
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INFERRING THE INVISIBLE: NEURO-SYMBOLIC RULE
DISCOVERY FOR MISSING VALUE IMPUTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the central challenges in artificial intelligence is reasoning under partial
observability, where key values are missing but essential for understanding and
modeling the system. This paper presents a neuro-symbolic framework for latent
rule discovery and missing value imputation. In contrast to traditional latent vari-
able models, our approach treats missing grounded values as latent predicates to be
inferred through logical reasoning. By interleaving neural representation learning
with symbolic rule induction, the model iteratively discovers—both conjunctive
and disjunctive rules—that explain observed patterns and recover missing entries.
Our framework seamlessly handles heterogeneous data, reasoning over both dis-
crete and continuous features by learning soft predicates from continuous values.
Crucially, the inferred values not only fill in gaps in the data but also serve as
supporting evidence for further rule induction and inference—creating a feedback
loop in which imputation and rule mining reinforce one another. Using coordinate
gradient descent, the system learns these rules end-to-end, enabling interpretable
reasoning over incomplete data. Experiments on both synthetic and real-world
datasets demonstrate that our method effectively imputes missing values while
uncovering meaningful, human-interpretable rules that govern system dynamics.

1 INTRODUCTION

Neural-symbolic reasoning combines the pattern recognition power of neural networks with the
precision and interpretability of symbolic reasoning (Hitzler & Sarker, 2022; Yang et al., 2024).
This hybrid paradigm enables AI systems to detect complex patterns in unstructured data while
reasoning about them in a structured and explainable manner.
Traditional rule induction methods extract explicit patterns from observed data but often fail when
some observations are missing or incomplete (Campero et al., 2018; Claire Glanois, 2022). These
approaches can effectively learn surface-level rules, yet their ability to fully explain the underlying
system is limited when essential data points are absent. For example, in healthcare diagnostics,
critical measurements may be missing or noisy, making accurate imputation necessary for reliable
reasoning.
Probabilistic models such as Markov Logic Networks (MLNs) (Richardson & Domingos, 2006)
handle missing data by treating unobserved facts as latent predicates. However, they typically rely
on a fixed rule base and expensive joint inference, limiting scalability and adaptability in large or
heterogeneous datasets (Oltramari et al., 2020). In contrast, we propose a neuro-symbolic system
that co-learns rules and imputations in a single differentiable loop, enabling fast forward-chaining
inference and end-to-end learning.
Our core idea is a closed loop between imputation and rule discovery. Given partially observed
tables with discrete and continuous attributes, we treat each missing, entity-specific entry as an un-
known fact and apply learned rules in a forward-chaining pass to predict it. These predictions are
compared to the observed entries via a supervised loss, and backpropagation updates the rule param-
eters and soft predicates. Crucially, improved imputations provide additional evidence for discover-
ing and refining rules in subsequent passes. This self-reinforcing loop leads to better imputations,
improved rule induction, and stronger downstream inference.
To enable multi-hop reasoning at scale, many targets require compositional explanations in the form
of chains and disjunctions. We optimize rule embeddings using asynchronous coordinate gradient
descent, updating one rule or clause at a time while holding others fixed. This mirrors step-wise
reasoning and ensures monotone loss progress on a smooth surrogate. For disjunctive heads, we

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

adopt a sequential covering strategy to harvest diverse clauses, followed by joint fine-tuning using a
soft-OR aggregator (LogSumExp) to reconcile interactions. This staged procedure reliably recovers
long chains and disjunctive theories under high missingness while keeping computation tractable.
Our framework handles heterogeneous data by learning soft predicates for continuous features (us-
ing sigmoid thresholds and slopes) and combining them with discrete predicates through differen-
tiable logical operators. Specifically, we use soft-min to approximate logical AND and soft-max
to approximate logical OR. This approach enables uniform forward chaining over mixed data types
without requiring pre-discretization.
Contributions. We summarize our contributions as follows: (i) We introduce a closed-loop neuro-
symbolic framework in which imputation and rule discovery mutually reinforce each other, rather
than treating imputation as a preprocessing step. (ii) We develop a scalable coordinate gradient
descent scheme, combined with sequential covering and joint fine-tuning, that enables multi-hop
and disjunctive rule learning even under high missingness. (iii) We design a unified differentiable
forward-chaining engine that handles both discrete and continuous attributes through soft predicates
and smooth logical operators. (iv) We empirically validate our approach on synthetic chain and dis-
junction tasks, as well as real-world datasets (Birds, Heart, SPECT), demonstrating that it recovers
human-interpretable rules while achieving strong imputation accuracy and downstream prediction
performance.

2 RELATED WORK

Our work is at the intersection of neuro-symbolic Inductive Logic Programming (ILP) and missing
value imputation.
Neural Embedding-based ILP. Embedding-based models are widely used for Knowledge Base
(KB) completion like TransE (Bordes et al., 2013), TransH (Wang et al., 2014), and TransR (Lin
et al., 2015). Complex (Trouillon et al., 2016) introduces complex-valued embeddings for asym-
metric relations, while multi-hop reasoning methods like Guu et al. (2015) leverage path-based
embeddings for traversing knowledge graphs. However, these approaches often face limitations in
reasoning power.
Recent advances in ILP integrate symbolic logic with neural networks. Rocktäschel & Riedel (2017)
propose Neural Theorem Proving (NTP), which uses a differentiable backward-chaining method.
Then, Campero et al. (2018) introduces a neural forward-chaining differentiable rule induction net-
work. However, both rely on hand-designed templates. Claire Glanois (2022) advances these models
by incorporating a hierarchical structure, enabling more flexible rule induction. Nevertheless, these
methods are primarily designed for fully-observed data and struggle to handle missing values.
Interpretable Rule Learning. Learning interpretable logical rules for classification has been a
long-standing goal. Dash et al. (2018) propose BRCG, an integer programming approach that uses
column generation to efficiently search the exponential space of candidate clauses, explicitly balanc-
ing classification accuracy with rule simplicity. Wang et al. (2021) introduce RRL, which utilizes
a Gradient Grafting mechanism to learn non-fuzzy rule lists within a deep learning framework,
ensuring scalability. Qiao et al. (2021) propose DR-NET to learn independent decision rules in
Disjunctive Normal Form (DNF) by jointly optimizing rule generation and weight learning. More
recently, Barbiero et al. (2022) present LEN, an end-to-end differentiable neuro-symbolic method
that leverages an entropy-based criterion to extract concise First-Order Logic explanations from neu-
ral networks. Unlike these methods, which focus primarily on classification tasks with complete data
with binary features, our framework integrates rule learning directly with the handling of missing
values.
Rule-Based Missing Value Imputation. Traditional missing data imputation methods, ranging
from statistical techniques like MICE (Multivariate Imputation by Chained-Equations) (van Bu-
uren & Groothuis-Oudshoorn, 2011), MissForest (Random Forest based) (Stekhoven & Bühlmann,
2012), and SOFT-IMPUTE (Mazumder et al., 2010) to deep learning models like GAIN (GAN-
based) (Yoon et al., 2018), MissDiff (Diffusion-based)(Ouyang et al., 2023), mDAE (DAE-
based)(Dupuy et al., 2024), VAE-based(Veldkamp et al., 2025) and MMDL (Li et al., 2020), typ-
ically rely on statistical patterns and do not leverage explicit logical rules to govern inter-variable
relationships (see Appendix A for a detailed overview).
Recent works have started to bridge rule-based reasoning and missing value imputation. For in-
stance, Chen et al. (2023) employ various interpretable machine learning techniques to address the
missing value problem, but their methods are not explicitly rule-based. Closer to our approach,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

MINTY (Stempfle & Johansson, 2024) utilizes a rule-based model to handle missing data; however,
it does not leverage neuro-symbolic reasoning to learn the intricate relationships between observed
and missing values as we do. Other non-neural approaches, such as the work by Wang et al. (2017)
on synthesizing data completion, also tackle the problem but lack of the representation learning
capabilities of neural networks. Our work is distinct in its tight integration of neural learning for
representation and symbolic reasoning for both rule discovery and imputation, forming a feedback
loop where each component enhances the other.

3 BACKGROUND

Predicate. In the context of logic-based AI systems, a predicate is a fundamental Boolean logic
variable used to describe properties of or relationships between entities. Predicate variables are
grounded by data, being True or False, and serve as the basic building blocks for logical expressions.
For instance, a predicate like Has Fever(Patient) denotes whether a patient has a fever, while
Use Drug(Patient) specifies whether a drug treats a particular patient. These predicates capture
essential aspects of the system’s state and relationships.
Logic Rules and Forward Chaining. We represent knowledge with Horn clauses

f : Q ← P1 ∧ P2 ∧ · · · ∧ Ph, (1)
where P1, . . . , Ph (the body) are conditions and Q (the head) is the conclusion. Given observed
facts (the evidence set E), we perform forward chaining: whenever all body predicates of a rule
are (approximately) satisfied by facts in E , the rule fires and adds Q to E . Importantly, newly
inferred facts are immediately recycled as evidence, enabling multi-hop reasoning—cascades of rule
applications that derive conclusions not reachable in a single step.
Latent Predicates and Rule Learning. We use the term latent predicate to denote an unobserved
fact tied to concrete entities (and, when relevant, timestamps) within the same relational schema as
observed predicates. Latent predicates may be Boolean or soft-valued (degrees of truth); they repre-
sent missing-but-specific facts we wish to infer. Our goal is to learn Horn rules of the form Eq. (1)
that capture regularities among observed predicates and support inference about latent ones—i.e.,
rules whose heads or intermediate conclusions may involve latent predicates, enabling principled
completion of missing facts.
Expressive Rule Forms. We consider rules that capture rich logical structure, including conjunc-
tions (AND), disjunctions (OR via multiple clauses), and chained dependencies. For example, a
latent predicate Qk may be characterized by

Qk = (P1 ∧ P2) ∨ (P3 ∧ P4),
or by multi-hop compositions such as

Q1 = P1 ∧ P2, Q2 = P3 ∧ P4, Q3 = (Q1 ∧ P5) ∨ (Q2 ∧ P6).
This view accommodates both single-step and multi-step (multi-hop) reasoning patterns within a
unified Horn-rule framework. We also allow predicate invention: introducing unlabeled latent pred-
icates that are not predefined in the schema but are useful intermediates for explaining the data.
These invented predicates participate in rules just like observed ones. After rules are discovered,
their roles can be post-hoc interpreted by inspecting the clauses in which they appear and their
relationships to observed predicates.

4 MODEL: NEURO-SYMBOLIC FORWARD CHAINING NETWORK

1 0 0 0 nan nan 1 0
0 0 0 0 0 0 1 1
0 1 0 nan nan 0 0 0
0 1 1 nan 0 nan 1 0
1 0 1 nan nan nan 0 0

Figure 1: Example of missing variables imputa-
tion with rule discovery. Xi with nan is the pred-
icates with missing information, which can be in-
ferred by the logic rules from X.

Consider problems where some information or
features are incomplete. Our goal is to learn a
set of logical rules that explain how each predi-
cate with information can be imputed based on
evidence from feature space X.
These missing variables are inferred through a
rule-learning process, allowing the model to un-
cover hidden relationships in the data. For clar-
ity, we identify the predicates with missing in-
formation as U, also named as “latent predi-
cate” in our setting. Though in our experiments, we do not strictly distinguish between feature
predicates, as any of them can be incomplete and serve as latent predicates. In more general settings
with a predictive label Y , we can view Y as one of the latent predicates, making the rule learning
and prediction for Y equivalent to inferring latent predicates U with rules.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To summarize, our model learns logical rules to infer latent predicates U by discovering hidden
structures within data, as an example illustrated in Figure 1. This rule induction process identifies
logical relationships among observable predicates X and other inferred latent predicates. By explic-
itly learning these structures, our approach enhances both inference capability and interpretability,
offering clear insights into complex, otherwise hidden dependencies. The key idea is summarized
in Figure 2, with details presented in the following sections.

Predicate
Embeddings

Rule
Embeddings

0 ... 0 0 0 1

1 0 0 0 ... 0
.
.
.

Similarity
Score

0.1 0.3 ...
.
.
.

0.2 0.5 0.4

0.2 0.35 ... 0.2 0.5 0.4

Softmin infered
predicate

values

0.9 0.1 ...

0.0 0.2 ...

0.2 0.35 ...

0.2 0.35 ...

Learn

Learn

Learn

Loop

Coordinate Gradient DescentInfer Predicate Values

mse lossGet

Get

Get

mse loss

0.9 0.05 ...

0.5 0.0 ...

0.98 0.01 ...

0.9 0.0 ...

Sequential
Covering

Fine
Tune

Softmax
Learn

Learn

Fine
Tune

mse loss

mse loss

Update

Update

Back Propagation

OR Learning

Figure 2: Model framework. Rule embeddings Θ are optimized using coordinate gradient descent.
In each learning step, predicate values are inferred via the Softmin-Softmax operation (Eqs. (3, 4,5)).
For disjunctive (OR) rule learning, sequential hard covering is applied, followed by fine-tuning of
the learned rule embeddings (Section 5.2). Errors are back-propagated using MSE loss between
inferred predicate values and the small portion of observed latent predicate samples, constituting a
weak-supervision setting.

4.1 MODEL PREPARATION: PRETRAINED PREDICATE EMBEDDINGS

We begin by defining two sets of predicates: X = {X1, . . . , Xn} represents the set of observable
predicate variables, and U = {U1, . . . , Um} denotes the set of predicate variables with missing
information that the model aims to discover and define. Our framework is designed to handle both
binary (categorical) and continuous features within a unified logical structure. Binary features
are treated as standard logical predicates. For continuous features, we introduce a mechanism to
derive a “soft” truth value, effectively creating learnable predicates from them. This allows the
model to reason over heterogeneous data types, as detailed in Section 4.2.
As mentioned before, we do not distinguish X and U in the experiment, as any predicates can be
the predicate with missing information. We just use separate notations for model description. We
initialize a fixed, unique embedding for each predicate, whether observable or missing. For example,
these embeddings can be instantiated as one-hot vectors within an embedding space of dimension d.
We denote the collection of embeddings for observable predicates as KX and incomplete predicates
as KU . These predicate embeddings remain frozen throughout the rule learning phase and serve as
a foundational dictionary, enabling the interpretation of the composition of learned rules by relating
rule components back to specific predicates.
With the predicate representations defined, we next describe the core of our model: the representa-
tion of logical rules and the mechanism by which inferences are drawn.

4.2 MODEL BACKBONE: RULE REPRESENTATION AND INFERENCE

In our NS-FCN framework, logical rules are materialized as learnable rule embeddings, which are
the primary trainable parameters. Our model employs an asynchronous coordinate descent learning
process. This learning scheme is particularly well-suited for discovering complex logical structures
such as chained dependencies (where one latent predicate forms part of the definition of another)
and disjunctive rules (where a latent predicate can be satisfied by one of several distinct conditions).

4.2.1 SPECIFICATION OF RULE EMBEDDINGS Θ

Let F be the set of rules/clauses, and let Θ = {Θf}f∈F be their embeddings. Each Θf encodes one
rule with head predicate Uj , and a single head predicate Uj may be associated with multiple rules
(OR-of-ANDs).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Conjunctive Rule Embedding. For a latent predicate Uj that is defined by a single conjunctive
rule (e.g., Uj = Xa ∧ Xb), its corresponding rule embedding Θf = [θ1, . . . , θh] ∈ Rd×h. Here,
h represents the number of predicates forming the body of the conjunctive rule (the arity of the
conjunction, e.g., h = 2 for Xa ∧ Xb), and d is the dimensionality of the predicate embeddings.
Each of the h rows in this matrix is learned to align with the embedding of one of the constituent
predicates in the rule’s body.
Disjunctive Rule Embeddings. If a latent predicate Uk is defined by a disjunction of Rk distinct
conjunctive clauses (e.g., Uk =

∨Rk

r=1(clauser)), it will be associated with a set of Rk distinct rule
embeddings, denoted {Θk,1, . . . ,Θk,Rk

}. Each individual rule embedding Θk,r is itself an hr × d
matrix, representing the r-th conjunctive clause, where hr is the arity of that specific clause.
All rule embeddings are initialized randomly prior to training and are subsequently optimized as
described in Section 5. Given these rule embeddings, the model infers the truth values (or continuous
approximations thereof) of latent predicates through a carefully defined inference mechanism.
Parameters for Continuous Predicates. For each continuous feature f ∈ FC , where FC is the set
of continuous features, the model learns two additional scalar parameters: a threshold θf and a slope
βf . These parameters are used to define a learnable soft predicate function that maps the continuous
feature value to a probabilistic truth value, as explained next.

