
 1271 of the iterative refinement process.

1272 Table 16: Impact of label noise on rule learning and missing value imputation performance. Results
 1273 are over 20 random seeds.

1274 Noise Ratio	1275 Avg. Imputation Accu. (Before Fine-tune)	1276 Avg. Imputation Accu. (After Fine-tune)	1277 Train Loss (Before Fine-tune)	1278 Train Loss (After Fine-tune)
0.0	$X_3 : 1.000 \pm 0.000$	/	$X_3 : 0.001 \pm 0.000$	/
	$X_4 : 1.000 \pm 0.000$	/	$X_4 : 0.001 \pm 0.000$	/
	$X_5 : 0.907 \pm 0.050$	$X_5 : 0.955 \pm 0.049$	$X_5 : 0.089 \pm 0.035$	$X_5 : 0.067 \pm 0.031$
0.1	$X_3 : 1.000 \pm 0.000$	/	$X_3 : 0.098 \pm 0.003$	/
	$X_4 : 1.000 \pm 0.000$	/	$X_4 : 0.099 \pm 0.004$	/
	$X_5 : 0.948 \pm 0.042$	$X_5 : 0.946 \pm 0.038$	$X_5 : 0.168 \pm 0.026$	$X_5 : 0.123 \pm 0.021$
0.2	$X_3 : 0.975 \pm 0.076$	/	$X_3 : 0.193 \pm 0.005$	/
	$X_4 : 0.987 \pm 0.057$	/	$X_4 : 0.193 \pm 0.007$	/
	$X_5 : 0.894 \pm 0.050$	$X_5 : 0.902 \pm 0.046$	$X_5 : 0.260 \pm 0.008$	$X_5 : 0.204 \pm 0.012$
0.3	$X_3 : 0.950 \pm 0.103$	/	$X_3 : 0.282 \pm 0.006$	/
	$X_4 : 0.987 \pm 0.056$	/	$X_4 : 0.282 \pm 0.008$	/
	$X_5 : 0.822 \pm 0.046$	$X_5 : 0.824 \pm 0.066$	$X_5 : 0.320 \pm 0.006$	$X_5 : 0.266 \pm 0.006$
0.4	$X_3 : 0.863 \pm 0.127$	/	$X_3 : 0.360 \pm 0.009$	/
	$X_4 : 0.862 \pm 0.128$	/	$X_4 : 0.357 \pm 0.008$	/
	$X_5 : 0.792 \pm 0.078$	$X_5 : 0.786 \pm 0.065$	$X_5 : 0.370 \pm 0.006$	$X_5 : 0.311 \pm 0.006$
0.5	$X_3 : 0.745 \pm 0.085$	/	$X_3 : 0.418 \pm 0.007$	/
	$X_4 : 0.725 \pm 0.077$	/	$X_4 : 0.421 \pm 0.007$	/
	$X_5 : 0.761 \pm 0.057$	$X_5 : 0.767 \pm 0.072$	$X_5 : 0.421 \pm 0.007$	$X_5 : 0.349 \pm 0.007$

1291

1292

1293

1294

I.2 MISSING RATIO

1295

In three synthetic datasets, we have varied the missing ratio in {0.7, 0.8, 0.9} in the above results.

1296 Table 17: Learned rule structures under label noise. Ground truth rules are indicated with underlines.
1297 Results are over 20 random seeds.
1298

1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	Rule Accu.
	0.0	$X_3 : \underline{X_0 \wedge X_1}$ $X_4 : \underline{X_2 \wedge X_7}$ $X_5 : (\underline{X_0 \wedge X_4}) \vee (X_3 \wedge X_6), (X_3 \wedge X_4) \vee (X_3 \wedge X_6), (X_0 \wedge X_4) \vee (X_0 \wedge X_4), (X_0 \wedge X_4) \vee (X_1 \wedge X_6), (X_1 \wedge X_3) \vee (X_3 \wedge X_6)$											$X_3 : 1.00$ $X_4 : 1.00$ $X_5 : 0.50$
	0.1	$X_3 : \underline{X_0 \wedge X_1}$ $X_4 : \underline{X_2 \wedge X_7}$ $X_5 : (\underline{X_0 \wedge X_4}) \vee (X_3 \wedge X_6), (X_3 \wedge X_4) \vee (X_3 \wedge X_6), (X_0 \wedge X_4) \vee (X_0 \wedge X_4), (X_0 \wedge X_4) \vee (X_1 \wedge X_6), (X_1 \wedge X_3) \vee (X_3 \wedge X_6)$											$X_3 : 1.00$ $X_4 : 1.00$ $X_5 : 0.55$
	0.2	$X_3 : \underline{X_0 \wedge X_1}$ $X_4 : \underline{X_2 \wedge X_7}$ $X_5 : (\underline{X_0 \wedge X_4}) \vee (X_3 \wedge X_6), (X_3 \wedge X_4) \vee (X_3 \wedge X_6), (X_0 \wedge X_4) \vee (X_0 \wedge X_4), (X_0 \wedge X_4) \vee (X_2 \wedge X_3), (X_0 \wedge X_2) \vee (X_3 \wedge X_6)$											$X_3 : 1.00$ $X_4 : 1.00$ $X_5 : 0.60$
	0.3	$X_3 : X_0 \wedge X_1, X_1 \wedge X_2, X_1 \wedge X_1, X_1 \wedge X_7$ $X_4 : \underline{X_2 \wedge X_7}, X_2 \wedge X_6, X_2 \wedge X_2$ $X_5 : (\underline{X_0 \wedge X_4}) \vee (X_3 \wedge X_6), (X_0 \wedge X_7) \vee (X_3 \wedge X_6), (X_0 \wedge X_3) \vee (X_0 \wedge X_1), (X_3 \wedge X_6) \vee (X_1 \wedge X_7), (X_0 \wedge X_1) \vee (X_0 \wedge X_6)$											$X_3 : 0.85$ $X_4 : 0.85$ $X_5 : 0.20$
	0.4	$X_3 : X_0 \wedge X_1, X_1 \wedge X_1, X_1 \wedge X_2, X_0 \wedge X_6, X_0 \wedge X_0$ $X_4 : \underline{X_2 \wedge X_7}, X_7 \wedge X_7, X_0 \wedge X_2, X_0 \wedge X_0, X_2 \wedge X_6$ $X_5 : (\underline{X_0 \wedge X_2}) \vee (X_4 \wedge X_6), (X_0 \wedge X_6) \vee (X_3 \wedge X_3), (X_0 \wedge X_2) \vee (X_2 \wedge X_3), (X_0 \wedge X_6) \vee (X_1 \wedge X_7), (X_1 \wedge X_4) \vee (X_4 \wedge X_4)$											$X_3 : 0.60$ $X_4 : 0.60$ $X_5 : 0.00$
	0.5	$X_3 : X_1 \wedge X_7, X_2 \wedge X_2, X_6 \wedge X_6, X_0 \wedge X_2, X_0 \wedge X_1$ $X_4 : X_6 \wedge X_6, X_0 \wedge X_6, X_0 \wedge X_7, X_6 \wedge X_7, X_1 \wedge X_2$ $X_5 : (X_0 \wedge X_3) \vee (X_1 \wedge X_6), (X_0 \wedge X_2) \vee (X_2 \wedge X_7), (X_0 \wedge X_0) \vee (X_2 \wedge X_7), (X_0 \wedge X_3) \vee (X_4 \wedge X_7), (X_2 \wedge X_7) \vee (X_0 \wedge X_7)$											$X_3 : 0.10$ $X_4 : 0.05$ $X_5 : 0.00$