4.2.2 INFERRING PREDICATE VALUES

The latent predicates is inferred based on the current state of observable predicates, any previously
inferred latent predicate values, and the learned rule embeddings Θ.
Predicate Matching. Each column θj(j = 1, . . . , h) in the rule embedding Θf is matched with a
corresponding predicate embedding. This matching is achieved by finding the predicate embedding
most similar to θj using cosine similarity:

K∗
j = argmax

K∈K
cos (K, θj) , j = 1, . . . , h (2)

where K = KX ∪ KU represents the set of all available predicate embeddings. The inverse
mapping I(K) maps a predicate embedding K ∈ Rd back to its corresponding index. Thus, indices
1, . . . , (n+m) correspond to n+m predicate embeddings.
Predicate Truth Values. Once the best matching predicate K∗

j is identified for a rule component θj ,
we determine its truth value, denoted as tj . The calculation depends on whether the corresponding
feature is binary or continuous:

1) For a binary feature (e.g., from one-hot encoding), its truth value is its current value in the data
tensor: tj = vt

(
I
(
K∗
j

))
.

2) For a continuous feature, its truth value is computed using a learnable soft predicate function
(a sigmoid): tj = σ(βfj · (vfj − ϵfj)) where vfj is the value of the feature corresponding to K∗

j (i.e.
vfj = vt(I(K∗

j))), ϵfj and βfj are its learned parameters, and σ(·) is the sigmoid function. This
allows learning soft boundaries like “vfj > ϵfj ”.
Conjunctive Clause Inference (Soft-AND). The value for a conjunctive clause is then computed
by aggregating the contributions of all its components, modeling a Soft-AND operation. The contri-
bution of each component j is the product of its similarity score and its truth value. The aggregated
value is:

v =
∏

j=1,...,h

cos
(
K∗
j , θj

)
· tj , (3)

where vt is the current value for observable predicates or any previously imputed values. At the
beginning, vt is all from observable predicates. With the optimization steps of coordinate descent,
vt is updated based on the refined Θ.
To address the potential issue of diminishing values, we can use the min function instead: v =
minj=1,...,h

{
cos
(
K∗
j , θj

)
, tj
}
.

However, to make this function differentiable, we approximate the min function using the softmin
function. For each component j, there are two terms: the similarity score cos

(
K∗
j , θj

)
and the truth

value tj . The softmin is applied to the set of all 2h such terms:

softmin (x1, . . . , x2h; Θ) = −1

τ
log

(
1

2h

2h∑
i=1

e−xi/τ

)
(4)

where each xi represents one of the 2h terms (all similarity scores and all truth values), and τ is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

a temperature parameter controlling the smoothness of the approximation. As τ approaches 0, the
softmin function approximates the behavior of the hard min function.
Disjunctive Rule Inference (Soft-OR). When a latent predicate Uk is defined by a disjunction
of multiple conjunctive clauses, Uk =

∨Rk

r=1 clausek,r, its final inferred value vUk
is determined

by aggregating the values of its individual clauses {vclausek,1
, . . . , vclausek,Rk

}. This aggregation is
performed using the LogSumExp (LSE) function, which serves as a differentiable soft-OR operator:

vUk
=

1

β
log

Rk∑
r=1

exp(β · vclausek,r
), (5)

where β is a temperature parameter. As β → ∞, the LSE function increasingly approximates
the true max operator, thereby hardening the OR logic. Conversely, smaller values of β yield a
softer aggregation. The model’s ability to discover meaningful rules and infer latent predicate states
accurately hinges on an effective learning procedure. We now outline the training methodology
employed to optimize the rule embeddings Θ.

5 MODEL LEARNING

The core of our model learning process involves training the rule embeddings Θ by minimizing a
loss function that quantifies the discrepancy between the inferred values of latent predicates and
their partially observed truth values. Our approach leverages a sequential and staged optimization
strategy, drawing parallels with coordinate descent and incorporating elements of rule covering,
particularly for disjunctive rules. This is typically followed by a joint fine-tuning phase for rules
involving disjunctions.

5.1 COORDINATE GRADIENT DESCENT FOR RULE OPTIMIZATION

We employ a block coordinate gradient descent approach, iteratively optimizing the embedding Θj
for each predicate Uj (treated as a disjoint parameter block) while holding the embeddings of other
predicates fixed. The order in which predicates Uj are selected for optimization is randomized in
each complete pass (cycle) through all learnable latent predicates. Such optimization progress is
similar to human thinking strategy, as we humans usually draw conclusions step by step.
During the optimization step for a specific predicate Uj within a cycle, the inferred value vUj is ob-
tained by Eq. 3 or Eq. 4 as mentioned in the previous Section. The Mean Squared Error (MSE) loss
is computed between the inferred value vUj and its observed value Uj,obs, exclusively for instances
where Uj is observed, which can be viewed as a weak supervision setting:

LUj
= mean((vUj

⊙maskj − Uj,obs ⊙maskj)2), (6)
where maskj is a binary vector indicating observed instances of Uj (maskj = 1 indicates the obser-
vation). The rule embedding Θj is then updated using gradients from this loss while all other blocks
are kept fixed, which implements a Gauss–Seidel block coordinate gradient method on the smooth
objective L(Θ) =

∑
j LUj

(Θ). A brief convergence discussion is provided in Appendix B.
After its training epochs within a cycle, if Θj meets the criteria for a “perfect rule” (i.e., the impu-
tation accuracy of missing variables is larger than 0.99 and a marginal loss drop is less than 10−3),
the parameters of Θj will be frozen for efficient computing in subsequent cycles.

5.2 SEQUENTIAL COVERING AND FINE-TUNING OF DISJUNCTIVE RULES

Sequential Covering. When a latent predicate Uk is hypothesized to be formed by a disjunction of
multiple clauses (e.g., Uk = clausek,1∨clausek,2∨· · ·∨clausek,Rk

), its constituent rule embeddings
(Θk,1,Θk,2, . . . ,Θk,Rk

) are learned in a sequential manner. This iterative procedure—training a rule
embedding for a clause and then conceptually “covering” the samples it explains—is repeated for
all Rk rule clauses intended for the disjunctive predicate Uk.
The process begins by training the first rule embedding, Θk,1, to capture one set of conditions
that satisfy Uk. The inferred value vclausek,1

is computed, and the loss Lclausek,1
(as per Eq. 6) is

minimized against the partially observed Uk,obs.
The learning of multiple rule clauses for a predicate Uk proceeds sequentially. After an initial clause,
Θk,1, is trained to a point where it effectively explains a subset of positive instances for Uk, a hard
covering step is employed. Specifically, training instances are considered “well-explained” if the
output of Θk,1 (i.e., vclausek,1

) for these instances exceeds a high confidence threshold (e.g., 0.99).
These “well-explained” instances are then removed from the active training set. The training of Θk,1

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

concludes at this stage, and the subsequent rule clause Θk,2 is then trained on the remaining, unex-
plained instances of Uk. This iterative hard covering approach encourages further clause discovery
of distinct rules that satisfy Uk.
Joint Fine-tuning of Disjunctive Rules. After the individual rule clauses for a disjunctive predicate
Uk have been initialized through the sequential training and covering strategy, a joint fine-tuning
phase is employed to refine these rules collectively. In this phase, the optimizer simultaneously
updates all associated rule embeddings {Θk,1, . . . ,Θk,Rk

} for Uk. The MSE loss is computed
between the combined soft-OR output vUk

(obtained using Eq. 5, which aggregates the evidence
from all Rk clauses) and the observed values Uk,obs. Given that latent predicates are, by definition,
not always directly measurable, this MSE is calculated based on the small fraction of instances
where the true state of the hidden predicate Uk is actually observed in the training data, which is a
weakly supervised scenario: LUk,finetune = mean((vUk

⊙maskk − Uk,obs ⊙maskk)2).
The optimization details, including Adam optimizer parameters and rule embedding normalizations,
are illustrated in the Appendix C.1.

6 EXPERIMENTS

6.1 SYNTHETIC DATA EXPERIMENTS

(a) Chain

OR

(b) Disjunctive (OR) Chain

OR

(c) Long Chain with Multiple Disjunctive (OR)

Figure 3: Example rule structures of synthetic experiments.

0 25 50 75
Epoch

0.000

0.025

0.050

0.075

0.100

Lo
ss

(a) Training Loss

0 25 50 75
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

(b) Unobserved Accuracy

X3
X4
X5

0 25 50 75
Epoch

46000

48000

50000

N
um

be
r o

f S
am

pl
es (c) Remaining Samples

0 20 40
Epoch

0.02

0.04

0.06

Lo
ss

(d) Fine-tune Loss

0 20 40
Epoch

0.925

0.950

0.975

1.000

A
cc

ur
ac

y

(e) Fine-tune Accuracy

Figure 4: An example of loss and imputation accuracy during coordinate optimization (Obs. Ratio
= 0.2, seed = 42). We assume the training order is X3, X4, X5. Epochs 0–19 correspond to rule
learning for X3; epochs 20–39 for X4; and epochs 40-end for X5. Remaining samples identified
how many samples are “well-explained” during the hard covering phase.

Table 1: Results for synthetic data example Figre 3(b) with an observation ratio of 0.2. Metrics are
averaged over 20 random seeds on a dataset of 50,000 samples. Ground truth rules are underlined.

Imp. Acc.
(Before FT)

Imp. Acc.
(After FT)

Train Loss
(Before FT)

Train Loss
(After FT) Learned Rules Rule Acc.

X3 1.00± 0.000 / 0.005± 0.000 / X0 ∧X1 1.00

X4 0.95± 0.010 / 0.041± 0.005 / X2 ∧X7, X0 ∧X7, X2 0.80

X5 0.93± 0.003 0.96± 0.002 0.063± 0.003 0.067± 0.001
(X0 ∧X4) ∨ (X3 ∧X6)
(X3 ∧X4) ∨ (X3 ∧X6)
(X0 ∧X1) ∨ (X0 ∧X4)

0.40

We use synthetic datasets to evaluate our model’s ability to learn chained and disjunctive rules under
partial observability (Figure 3). Each dataset is built from observable Bernoulli variables, with miss-
ing predicates defined by ground truth rules and made partially available (10%-30% observability)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

under an MCAR setting. The task is to learn rule embeddings that capture the ground truth logic,
evaluated by Rule Discovery Accuracy (i.e. the proportion of runs which learn the truth rules) and
Imputation Accuracy. Our method is also robust to MAR and MNAR mechanisms (Appendix E).

Table 2: Ablation Study: Effect of Fine-tuning on X5 (Disjunctive Rule) Learning

Metric for X5 Before Fine-tuning After Fine-tuning

Recovered Rule Structure (X0 ∧X2) ∨ (X0 ∧X4) (X3 ∧X6) ∨ (X0 ∧X4)

Imputation Accuracy for X5 (Unobserved) 0.8729 1.0

Results and Analysis. We analyze example (b) from Figure 3 (full results of observation ratio
at 0.1 and 0.3 are in Appendix J.1). Table 1 shows that our model achieves near-perfect recovery
for simple conjunctive rules (X3, X4) and high imputation accuracy for the complex disjunctive
rule (X5). Figure 4(a)-(b) illustrates stable training dynamics. For X5, the model uses sequential
covering (Figure 4(c)), with “well-explained” examples reducing the remaining set. The fine-tuning
(FT) phase is followed, which corrects the rule structure and boosts accuracy (Figure 4(d)-(e)).
The corresponding ablation study (Table 2) confirms that fine-tuning is critical for disjunctive rules,
increasing unobserved imputation accuracy for X5 from 0.87 to 1.00.

Table 3: Impact of rule optimization order on learning progress. Use the example (a) of Figure 3.
Note: ✓ denotes successful learning for the respective predicate.

Cycle Metric Run 1 Run 2 Run 3

Cycle 1
Optimization Order [X5, X4, X3] [X3, X5, X4] [X3, X4, X5]
Rule Accu. X3 ✓, X4, X5 X3 ✓, X4 ✓, X5 X3 ✓, X4 ✓, X5 ✓
Imputation Accu.,

Train Loss
X3 : 1.00, 0.005
X4 : 0.87, 0.074
X5 : 0.94, 0.053

X3 : 1.00, 0.005
X4 : 1.00, 0.004
X5 : 0.94, 0.035

X3 : 1.00, 0.005
X4 : 1.00, 0.004
X5 : 1.00, 0.003

Cycle 2
Optimization Order [X3, X5, X4] [X5, X3, X4] —
Rule Accu. X3 ✓, X4 ✓, X5 X3 ✓, X4 ✓, X5 ✓ —
Imputation Accu.,

Train Loss
X3 : 1.00, 0.005
X4 : 1.00, 0.004
X5 : 0.94, 0.035

X3 : 1.00, 0.005
X4 : 1.00, 0.004
X5 : 1.00, 0.003

—

Cycle 3
Optimization Order [X3, X4, X5] — —
Rule Accu. X3 ✓, X4 ✓, X5 ✓ — —
Imputation Accu.,

Train Loss
X3 : 1.00, 0.005
X4 : 1.00, 0.004
X5 : 1.00, 0.003

— —

Our asynchronous coordinate descent is robust to different rule optimization orders (Table 3, Ap-
pendix Figures 9-11) and is data-efficient, recovering complex rules with as few as 4,000 samples
(Appendix Figure 8). While coordinate descent requires different cycle numbers, Appendix Table 9
demonstrate minimal time and memory costs.
Convergence Analysis of Asynchronous Coordinate Descent. Exact rule-set induction reduces
to the minimum-set-cover problem (NP-hard), so like any practical rule learner, we do not claim
global optimality. Instead, we frame search as asynchronous block-coordinate descent on a smooth
surrogate loss: at each step, we update a single rule embedding in closed form, which guarantees
the loss never increases yet keeps each move computationally cheap. To guard against poor local
minima, we (i) freeze a rule only after this rule is perfectly learned, and (ii) launch diverse initializa-
tions. Across 20 runs on synthetic datasets (Tables 23-28), this strategy delivers < 1.3% imputation
performance variance, and the top-ranked learned rules consistently match ground truth rules. More
theoretical discussions are provided in Appendix B.

6.2 REAL-WORLD DATA EXPERIMENTS

We validate our approach on three real-world datasets, comparing it with (i) statistical models
(MICE(van Buuren & Groothuis-Oudshoorn, 2011), MissForest(Stekhoven & Bühlmann, 2012)),
(ii) deep generative models (MLP, GAIN(Yoon et al., 2018), MissDiff(Ouyang et al., 2023),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

mDAE(Dupuy et al., 2024), VAE(Veldkamp et al., 2025)) and (iii) rule-based interpretable models
(BRCG(Dash et al., 2018), RRL(Wang et al., 2021), DR-NET(Qiao et al., 2021), LEN(Barbiero
et al., 2022)). For each dataset, we randomly miss some features. We then evaluated the models
on their ability to impute these missing values, as well as their performance on a downstream target
classification task. Preprocessing and baselines details are provided in Appendix D.2 and D.3.

Table 4: Comparison of imputation accuracy and learned rules on the Birds dataset.

Method Imp Acc. Learned Rules

LEN 0.57
0.55

abnormal bird← (ostrich ∧ ¬wounded) ∨ (bird ∧ wounded)
can fly← (bird ∧ ¬ostrich) ∨ (¬ostrich ∧ ¬wounded)

RRL 0.53
0.51

abnormal bird← (bird ∧ ¬wounded) ∨ (bird ∧ ostrich)
can fly← (¬ostrich ∧ ¬wounded) ∨ (bird ∧ ¬ostrich)

BRCG 0.50
0.47

abnormal bird← bird ∧ ostrich
can fly← bird ∧ ¬abnormal bird

DR-NET 0.56
0.53

abnormal bird← (bird ∧ ¬ostrich ∧ wounded) ∨ (bird ∧ ostrich ∧ ¬wounded)
can fly← (bird ∧ ¬ostrich ∧ ¬abnormal bird) ∨ (bird ∧ ¬ostrich ∧ ¬wounded)

NS-FCN 1.00
1.00

abnormal bird← ostrich ∨ (bird ∧ wounded)
can fly← bird ∧ ¬abnormal bird

Table 5: Comparison of imputation accuracy and learned rules on the Heart Disease dataset.

Method Imp Acc. Learned Rules

LEN

0.65
0.53
0.62
0.70

trestbps high← (¬st mild ∧ cp atypical angina) ∨ (chol low ∧ cp asymptomatic)
chol high← (sex female ∧ ca 2) ∨ (bp normal ∧ cp asymptomatic)
hr high← (cp asymptomatic ∧ target) ∨ (chol low ∧ ca 1)
st severe← (cp non anginal ∧ ¬fbs normal) ∨ (age old ∧ chol low)

RRL

0.28
0.33
0.33
0.32

trestbps high← (sex female ∧ ¬cp typical angina) ∨ (exang yes ∧ ¬thal normal)
hr high← (age middle ∧ sex male) ∨ (¬restecg stt abnormality ∧ slope upsloping)
thalach← (age < 60) ∧ (restecg = 0)
st severe← (¬exang yes ∧ ¬slope flat) ∨ (chol low ∧ cp asymptomatic)

BRCG

0.53
0.35
0.33
0.32

trestbps high← ¬age young ∧ ¬ca 4
chol high← ¬age young ∧ ¬restecg hypertrophy
hr high← ¬cp typical angina ∧ ¬ca 4
st severe← ¬age young ∧ ¬slope upsloping

DR-NET

0.53
0.33
0.33
0.32

trestbps high← (chol low ∧ ¬hr low ∧ ¬fbs high) ∨ (slope flat ∧ ca 1 ∧ thal normal)
chol high← sex male ∧ slope upsloping ∧ ca 3
hr high← ¬age old ∧ ¬cp typical angina ∧ fbs high
st severe← hr high ∧ ¬sex male ∧ ¬fbs normal

NS-FCN

0.86
0.85
0.90
0.76

trestbps high← (age > 60) ∧ (chol > 250)
chol high← (sex = 1 ∧ age > 55) ∨ (trestbps > 150)
hr high← (trestbps > 145) ∨ (age > 57 ∧ cp = 3)
st severe← (slope = 2) ∧ (thalach < 150)

For logical reasoning, we used the Birds dataset (Tafjord et al., 2021) with a 90% missing ratio
for two key predicates. As shown in Table 4, under some random seeds, NS-FCN achieves per-
fect imputation accuracy (1.00) and, crucially, perfectly recovers the ground truth logical rules,
highlighting its superior capability in deciphering underlying logical structures. Table 6 compares
our approach with non-interpretable baselines. While a MLP achieve optimal performance given
the simplicity of the Birds dataset, our model remains highly competitive; more importantly, it
demonstrates robustness across diverse random initializations, successfully recovering the correct
ground-truth rules in the majority of cases. Table 20 further show that the a few hundred samples
are sufficient for the model to converge to the correct logical truth.
In medical diagnosis, we use Heart Disease (Detrano et al., 1989) and SPECT Heart (Kurgan et al.,
2001) datasets, introducing 30% missingness. We also vary the observation ratio from 0.3 to 0.9, and
the results in Tables 18 and 19 shows comparable performance with only 30% of the data observed.
On the Heart Disease dataset, with its mix of continuous and categorical features, NS-FCN’s direct
handling of continuous values led to superior imputation (e.g., 90% accuracy for thalach) and
the discovery of clinically relevant rules with numerical thresholds (e.g., age > 60, chol > 250),

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

as shown in Tables 5 and 32. NS-FCN attains imputation accuracy comparable to the advanced
statistical and generative baselines, yet distinguishes itself by offering full interpretability, a criti-
cal advantage over these black-box approaches. Compared with rule-based models, our evaluation
highlights NS-FCN’s unique ability to handle heterogeneous data types. A key distinction is that
NS-FCN directly models continuous features, whereas baseline methods are restricted to binary
inputs, forcing discretization (e.g., for trestbps, binning values into < 120, 120 − 140, > 140
mmHg as low, normal, and high).
On the binary SPECT dataset, we randomly miss all 22 features, thus we report the diagnosis ac-
curacy after imputation. When the imputed features are used for diagnosis, NS-FCN outperforms
all baselines on both Heart Disease and SPECT, as shown in Table 7. Unlike baseline models that
train a classifier on previously imputed samples, where imputation errors inevitably propagate to the
downstream task, our method jointly optimizes rule discovery and target inference. Furthermore,
our use of soft-logic relaxation prevents the model from overfitting to noise (such as incorrect fea-
tures), enabling it to capture dominant logical structures. This robustness is further supported by the
comprehensive noise sensitivity analysis in Appendix I.1 (Tables 16 and 17), which demonstrates
that the model learns valid rule approximations (e.g. capturing one correct clause) and maintains
strong predictive performance even as noise levels increase.
Detailed rules and LLM assessments are in Appendix Tables 30, 31, and 32.

Table 6: Imputation accuracy of missing feature value comparison across Heart Disease and Bird
datasets on non-interpretable baselines. Results are over 10 random seeds.

Method Heart Disease Birds

trestbps chol thalach oldpeak abnormal bird can fly

MICE 0.84±0.016 0.83±0.014 0.88±0.011 0.87±0.015 0.88±0.006 0.86±0.011
MissForest 0.88±0.015 0.84±0.012 0.91±0.004 0.88±0.016 0.38±0.123 0.68±0.086
MLP 0.88±0.009 0.85±0.016 0.88±0.014 0.80±0.025 0.96±0.059 0.99±0.003
GAIN 0.85±0.022 0.84±0.011 0.90±0.014 0.89±0.014 0.83±0.102 0.82±0.083
MissDiff 0.82±0.017 0.83±0.019 0.89±0.018 0.84±0.030 0.83±0.020 0.86±0.007
mDAE 0.88±0.011 0.84±0.012 0.90±0.015 0.87±0.015 0.87±0.002 0.87±0.004
VAE-based 0.85±0.015 0.84±0.021 0.90±0.015 0.86±0.015 0.62±0.006 0.87±0.004
NS-FCN 0.87±0.025 0.85±0.017 0.88±0.014 0.78±0.020 0.95±0.064 0.95±0.064

Table 7: Medical diagnosis after missing value imputation. Results are over 10 random seeds.

Method Heart Disease SPECT

Accuracy F1 Accuracy F1

MICE(van Buuren & Groothuis-Oudshoorn, 2011) 0.83±0.010 0.81±0.012 0.78±0.019 0.87±0.013
MissForest(Stekhoven & Bühlmann, 2012) 0.83±0.013 0.81±0.014 0.79±0.012 0.87±0.008
MLP 0.84±0.010 0.82±0.012 0.92±0.007 0.90±0.005
GAIN(Yoon et al., 2018) 0.84±0.004 0.82±0.006 0.76±0.019 0.85±0.013
MissDiff(Ouyang et al., 2023) 0.84±0.010 0.82±0.011 0.77±0.023 0.86±0.016
mDAE(Dupuy et al., 2024) 0.84±0.009 0.82±0.010 0.80±0.013 0.88±0.009
VAE-based(Veldkamp et al., 2025) 0.83±0.009 0.81±0.009 0.75±0.016 0.85±0.011
BRCG(Dash et al., 2018) 0.77±0.006 0.74±0.034 0.85±0.046 0.90±0.035
RRL(Wang et al., 2021) 0.78±0.002 0.80±0.003 0.90±0.005 0.94±0.005
DR-NET(Qiao et al., 2021) 0.85±0.005 0.82±0.005 0.89±0.025 0.92±0.017
LEN(Barbiero et al., 2022) 0.69±0.007 0.80±0.000 0.76±0.035 0.85±0.017
NS-FCN 0.91±0.009 0.91±0.009 0.92±0.009 0.96±0.009

7 CONCLUSION

Our NS-FCN framework effectively learns interpretable rules for missing value imputation, demon-
strating strong performance across a diverse range of synthetic and real-world datasets. A key
strength is its ability to seamlessly reason over heterogeneous data, handling both binary predi-
cates (e.g., Birds) and continuous features in complex domains like medical diagnosis (SPECT,
Heart Disease). It successfully handles missing data and learns hierarchical rule structures, offering
significant potential for trustworthy diagnostics and transparent decision-making.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. The complete description
of both synthetic dataset generation and real-world dataset preprocessing methods are illustrated in
Appendix E and D.2. Details of the computational setup, including hardware configuration and
software environment, as well as the choice of hyper-parameters are documented in Appendix J.4
and K.3. We will release our code in the camera-ready stage to facilitate replication and further
research.

REFERENCES

Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Pietro Lió, Marco Gori, and Stefano
Melacci. Entropy-based logic explanations of neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 6046–6054, 2022.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in Neural Information
Processing Systems, volume 26, 2013.

Andres Campero, Aldo Pareja, Tim Klinger, Josh Tenenbaum, and Sebastian Riedel. Logical rule
induction and theory learning using neural theorem proving. arXiv preprint arXiv:1809.02193,
2018.

Zhi Chen, Sarah Tan, Urszula Chajewska, Cynthia Rudin, and Rich Caruna. Missing values and
imputation in healthcare data: Can interpretable machine learning help? In Conference on Health,
Inference, and Learning, pp. 86–99. PMLR, 2023.

Xuening Feng Paul Weng Matthieu Zimmer Dong Li Wulong Liu Jianye Hao Claire Glanois, Zhao-
hui Jiang. Neuro-symbolic hierarchical rule induction. In International Conference on Machine
Learning (ICML), pp. 7583–7615. PMLR, 2022.

William W Cohen. Fast effective rule induction. In Machine learning proceedings 1995, pp. 115–
123. Elsevier, 1995.

Andrew Cropper and Rolf Morel. Learning programs by learning from failures. Machine Learning,
110(4):801–856, 2021.

Sanjeeb Dash, Oktay Gunluk, and Dennis Wei. Boolean decision rules via column generation.
Advances in neural information processing systems, 31, 2018.

Robert Detrano, Andras Janosi, Walter Steinbrunn, Matthias Pfisterer, Johann-Jakob Schmid, Sar-
bjit Sandhu, Kern H Guppy, Stella Lee, and Victor Froelicher. International application of a
new probability algorithm for the diagnosis of coronary artery disease. The American journal of
cardiology, 64(5):304–310, 1989.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. arXiv preprint arXiv:1904.11694, 2019.

Mariette Dupuy, Marie Chavent, and Remi Dubois. mdae: modified denoising autoencoder for
missing data imputation. arXiv preprint arXiv:2411.12847, 2024.

Bradley Efron. Missing data, imputation, and the bootstrap. Journal of the American Statistical
Association, 89(426):463–475, 1994.

Khaled M Fouad, Mahmoud M Ismail, Ahmad Taher Azar, and Mona M Arafa. Advanced methods
for missing values imputation based on similarity learning. PeerJ Computer Science, 7:e619,
2021.

Kelvin Guu, John Miller, and Percy Liang. Traversing knowledge graphs in vector space. arXiv
preprint arXiv:1506.01094, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Pascal Hitzler and Md Kamruzzaman Sarker. Neuro-symbolic artificial intelligence: The state of
the art. 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Lukasz A Kurgan, Krzysztof J Cios, Ryszard Tadeusiewicz, Marek Ogiela, and Lucy S Goodenday.
Knowledge discovery approach to automated cardiac spect diagnosis. Artificial intelligence in
medicine, 23(2):149–169, 2001.

Linchao Li, Bowen Du, Yonggang Wang, Lingqiao Qin, and Huachun Tan. Estimation of missing
values in heterogeneous traffic data: Application of multimodal deep learning model. Knowledge-
Based Systems, 194:105592, 2020.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation em-
beddings for knowledge graph completion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 29, 2015.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. Advances in neural information process-
ing systems, 31, 2018.

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for learn-
ing large incomplete matrices. The Journal of Machine Learning Research, 11:2287–2322, 2010.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Alessandro Oltramari, Jonathan Francis, Cory Henson, Kaixin Ma, and Ruwan Wickramarachchi.
Neuro-symbolic architectures for context understanding. In Knowledge Graphs for Explainable
Artificial Intelligence: Foundations, Applications and Challenges, pp. 143–160. IOS Press, 2020.

Yidong Ouyang, Liyan Xie, Chongxuan Li, and Guang Cheng. Missdiff: Training diffusion models
on tabular data with missing values. arXiv preprint arXiv:2307.00467, 2023.

Leonardo Pellegrina and Fabio Vandin. Scalable rule lists learning with sampling. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2352–2363,
2024.

Litao Qiao, Weijia Wang, and Bill Lin. Learning accurate and interpretable decision rule sets from
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 4303–4311, 2021.

J. Ross Quinlan. Learning logical definitions from relations. Machine learning, 5:239–266, 1990.

Md Geaur Rahman and Md Zahidul Islam. A decision tree-based missing value imputation technique
for data pre-processing. In The 9th Australasian Data Mining Conference: AusDM 2011, pp. 41–
50. Australian Computer Society Inc, 2011.

Md Geaur Rahman and Md Zahidul Islam. Fimus: A framework for imputing missing values using
co-appearance, correlation and similarity analysis. Knowledge-Based Systems, 56:311–327, 2014.

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 62:107–136,
2006.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. Advances in neural
information processing systems, 30, 2017.

Hikaru Shindo, Masaaki Nishino, and Akihiro Yamamoto. Differentiable inductive logic program-
ming for structured examples. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 5034–5041, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112–118, 2012.

Lena Stempfle and Fredrik Johansson. Minty: Rule-based models that minimize the need for im-
puting features with missing values. In International Conference on Artificial Intelligence and
Statistics, pp. 964–972. PMLR, 2024.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pp. 3621–3634, 2021.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In International conference on machine learning, pp.
2071–2080. PMLR, 2016.

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
Journal of optimization theory and applications, 109(3):475–494, 2001.

Stef van Buuren and Catharina Gerarda Maria Groothuis-Oudshoorn. mice: Multivariate imputation
by chained equations in r. Journal of statistical software, 45(3), 2011.

Karel Veldkamp, Raoul Grasman, and Dylan Molenaar. Handling missing data in variational autoen-
coder based item response theory. British Journal of Mathematical and Statistical Psychology, 78
(1):378–397, 2025.

Xinyu Wang, Isil Dillig, and Rishabh Singh. Synthesis of data completion scripts using finite tree
automata. Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–26, 2017.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 28, 2014. doi: 10.1609/aaai.v28i1.8870. URL https://doi.org/10.1609/aaai.
v28i1.8870.

Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Scalable rule-based representation learning
for interpretable classification. Advances in Neural Information Processing Systems, 34:30479–
30491, 2021.

Dennis Wei, Sanjeeb Dash, Tian Gao, and Oktay Gunluk. Generalized linear rule models. In
International conference on machine learning, pp. 6687–6696. PMLR, 2019.

Stephen J Wright. Coordinate descent algorithms. Mathematical programming, 151(1):3–34, 2015.

Yang Yang, Chao Yang, Boyang Li, Yinghao Fu, and Shuang Li. Neuro-symbolic temporal point
processes. arXiv preprint arXiv:2406.03914, 2024.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative
adversarial nets. In International conference on machine learning, pp. 5689–5698. PMLR, 2018.

Chengqi Zhang, Yongsong Qin, Xiaofeng Zhu, Jilian Zhang, and Shichao Zhang. Clustering-based
missing value imputation for data preprocessing. In 2006 4th IEEE International Conference on
Industrial Informatics, pp. 1081–1086. IEEE, 2006.