1312 In real-world datasets, to assess the model’s robustness under different levels of data scarcity, we
1313 evaluated its performance on the SPECT and Heart Disease dataset while varying the observation
1314 ratio from 0.3 to 0.9 (i.e. missing ratio from 0.1 to 0.7).

1315 As shown in Tables 18 and 19, the model’s accuracy remains acceptable and improves consistently
1316 as more data becomes available. Notably, in SPECT, even with only 30% of the data observed (a
1317 70% missing ratio), the model maintains a high F1 score of 0.751, demonstrating its capability to
1318 learn meaningful diagnostic rules from highly incomplete datasets.

1319 For the Birds Dataset, we fix the observation ratio as 0.1 (i.e. 90% missingness) and show results
1320 over different number of training samples. Results in Table 20 show that a few hundred samples are
1321 sufficient for the model to converge to the correct logical truth.

1322 Table 18: Performance on the SPECT dataset with varying observation ratios.
1323

1324	1325	Observation Ratio	1326	1327	1328	1329	Imputation Acc.	1326	1327	1328	1329	Diagnosis Acc.	1326	1327	1328	1329	Diagnosis F1
		0.3					0.501					0.679				0.751	
		0.5					0.630					0.765				0.808	
		0.7					0.763					0.920				0.958	
		0.9					0.791					0.929				0.960	

1331 Table 19: Imputation accuracy for Heart Disease under different observation ratios.
1332

1333	1334	Observation Ratio	1335	1336	1337	1338	Overall	1335	1336	1337	1338	trestbps	1335	1336	1337	1338	thalach	1335	1336	1337	1338	oldpeak
		0.3					0.6444					0.7129					0.6304				0.7393	0.4950
		0.5					0.7434					0.8053					0.7558				0.7954	0.6172
		0.7					0.8432					0.8647					0.8482				0.9043	0.7558
		0.9					0.9439					0.9439					0.9307				0.9769	0.9241

1339 J ADDITIONAL SYNTHETIC EXPERIMENTS RESULTS

1340 J.1 MAIN RESULTS SUPPLEMENT OF EXAMPLE (B) OF FIGURE 3.

1341 **Dataset Generation.** The base variables $\{X_0, X_1, X_2, X_6, X_7\}$ are independently generated from a
1342 Bernoulli distribution, each with $p = 0.5$. Subsequently, the values for $\{X_3, X_4, X_5\}$ are determin-
1343 istically derived using the ground truth logical rules depicted in Figure 3. Specifically, these rules
1344 are:

$$1345 \begin{aligned} X_3 &\leftarrow X_0 \wedge X_1 \\ 1346 X_4 &\leftarrow X_2 \wedge X_7 \\ 1347 X_5 &\leftarrow (X_3 \wedge X_6) \vee (X_4 \wedge X_0) \end{aligned}$$

1350
1351 Table 20: Impact of training sample size on the imputation accuracy of latent predicates
1352 (`abnormal`, `fly`) in the Birds domain. Results are reported as mean \pm std over 10 random seeds,
1353 evaluated with 10% observation probability.

# Samples	Acc. Abnormal Bird	Acc. Can Fly
100	0.896 ± 0.058	0.845 ± 0.148
500	0.976 ± 0.054	0.928 ± 0.066
1000	0.951 ± 0.067	0.928 ± 0.066
1500	0.949 ± 0.070	0.952 ± 0.066
2000	0.951 ± 0.067	0.928 ± 0.066

1361 Finally, to introduce missing information, a portion of the values for X_3 , X_4 , and X_5 are randomly
1362 masked. These masked variables become the targets for imputation. In our experiments, we vary the
1363 level of missingness, applying masking probabilities of 70%, 80%, and 90% to these target variables
1364 (corresponding to observation ratios of 30%, 20%, and 10%, respectively).

1365 **Main Results.** As demonstrated in a previous case study (Table 3, which shows three runs using
1366 the same seed but different internal rule optimization orders), variations in the rule optimization
1367 sequence within a single seed can affect training efficiency. We thus show the coordinate descent
1368 training progress under a different random optimization order from Figure 4 here in Figure 9. In this
1369 run, the optimization order is $[X_5, X_4, X_3]$ for cycle 1 and $[X_4, X_5, X_3]$ for cycle 2. Given such
1370 different learning trajectories, our model still discovers the correct rules successfully.

1371 Furthermore, random initialization across different seeds can lead to the discovery of varied rule
1372 sets, and occasionally, the model might converge to a local optimum. However, as the analysis of
1373 convergence before, performing multiple runs with different initializations enhances the probability
1374 of identifying the global optimal solution. Our findings indicate that the model can finds global
1375 optima several times within 20 random seeds (Tables 23 and 24).

1376 **Learning Efficiency.** As the observation ratio decreases, the guidance signal becomes less infor-
1377 mative, reducing both rule structure recovery and missing value imputation. We also evaluated the
1378 model’s performance with a smaller training set of 10,000 samples. The results, detailed in Tables
1379 21 and 22, demonstrate that our model maintains high accuracy for simple AND rule learning and
1380 predicate inference. Even for challenging OR rule learning, the model successfully identifies most
1381 body predicates. We further investigated the impact of dataset sample size, varying it from 1,000
1382 to 20,000 samples. As shown in Figure 8, the most efficient setting we can recover the OR rule for
1383 X_5 is to use an observation ratio of 0.1 and a dataset of 4,000 samples. For the simpler AND rules
1384 governing X_3 and X_4 , correct rule structures could be learned with 1,000 or even smaller samples
1385 and a 0.1 observation ratio.

1386 Table 21: Summary of synthetic data experiment results for example (b) of the Figure 3. Each
1387 observation ratio is evaluated using 10,000 samples and results are averaged over 20 random seeds.
1388

Obs. Ratio	Avg. Imputation Accu. (Before Fine-tune)	Avg. Imputation Accu. (After Fine-tune)	Train Loss (Before Fine-tune)	Train Loss (After Fine-tune)
0.3	$X_3 : 0.91 \pm 0.014$	/	$X_3 : 0.069 \pm 0.007$	/
	$X_4 : 0.93 \pm 0.013$	/	$X_4 : 0.054 \pm 0.006$	/
	$X_5 : 0.87 \pm 0.003$	$X_5 : 0.88 \pm 0.002$	$X_5 : 0.110 \pm 0.002$	$X_5 : 0.103 \pm 0.000$
0.2	$X_3 : 0.91 \pm 0.014$	/	$X_3 : 0.067 \pm 0.007$	/
	$X_4 : 0.90 \pm 0.015$	/	$X_4 : 0.072 \pm 0.007$	/
	$X_5 : 0.86 \pm 0.003$	$X_5 : 0.87 \pm 0.003$	$X_5 : 0.116 \pm 0.002$	$X_5 : 0.105 \pm 0.001$
0.1	$X_3 : 0.90 \pm 0.015$	/	$X_3 : 0.075 \pm 0.007$	/
	$X_4 : 0.91 \pm 0.014$	/	$X_4 : 0.063 \pm 0.006$	/
	$X_5 : 0.85 \pm 0.003$	$X_5 : 0.88 \pm 0.002$	$X_5 : 0.124 \pm 0.002$	$X_5 : 0.107 \pm 0.001$

Table 22: Summary of learned rule structures and accuracy for example (b) of Figure 3. Each observation ratio is evaluated using 10,000 samples, with results averaged over 20 random seeds. We present the top 3 learned rule structures in order of discovery accuracy. Rule accuracy indicates the percentage of 20 runs in which a rule was learned completely correctly.

Obs. Ratio	Learned Rule Structure	Rule Accu.
0.3	$X_3 : X_0 \wedge X_1, X_0 \wedge X_6, X_1 \wedge X_7$ $X_4 : X_2 \wedge X_7, X_6 \wedge X_7, X_7$ $X_5 : (X_0 \wedge X_4) \vee (X_3 \wedge X_6), (X_3 \wedge X_4) \vee (X_3 \wedge X_6), (X_0 \wedge X_1) \vee (X_0 \wedge X_4)$	$X_3 : 0.65$ $X_4 : 0.70$ $X_5 : 0.10$
0.2	$X_3 : X_0 \wedge X_1, X_0, X_0 \wedge X_2$ $X_4 : X_2 \wedge X_7, X_2, X_6 \wedge X_7$ $X_5 : (X_0 \wedge X_4) \vee (X_3 \wedge X_6), (X_3 \wedge X_4) \vee (X_3 \wedge X_6), (X_0) \vee (X_1 \wedge X_6)$	$X_3 : 0.65$ $X_4 : 0.60$ $X_5 : 0.10$
0.1	$X_3 : X_0 \wedge X_1, X_0 \wedge X_2, X_0 \wedge X_6$ $X_4 : X_2 \wedge X_7, X_2, X_6 \wedge X_7$ $X_5 : (X_3 \wedge X_4) \vee (X_3 \wedge X_6), (X_0 \wedge X_1) \vee (X_0 \wedge X_4), (X_0 \wedge X_4) \vee (X_3 \wedge X_6)$	$X_3 : 0.60$ $X_4 : 0.65$ $X_5 : 0.10$

Figure 8: Imputation accuracy versus dataset sample size for Figure 3 (b). For these experiments, 10% of the data was observed (i.e., a 90% missing ratio) for predicates in X_3 , X_4 , and X_5 .

J.2 RESULTS OF EXAMPLE (A) OF FIGURE 3

Dataset Generation. The base variables $\{X_0, X_1, X_2, X_6\}$ are independently generated from a Bernoulli distribution, each with $p = 0.5$. Subsequently, the values for $\{X_3, X_4, X_5\}$ are deterministically derived using the ground truth logical rules depicted in Figure 3. Specifically, these rules are:

$$\begin{aligned} X_3 &\leftarrow X_0 \wedge X_1 \\ X_4 &\leftarrow X_2 \wedge X_3 \\ X_5 &\leftarrow X_4 \wedge X_6 \end{aligned}$$

Finally, to introduce missing information, a portion of the values for X_3 , X_4 , and X_5 are randomly masked. These masked variables become the targets for imputation. In our experiments, we vary the

Table 23: Summary of synthetic data experiment results for example (b) of the Figure 3. Evaluated on 50,000 samples and results are averaged over 20 random seeds.

Obs. Ratio	Avg. Imputation Accu. (Before Fine-tune)	Avg. Imputation Accu. (After Fine-tune)	Train Loss (Before Fine-tune)	Train Loss (After Fine-tune)
0.3	$X_3 : 0.98 \pm 0.006$ $X_4 : 1.00 \pm 0.000$ $X_5 : 0.94 \pm 0.003$	$X_5 : 0.96 \pm 0.003$	$X_3 : 0.024 \pm 0.003$ $X_4 : 0.005 \pm 0.000$ $X_5 : 0.054 \pm 0.002$	$X_5 : 0.065 \pm 0.001$
0.2	$X_3 : 1.00 \pm 0.000$ $X_4 : 0.95 \pm 0.010$ $X_5 : 0.93 \pm 0.003$	$X_5 : 0.96 \pm 0.002$	$X_3 : 0.005 \pm 0.000$ $X_4 : 0.041 \pm 0.005$ $X_5 : 0.063 \pm 0.003$	$X_5 : 0.067 \pm 0.001$
0.1	$X_3 : 1.00 \pm 0.000$ $X_4 : 1.00 \pm 0.000$ $X_5 : 0.93 \pm 0.003$	$X_5 : 0.94 \pm 0.002$	$X_3 : 0.005 \pm 0.000$ $X_4 : 0.005 \pm 0.000$ $X_5 : 0.056 \pm 0.002$	$X_5 : 0.073 \pm 0.001$