13

https://doi.org/10.1609/aaai.v28i1.8870
https://doi.org/10.1609/aaai.v28i1.8870

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK SUPPLEMENT

Traditional Inductive Logic Programming (ILP) Methods. Inductive Logic Programming learns
logical rules from relational data. Cohen (1995) proposed RIPPER, a fast rule induction algorithm
using separate-and-conquer strategy. Quinlan (1990) developed FOIL, which generates clauses it-
eratively. Dash et al. (2018) introduced Boolean decision rules using column generation. Wei et al.
(2019) proposed GLRM integrating decision rules into linear models. Cropper & Morel (2021)
presented LFF implemented in Popper. These approaches rely on heuristics but may not guarantee
optimal solutions. Pellegrina & Vandin (2024) proposed SamRuLe for near-optimal rule lists via
sampling.
Differentiable ILP Methods. Traditional ILP models struggle with noisy data and scalability. Dif-
ferentiable approaches address these issues by integrating continuous relaxation, which allows gra-
dient descent for optimization. Shindo et al. (2021) proposed ∂ILP, which represents logic rules in
a differentiable form and combines neural networks with symbolic logic. Manhaeve et al. (2018) in-
troduced DeepProbLog, extending ProbLog with neural predicates. Neural Logic Machines (NLMs)
(Dong et al., 2019) combine MLPs with logic programming to improve computational efficiency but
reduce interpretability.
Broader Missing Data Imputation Methods. Missing data imputation methods range from global
model-based techniques to localized and hybrid strategies, extending to deep and ensemble frame-
works.
At the global end, nonparametric bootstrap methods (Efron, 1994) provide bias-corrected estimates
via repeated sampling, while spectral regularization approaches like SOFT-IMPUTE (Mazumder
et al., 2010) solve a nuclear-norm minimization through iterative soft-thresholded SVD. Classi-
cal multivariate imputation schemes such as MICE (van Buuren & Groothuis-Oudshoorn, 2011)
construct a sequence of conditional models for each variable with missingness and iteratively sam-
ple from these chained regressions until convergence, thereby approximating draws from the joint
posterior and naturally propagating uncertainty across multiple imputations. Tree-based ensemble
methods such as MissForest (Stekhoven & Bühlmann, 2012) adopt an iterative refinement strategy
in which random forests are trained per variable using the currently imputed data as predictors,
updating missing entries via out-of-bag predictions until changes stabilize, thus capturing complex
nonlinearities and high-order interactions without requiring parametric distributional assumptions.
Moving toward local adaptation, decision tree–based EM (DMI) (Rahman & Islam, 2011) parti-
tions complete cases via C4.5 and imputes within each leaf, and clustering-based random imputation
(CRI) (Zhang et al., 2006) applies kernel-weighted estimation in the nearest k-means cluster. Hybrid
similarity learners, such as KI and its fuzzy extension FCKI (Fouad et al., 2021), refine this idea by
dynamically selecting neighborhood sizes before multivariate imputation. For high-dimensional or
heterogeneous data, deep architectures like GAIN (Yoon et al., 2018) cast imputation as a generative
adversarial game where a generator proposes imputations conditioned on an observed-mask vector
and a discriminator learns to distinguish observed from imputed components, while VAE-based im-
puters (Veldkamp et al., 2025) treat the complete feature matrix as generated from low-dimensional
latent variables and learn to reconstruct missing entries via amortized variational inference under
a probabilistic encoder–decoder architecture. Building on denoising autoencoders, mDAE (Dupuy
et al., 2024) modifies the reconstruction loss to ignore pre-imputed values at missing positions and
couples this with an overcomplete hidden representation, which empirically improves RMSE over
standard DAEs and several classical imputers across multiple UCI datasets (Dupuy et al., 2024). In
the same spirit of generative modeling, MissDiff (Ouyang et al., 2023) trains a diffusion model on
tabular data with missing values by injecting noise along a forward stochastic process and learning
a reverse denoising process that is explicitly conditioned on the observed-mask pattern, thereby pro-
ducing imputations through iterative refinement from pure noise. Models such as MMDL (Li et al.,
2020) align stacked autoencoder embeddings across modalities to exploit cross-view correlations.
Ensemble schemes like FIMUS (Rahman & Islam, 2014) combine co-appearance, correlation, and
similarity in a weighted-voting framework. Despite their varied focuses—ranging from global in-
ference to localized and multimodal learning—these methods uniformly rely on statistical patterns
and do not leverage explicit logical rules to govern inter-variable relationships.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B CONVERGENCE ANALYSIS OF COORDINATE GRADIENT DESCENT

For clarity, we analyze an simplified version of our learning algorithm in which each head predicate
Uj is associated with a single parameter block Θj . Let Θ = (Θ1, . . . ,Θm) collect all parameters.
The global training objective is

L(Θ) =

m∑
j=1

LUj
(Θ), LUj

(Θ) = mean
(
(vUj

(Θ)⊙maskj − Uj,obs ⊙maskj)2
)
, (7)

where vUj
(Θ) is computed by forward chaining using the differentiable operators introduced in the

main text (e.g., Eq. 4).

B.1 ASSUMPTIONS

We make the following standard assumptions for smooth block coordinate descent (e.g., (Tseng,
2001; Bertsekas, 1997; Nesterov, 2013))

Assumption 1 The objective L : Rd → R is
1. bounded below: infΘ L(Θ) > −∞,
2. continuously differentiable in Θ, and
3. has block-wise Lipschitz-continuous gradients: for each j there exists Lj < ∞ such that,

for all Θ and all hj , ∥∥∇ΘjL(Θ + ejhj)−∇ΘjL(Θ)
∥∥ ≤ Lj ∥hj∥, (8)

where ejhj denotes the vector obtained by changing only block j.

These conditions hold in our setting because L is built from smooth operations (e.g., linear maps,
sigmoid, softmin, log-sum-exp) composed with a squared loss, and training is restricted to bounded
level sets.

B.2 IDEALIZED FULL-BATCH BLOCK COORDINATE GRADIENT DESCENT

Consider the following idealized algorithm. At iteration t we pick a block index jt ∈ {1, . . . ,m}
(e.g., by cycling through {1, . . . ,m}) and perform a gradient step on that block only:

Θt+1
jt

= Θtjt − η∇Θjt
L(Θt), (9)

Θt+1
ℓ = Θtℓ for all ℓ ̸= jt, (10)

where η > 0 is a step size. This matches the idealized version of the rule update in Section 5.1:
when we update Ujt , all other predicates Uℓ are kept fixed.

Lemma 1 (Monotone decrease for small steps) Suppose Assumption 1 holds. If the step size sat-
isfies 0 < η ≤ 1/Ljt at iteration t, then

L(Θt+1) ≤ L(Θt)− η

2

∥∥∇Θjt
L(Θt)

∥∥2. (11)

In particular, the sequence {L(Θt)}t≥0 is monotonically non-increasing and convergent.

Proof 1 (Proof sketch) By block-wise Lipschitz continuity of∇Θjt
L,

L(Θt+1) = L
(
Θt + ejt(Θ

t+1
jt
−Θtjt)

)
(12)

≤ L(Θt) +
〈
∇Θjt

L(Θt),Θt+1
jt
−Θtjt

〉
+

Ljt
2
∥Θt+1

jt
−Θtjt∥

2. (13)

Substituting the update Θt+1
jt
−Θtjt = −η∇Θjt

L(Θt) and rearranging gives

L(Θt+1) ≤ L(Θt)− η
(
1− ηLjt

2

)∥∥∇Θjt
L(Θt)

∥∥2. (14)

If η ≤ 1/Ljt , then 1− ηLjt/2 ≥ 1/2, yielding the claimed inequality.

Lemma 1 implies that the loss decreases at every iteration and the gradients on updated blocks cannot
stay large forever. Combined with a mild assumption that each block is selected infinitely often, we
obtain convergence to a block-stationary point.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proposition 1 (Convergence to a block-stationary point) Assume 1 holds, the level set {Θ :
L(Θ) ≤ L(Θ0)} is bounded, each block j is selected infinitely often, and the step sizes satisfy
0 < η ≤ minj 1/Lj . Then any limit point Θ⋆ of the sequence {Θt} generated by the above block
coordinate gradient method is block-stationary:

∇Θj
L(Θ⋆) = 0 for all j = 1, . . . ,m. (15)

Equivalently, no single block Θj can be perturbed to decrease L while all other blocks are fixed.

Proof 2 (Proof sketch) Summing the inequality from Lemma 1 over t shows that
∞∑
t=0

∥∥∇Θjt
L(Θt)

∥∥2 <∞,

so the block gradients must tend to zero along the subsequence where a given block j is updated.
Since each block is selected infinitely often and the iterates remain in a bounded level set, standard
arguments for block coordinate descent (Tseng, 2001) imply that any limit point has zero gradient
in every block.

Thus, in the ideal full-batch setting with sufficiently small steps, our predicate-wise coordinate up-
dates produce a non-increasing loss sequence {L(Θt)} and converge to a point where no single
predicate block Θj can further reduce the global objective.

B.3 STOCHASTIC MINI-BATCH VARIANT AND ADAM

In practice, our implementation uses mini-batches and the Adam optimizer for each block update (as
described in Section 5.1). In this case, the gradient ∇Θj

L is replaced by a stochastic estimate com-
puted on a mini-batch, and the step uses Adam’s adaptive preconditioning. This yields a stochastic
block-coordinate gradient scheme: the loss is no longer guaranteed to decrease at every single up-
date, but under standard assumptions stochastic block-coordinate methods are known to approach
a neighborhood of a stationary point in expectation (see, e.g., (Richtárik & Takáč, 2014; Wright,
2015)).

C MODEL SUPPLEMENT DESCRIPTION

C.1 OPTIMIZATION DETAILS

Throughout all training stages, each rule embedding (or set of embeddings during joint fine-tuning)
is optimized using the Adam optimizer. A crucial step following each gradient update is the normal-
ization of the rule embeddings. This involves applying a Rectified Linear Unit (ReLU) activation to
the embedding data (ensuring non-negative values, which can aid interpretability for positive pred-
icate contributions) followed by L2 normalization of each row vector within the rule embedding
matrix. This normalization helps stabilize the training process and maintains consistent magnitudes
for the embedding components.

D DATASETS AND BASELINES

D.1 DATASETS

Heart Disease. We use the widely-cited Cleveland Clinic dataset from the UCI Heart Disease
database (Detrano et al., 1989). This dataset contains 303 patient records, each with 13 features—a
mix of continuous and categorical variables—such as age, cholesterol level, and resting blood pres-
sure. The task is to predict the presence of heart disease, which is indicated by the target variable on
a scale from 0 (absence) to 4 (severe). Following standard practice, we simplify this into a binary
classification problem: predicting presence (values 1-4) versus absence (value 0).
SPECT. The SPECT (Single Proton Emission Computed Tomography) dataset presents a binary
classification task to diagnose cardiac conditions (normal/abnormal) based on 22 binary patient fea-
tures. The dataset describes the diagnosis of cardiac SPECT images. Each of the patients is classified
into two categories: normal and abnormal. The 267 SPECT image sets (patients) database were pro-
cessed to extract features that summarize the original SPECT images. As a result, 44 continuous
feature patterns were created for each patient. The pattern was further processed to obtain 22 binary
feature patterns. The CLIP3 algorithm was used to generate classification rules from these patterns
(Kurgan et al., 2001). The CLIP3 algorithm generated rules that were 84.0% accurate (as compared

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

with cardiologists’ diagnoses). A key challenge in this domain is the prevalence of missing data,
making it an ideal testbed for our model’s imputation and rule-learning capabilities.
Birds. Bird’s Rulebase is a well-known logic problem designed to assess an AI’s ability to learn and
reason with hierarchical logical rules that mimic common-sense knowledge (Tafjord et al., 2021). It
has the ground truth single theory of six rules 1 as follows.

can fly(X)← bird(X), not abnormal bird(X)

bird(X)← ostrich(X)

abnormal bird(X)← ostrich(X)

not can fly(X)← ostrich(X)

abnormal bird(X)← bird(X),wounded(X)

not can fly(X)← wounded(X)

Figure 5 further illustrates the structure of these rules.

OR

abnormal_bird: p(p[ostrich(X)] OR
p[bird(X) AND wounded(X)])

abnormal_bird:
p(ostrich(X))

bird:
p(ostrich(X))

ostrich(X)

can_fly: p(bird(X) AND
not abnormal_bird(X))

abnormal_bird: p(bird(X)
AND wounded(X))

wounded(X)bird(X)not abnormal_bird(X)

not can_fly:
p(wounded(X) OR

ostrich(X))

OR

Figure 5: Ground truth rules for Bird dataset.

D.2 PREPROCESSING OF DATASETS

Heart Disease. The UCI Heart Disease dataset contains a mix of 13 continuous and categorical fea-
tures with 303 samples. To create a challenging imputation task, we introduced a 30% missing ratio
independently into four key continuous variables: resting blood pressure (trestbps), cholesterol
(chol), maximum heart rate (thalach), and ST depression (oldpeak). Following the protocol
in MissDiff(Ouyang et al., 2023), we generate missing values under a Missing Completely At Ran-
dom (MCAR) mechanism. Let x ∈ Rd denote the complete data vector. We generate a binary mask
vector m ∈ {0, 1}d, where mi = 1 indicates that xi is observed, and mi = 0 indicates it is missing.
The observed data is represented as x̃ = x ⊙m + na⊙(1 −m), where ⊙ denotes element-wise
multiplication.
For our NS-FCN framework, the task is to directly impute these missing continuous values. For
deep learning baselines, continuous features are standardized using Z-score normalization, and
categorical features are one-hot encoded. For tree-based and statistical baselines (MissForest,
MICE), categorical variables are treated as factors. However, to accommodate the baseline mod-
els which only support binary inputs, we first discretized these four variables into three cate-
gorical bins based on clinical thresholds: blood pressure (< 120, 120 − 140, > 140), choles-
terol (< 200, 200 − 240,≥ 240), max heart rate (< 100, 100 − 160,≥160), and ST depression
(≤ 1.0, 1.0− 2.0, > 2.0). The baselines were then tasked with imputing the correct category. Con-
sequently, we evaluate the imputation accuracy on the discretized bins.
SPECT Heart. The dataset’s 22 binary features were randomly masked with a 30% probability to
simulate missing data. Our framework was then applied to a two-stage task: first, to impute the
missing features, and second, to perform the final patient diagnosis based on the completed feature
set. The diagnostic performance is compared against five baseline methods, including four rule-
based approaches and an MLP.
Birds. Following the ground truth logical rules, we generated a dataset of 1,500 samples. To create
a difficult logical reasoning challenge, we introduced a 90% missing ratio for two crucial latent

1https://www.doc.ic.ac.uk/ mjs/teaching/KnowledgeRep491/ExtendedLP 491-2x1.pdf, p5

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

predicates: can fly and abnormal bird. The task for all models was to impute these missing
binary values based on the observed predicates. The imputation accuracy is compared against the
same set of baselines.

D.3 BASELINE MODELS

To rigorously evaluate performance, we compare our method against 11 established baselines, rang-
ing from classical statistical methods, to advanced deep generative models, and interpretable models.

Statistical Models.
• MICE (van Buuren & Groothuis-Oudshoorn, 2011)

Multivariate Imputation by Chained Equations (MICE) is a widely used statistical method
based on Fully Conditional Specification (FCS). It iteratively imputes missing values by
modeling each feature with missing data as a function of other features using linear re-
gression (for continuous variables) or logistic regression (for categorical variables). We
generate m = 5 imputed datasets and report results from the first completion.

• MissForest (Stekhoven & Bühlmann, 2012)
MissForest is a non-parametric method that handles mixed-type data using an iterative Ran-
dom Forest approach. It treats the missing data problem as a prediction task, training a ran-
dom forest on the observed parts of the data to predict the missing values. It is particularly
effective at capturing non-linear interactions without explicit distributional assumptions.

Deep Generative Models.
• MLP (Multilayer Perceptron)

We use a simple feed-forward neural network with fully connected layers and ReLU acti-
vations as a deterministic imputation baseline. Given an input vector x ∈ Rd and a binary
mask m ∈ {0, 1}d indicating observed entries (mj = 1 if xj is observed, 0 otherwise), we
first obtain x̃ = x⊙m+ na⊙(1−m), and use the observed mask for input gating:

h0 = x̃⊙m.
The network fθ takes h0 as input and outputs a reconstruction x̂ = fθ(h0). Training is
performed under weak supervision by minimizing the Mean Squared Error (MSE) only on
observed entries:

LMLP = ∥(x̂− x)⊙m∥22 ,
so that gradients are propagated only through coordinates with ground-truth observations;
at test time, the missing entries (mj = 0) are imputed using the corresponding components
of x̂.

• VAE (Variational Autoencoder)
Our VAE-based imputer follows the amortized inference framework of Kingma & Welling
(2013), adapted to incomplete tabular data as in recent work on VAE with missingness (e.g.
Veldkamp et al. (2025)). Given (x,m), we construct a gated and masked input

x̃ = x⊙m+ na⊙(1−m), h0 = x̃⊙m,
and feed the concatenated vector [h0, 1−m] into the encoder to obtain a Gaussian posterior

qϕ(z | x,m) = N (µϕ,diag(σ
2
ϕ)).

A latent sample z is drawn via the reparameterization trick and passed through a decoder
pθ(x | z) to produce x̂θ(z). The model is trained by maximizing the Evidence Lower
Bound (ELBO), where the reconstruction term only involves observed entries:

LVAE =
∥∥(x̂θ(z)− x

)
⊙m

∥∥2
2︸ ︷︷ ︸

reconstruction on observed data

+ KL
(
qϕ(z | x,m) ∥ p(z)

)︸ ︷︷ ︸
KL regularization

.

At inference time, missing values are imputed by the decoder output x̂θ(z) at coordinates
where mj = 0.