Figure 9: Training dynamics for a representative run (Obs. Ratio = 0.3) of Figure 3 (b). The optimization order: $[X_5, X_4, X_3]$ for Cycle 1; $[X_4, X_5, X_3]$ for Cycle 2. Subplots display: (a) training losses, (b) unobserved imputation accuracies, and (c) gradient norms for rule embeddings; (d) overall imputation accuracies each cycle. Red dashed lines indicate the conclusion of training blocks for X_3 or X_4 (each allocated 30 epochs when active within a cycle). Purple dashed lines delineate training phases for X_5 (Rule 1, Rule 2, and Fine-tune); the epoch count for these X_5 phases can vary per cycle due to the dynamic nature of the hard covering mechanism. Correct rule structures were learned for X_3 by the end of Cycle 1, and for X_4 and X_5 by the end of Cycle 2.

Table 24: Summary of learned rule structures and accuracy for example (b) of Figure 3. Each observation ratio was evaluated using 50,000 samples, with results averaged over 20 random seeds. We present the top 3 learned rule structures in order of discovery accuracy. Rule accuracy indicates the percentage of 20 runs in which a rule was learned completely correctly.

Obs. Ratio	Learned Rule Structure	Rule Accu.
0.3	$X_3 : X_0 \wedge X_1, X_0 \wedge X_2$ $X_4 : X_2 \wedge X_7$ $X_5 : (X_0 \wedge X_4) \vee (X_3 \wedge X_6), (X_3 \wedge X_4) \vee (X_3 \wedge X_6), (X_0 \wedge X_4) \vee (X_1 \wedge X_3)$	$X_3 : 0.90$ $X_4 : 1.00$ $X_5 : 0.50$
0.2	$X_3 : X_0 \wedge X_1$ $X_4 : X_2 \wedge X_7, X_0 \wedge X_7, X_2$ $X_5 : (X_0 \wedge X_4) \vee (X_3 \wedge X_6), (X_3 \wedge X_4) \vee (X_3 \wedge X_6), (X_0 \wedge X_1) \vee (X_0 \wedge X_4)$	$X_3 : 1.00$ $X_4 : 0.80$ $X_5 : 0.40$
0.1	$X_3 : X_0 \wedge X_1$ $X_4 : X_2 \wedge X_7$ $X_5 : (X_0 \wedge X_4) \vee (X_3 \wedge X_6), (X_3 \wedge X_4) \vee (X_3 \wedge X_6), (X_0 \wedge X_1) \vee (X_0 \wedge X_4)$	$X_3 : 1.00$ $X_4 : 1.00$ $X_5 : 0.30$

level of missingness, applying masking probabilities of 70%, 80%, and 90% to these target variables (corresponding to observation ratios of 30%, 20%, and 10%, respectively).

Main Results. We show the coordinate descent training progress under different random optimization order. Figure 10 demonstrates the convergence in two cycles, while Figure 11 requires three cycles to complete training.

We summarize the results for example (a) of the Figure 3 in Tables 25 and 26, which demonstrate both the effectiveness of our rule discovery approach and the precision of missing variables imputation. Our analysis reveals that learning the multi-step chain structure presents significant challenges, primarily because the algorithm uses inferred predicate values v^t from previous steps to update the current values by Eq. 3. This creates a dependency chain where suboptimal rule embeddings learned at earlier optimization steps can propagate errors to subsequent steps, potentially degrading overall performance. Despite these challenges, our model successfully identifies the correct rules in the majority of experimental runs. This robustness indicates that with multiple random initializations, the

Figure 10: Training dynamics for a representative run (Observation Ratio = 0.2) of Figure 3 (a). Subplots display: (a) training losses, (b) unobserved imputation accuracies, and (c) gradient norms for rule embeddings; (d) overall imputation accuracies each cycle. Purple dashed lines indicate the conclusion of training blocks for one cycle (each allocated 30 epochs). The rule embedding optimization order: [X_5, X_3, X_4] for Cycle 1; [X_5, X_4, X_3] for Cycle 2. Correct rule structures were learned for X_3 and X_4 by the end of Cycle 1, for X_5 by the end of Cycle 2. The learned rules: $X_3 \leftarrow X_0 \wedge X_1, X_4 \leftarrow X_2 \wedge X_3, X_5 \leftarrow X_4 \wedge X_6$.

algorithm reliably converges to the optimal rule structures like the results from Figures 10 and 11, which effectively overcome the inherent difficulties of sequential dependency learning in chain-like logical structures.

Table 25: Summary of synthetic data experiment results for example (a) of the Figure 3. Each observation ratio is evaluated using 50,000 samples and results are averaged over 20 random seeds. No fine-tune phase since we assume no disjunctive rules.

Obs. Ratio	Avg. Imputation Accu.	Train Loss
0.3	$X_3 : 0.86 \pm 0.13$	$X_3 : 0.09 \pm 0.08$
	$X_4 : 0.91 \pm 0.06$	$X_4 : 0.07 \pm 0.04$
	$X_5 : 0.95 \pm 0.03$	$X_5 : 0.04 \pm 0.02$
0.2	$X_3 : 0.85 \pm 0.13$	$X_3 : 0.10 \pm 0.08$
	$X_4 : 0.90 \pm 0.05$	$X_4 : 0.08 \pm 0.04$
	$X_5 : 0.94 \pm 0.02$	$X_5 : 0.04 \pm 0.02$
0.1	$X_3 : 0.82 \pm 0.12$	$X_3 : 0.10 \pm 0.07$
	$X_4 : 0.90 \pm 0.05$	$X_4 : 0.08 \pm 0.04$
	$X_5 : 0.94 \pm 0.02$	$X_5 : 0.05 \pm 0.02$

J.3 RESULTS OF EXAMPLE (C) OF FIGURE 3

Dataset Generation. The base variables $\{X_0, X_1, X_2, X_6, X_7\}$ are independently generated from a Bernoulli distribution, each with $p = 0.5$. Subsequently, the values for $\{X_3, X_4, X_5, X_8\}$ are deterministically derived using the ground truth logical rules depicted in Figure 3. Specifically,

Figure 11: Training dynamics for a representative run (Observation Ratio = 0.2) of Figure 3 (a). Subplots display: (a) training losses, (b) unobserved imputation accuracies, and (c) gradient norms for rule embeddings; (d) overall imputation accuracies each cycle. Purple dashed lines indicate the conclusion of training blocks for one cycle (each allocated 30 epochs). The rule embedding optimization order: $[X_5, X_4, X_3]$ for Cycle 1,2; $[X_3, X_5, X_4]$ for Cycle 3. Correct rule structures were learned for X_3 by the end of Cycle 1, for X_4 by the end of Cycle 2, and for X_5 by the end of Cycle 3. The learned rules: $X_3 \leftarrow X_0 \wedge X_1$, $X_4 \leftarrow X_2 \wedge X_3$, $X_5 \leftarrow X_4 \wedge X_6$.

Table 26: Summary of learned rule structures and accuracy for example (a) of Figure 3. Each observation ratio is evaluated using 50,000 samples, with results averaged over 20 random seeds. We present the top 3 learned rule structures in order of discovery accuracy. The rules that are truth rules are indicated by underline. Rule accuracy indicates the percentage of 20 runs in which a rule was learned completely correctly.

Obs. Ratio	Learned Rule Structure	Rule Accuracy
0.3	$X_3 : X_0 \wedge X_1, X_0 \wedge X_4, X_5$ $X_4 : X_2 \wedge X_3, \underline{X_3} \wedge X_5, X_0 \wedge X_5$ $X_5 : \underline{X_4} \wedge X_6, X_3 \wedge X_4, X_1 \wedge X_4$	$X_3 : 0.60$ $X_4 : 0.40$ $X_5 : 0.40$
0.2	$X_3 : X_0 \wedge X_1, X_5, X_0 \wedge X_5$ $X_4 : X_2 \wedge X_3, X_5 \wedge X_3, X_5$ $X_5 : \underline{X_4} \wedge X_6, X_4, X_3 \wedge X_4$	$X_3 : 0.40$ $X_4 : 0.30$ $X_5 : 0.20$
0.1	$X_3 : X_0 \wedge X_1, X_0 \wedge X_4, X_0 \wedge X_5$ $X_4 : X_2 \wedge X_3, X_5, X_2 \wedge X_5$ $X_5 : \underline{X_4} \wedge X_6, X_4 \wedge X_2, X_3 \wedge X_6$	$X_3 : 0.40$ $X_4 : 0.40$ $X_5 : 0.10$

these rules are:

$$\begin{aligned}
 X_3 &\leftarrow X_0 \wedge X_1 \\
 X_4 &\leftarrow X_2 \wedge X_7 \\
 X_8 &\leftarrow X_4 \wedge X_0 \\
 X_5 &\leftarrow (X_3 \wedge X_6) \vee (X_8) \vee (X_6 \wedge X_7)
 \end{aligned}$$

Finally, to introduce missing information, a portion of the values for X_3, X_4, X_8 and X_5 are randomly masked. These masked variables become the targets for imputation. In our experiments, we

1620 vary the level of missingness, applying masking probabilities of 70%, 80%, and 90% to these target
 1621 variables (corresponding to observation ratios of 30%, 20%, and 10%, respectively).

1622 **Main Results.** We summarize the results for example (c) of the Figure 3 in the Tables 27 and 28,
 1623 showcasing the effectiveness of rule discovery and the precision of missing variables imputation.
 1624 We have random coordinate descent training order for rule optimization.

1625 This task is more challenging due to the chain-like structure of the disjunctive rules, particularly
 1626 with three clauses for X_5 , resulting in lower learning accuracy than in example (b). Nonetheless, our
 1627 method achieves the highest rule discovery accuracy for the ground-truth rules while maintaining
 1628 acceptable imputation accuracy. For the most difficult prediction task (X_5), we obtain over 80%
 1629 accuracy across all three observation ratios. Other predicate predictions reach $\sim 90\%$ accuracy,
 1630 including the chain-derived predicate X_8 . For the learned rules in Table 28, we can find most body
 1631 predicates are correct even for the complex three-clause rules governing X_5 , which include the
 1632 chain-derived predicate X_8 . We also show the loss plot for one run in Figure 12.

1633 Table 27: Summary of synthetic data experiment results for example (c) of the Figure 3. Each
 1634 observation ratio is evaluated using 50,000 samples and results are averaged over 20 random seeds.
 1635

Obs. Ratio	Avg. Imputation Accu. (Before Fine-tune)	Avg. Imputation Accu. (After Fine-tune)	Train Loss (Before Fine-tune)	Train Loss (After Fine-tune)
0.3	$X_3 : 0.86 \pm 0.12$	/	$X_3 : 0.102 \pm 0.09$	/
	$X_4 : 0.87 \pm 0.13$	/	$X_4 : 0.093 \pm 0.09$	/
	$X_5 : 0.79 \pm 0.09$	$X_5 : 0.84 \pm 0.08$	$X_5 : 0.111 \pm 0.06$	$X_5 : 0.147 \pm 0.08$
	$X_8 : 0.91 \pm 0.06$	/	$X_8 : 0.060 \pm 0.04$	/
0.2	$X_3 : 0.89 \pm 0.12$	/	$X_3 : 0.083 \pm 0.09$	/
	$X_4 : 0.88 \pm 0.12$	/	$X_4 : 0.087 \pm 0.08$	/
	$X_5 : 0.78 \pm 0.08$	$X_5 : 0.82 \pm 0.09$	$X_5 : 0.119 \pm 0.06$	$X_5 : 0.159 \pm 0.08$
	$X_8 : 0.93 \pm 0.06$	/	$X_8 : 0.046 \pm 0.04$	/
0.1	$X_3 : 0.89 \pm 0.12$	/	$X_3 : 0.084 \pm 0.09$	/
	$X_4 : 0.89 \pm 0.12$	/	$X_4 : 0.084 \pm 0.09$	/
	$X_5 : 0.78 \pm 0.10$	$X_5 : 0.80 \pm 0.11$	$X_5 : 0.133 \pm 0.07$	$X_5 : 0.169 \pm 0.10$
	$X_8 : 0.93 \pm 0.06$	/	$X_8 : 0.048 \pm 0.04$	/