• DAE / mDAE (modified Denoising Autoencoder)
For the autoencoder baseline, we adopt a denoising autoencoder architecture with a modi-
fication of the loss function proposed in the mDAE Dupuy et al. (2024). Given (x,m), we
first perform a simple pre-imputation to obtain a complete input x̃, and then apply masking
noise with rate ρ only on originally observed entries:

x̃ = x⊙m+ na⊙(1−m), c ∼ Ber(ρ)d, x̃(noisy) = (x̃⊙m)⊙
(
1− c⊙m

)
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The corrupted input x̃(noisy) is fed into an encoder–decoder network gψ that outputs a recon-
struction x̂ = gψ(x̃

(noisy)). Crucially, following the modified-loss idea of mDAE (Dupuy
et al., 2024), the reconstruction loss is computed only on truly observed entries, and pre-
imputed missing values are ignored:

LmDAE =
∥∥(x̂− x

)
⊙m

∥∥2
2
.

This prevents the autoencoder from overfitting arbitrary pre-imputed values at missing po-
sitions while still benefiting from denoising training; at test time, imputations for missing
entries (mj = 0) are taken from the corresponding components of x̂.

• GAIN (Generative Adversarial Imputation Nets) (Yoon et al., 2018)
GAIN adapts the Generative Adversarial Network framework for imputation. The gen-
erator G imputes missing components, while the discriminator D attempts to distinguish
between observed and imputed components. A hint mechanism is introduced to provide D
with partial information about the mask distribution, forcing G to learn the true underlying
data distribution. We utilize a hybrid loss function combining adversarial loss with MSE
for continuous features and cross-entropy for categorical features.

• MissDiff (Diffusion Imputation Nets)(Ouyang et al., 2023)
We employ a diffusion probabilistic model specifically adapted for tabular missing data.
The model is trained to reverse a noise-adding process. During inference (imputation), we
utilize the guided sampling or conditioning strategy: at each denoising step t, the known
observed values xobs (xobs = x ⊙m + na ⊙ (1 −m)) are re-injected into the sample to
ensure consistency with the ground truth. The model effectively samples ximp from the
conditional distribution p(xmiss|xobs).

Interpretable Models.
• BRCG (Dash et al., 2018) is an integer program designed to trade classification accuracy

for rule simplicity. It uses column generation to search over an exponential number of
candidate clauses efficiently.

• LEN (Barbiero et al., 2022) is an end-to-end differentiable method for extracting logical
explanations from neural networks using First-Order Logic.

• DR-NET (Qiao et al., 2021) is a method for learning independent logical rules in disjunc-
tive standard form as an interpretable model for classification.

• RRL (Wang et al., 2021) learns interpretable non-fuzzy rules for data representation and
classification using a novel training method called Gradient Grafting.

E PERFORMANCE UNDER DIFFERENT MISSINGNESS MECHANISMS

We compare three general missingness mechanisms for dataset generation:
• MCR (Missing Completely at Random): The probability of being missing is the same

for all cases, which is the missingness mechanism in other experiments on our paper.
• MAR (Missing at Random): Missingness depends on observed variables. We can indicate

which observed variable to use for missingness; the default is X0. Then, we set a higher
probability of missing when the dependency variable is 1.

• MNAR (Missing Not at Random): Missingness depends on unobserved variables or the
missing values themselves. Take X3 for example, we set it is more likely to be missing
when X3 = 1 (positive values are harder to observe).

We show an observation ratio = 0.2 and a sample size = 50,000 as a representative case in Table 8.
We run 20 random seeds. Since the seeds are different from those used in Tables 23 and 24, the
results are slightly different.

Table 8: Comparison of inference accuracy and rule accuracy under different missing mechanisms.

MCAR MAR MNAR
Imputation Accu. Rule Accu. Imputation Accu. Learned Rules Imputation Accu. Rule Accu.

X3 1.00 ± 0.00 1.0 1.00 ± 0.00 1.0000 1.00 ± 0.00 1.0000
X4 1.00 ± 0.00 1.0 1.00 ± 0.00 1.0000 1.00 ± 0.00 1.0000
X5 0.95 ± 0.07 0.6 0.95 ± 0.07 0.6000 0.93 ± 0.05 0.4000

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The results show that MAR and MNAR show comparable results to MCAR, which demonstrates
our method’s effectiveness across the full spectrum of missing data scenarios.

F RUNNING TIME AND MEMORY COST ANALYSIS

F.1 SYNTHETIC DATASET

While coordinate descent requires different cycle numbers (Table 3), our method demonstrates effi-
cient performance on standard CPU configurations. We conducted experiments using an Apple M4
chip with 10 cores and 16GB memory, taking observation ratio = 0.2 as an example. Results over
20 runs on setting (b) of Figure 3.

Table 9: Running time and memory cost of our model with varying sample sizes. Results over 20
seeds on the example (b) of Figure 3.

Sample size 2500 5000 10,000 25,000 50,000 100,000

Running time (s) 15.66±3.48 30.17±2.12 54.49±15.98 130.36±45.80 194.59±98.53 493.99±152.81
Memory cost (MB) 64.84±10.72 71.92±0.82 78.55±1.96 95.81±12.13 126.99±26.97 175.64±33.93

Overall, we observe minimal time and memory costs. Time complexity scales near-linearly with
increasing sample size, while memory requirements remain modest even for large datasets. Process-
ing 100,000 samples in under 9 minutes demonstrates strong efficiency for CPU-based execution.

F.2 REAL-WORLD DATASET

Table 10: Comparison of running time and memory cost across different methods in SPECT dataset.

Method Running time (s) Memory cost (MB)
MLP 0.16± 0.02 158.60± 0.10
LEN 0.20± 0.00 102.78± 0.01
RRL 16.23± 0.01 132.59± 0.01
BRCG 2.65± 0.27 135.11± 0.08
DR-NET 89.01± 0.06 45.93± 0.30
NS-FCN (Ours) 10.34± 0.30 61.42± 1.02

We conducted a comparative analysis of our proposed NS-FCN model against baseline methods,
focusing on computational efficiency. We take SPECT dataset as an example. The results in Table
10 demonstrate that NS-FCN achieves a competitive balance between performance and resource
consumption. While methods like MLP and LEN offer the fastest execution times, they use higher
memory costs. Our NS-FCN, though not the fastest, maintains a considerably minimal memory cost
and running time.

G ASSESSMENT OF RULE QUALITY

G.1 STRUCTURAL STABILITY.

To quantify the structural stability and reliability of the learned rules, we measure the consistency
of rule predicates across different random seeds using the Jaccard index. For each rule, we treat
the set of instances that satisfy its predicates in a given run as a binary mask, and compute pairwise
Jaccard indices between runs obtained under different random seeds and observation probabilities.
The Jaccard index, defined as the intersection over union of two predicate sets, provides a natural
measure of similarity between rule structures learned across independent runs. High mean Jaccard
scores (close to 1.0) indicate that the learned rules are structurally stable and robust to stochasticity
in training and sampling, whereas lower scores reveal predicates whose semantics are more sensitive
to noise or initialization.

Synthetic Dataset (Figure 3 (b)). As shown in Table 11, rules X3 and X4 achieve perfect Jac-
card indices of 1.0 across all observation probabilities, demonstrating complete structural stability.
In contrast, the aggregated X5 rule exhibits more variability (ranging from 0.60 to 0.76), reflecting

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

the increased complexity of learning disjunctive rule structures. In this way, structural stability—
measured via the Jaccard index of predicates across runs—provides a complementary notion of reli-
ability that focuses on the consistency of the learned logical structure rather than solely on predictive
performance.

Table 11: Jaccard index of learned rule predicates on synthetic data under different observation
probabilities. Example (b) of Figure 3 with 50,000 samples over 20 seeds.

Obs. Ratio X3 X4 X5

0.1 1.0000± 0.0000 1.0000± 0.0000 0.7572± 0.2526
0.2 1.0000± 0.0000 1.0000± 0.0000 0.5987± 0.2837
0.3 1.0000± 0.0000 1.0000± 0.0000 0.6726± 0.2385

Table 12: Jaccard Index of learned predicates across different sample sizes on the Birds dataset.
Results over 10 seeds.

Sample Size abnormal clause1 abnormal clause2 can fly
(ostrich) (bird ∧ wounded) (bird ∧ ¬abnormal bird)

100 0.8000± 0.2449 0.5000± 0.3162 0.5000± 0.3162
500 0.8000± 0.2449 0.8000± 0.2449 0.7000± 0.2449
1000 0.8000± 0.2449 0.6000± 0.3000 0.6000± 0.3000
1500 0.8187± 0.2404 0.6868± 0.3024 0.7967± 0.2670
2000 0.8000± 0.2449 0.6000± 0.3000 0.6000± 0.3000

Birds Dataset. We analyze the consistency of learned rule structures in Birds Dataset (Figure 5).
Table 12 presents the Jaccard indices across all pairwise comparisons between seeds for different
sample sizes, where abnormal clause1 and abnormal clause2 correspond to the two conjunctive
clauses in the disjunctive rule for abnormal bird: abnormal bird← ostrich ∨ (bird ∧ wounded).
The results demonstrate that, with the exception of n = 100 where the sample size is insufficient, the
model achieves good consistency (Jaccard index > 0.60) across all rules and sample sizes. Overall,
n = 1500 yields the best consistency, with abnormal clause1 reaching 0.8187 and can fly reaching
0.7967, indicating that this sample size provides an optimal balance between data availability and
model stability.

Table 13: Structural stability of learned prediction rules on the Heart Disease dataset.

Metric Value
Mean Pairwise Jaccard Index 0.4151± 0.0994

Most Frequently Selected Features
restecg 1.0 (ST-T wave abnormality) 9/10 runs
thal 3.0 (normal thalassemia) 8/10 runs
ca 3.0 (3 major vessels colored) 8/10 runs
thalach (maximum heart rate achieved) 7/10 runs

Heart Disease dataset. For this real-world dataset, where ground-truth rules are unknown, we
evaluate structural stability by computing the Jaccard index of selected features across all predic-
tion rules learned under different random seeds. Table 13 shows that the model achieves moderate
consistency (Jaccard index 0.4151± 0.0994), indicating that while different seeds may select vary-
ing feature combinations, there is substantial overlap in the most important features. The most fre-
quently selected features include restecg 1.0 (ST-T wave abnormality on resting electrocardiogram),
thal 3.0 (normal thalassemia, a blood disorder), ca 3.0 (three major vessels colored by fluoroscopy,
indicating severe coronary artery disease), and thalach (maximum heart rate achieved during exer-
cise). These features align with established clinical risk factors for heart disease, suggesting that the
model successfully identifies medically relevant features despite the lack of explicit rule supervision.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G.2 RULE LENGTH ANALYSIS

To understand the sensitivity of our framework to the rule structure hyperparameters, we conduct
ablation studies on the Heart Disease dataset, systematically varying the arity of conjunction (h) and
the number of conjunctive clauses (Rk).
We find that both h and Rk show optimal performance in a wide range. For instance, h ∈ [3, 9] and
Rk ∈ [5, 20], showing that except for very small h and Rk, our model is able to capture the logic
structure within the dataset. Besides, the number of disjunctive clauses is more critical than the arity
of individual conjunctions for this dataset. This aligns with the intuition that complex real-world
decision boundaries often require multiple alternative rules rather than highly complex single rules.

5 10 15 20
Number of Conjunctive Clauses

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

Effect of Conjunctive Clauses Number on Test Accuracy

Test Accuracy
±1 std

5 10 15 20
Number of Conjunctive Clauses

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 F
1

Sc
or

e

Effect of Conjunctive Clauses Number on Test F1

Test F1
±1 std

Figure 6: Classification accuracy for heart disease risk under the effect of the number of conjunction
arity (h). Results are over 10 seeds.

2 4 6 8 10
Arity of Conjunction (h)

0.84

0.86

0.88

0.90

0.92

Te
st

 A
cc

ur
ac

y

Effect of Arity of Conjunction(h) on Test Accuracy

Test Accuracy
±1 std

2 4 6 8 10
Arity of Conjunction (h)

0.84

0.86

0.88

0.90

0.92

Te
st

 F
1

Sc
or

e

Effect of Arity of Conjunction(h) on Test F1

Test F1
±1 std

Figure 7: Classification accuracy for heart disease risk under the effect of the number of conjunctive
Clauses (Rk). Results are over 10 seeds.

H ANALYSIS OF TEMPERATURE IN SOFT OPERATORS AT EQUATIONS 4, 5
To validate robustness, we conducted a sensitivity analysis on Figure 3(b) with 20,000 samples and
0.2 observation ratio.

Soft-AND (τ). Table 14 shows that the model maintains high accuracy when τ is small (e.g.,
τ ∈ [0.01, 0.20]). This is expected because as τ → 0, Softmin approximates the hard min logic
required for strict conjunctions. Performance degrades only when τ becomes too large (τ ≥ 1.0),
where the operator becomes too “soft” to capture the decisive logical boundaries. Thus, a small
constant temperature (e.g., τ = 0.1) is a safe and effective default.

Soft-OR (β). Table 15 reports the imputation accuracy under varying constant β values. The re-
sults demonstrate that our model is highly robust to β: it achieves near-perfect accuracy for all latent
predicates (X3, X4, X5) across a wide range, specifically for β ≥ 3. This aligns with the theoretical
property that as β → ∞, the LogSumExp function approximates the hard max operator. In prac-
tice, any sufficiently large provides a strong gradient signal for discrimination while maintaining
differentiability.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 14: Imputation accuracy for latent predicates X3, X4, X5 under different softmin temperatures
(with fixed β = 10 over 20 random seeds).

τ in Equation 4 Imputation Acc. X3 Imputation Acc. X4 Imputation Acc. X5

0.01 1.000± 0.000 1.000± 0.000 0.965± 0.063
0.02 1.000± 0.000 1.000± 0.000 0.987± 0.034
0.05 1.000± 0.000 1.000± 0.000 0.939± 0.061
0.10 1.000± 0.000 1.000± 0.000 0.958± 0.076
0.20 1.000± 0.000 1.000± 0.000 1.000± 0.000
0.50 1.000± 0.000 1.000± 0.000 0.858± 0.038
1.00 0.928± 0.122 0.892± 0.134 0.776± 0.027
2.00 0.751± 0.002 0.839± 0.157 0.786± 0.008
5.00 0.769± 0.111 0.750± 0.003 0.772± 0.083

10.00 0.752± 0.003 0.770± 0.111 0.802± 0.064
20.00 0.697± 0.098 0.733± 0.046 0.799± 0.064
50.00 0.733± 0.049 0.733± 0.046 0.798± 0.077

100.00 0.750± 0.004 0.698± 0.064 0.803± 0.069

Table 15: Imputation accuracy for latent predicates X3, X4, X5 under different constant temperature
values β (with fixed τ = 0.1 over 20 random seeds).

β of Equation 5 Imputation Acc. X3 Imputation Acc. X4 Imputation Acc. X5

0.1 1.000± 0.000 1.000± 0.000 0.218± 0.002
0.2 1.000± 0.000 1.000± 0.000 0.218± 0.002
0.5 1.000± 0.000 1.000± 0.000 0.218± 0.002

1 1.000± 0.000 1.000± 0.000 0.217± 0.002
2 1.000± 0.000 1.000± 0.000 0.870± 0.117
3 1.000± 0.000 1.000± 0.000 0.942± 0.056
4 1.000± 0.000 1.000± 0.000 0.866± 0.057
5 0.965± 0.093 1.000± 0.000 0.894± 0.056

10 0.965± 0.093 1.000± 0.000 0.915± 0.040
15 0.965± 0.092 1.000± 0.000 0.899± 0.072
20 0.966± 0.091 1.000± 0.000 0.928± 0.057
25 0.965± 0.092 1.000± 0.000 0.886± 0.060
30 1.000± 0.000 1.000± 0.000 0.899± 0.088
35 0.965± 0.093 1.000± 0.000 0.880± 0.076
40 1.000± 0.000 1.000± 0.000 0.889± 0.075
45 0.964± 0.094 0.965± 0.093 0.909± 0.051
50 1.000± 0.000 1.000± 0.000 0.917± 0.064

100 0.965± 0.094 1.000± 0.000 0.916± 0.064
200 1.000± 0.000 1.000± 0.000 0.908± 0.070

Conclusion. Our framework does not rely on carefully hyperparameter tuning. A moderate
to large β for Soft-OR and a small τ for Soft-AND consistently yield optimal results. Thus, we
use τ = 0.1 and β = 10 as temperature parameters for all our experiments. Furthermore, complex
scheduling strategies like cosine annealing can be employed if constant temperature are not good
enough.