1664 Figure 12: An example of loss and imputation accuracy during coordinate optimization (Obs. Ratio
 1665 = 0.1, seed = 88, from example (c) of Figure 3). The training order is $[X_3, X_4, X_8, X_5]$. Epochs 0–19
 1666 correspond to rule learning for X_3 ; epochs 20–39 for X_4 ; epochs 40–59 for X_8 , and epochs 60–end
 1667 for X_5 . Remaining samples identified how many samples are “well-explained” during hard covering
 1668 phase. As the imputation accuracy for missing X_5 is 1.00, we do not go to the fine-tune phase. The
 1669 learned rules: $X_3 \leftarrow X_0 \wedge X_1, X_4 \leftarrow X_2 \wedge X_7, X_5 \leftarrow (X_3 \wedge X_6) \vee X_8 \vee (X_6 \wedge X_7), X_8 \leftarrow X_3 \wedge X_4$.
 1670

1671 J.4 HYPER-PARAMETERS SETTING AND COMPUTING RESOURCE

1672 Our model operates efficiently in a CPU environment utilizing the PyTorch library. The hyperpa-
 1673 rameters are configured as follows:

1674
 1675 Table 28: Summary of learned rule structures and accuracy for example (c) of Figure 3. Each
 1676 observation ratio is evaluated using 50,000 samples, with results averaged over 20 random seeds.
 1677 We present the top 3 learned rule structures in order of discovery accuracy. The rules that are truth
 1678 rules are indicated by underline. Rule accuracy indicates the percentage of 20 runs in which a rule
 1679 was learned completely correctly.

1680	Obs. Ratio	Learned Rule Structure	Rule Accu.
1681	0.3	$X_3 : X_0 \wedge X_1, X_0 \wedge X_2, X_1 \wedge X_2$ $X_4 : \underline{X_2 \wedge X_7}, X_1 \wedge X_2, X_2$ $X_5 : \underline{(X_3 \wedge X_6) \vee X_8 \vee (X_6 \wedge X_7)}, X_4 \vee (X_3 \wedge X_6) \vee (X_6 \wedge X_7),$ $(X_3 \wedge X_4) \vee X_3 \vee (X_3 \wedge X_7)$ $X_8 : \underline{X_4 \wedge X_0}, X_3 \wedge X_7, X_2 \wedge X_0$	$X_3 : 0.45$ $X_4 : 0.5$ $X_5 : 0.15$ $X_8 : 0.3$
1682			
1683			
1684			
1685			
1686	0.2	$X_3 : X_0 \wedge X_1, X_1 \wedge X_2, X_0 \wedge X_2$ $X_4 : \underline{X_2 \wedge X_7}, X_0 \wedge X_2, X_1 \wedge X_2$ $X_5 : \underline{(X_3 \wedge X_6) \vee X_8 \vee (X_6 \wedge X_7)}, (X_2 \wedge X_3) \vee X_4 \vee (X_6 \wedge X_7),$ $X_8 : \underline{X_4 \wedge X_0}, X_3 \wedge X_4, X_3 \wedge X_7$	$X_3 : 0.55$ $X_4 : 0.55$ $X_5 : 0.10$ $X_8 : 0.25$
1687			
1688			
1689			
1690			
1691	0.1	$X_3 : \underline{X_0 \wedge X_1}, X_0, X_0 \wedge X_7$ $X_4 : \underline{X_2 \wedge X_7}, \underline{X_0 \wedge X_2}, X_1 \wedge X_7$ $X_5 : X_4 \vee X_8 \vee (X_6 \wedge X_7), \underline{(X_3 \wedge X_6) \vee X_8 \vee (X_6 \wedge X_7)},$ $X_8 : \underline{X_4 \wedge X_0}, X_2 \wedge X_4, X_3 \wedge X_7$	$X_3 : 0.55$ $X_4 : 0.55$ $X_5 : 0.10$ $X_8 : 0.2$
1692			
1693			
1694			
1695			

1696
 1697 • Rule Embedding and Fine-tuning Optimizer: Adam, learning rate: 0.01.
 1698 • Temperature of softmin and softmax: 0.1 (for Eq. 4) and 10.0 for (Eq. 5).
 1699 • “Well-explained” Threshold: 0.99 (for sequential hard covering in disjunctive rule learning).
 1700 • Batch Size: 64 .

1702 K ADDITIONAL REAL WORLD DATA EXPERIMENTS RESULTS

1703 K.1 SPECT

1721 Figure 13: The five slices consists of 22 regions of interest (ROI) for SPECT Diagnosis. The slices
 1722 are chosen according to the following: Three slices for short axis view-one slice near heart’s apex,
 1723 one in middle of the LV and one near the heart base; One slice corresponds to the center of the LV
 1724 cavity for horizontal long axis view; One slice corresponds to the center of the LV cavity for vertical
 1725 long axis view (Kurgan et al., 2001).

1726 We ask for an expertise from cardiovascular surgery of a hospital to give us domain knowledge, and
 1727 then we try to explain the learned rules. We select several meaningful rules to demonstrate.

The domain knowledge are as follows.

- R1: The anterior wall and the septum of the left ventricle are adjacent and often simultaneously affected by the Left Anterior Descending artery (LAD). If both anterior wall and septum show infarction, it strongly suggests an issue with the LAD. If both apical anterior and mid-anterior show infarction, it indicates a more extensive problem within the LAD territory, affecting both the apical and mid-portions of the anterior wall.
- R2: The apical lateral wall (typically LCX territory) and the apical inferior wall (typically RCA or LCX territory) are adjacent. Infarction in both suggests a problem in this combined region.
- R3: If both apical septal and apical septal show infarction, it indicates a more extensive problem in the LAD territory, involving ischemia in multiple myocardial segments.
- R4: If apical lateral and apical lateral show infarction, it indicates a more extensive ischemic problem in the Left Circumflex artery (LCX) territory.
- R5: The apical anterior (ANT) and apical septal (SEPTAL) regions are primarily supplied by the Left Anterior Descending artery (LAD); the apical lateral (LAT) region is primarily supplied by the Left Circumflex artery (LCX); the apical inferior (INF) region is primarily supplied by the Right Coronary Artery (RCA), but can sometimes be supplied by the LCX, depending on the coronary artery dominance pattern.