I SENSITIVITY ANALYSIS WITH LABEL NOISE AND MISSING RATIO

I.1 ROBUSTNESS ANALYSIS WITH LABEL NOISE

To assess the robustness of our framework against data inconsistencies and imperfect logical depen-
dencies, we conducted experiments by injecting label noise into the latent predicates.
Specifically, we first generate the ground-truth latent predicates X3, X4, X5 following the perfect
logical rules (e.g., X3 = X0 ∧X1). Then, we introduce stochasticity by flipping the binary labels
of these latent predicates with a probability pnoise ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. This setup simu-
lates real-world scenarios where logical rules may have exceptions or where the observed data
contains errors, directly challenging the model’s ability to distill consistent symbolic rules from

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

noisy supervision. Tables 16 and 17 present the learned rule structures and their corresponding im-
putation accuracies under varying noise ratios. We use Figure 3 (b) as the representative example
with an observation ratio of 0.3 and sample sizes of 20,000.
In the noise-free setting (pnoise = 0.0), our model perfectly recovers the ground-truth rules for
the simpler conjunctive predicates X3 and X4 (with rule accuracy 1.00), achieving perfect imputa-
tion accuracy (1.000). For the more complex disjunctive rule X5, the model achieves a rule accu-
racy of 0.50 and an imputation accuracy of 0.955 after fine-tuning, indicating that while the exact
ground-truth structure is harder to isolate, the learned approximations maintain strong predictive
performance.
Remarkably, the model demonstrates strong robustness at low-to-moderate noise levels (pnoise ≤
0.3). At pnoise = 0.1 and 0.2, the ground-truth rules (underlined in the table) for X3 and X4 are
perfectly recovered (rule accuracy 1.00) with near-perfect imputation accuracies; for the complex
multi-hop rules of X5, the ground-truth rules frequently emerge as the dominant learned structures
(with rule accuracy above 0.5). Even at pnoise = 0.3, the model maintains high rule accuracy (0.85)
for both X3 and X4, with imputation accuracies above 0.95; for X5, the rule accuracy decreases to
0.2 at pnoise = 0.3, but the imputation accuracy remains at 0.828, suggesting that the model learns
valid approximations (e.g., capturing one correct disjunctive branch) that preserve predictive
power.
As noise increases beyond 0.3, the performance degrades more significantly. At pnoise = 0.4, rule
accuracies drop to 0.85 and 0.6 for X3 and X4 respectively, while X5 fails to recover the correct
structure (rule accuracy 0.00). At pnoise = 0.5, the model struggles to learn meaningful rules, with
rule accuracies in [0.0, 0.1] for all predicates. However, the imputation accuracies remain above
0.70 even at these high noise levels, indicating that the learned approximations, while not perfectly
matching the ground-truth rules, still provide useful predictive signals.
The imputation accuracy degrades gracefully as noise increases, rather than collapsing abruptly,
indicating that the soft-logic relaxation effectively prevents the model from overfitting to noise,
allowing it to capture the dominant logical signals within the data. The fine-tuning step for X5

consistently improves imputation accuracy across all noise levels, demonstrating the effectiveness
of the iterative refinement process.

Table 16: Impact of label noise on rule learning and missing value imputation performance. Results
are over 20 random seeds.

Noise Avg. Imputation Accu. Avg. Imputation Accu. Train Loss Train Loss
Ratio (Before Fine-tune) (After Fine-tune) (Before Fine-tune) (After Fine-tune)

0.0 X3 : 1.000± 0.000 / X3 : 0.001± 0.000 /
X4 : 1.000± 0.000 / X4 : 0.001± 0.000 /
X5 : 0.907± 0.050 X5 : 0.955± 0.049 X5 : 0.089± 0.035 X5 : 0.067± 0.031

0.1 X3 : 1.000± 0.000 / X3 : 0.098± 0.003 /
X4 : 1.000± 0.000 / X4 : 0.099± 0.004 /
X5 : 0.948± 0.042 X5 : 0.946± 0.038 X5 : 0.168± 0.026 X5 : 0.123± 0.021

0.2 X3 : 0.975± 0.076 / X3 : 0.193± 0.005 /
X4 : 0.987± 0.057 / X4 : 0.193± 0.007 /
X5 : 0.894± 0.050 X5 : 0.902± 0.046 X5 : 0.260± 0.008 X5 : 0.204± 0.012

0.3 X3 : 0.950± 0.103 / X3 : 0.282± 0.006 /
X4 : 0.987± 0.056 / X4 : 0.282± 0.008 /
X5 : 0.822± 0.046 X5 : 0.824± 0.066 X5 : 0.320± 0.006 X5 : 0.266± 0.006

0.4 X3 : 0.863± 0.127 / X3 : 0.360± 0.009 /
X4 : 0.862± 0.128 / X4 : 0.357± 0.008 /
X5 : 0.792± 0.078 X5 : 0.786± 0.065 X5 : 0.370± 0.006 X5 : 0.311± 0.006

0.5 X3 : 0.745± 0.085 / X3 : 0.418± 0.007 /
X4 : 0.725± 0.077 / X4 : 0.421± 0.007 /
X5 : 0.761± 0.057 X5 : 0.767± 0.072 X5 : 0.421± 0.007 X5 : 0.349± 0.007

I.2 MISSING RATIO

In three synthetic datasets, we have varied the missing ratio in {0.7, 0.8, 0.9} in the above results.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 17: Learned rule structures under label noise. Ground truth rules are indicated with underlines.
Results are over 20 random seeds.

Noise Ratio Learned Rule Structure Rule Accu.
0.0 X3 : X0 ∧X1 X3 : 1.00

X4 : X2 ∧X7 X4 : 1.00
X5 : (X0 ∧X4) ∨ (X3 ∧X6), (X3 ∧X4) ∨ (X3 ∧X6), (X0 ∧X4) ∨ (X0 ∧X4), (X0 ∧X4) ∨ (X1 ∧X6), (X1 ∧X3) ∨ (X3 ∧X6) X5 : 0.50

0.1 X3 : X0 ∧X1 X3 : 1.00
X4 : X2 ∧X7 X4 : 1.00
X5 : (X0 ∧X4) ∨ (X3 ∧X6), (X3 ∧X4) ∨ (X3 ∧X6), (X0 ∧X4) ∨ (X0 ∧X4), (X0 ∧X4) ∨ (X2 ∧X3), (X0 ∧X2) ∨ (X3 ∧X6) X5 : 0.55

0.2 X3 : X0 ∧X1 X3 : 1.00
X4 : X2 ∧X7 X4 : 1.00
X5 : (X0 ∧X4) ∨ (X3 ∧X6), (X0 ∧X4) ∨ (X3 ∧X4), (X0 ∧X1) ∨ (X3 ∧X6), (X0 ∧X4) ∨ (X0 ∧X7), (X0 ∧X4) ∨ (X0 ∧X6) X5 : 0.60

0.3 X3 : X0 ∧X1, X1 ∧X2, X1 ∧X1, X1 ∧X7 X3 : 0.85
X4 : X2 ∧X7, X2 ∧X6, X2 ∧X2 X4 : 0.85
X5 : (X0 ∧X4) ∨ (X3 ∧X6), (X0 ∧X7) ∨ (X3 ∧X6), (X0 ∧X3) ∨ (X0 ∧X4), (X3 ∧X6) ∨ (X4 ∧X7), (X0 ∧X1) ∨ (X0 ∧X6) X5 : 0.20

0.4 X3 : X0 ∧X1, X1 ∧X1, X1 ∧X2, X0 ∧X6, X0 ∧X0 X3 : 0.60
X4 : X2 ∧X7, X7 ∧X7, X0 ∧X2, X0 ∧X0, X2 ∧X6 X4 : 0.60
X5 : (X0 ∧X2) ∨ (X4 ∧X6), (X0 ∧X6) ∨ (X3 ∧X3), (X0 ∧X2) ∨ (X2 ∧X3), (X0 ∧X6) ∨ (X1 ∧X7), (X1 ∧X4) ∨ (X4 ∧X4) X5 : 0.00

0.5 X3 : X1 ∧X7, X2 ∧X2, X6 ∧X6, X0 ∧X2, X0 ∧X1 X3 : 0.10
X4 : X6 ∧X6, X0 ∧X6, X0 ∧X7, X6 ∧X7, X1 ∧X2 X4 : 0.05
X5 : (X0 ∧X3) ∨ (X1 ∧X6), (X0 ∧X2) ∨ (X2 ∧X7), (X0 ∧X0) ∨ (X2 ∧X7), (X0 ∧X3) ∨ (X4 ∧X7), (X2 ∧X7) ∨ (X6 ∧X7) X5 : 0.00

In real-world datasets, to assess the model’s robustness under different levels of data scarcity, we
evaluated its performance on the SPECT and Heart Disease dataset while varying the observation
ratio from 0.3 to 0.9 (i.e. missing ratio from 0.1 to 0.7).
As shown in Tables 18 and 19, the model’s accuracy remains acceptable and improves consistently
as more data becomes available. Notably, in SPECT, even with only 30% of the data observed (a
70% missing ratio), the model maintains a high F1 score of 0.751, demonstrating its capability to
learn meaningful diagnostic rules from highly incomplete datasets.
For the Birds Dataset, we fix the observation ratio as 0.1 (i.e. 90% missingness) and show results
over different number of training samples. Results in Table 20 show that a few hundred samples are
sufficient for the model to converge to the correct logical truth.

Table 18: Performance on the SPECT dataset with varying observation ratios.

Observation Ratio Imputation Acc. Diagnosis Acc. Diagnosis F1
0.3 0.501 0.679 0.751
0.5 0.630 0.765 0.808
0.7 0.763 0.920 0.958
0.9 0.791 0.929 0.960

Table 19: Imputation accuracy for Heart Disease under different observation ratios.

Observation Ratio Overall trestbps chol thalach oldpeak
0.3 0.6444 0.7129 0.6304 0.7393 0.4950
0.5 0.7434 0.8053 0.7558 0.7954 0.6172
0.7 0.8432 0.8647 0.8482 0.9043 0.7558
0.9 0.9439 0.9439 0.9307 0.9769 0.9241

J ADDITIONAL SYNTHETIC EXPERIMENTS RESULTS

J.1 MAIN RESULTS SUPPLEMENT OF EXAMPLE (B) OF FIGURE 3.

Dataset Generation. The base variables {X0, X1, X2, X6, X7} are independently generated from a
Bernoulli distribution, each with p = 0.5. Subsequently, the values for {X3, X4, X5} are determin-
istically derived using the ground truth logical rules depicted in Figure 3. Specifically, these rules
are:

X3 ← X0 ∧X1

X4 ← X2 ∧X7

X5 ← (X3 ∧X6) ∨ (X4 ∧X0)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 20: Impact of training sample size on the imputation accuracy of latent predicates
(abnormal, fly) in the Birds domain. Results are reported as mean ± std over 10 random seeds,
evaluated with 10% observation probability.

Samples Acc. Abnormal Bird Acc. Can Fly

100 0.896± 0.058 0.845± 0.148
500 0.976± 0.054 0.928± 0.066
1000 0.951± 0.067 0.928± 0.066
1500 0.949± 0.070 0.952± 0.066
2000 0.951± 0.067 0.928± 0.066

Finally, to introduce missing information, a portion of the values for X3, X4, and X5 are randomly
masked. These masked variables become the targets for imputation. In our experiments, we vary the
level of missingness, applying masking probabilities of 70%, 80%, and 90% to these target variables
(corresponding to observation ratios of 30%, 20%, and 10%, respectively).
Main Results. As demonstrated in a previous case study (Table 3, which shows three runs using
the same seed but different internal rule optimization orders), variations in the rule optimization
sequence within a single seed can affect training efficiency. We thus show the coordinate descent
training progress under a different random optimization order from Figure 4 here in Figure 9. In this
run, the optimization order is [X5, X4, X3] for cycle 1 and [X4, X5, X3] for cycle 2. Given such
different learning trajectories, our model still discovers the correct rules successfully.
Furthermore, random initialization across different seeds can lead to the discovery of varied rule
sets, and occasionally, the model might converge to a local optimum. However, as the analysis of
convergence before, performing multiple runs with different initializations enhances the probability
of identifying the global optimal solution. Our findings indicate that the model can finds global
optima several times within 20 random seeds (Tables 23 and 24).
Learning Efficiency. As the observation ratio decreases, the guidance signal becomes less infor-
mative, reducing both rule structure recovery and missing value imputation. We also evaluated the
model’s performance with a smaller training set of 10,000 samples. The results, detailed in Tables
21 and 22, demonstrate that our model maintains high accuracy for simple AND rule learning and
predicate inference. Even for challenging OR rule learning, the model successfully identifies most
body predicates. We further investigated the impact of dataset sample size, varying it from 1,000
to 20,000 samples. As shown in Figure 8, the most efficient setting we can recover the OR rule for
X5 is to use an observation ratio of 0.1 and a dataset of 4,000 samples. For the simpler AND rules
governing X3 and X4, correct rule structures could be learned with 1,000 or even smaller samples
and a 0.1 observation ratio.

Table 21: Summary of synthetic data experiment results for example (b) of the Figure 3. Each
observation ratio is evaluated using 10,000 samples and results are averaged over 20 random seeds.

Obs.
Ratio

Avg. Imputation Accu.
(Before Fine-tune)

Avg. Imputation Accu.
(After Fine-tune)

Train Loss
(Before Fine-tune)

Train Loss
(After Fine-tune)

0.3 X3 : 0.91± 0.014
X4 : 0.93± 0.013
X5 : 0.87± 0.003

/
/

X5 : 0.88± 0.002

X3 : 0.069± 0.007
X4 : 0.054± 0.006
X5 : 0.110± 0.002

/
/

X5 : 0.103± 0.000

0.2 X3 : 0.91± 0.014
X4 : 0.90± 0.015
X5 : 0.86± 0.003

/
/

X5 : 0.87± 0.003

X3 : 0.067± 0.007
X4 : 0.072± 0.007
X5 : 0.116± 0.002

/
/

X5 : 0.105± 0.001

0.1 X3 : 0.90± 0.015
X4 : 0.91± 0.014
X5 : 0.85± 0.003

/
/

X5 : 0.88± 0.002

X3 : 0.075± 0.007
X4 : 0.063± 0.006
X5 : 0.124± 0.002

/
/

X5 : 0.107± 0.001

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 22: Summary of learned rule structures and accuracy for example (b) of Figure 3. Each
observation ratio is evaluated using 10,000 samples, with results averaged over 20 random seeds.
We present the top 3 learned rule structures in order of discovery accuracy. Rule accuracy indicates
the percentage of 20 runs in which a rule was learned completely correctly.

Obs. Ratio Learned Rule Structure Rule Accu.

0.3 X3 : X0 ∧X1, X0 ∧X6, X1 ∧X7

X4 : X2 ∧X7, X6 ∧X7, X7

X5 : (X0 ∧X4) ∨ (X3 ∧X6), (X3 ∧X4) ∨ (X3 ∧X6), (X0 ∧X1) ∨ (X0 ∧X4)

X3 : 0.65
X4 : 0.70
X5 : 0.10

0.2 X3 : X0 ∧X1, X0, X0 ∧X2

X4 : X2 ∧X7, X2, X6 ∧X7

X5 : (X0 ∧X4) ∨ (X3 ∧X6), (X3 ∧X4) ∨ (X3 ∧X6), (X0) ∨ (X1 ∧X6)

X3 : 0.65
X4 : 0.60
X5 : 0.10

0.1 X3 : X0 ∧X1, X0 ∧X2, X0 ∧X6

X4 : X2 ∧X7, X2, X6 ∧X7

X5 : (X3 ∧X4) ∨ (X3 ∧X6), (X0 ∧X1) ∨ (X0 ∧X4), (X0 ∧X4) ∨ (X3 ∧X6)

X3 : 0.60
X4 : 0.65
X5 : 0.10

2500 5000 7500 10000 12500 15000 17500 20000
n_samples

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

X3 Imputation Accuracy

Seed 1
Seed 3
Seed 12
Seed 42
Seed 88

2500 5000 7500 10000 12500 15000 17500 20000
n_samples

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

X4 Imputation Accuracy

Seed 1
Seed 3
Seed 12
Seed 42
Seed 88

2500 5000 7500 10000 12500 15000 17500 20000
n_samples

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

X5 Imputation Accuracy

Seed 1
Seed 3
Seed 12
Seed 42
Seed 88

Figure 8: Imputation accuracy versus dataset sample size for Figure 3 (b). For these experiments,
10% of the data was observed (i.e., a 90% missing ratio) for predicates in X3, X4, and X5.

J.2 RESULTS OF EXAMPLE (A) OF FIGURE 3

Dataset Generation. The base variables {X0, X1, X2, X6} are independently generated from a
Bernoulli distribution, each with p = 0.5. Subsequently, the values for {X3, X4, X5} are determin-
istically derived using the ground truth logical rules depicted in Figure 3. Specifically, these rules
are:

X3 ← X0 ∧X1

X4 ← X2 ∧X3

X5 ← X4 ∧X6

Finally, to introduce missing information, a portion of the values for X3, X4, and X5 are randomly
masked. These masked variables become the targets for imputation. In our experiments, we vary the

Table 23: Summary of synthetic data experiment results for example (b) of the Figure 3. Evaluated
on 50,000 samples and results are averaged over 20 random seeds.

Obs.
Ratio

Avg. Imputation Accu.
(Before Fine-tune)

Avg. Imputation Accu.
(After Fine-tune)

Train Loss
(Before Fine-tune)

Train Loss
(After Fine-tune)

0.3 X3 : 0.98± 0.006
X4 : 1.00± 0.000
X5 : 0.94± 0.003

/
/

X5 : 0.96± 0.003

X3 : 0.024± 0.003
X4 : 0.005± 0.000
X5 : 0.054± 0.002

/
/

X5 : 0.065± 0.001

0.2 X3 : 1.00± 0.000
X4 : 0.95± 0.010
X5 : 0.93± 0.003

/
/

X5 : 0.96± 0.002

X3 : 0.005± 0.000
X4 : 0.041± 0.005
X5 : 0.063± 0.003

/
/

X5 : 0.067± 0.001

0.1 X3 : 1.00± 0.000
X4 : 1.00± 0.000
X5 : 0.93± 0.003

/
/

X5 : 0.94± 0.002

X3 : 0.005± 0.000
X4 : 0.005± 0.000
X5 : 0.056± 0.002

/
/

X5 : 0.073± 0.001

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70 80
Predicate Training Epoch

0.00

0.05

0.10

0.15

Lo
ss

(a) Predicate Rule Training Losses (Seed 12)
X3 Loss
X4 Loss
X5 Loss

0 10 20 30 40 50 60 70 80
Predicate Training Epoch

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

(b) Unobserved Predicate Imputation Accuracies (Seed 12)

X3 Unobserved Acc.
X4 Unobserved Acc.
X5 Unobserved Acc.

0 10 20 30 40 50 60 70 80
Predicate Training Epoch

0.00

0.02

0.04

0.06

0.08

0.10

Gr
ad

ie
nt

 N
or

m

(c) Predicate Rule Gradient Norms (Seed 12)
X3 Grad Norm
X4 Grad Norm
X5 Grad Norm

1 2
Cycle Number

0.0

0.2

0.4

0.6

0.8

1.0

Un
ob

se
rv

ed
 A

cc
ur

ac
y

Overall Unobserved Accuracy per Cycle (Seed 12)

X3 End-of-Cycle Acc.
X4 End-of-Cycle Acc.
X5 End-of-Cycle Acc.

Figure 9: Training dynamics for a representative run (Obs. Ratio = 0.3) of Figure 3 (b). The
optimization order: [X5, X4, X3] for Cycle 1; [X4, X5, X3] for Cycle 2. Subplots display: (a)
training losses, (b) unobserved imputation accuracies, and (c) gradient norms for rule embeddings;
(d) overall imputation accuracies each cycle. Red dashed lines indicate the conclusion of training
blocks for X3 or X4 (each allocated 30 epochs when active within a cycle). Purple dashed lines
delineate training phases for X5 (Rule 1, Rule 2, and Fine-tune); the epoch count for these X5

phases can vary per cycle due to the dynamic nature of the hard covering mechanism. Correct rule
structures were learned for X3 by the end of Cycle 1, and for X4 and X5 by the end of Cycle 2.

Table 24: Summary of learned rule structures and accuracy for example (b) of Figure 3. Each
observation ratio was evaluated using 50,000 samples, with results averaged over 20 random seeds.
We present the top 3 learned rule structures in order of discovery accuracy. Rule accuracy indicates
the percentage of 20 runs in which a rule was learned completely correctly.

Obs.Ratio Learned Rule Structure Rule Accu.

0.3 X3 : X0 ∧X1, X0 ∧X2

X4 : X2 ∧X7

X5 : (X0 ∧X4) ∨ (X3 ∧X6), (X3 ∧X4) ∨ (X3 ∧X6), (X0 ∧X4) ∨ (X1 ∧X3)

X3 : 0.90
X4 : 1.00
X5 : 0.50

0.2 X3 : X0 ∧X1

X4 : X2 ∧X7, X0 ∧X7, X2

X5 : (X0 ∧X4) ∨ (X3 ∧X6), (X3 ∧X4) ∨ (X3 ∧X6), (X0 ∧X1) ∨ (X0 ∧X4)

X3 : 1.00
X4 : 0.80
X5 : 0.40

0.1 X3 : X0 ∧X1

X4 : X2 ∧X7

X5 : (X0 ∧X4) ∨ (X3 ∧X6), (X3 ∧X4) ∨ (X3 ∧X6), (X0 ∧X1) ∨ (X0 ∧X4)

X3 : 1.00
X4 : 1.00
X5 : 0.30

level of missingness, applying masking probabilities of 70%, 80%, and 90% to these target variables
(corresponding to observation ratios of 30%, 20%, and 10%, respectively).
Main Results. We show the coordinate descent training progress under different random optimiza-
tion order. Figure 10 demonstrates the convergence in two cycles, while Figure 11 requires three
cycles to complete training.
We summarize the results for example (a) of the Figure 3 in Tables 25 and 26, which demonstrate
both the effectiveness of our rule discovery approach and the precision of missing variables imputa-
tion. Our analysis reveals that learning the multi-step chain structure presents significant challenges,
primarily because the algorithm uses inferred predicate values vt from previous steps to update the
current values by Eq. 3. This creates a dependency chain where suboptimal rule embeddings learned
at earlier optimization steps can propagate errors to subsequent steps, potentially degrading overall
performance. Despite these challenges, our model successfully identifies the correct rules in the ma-
jority of experimental runs. This robustness indicates that with multiple random initializations, the

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60
Predicate Training Epoch (Accumulated)

0.00

0.01

0.02

0.03

0.04

0.05

Lo
ss

(a) Predicate Rule Training Losses (Seed 42)

X3 Loss
X4 Loss
X5 Loss

0 10 20 30 40 50 60
Predicate Training Epoch (Accumulated)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(b) Unobserved Predicate Imputation Accuracies (Seed 42)

X3 Unobserved Acc.
X4 Unobserved Acc.
X5 Unobserved Acc.

0 10 20 30 40 50 60
Predicate Training Epoch (Accumulated)

0.00

0.01

0.02

0.03

0.04

Gr
ad

ie
nt

 N
or

m

(c) Predicate Rule Gradient Norms (Seed 42)
X3 Grad Norm
X4 Grad Norm
X5 Grad Norm

1 2
Cycle Number

0.0

0.2

0.4

0.6

0.8

1.0

Un
ob

se
rv

ed
 A

cc
ur

ac
y

(d) Overall Unobserved Accuracy per Cycle (Seed 42)

X3 End-of-Cycle Acc.
X4 End-of-Cycle Acc.
X5 End-of-Cycle Acc.

Figure 10: Training dynamics for a representative run (Observation Ratio = 0.2) of Figure 3 (a).
Subplots display: (a) training losses, (b) unobserved imputation accuracies, and (c) gradient norms
for rule embeddings; (d) overall imputation accuracies each cycle. Purple dashed lines indicate
the conclusion of training blocks for one cycle (each allocated 30 epochs). The rule embedding
optimization order: [X5, X3, X4] for Cycle 1; [X5, X4, X3] for Cycle 2. Correct rule structures
were learned for X3 and X4 by the end of Cycle 1, for X5 by the end of Cycle 2. The learned rules:
X3 ← X0 ∧X1, X4 ← X2 ∧X3, X5 ← X4 ∧X6.

algorithm reliably converges to the optimal rule structures like the results from Figures 10 and 11,
which effectively overcome the inherent difficulties of sequential dependency learning in chain-like
logical structures.

Table 25: Summary of synthetic data experiment results for example (a) of the Figure 3. Each
observation ratio is evaluated using 50,000 samples and results are averaged over 20 random seeds.
No fine-tune phase since we assume no disjunctive rules.

Obs. Ratio Avg. Imputation Accu. Train Loss
0.3 X3 : 0.86± 0.13

X4 : 0.91± 0.06
X5 : 0.95± 0.03

X3 : 0.09± 0.08
X4 : 0.07± 0.04
X5 : 0.04± 0.02

0.2 X3 : 0.85± 0.13
X4 : 0.90± 0.05
X5 : 0.94± 0.02

X3 : 0.10± 0.08
X4 : 0.08± 0.04
X5 : 0.04± 0.02

0.1 X3 : 0.82± 0.12
X4 : 0.90± 0.05
X5 : 0.94± 0.02

X3 : 0.10± 0.07
X4 : 0.08± 0.04
X5 : 0.05± 0.02

J.3 RESULTS OF EXAMPLE (C) OF FIGURE 3

Dataset Generation. The base variables {X0, X1, X2, X6, X7} are independently generated from
a Bernoulli distribution, each with p = 0.5. Subsequently, the values for {X3, X4, X5, X8} are
deterministically derived using the ground truth logical rules depicted in Figure 3. Specifically,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 20 40 60 80
Predicate Training Epoch (Accumulated)

0.00

0.02

0.04

0.06

0.08

Lo
ss

(a) Predicate Rule Training Losses (Seed 42)
X3 Loss
X4 Loss
X5 Loss

0 20 40 60 80
Predicate Training Epoch (Accumulated)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(b) Unobserved Predicate Imputation Accuracies (Seed 42)

X3 Unobserved Acc.
X4 Unobserved Acc.
X5 Unobserved Acc.

0 20 40 60 80
Predicate Training Epoch (Accumulated)

0.00

0.02

0.04

0.06

Gr
ad

ie
nt

 N
or

m

(c) Predicate Rule Gradient Norms (Seed 42)

X3 Grad Norm
X4 Grad Norm
X5 Grad Norm

1 2 3
Cycle Number

0.0

0.2

0.4

0.6

0.8

1.0

Un
ob

se
rv

ed
 A

cc
ur

ac
y

(d) Overall Unobserved Accuracy per Cycle (Seed 42)

X3 End-of-Cycle Acc.
X4 End-of-Cycle Acc.
X5 End-of-Cycle Acc.

Figure 11: Training dynamics for a representative run (Observation Ratio = 0.2) of Figure 3 (a).
Subplots display: (a) training losses, (b) unobserved imputation accuracies, and (c) gradient norms
for rule embeddings; (d) overall imputation accuracies each cycle. Purple dashed lines indicate
the conclusion of training blocks for one cycle (each allocated 30 epochs). The rule embedding
optimization order: [X5, X4, X3] for Cycle 1,2; [X3, X5, X4] for Cycle 3. Correct rule structures
were learned for X3 by the end of Cycle 1, for X4 by the end of Cycle 2, and for X5 by the end of
Cycle 3. The learned rules: X3 ← X0 ∧X1, X4 ← X2 ∧X3, X5 ← X4 ∧X6.

Table 26: Summary of learned rule structures and accuracy for example (a) of Figure 3. Each
observation ratio is evaluated using 50,000 samples, with results averaged over 20 random seeds.
We present the top 3 learned rule structures in order of discovery accuracy. The rules that are truth
rules are indicated by underline. Rule accuracy indicates the percentage of 20 runs in which a rule
was learned completely correctly.

Obs. Ratio Learned Rule Structure Rule Accuracy
0.3 X3 : X0 ∧X1, X0 ∧X4, X5

X4 : X2 ∧X3, X3 ∧X5, X0 ∧X5

X5 : X4 ∧X6, X3 ∧X4, X1 ∧X4

X3 : 0.60
X4 : 0.40
X5 : 0.40

0.2 X3 : X0 ∧X1, X5, X0 ∧X5

X4 : X2 ∧X3, X5 ∧X3, X5

X5 : X4 ∧X6, X4, X3 ∧X4

X3 : 0.40
X4 : 0.30
X5 : 0.20

0.1 X3 : X0 ∧X1, X0 ∧X4, X0 ∧X5

X4 : X2 ∧X3, X5, X2 ∧X5

X5 : X4 ∧X6, X4 ∧X2, X3 ∧X6

X3 : 0.40
X4 : 0.40
X5 : 0.10

these rules are:
X3 ← X0 ∧X1

X4 ← X2 ∧X7

X8 ← X4 ∧X0

X5 ← (X3 ∧X6) ∨ (X8) ∨ (X6 ∧X7)

Finally, to introduce missing information, a portion of the values for X3, X4, X8 and X5 are ran-
domly masked. These masked variables become the targets for imputation. In our experiments, we

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

vary the level of missingness, applying masking probabilities of 70%, 80%, and 90% to these target
variables (corresponding to observation ratios of 30%, 20%, and 10%, respectively).
Main Results. We summarize the results for example (c) of the Figure 3 in the Tables 27 and 28,
showcasing the effectiveness of rule discovery and the precision of missing variables imputation.
We have random coordinate descent training order for rule optimization.
This task is more challenging due to the chain-like structure of the disjunctive rules, particularly
with three clauses for X5, resulting in lower learning accuracy than in example (b). Nonetheless, our
method achieves the highest rule discovery accuracy for the ground-truth rules while maintaining
acceptable imputation accuracy. For the most difficult prediction task (X5), we obtain over 80%
accuracy across all three observation ratios. Other predicate predictions reach ∼ 90% accuracy,
including the chain-derived predicate X8. For the learned rules in Table 28, we can find most body
predicates are correct even for the complex three-clause rules governing X5, which include the
chain-derived predicate X8. We also show the loss plot for one run in Figure 12.

Table 27: Summary of synthetic data experiment results for example (c) of the Figure 3. Each
observation ratio is evaluated using 50,000 samples and results are averaged over 20 random seeds.

Obs.
Ratio

Avg. Imputation Accu.
(Before Fine-tune)

Avg. Imputation Accu.
(After Fine-tune)

Train Loss
(Before Fine-tune)

Train Loss
(After Fine-tune)

0.3 X3 : 0.86± 0.12
X4 : 0.87± 0.13
X5 : 0.79± 0.09
X8 : 0.91± 0.06

/
/

X5 : 0.84± 0.08
/

X3 : 0.102± 0.09
X4 : 0.093± 0.09
X5 : 0.111± 0.06
X8 : 0.060± 0.04

/
/

X5 : 0.147± 0.08
/

0.2 X3 : 0.89± 0.12
X4 : 0.88± 0.12
X5 : 0.78± 0.08
X8 : 0.93± 0.06

/
/

X5 : 0.82± 0.09
/

X3 : 0.083± 0.09
X4 : 0.087± 0.08
X5 : 0.119± 0.06
X8 : 0.046± 0.04

/
/

X5 : 0.159± 0.08
/

0.1 X3 : 0.89± 0.12
X4 : 0.89± 0.12
X5 : 0.78± 0.10
X8 : 0.93± 0.06

/
/

X5 : 0.80± 0.11
/

X3 : 0.084± 0.09
X4 : 0.084± 0.09
X5 : 0.133± 0.07
X8 : 0.048± 0.04

/
/

X5 : 0.169± 0.10
/

0 20 40 60
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ss

Training Loss

0 20 40 60
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Unobserved Accuracy

X3
X4
X8
X5

0 20 40 60
Epoch

32500

35000

37500

40000

42500

45000

47500

50000

Nu
m

be
r o

f S
am

pl
es

Remaining Samples

Figure 12: An example of loss and imputation accuracy during coordinate optimization (Obs. Ratio
= 0.1, seed = 88, from example (c) of Figure 3). The training order is [X3, X4, X8, X5]. Epochs 0–19
correspond to rule learning for X3; epochs 20–39 for X4; epochs 40–59 for X8, and epochs 60-end
for X5. Remaining samples identified how many samples are “well-explained” during hard covering
phase. As the imputation accuracy for missing X5 is 1.00, we do not go to the fine-tune phase. The
learned rules: X3 ← X0∧X1, X4 ← X2∧X7, X5 ← (X3∧X6)∨X8∨(X6∧X7), X8 ← X3∧X4.

J.4 HYPER-PARAMETERS SETTING AND COMPUTING RESOURCE

Our model operates efficiently in a CPU environment utilizing the PyTorch library. The hyperpa-
rameters are configured as follows:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 28: Summary of learned rule structures and accuracy for example (c) of Figure 3. Each
observation ratio is evaluated using 50,000 samples, with results averaged over 20 random seeds.
We present the top 3 learned rule structures in order of discovery accuracy. The rules that are truth
rules are indicated by underline. Rule accuracy indicates the percentage of 20 runs in which a rule
was learned completely correctly.