Refer to Figure 13, we can give some explanations of rules learned in Table 29 based on the domain knowledge R1 to R5. For example,

- $F_5 \leftarrow F_1 \wedge F_2$: F_1 and F_2 are features from the first slice near the heart’s apex, while F_5 is from the second slice at the middle of the left ventricle (LV). According to clinical knowledge R1 and R5, the anterior and septal regions are primarily supplied by the Left Anterior Descending (LAD) artery. Therefore, this rule is clinically plausible: if partial diagnosis (labeled as 1) is present in both F_1 and F_2 , it strongly suggests an LAD artery problem. Since F_5 is in the mid-anterior region, also supplied by the LAD, it has a high probability of being affected as well.
- $Diagnosis \leftarrow F_5 \wedge F_6$: From R1, we know that the anterior wall and the septum of the left ventricle are adjacent. F_5 and F_6 both from middle of the LV (left ventricular), and they are adjacent. Thus, if both these adjacent mid-ventricular regions (F_5 and F_6) show signs of infarction, it significantly increases the likelihood of an overall positive diagnosis.

Table 29: Example rules learned by NS-FCN for SPECT feature imputation and diagnosis.

Selected Feature Imputation Rules Learned by NS-FCN

$F_5 \leftarrow F_1 \wedge F_2$: partial diagnosis of segment 1 and 2 causes the partial diagnosis of segment 5.
 $F_6 \leftarrow F_{11} \wedge F_{19}$
 $F_{13} \leftarrow F_{22} \wedge F_{12}$

Learned Diagnosis Rule Structure

$Diagnosis \leftarrow (F_5 \wedge F_6) \vee (F_2 \wedge F_{11}) \vee (F_4 \wedge F_{13})$

As detailed in Table 30, the learned rules for diagnosing cardiac abnormalities correspond closely with established domain knowledge from cardiovascular surgery experts. For instance, the model identified that infarcts in adjacent regions like F_1 and F_2 are indicative of an issue in the Left Anterior Descending (LAD) artery territory. Furthermore, the model learned a composite rule for the final diagnosis, logically aggregating signals from multiple infarcted regions across different coronary artery territories (LAD, LCX, RCA). This ability to synthesize information from disparate features into a coherent diagnostic rule highlights the model’s capacity for complex reasoning. The clinical relevance of these rules was further validated by a Large Language Model (LLM), which confirmed their consistency with expert knowledge on ischemia propagation patterns.

Performance with varying missing ratios. To assess the model’s robustness under different levels of data scarcity, we evaluated its performance on the SPECT dataset while varying the observation ratio from 0.3 to 0.9. As shown in Table 18, the model’s accuracy remains strong and improves consistently as more data becomes available. Notably, even with only 30% of the data observed (a 70% missing ratio), the model maintains a high F1 score of 0.751, demonstrating its capability to learn meaningful diagnostic rules from highly incomplete datasets.

1782 Table 30: Analysis of learned rules for the SPECT dataset, evaluated by human experts and LLM.
1783

1784 Rules	1785 Evaluation with Human Expert	1786 LLM Evaluation
1787 $F_6 \leftarrow F_1 \wedge F_2$	1788 Matches R1 & R5: F_1 and F_2 are in LAD territory. Infarction in both suggests LAD issue affecting apical and mid-anterior LV.	1789 Plausible: Both regions are LAD-supplied and adjacent; mid-anterior (F_3) likely also affected if F_1 & F_2 show infarction. Clinically consistent.
1790 $F_0 \leftarrow F_{11} \wedge F_{19}$	1791 Related to R2 & R4: F_{11} and F_{19} are adjacent. Infarction implies LCX or RCA/LCX combined territory issue.	1792 Valid: Matches adjacency and vascular territory logic (LCX-lateral, RCA-inferior). Supports ischemia propagation in midventricular slices.
1793 $F_{13} \leftarrow F_{22} \wedge F_{12}$	1794 Partial link to R3 & R5: Likely involves basal/apical septal (F_{22}) and adjacent basal regions. Indicates LAD or multi-segment ischemia.	1795 Reasonable: Suggests ischemia spread in basal-septal regions (LAD) adjacent to basal/anterior. Fits multi-segment LAD pathology.
1796 $\text{Diagnosis} \leftarrow (F_1 \wedge F_0) \vee (F_2 \wedge F_{11}) \vee (F_6 \wedge F_{13})$	1797 Diagnosis $\leftarrow (F_1 \wedge F_0) \vee (F_2 \wedge F_{11}) \vee (F_6 \wedge F_{13})$ Consistent with R1 & R4. Combines LAD (F_0), LCX/RCA (F_6), and adjacent mixed regions. Multiple adjacent infarct pairs increase diagnosis likelihood.	1798 Strong: Logical aggregation of adjacent infarcted regions across LAD, LCX, RCA territories. Matches expert ischemia propagation patterns.

1803

K.2 HEART DISEASE

1804

K.2.1 ASSESSMENT OF LEARNED RULES

1805 For feature imputation, as shown in Table 31, our model discovers rules with clinically relevant
1806 numerical thresholds by directly modeling continuous data. For instance, it learns to impute resting
1807 blood pressure (`trestbps`) based on conditions like `age > 60` and `chol > 250`. Similarly, it links
1808 high cholesterol to factors like `age > 55` in males or very high blood pressure (`trestbps > 150`). The
1809 learned rule for ST depression (`oldpeak`) combines the slope of the ST segment with a maximum
1810 heart rate threshold (`thalach < 150`), demonstrating the model’s ability to capture complex, non-
1811 linear relationships within the data.

1812 Beyond imputation, NS-FCN learns interpretable rules for the final diagnosis, classifying patients
1813 into low-risk or high-risk categories.

1814 Table 32 presents several of these diagnostic rules. For example, the model learns that a
1815 combination of factors such as an upsloping ST segment (`slope_upsloping`), a fixed thallium defect
1816 (`thal_fixed_defect`), and exercise-induced angina (`exang_yes`) is strongly indicative of high risk. Con-
1817 versely, it identifies that factors like the absence of exercise-induced angina (`exang_no`) and a flat
1818 ST slope (`slope_flat`) in female patients suggest a low risk of coronary artery disease. These diag-
1819 nóstic rules were also evaluated by an LLM and deemed “Excellent” or “Strong,” underscoring their
1820 consistency with clinical practice.