Obs. Ratio Learned Rule Structure Rule Accu.

0.3 X3 : X0 ∧X1, X0 ∧X2, X1 ∧X2

X4 : X2 ∧X7, X1 ∧X2, X2

X5 : (X3 ∧X6) ∨X8 ∨ (X6 ∧X7), X4 ∨ (X3 ∧X6) ∨ (X6 ∧X7),
(X3 ∧X4) ∨X3 ∨ (X3 ∧X7)

X8 : X4 ∧X0, X3 ∧X7, X2 ∧X0

X3 : 0.45
X4 : 0.5
X5 : 0.15

X8 : 0.3

0.2 X3 : X0 ∧X1, X1 ∧X2, X0 ∧X2

X4 : X2 ∧X7, X0 ∧X2, X1 ∧X2

X5 : (X3 ∧X6) ∨X8 ∨ (X6 ∧X7),(X2 ∧X3) ∨X4 ∨ (X6 ∧X7),
X4 ∨X8 ∨ (X3 ∧X6)

X8 : X4 ∧X0, X3 ∧X4, X3 ∧X7

X3 : 0.55
X4 : 0.55
X5 : 0.10

X8 : 0.25

0.1 X3 : X0 ∧X1, X0, X0 ∧X7

X4 : X2 ∧X7, X0 ∧X2, X1 ∧X7

X5 : X4 ∨X8 ∨ (X6 ∧X7), (X3 ∧X6) ∨X8 ∨ (X6 ∧X7),
X3 ∨X4 ∨ (X6 ∧X7)

X8 : X4 ∧X0, X2 ∧X4, X3 ∧X7

X3 : 0.55
X4 : 0.55
X5 : 0.10

X8 : 0.2

• Rule Embedding and Fine-tuning Optimizer: Adam, learning rate: 0.01.
• Temperature of softmin and softmax: 0.1 (for Eq. 4) and 10.0 for (Eq. 5).
• “Well-explained” Threshold: 0.99 (for sequential hard covering in disjunctive rule learn-

ing).
• Batch Size: 64 .

K ADDITIONAL REAL WORLD DATA EXPERIMENTS RESULTS

K.1 SPECT

Short Axis Apical Short Axis Mid Short Axis Basal Horizontal Long Axis Vertical Long Axis

Figure 13: The five slices consists of 22 regions of interest (ROI) for SPECT Diagnosis. The slices
are chosen according to the following: Three slices for short axis view-one slice near heart’s apex,
one in middle of the LV and one near the heart base; One slice corresponds to the center of the LV
cavity for horizontal long axis view; One slice corresponds to the center of the LV cavity for vertical
long axis view (Kurgan et al., 2001).

We ask for an expertise from cardiovascular surgery of a hospital to give us domain knowledge, and
then we try to explain the learned rules. We select several meaningful rules to demonstrate.
The domain knowledge are as follows.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

• R1: The anterior wall and the septum of the left ventricle are adjacent and often simulta-
neously affected by the Left Anterior Descending artery (LAD). If both anterior wall and
septum show infarction, it strongly suggests an issue with the LAD. If both apical anterior
and mid-anterior show infarction, it indicates a more extensive problem within the LAD
territory, affecting both the apical and mid-portions of the anterior wall.

• R2: The apical lateral wall (typically LCX territory) and the apical inferior wall (typically
RCA or LCX territory) are adjacent. Infarction in both suggests a problem in this combined
region.

• R3: If both apical septal and apical septal show infarction, it indicates a more extensive
problem in the LAD territory, involving ischemia in multiple myocardial segments.

• R4: If apical lateral and apical lateral show infarction, it indicates a more extensive is-
chemic problem in the Left Circumflex artery (LCX) territory.

• R5: The apical anterior (ANT) and apical septal (SEPTAL) regions are primarily supplied
by the Left Anterior Descending artery (LAD); the apical lateral (LAT) region is primarily
supplied by the Left Circumflex artery (LCX); the apical inferior (INF) region is primarily
supplied by the Right Coronary Artery (RCA), but can sometimes be supplied by the LCX,
depending on the coronary artery dominance pattern.

Refer to Figure 13, we can give some explanations of rules learned in Table 29 based on the domain
knowledge R1 to R5. For example,

• F5 ← F1 ∧ F2: F1 and F2 are features from the first slice near the heart’s apex, while
F5 is from the second slice at the middle of the left ventricle (LV). According to clinical
knowledge R1 and R5, the anterior and septal regions are primarily supplied by the Left
Anterior Descending (LAD) artery. Therefore, this rule is clinically plausible: if partial
diagnosis (labeled as 1) is present in both F1 and F2, it strongly suggests an LAD artery
problem. Since F5 is in the mid-anterior region, also supplied by the LAD, it has a high
probability of being affected as well.

• Diagnosis← F5∧F6: From R1, we know that the anterior wall and the septum of the left
ventricle are adjacent. F5 and F6 both from middle of the LV (left ventricular), and they
are adjacent. Thus, if both these adjacent mid-ventricular regions (F5 and F6) show signs
of infarction, it significantly increases the likelihood of an overall positive diagnosis.

Table 29: Example rules learned by NS-FCN for SPECT feature imputation and diagnosis.

Selected Feature Imputation Rules Learned by NS-FCN
F5 ← F1 ∧ F2: partial diagnosis of segment 1 and 2 causes the partial diagnosis of segment 5.
F6 ← F11 ∧ F19

F13 ← F22 ∧ F12

Learned Diagnosis Rule Structure
Diagnosis← (F5 ∧ F6) ∨ (F2 ∧ F11) ∨ (F4 ∧ F13)

As detailed in Table 30, the learned rules for diagnosing cardiac abnormalities correspond closely
with established domain knowledge from cardiovascular surgery experts. For instance, the model
identified that infarcts in adjacent regions like F1 and F2 are indicative of an issue in the Left
Anterior Descending (LAD) artery territory. Furthermore, the model learned a composite rule for
the final diagnosis, logically aggregating signals from multiple infarcted regions across different
coronary artery territories (LAD, LCX, RCA). This ability to synthesize information from disparate
features into a coherent diagnostic rule highlights the model’s capacity for complex reasoning. The
clinical relevance of these rules was further validated by a Large Language Model (LLM), which
confirmed their consistency with expert knowledge on ischemia propagation patterns.

Performance with varying missing ratios. To assess the model’s robustness under different levels
of data scarcity, we evaluated its performance on the SPECT dataset while varying the observation
ratio from 0.3 to 0.9. As shown in Table 18, the model’s accuracy remains strong and improves
consistently as more data becomes available. Notably, even with only 30% of the data observed (a
70% missing ratio), the model maintains a high F1 score of 0.751, demonstrating its capability to
learn meaningful diagnostic rules from highly incomplete datasets.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 30: Analysis of learned rules for the SPECT dataset, evaluated by human experts and LLM.

Rules Evaluation with Human Expert
Knowledge

LLM Evaluation

F6 ← F1∧F2 Matches R1 & R5: F1 and F2 are in
LAD territory. Infarction in both sug-
gests LAD issue affecting apical and
mid-anterior LV.

Plausible: Both regions are LAD-
supplied and adjacent; mid-anterior
(F3) likely also affected if F1 & F2

show infarction. Clinically consistent.

F0 ← F11 ∧
F19

Related to R2 & R4: F11 and F19 are
adjacent. Infarction implies LCX or
RCA/LCX combined territory issue.

Valid: Matches adjacency and vascu-
lar territory logic (LCX-lateral, RCA-
inferior). Supports ischemia propaga-
tion in midventricular slices.

F13 ← F22 ∧
F12

Partial link to R3 & R5: Likely in-
volves basal/apical septal (F22) and ad-
jacent basal regions. Indicates LAD or
multi-segment ischemia.

Reasonable: Suggests ischemia spread
in basal-septal regions (LAD) adjacent
to basal/anterior. Fits multi-segment
LAD pathology.

Diagnosis ←
(F1 ∧ F0) ∨
(F2 ∧ F11) ∨
(F6 ∧ F13)

Consistent with R1 & R4. Combines
LAD (F0), LCX/RCA (F6), and adja-
cent mixed regions. Multiple adjacent
infarct pairs increase diagnosis likeli-
hood.

Strong: Logical aggregation of ad-
jacent infarcted regions across LAD,
LCX, RCA territories. Matches expert
ischemia propagation patterns.

K.2 HEART DISEASE

K.2.1 ASSESSMENT OF LEARNED RULES

For feature imputation, as shown in Table 31, our model discovers rules with clinically relevant
numerical thresholds by directly modeling continuous data. For instance, it learns to impute resting
blood pressure (trestbps) based on conditions like age > 60 and chol > 250. Similarly, it links
high cholesterol to factors like age > 55 in males or very high blood pressure (trestbps > 150). The
learned rule for ST depression (oldpeak) combines the slope of the ST segment with a maximum
heart rate threshold (thalach < 150), demonstrating the model’s ability to capture complex, non-
linear relationships within the data.
Beyond imputation, NS-FCN learns interpretable rules for the final diagnosis, classifying patients
into low-risk or high-risk categories.
Table 32 presents several of these diagnostic rules. For example, the model learns that a com-
bination of factors such as an upsloping ST segment (slope upsloping), a fixed thallium defect
(thal fixed defect), and exercise-induced angina (exang yes) is strongly indicative of high risk. Con-
versely, it identifies that factors like the absence of exercise-induced angina (exang no) and a flat
ST slope (slope flat) in female patients suggest a low risk of coronary artery disease. These diag-
nostic rules were also evaluated by an LLM and deemed ”Excellent” or ”Strong,” underscoring their
consistency with clinical practice.

K.3 HYPER-PARAMETERS SETTING AND COMPUTING RESOURCE

For NS-FCN (Ours):
• Rule embedding optimizer: Adam with learning rate of 0.01.
• Fine-tune optimizer: Adam with learning rate of 0.01.
• Temperature of softmin and softmax: 0.1 (for Eq. 4) and 10.0 for (Eq. 5).
• Our model can run efficiently on a CPU environment with the PyTorch package.

Baselines:
• BRCG (Dash et al., 2018), LEN (Barbiero et al., 2022), DR-NET (Qiao et al., 2021),

RRL (Wang et al., 2021) are trained with the default hyperparameter settings specified in
the original paper.

• MICE (van Buuren & Groothuis-Oudshoorn, 2011): We use m = 5 imputations and
maxit = 5 iterations with the default imputation methods in the mice R package.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 31: Learned rules for feature imputation on the Heart dataset, with LLM assessments.

Feature Imputation Acc. Learned Rule LLM Assessment
trestbps 0.86 trestbps high ←

(age > 60) ∧
(chol > 250)

Excellent: This rule captures the well-
established link between age, high choles-
terol, and hypertension. Both are primary
risk factors for cardiovascular disease and
often co-occur.

chol 0.85 chol high ←
(sex = 1 ∧ age >
55) ∨ (trestbps >
150)

Excellent: The rule correctly identifies
two key risk profiles for high cholesterol:
middle-aged to elderly males, and individ-
uals with significant hypertension. This
aligns perfectly with clinical understand-
ing of metabolic syndrome.

thalach 0.90 hr high ←
(trestbps >
145) ∨ (age >
57 ∧ cp = 3)

Strong: This rule insightfully links fac-
tors that limit exercise capacity to the max-
imum heart rate achieved. Both hyper-
tension and severe asymptomatic coronary
disease can prevent a patient from reaching
a higher peak heart rate.

oldpeak 0.76 st severe ←
(slope = 2) ∧
(thalach < 150)

Excellent: This rule identifies a classic
high-risk pattern. A downsloping ST seg-
ment is a strong positive finding, and its oc-
currence at a sub-maximal heart rate indi-
cates ischemia at a low workload, a sign of
severe coronary artery disease.

Table 32: Learned rules for disease prediction on the Heart dataset, with LLM assessments.

Learned Rule LLM Assessment
high risk ←
restecg stt abnormality ∧ ca =
3 ∧ oldpeak > 1.49

Excellent: This rule identifies a high-risk profile by com-
bining three critical indicators of severe coronary artery
disease: significant ST depression, an abnormal resting
ECG, and extensive vessel blockage.

high risk ← slope downsloping ∧
restecg normal∧ trestbps > 145.68

Strong: A downsloping ST segment is a powerful predic-
tor of ischemia. Combining this with hypertension identi-
fies patients at high risk, even if their resting ECG appears
normal, highlighting the importance of stress-test indica-
tors.

high risk← slope flat∧ oldpeak >
1.49 ∧ restecg hypertrophy

Excellent: This rule effectively combines signs of acute
ischemia (a flat ST slope with significant depression) with
evidence of chronic cardiac stress (left ventricular hyper-
trophy). This profile is strongly indicative of advanced
coronary artery disease.

• MissForest (Stekhoven & Bühlmann, 2012): We use the default hyperparameter settings
in the missForest R package.

• MLP: We train a 3-layer fully connected network (input-128-128-output) with batch size
32, learning rate 0.001, and 100 epochs using Adam optimizer.

• VAE(Veldkamp et al., 2025): We use a variational autoencoder with latent dimension 16,
encoder architecture (input×2-128-64-latent), decoder architecture (latent-64-128-output),
batch size 32, learning rate 0.001, and 100 epochs.

• DAE (mDAE) (Dupuy et al., 2024): We use a denoising autoencoder with bottle-
neck dimension 16, encoder architecture (input-128-64-bottleneck), decoder architecture

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

(bottleneck-64-128-output), corruption rate ρ = 0.2, batch size 32, learning rate 0.001, and
100 epochs.

• GAIN (Yoon et al., 2018): We use mini-batch size 128, hint rate phint = 0.9, MSE loss
weight α = 100.0, cross-entropy loss weight β = 100.0, learning rate 0.001, and 1000
epochs.

• MissDiff (Ouyang et al., 2023): We use 1000 diffusion timesteps with βstart = 10−4 and
βend = 0.02, batch size 32, learning rate 0.001, and 100 epochs.

• All baseline models can run efficiently on CPU environment with PyTorch package (for
deep learning methods) or R packages (for statistical methods).

L LIMITATION

While our model shows promising performance, the ethical implications, such as potential over-
reliance or misuse for inferring sensitive information, require careful consideration.
Despite its strengths, NS-FCN has limitations. While effective, the asynchronous coordinate gra-
dient descent optimization can be computationally intensive. Besides, the negative predicates are
not well explored (we consider negative predicates as an independent predicate from positive pred-
icates). Furthermore, while our model can derive predicates from continuous features, the current
implementation learns a single threshold per feature, which may not capture more complex relation-
ships (e.g., intervals). Extending the framework to learn more expressive predicates from continuous
data is a promising direction for future work.

M USE OF LLMS

In this paper, LLMs were used solely for writing polishing. The key idea, the model design, research
study, and all substantive writing are completed by human authors.
In the assessment of discovered rules, we use LLM to write the evaluation of rule quality, which we
have mentioned in the paper.

36

	Introduction
	Related Work
	Background
	Model: Neuro-Symbolic Forward Chaining Network
	Model Preparation: Pretrained Predicate Embeddings
	Model Backbone: Rule Representation and Inference
	Specification of Rule Embeddings
	Inferring Predicate Values

	Model Learning
	Coordinate Gradient Descent for Rule Optimization
	Sequential Covering and Fine-tuning of Disjunctive Rules

	Experiments
	Synthetic Data Experiments
	Real-World Data Experiments

	Conclusion
	Related Work Supplement
	Convergence Analysis of Coordinate Gradient Descent
	Assumptions
	Idealized Full-Batch Block Coordinate Gradient Descent
	Stochastic Mini-Batch Variant and Adam

	Model Supplement Description
	Optimization Details

	Datasets and Baselines
	Datasets
	Preprocessing of Datasets
	Baseline Models

	Performance under different missingness mechanisms
	Running Time and Memory Cost Analysis
	Synthetic Dataset
	Real-world Dataset

	Assessment of Rule Quality
	Structural Stability.
	Rule Length Analysis

	Analysis of Temperature in Soft Operators at Equations 4, 5
	Sensitivity Analysis with Label Noise and Missing ratio
	Robustness Analysis with Label Noise
	Missing ratio

	Additional Synthetic Experiments Results
	Main Results Supplement of Example (b) of Figure 3.
	Results of Example (a) of Figure 3
	Results of Example (c) of Figure 3
	Hyper-parameters Setting and Computing Resource

	Additional Real World Data Experiments Results
	SPECT
	Heart Disease
	Assessment of Learned Rules

	Hyper-parameters Setting and Computing Resource

	Limitation
	Use of LLMs