1821

K.3 HYPER-PARAMETERS SETTING AND COMPUTING RESOURCE

1822 For NS-FCN (Ours):

- 1823 • Rule embedding optimizer: Adam with learning rate of 0.01.
- 1824 • Fine-tune optimizer: Adam with learning rate of 0.01.
- 1825 • **Temperature of softmin and softmax: 0.1 (for Eq. 4) and 10.0 for (Eq. 5).**
- 1826 • Our model can run efficiently on a CPU environment with the PyTorch package.

1827 **Baselines:**

- 1828 • **BRCG** (Dash et al., 2018), **LEN** (Barbiero et al., 2022), **DR-NET** (Qiao et al., 2021),
1829 **RRL** (Wang et al., 2021) are trained with the default hyperparameter settings specified in
1830 the original paper.
- 1831 • **MICE** (van Buuren & Groothuis-Oudshoorn, 2011): We use $m = 5$ imputations and
1832 $maxit = 5$ iterations with the default imputation methods in the `mice` R package.

1836 Table 31: Learned rules for feature imputation on the Heart dataset, with LLM assessments.
1837

1838 Feature	1839 Imputation Acc.	1840 Learned Rule	1841 LLM Assessment
1840 trestbps	1841 0.86	1842 $trestbps_high \leftarrow (age > 60) \wedge (chol > 250)$	1843 Excellent: This rule captures the well-established link between age, high cholesterol, and hypertension. Both are primary risk factors for cardiovascular disease and often co-occur.
1844 chol	1845 0.85	1846 $chol_high \leftarrow (sex = 1 \wedge age > 55) \vee (trestbps > 150)$	1847 Excellent: The rule correctly identifies 1848 two key risk profiles for high cholesterol: 1849 middle-aged to elderly males, and individuals 1850 with significant hypertension. This 1851 aligns perfectly with clinical understanding 1852 of metabolic syndrome.
1850 thalach	1851 0.90	1852 $hr_high \leftarrow (trestbps > 145) \vee (age > 57 \wedge cp = 3)$	1853 Strong: This rule insightfully links 1854 factors that limit exercise capacity to the 1855 maximum heart rate achieved. Both 1856 hypertension and severe asymptomatic coronary 1857 disease can prevent a patient from reaching 1858 a higher peak heart rate.
1859 oldpeak	1860 0.76	1861 $st_severe \leftarrow (slope = 2) \wedge (thalach < 150)$	1862 Excellent: This rule identifies a classic 1863 high-risk pattern. A downsloping ST segment 1864 is a strong positive finding, and its occurrence 1865 at a sub-maximal heart rate indicates 1866 ischemia at a low workload, a sign of 1867 severe coronary artery disease.

1862 Table 32: Learned rules for disease prediction on the Heart dataset, with LLM assessments.
1863

1864 Learned Rule	1865 LLM Assessment
1866 $high_risk \leftarrow restecg_stt_abnormality \wedge ca = 3 \wedge oldpeak > 1.49$	1867 Excellent: This rule identifies a high-risk profile by 1868 combining three critical indicators of severe coronary artery 1869 disease: significant ST depression, an abnormal resting ECG, and extensive vessel blockage.
1870 $high_risk \leftarrow slope_downsloping \wedge restecg_normal \wedge trestbps > 145.68$	1871 Strong: A downsloping ST segment is a powerful predictor 1872 of ischemia. Combining this with hypertension identifies 1873 patients at high risk, even if their resting ECG appears 1874 normal, highlighting the importance of stress-test indicators.
1875 $high_risk \leftarrow slope_flat \wedge oldpeak > 1.49 \wedge restecg_hypertrophy$	1876 Excellent: This rule effectively combines signs of acute 1877 ischemia (a flat ST slope with significant depression) with 1878 evidence of chronic cardiac stress (left ventricular hypertrophy). 1879 This profile is strongly indicative of advanced coronary artery disease.

- 1880 • **MissForest** (Stekhoven & Bühlmann, 2012): We use the default hyperparameter settings
1881 in the `missForest` R package.
- 1882 • **MLP**: We train a 3-layer fully connected network (input-128-128-output) with batch size
1883 32, learning rate 0.001, and 100 epochs using Adam optimizer.
- 1884 • **VAE**(Veldkamp et al., 2025): We use a variational autoencoder with latent dimension 16,
1885 encoder architecture (input \times 2-128-64-latent), decoder architecture (latent-64-128-output),
1886 batch size 32, learning rate 0.001, and 100 epochs.
- 1887 • **DAE (mDAE)** (Dupuy et al., 2024): We use a denoising autoencoder with bottleneck
1888 dimension 16, encoder architecture (input-128-64-bottleneck), decoder architecture

1890 (bottleneck-64-128-output), corruption rate $\rho = 0.2$, batch size 32, learning rate 0.001, and
 1891 100 epochs.

1892 • **GAIN** (Yoon et al., 2018): We use mini-batch size 128, hint rate $p_{hint} = 0.9$, MSE loss
 1893 weight $\alpha = 100.0$, cross-entropy loss weight $\beta = 100.0$, learning rate 0.001, and 1000
 1894 epochs.

1895 • **MissDiff** (Ouyang et al., 2023): We use 1000 diffusion timesteps with $\beta_{start} = 10^{-4}$ and
 1896 $\beta_{end} = 0.02$, batch size 32, learning rate 0.001, and 100 epochs.

1897 • All baseline models can run efficiently on CPU environment with PyTorch package (for
 1898 deep learning methods) or R packages (for statistical methods).

1899

1900 L LIMITATION

1901 While our model shows promising performance, the ethical implications, such as potential over-
 1902 reliance or misuse for inferring sensitive information, require careful consideration.

1903 Despite its strengths, NS-FCN has limitations. While effective, the asynchronous coordinate
 1904 gradient descent optimization can be computationally intensive. Besides, the negative predicates are
 1905 not well explored (we consider negative predicates as an independent predicate from positive pred-
 1906 icates). Furthermore, while our model can derive predicates from continuous features, the current
 1907 implementation learns a single threshold per feature, which may not capture more complex relation-
 1908 ships (e.g., intervals). Extending the framework to learn more expressive predicates from continuous
 1909 data is a promising direction for future work.

1910 M USE OF LLMs

1911 In this paper, LLMs were used solely for writing polishing. The key idea, the model design, research
 1912 study, and all substantive writing are completed by human authors.

1913 In the assessment of discovered rules, we use LLM to write the evaluation of rule quality, which we
 1914 have mentioned in the paper.

1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943