
Under review as a conference paper at ICLR 2021

MEASURING AND MITIGATING INTERFERENCE IN RE-
INFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Catastrophic interference is common in many network-based learning systems,
and many proposals exist for mitigating it. But, before we overcome interference
we must understand it better. In this work, we first provide a definition and novel
measure of interference for value-based control methods such as Fitted Q Iteration
and DQN. We systematically evaluate our measure of interference, showing that
it correlates with forgetting, across a variety of network architectures. Our new
interference measure allows us to ask novel scientific questions about commonly
used deep learning architectures and develop new learning algorithms. In particu-
lar we show that updates on the last layer result in significantly higher interference
than updates internal to the network. Lastly, we introduce a novel online-aware
representation learning algorithm to minimize interference, and we empirically
demonstrate that it improves stability and has lower interference.

1 INTRODUCTION

Generalization is a key property of reinforcement learning (RL) algorithms with function approx-
imation. An agent must correctly generalize its recent experience to both states it has not yet en-
countered and other states it encountered in the past. Generalization has been extensively studied
in supervised learning, inputs are sampled iid from a fixed input distribution and the targets are
sampled from a fixed conditional distribution.

The distribution of training data is often not iid. When learning from a stream of temporally corre-
lated data, as in RL, the learner might fit the learned function to recent data and potentially overwrite
previous learning—for example, the estimated values. This phenomenon is commonly called inter-
ference or forgetting in RL (Bengio et al., 2020; Goodrich, 2015; Liu et al., 2019; Kirkpatrick et al.,
2017; Riemer et al., 2018). The conventional wisdom is that interference is particularly problematic
in RL, even single-task RL, because (a) when an agent explores, it processes a sequence of obser-
vations, which are likely to be temporally correlated; (b) the agent continually changes its policy,
changing the distribution of samples over time; and (c) most algorithms use bootstrap targets (as in
temporal difference learning), making the update targets non-stationary.

It is difficult to verify this conventional wisdom, as there is no established online measure of in-
terference for RL. There has been significant progress quantifying interference in supervised learn-
ing (Chaudhry et al., 2018; Fort et al., 2019; Kemker et al., 2018; Riemer et al., 2018), with some
empirical work even correlating interference and properties of task sequences (Nguyen et al., 2019),
and investigations into (un)forgettable examples in classification (Toneva et al., 2019). In RL, recent
efforts have focused on generalization and transfer, rather than characterizing or measuring interfer-
ence. Learning on new environments often results in drops in performance on previously learned
environments (Farebrother et al., 2018; Packer et al., 2018; Rajeswaran et al., 2017; Cobbe et al.,
2018). DQN-based agents can hit performance plateaus in Atari, presumably due to interference.
In fact, if the learning process is segmented in the right way, the interference can be more precisely
characterized with TD errors across different game contexts (Fedus et al., 2020). Unfortunately
this analysis cannot be done online as learning progresses. Finally, recent work investigated several
different possible measures of interference, but did not land on a clear measure (Bengio et al., 2020).

In this paper we advocate for a simpler approach to charactering interference in RL. In most sys-
tems the value estimates and actions change on every time-step conflating many different sources of
non-stationarity, stochasticity, and error. If an update to the value function interferes, the result of

1

Under review as a conference paper at ICLR 2021

that updated might not manifest in the policy’s performance for several time steps, if at all. Inter-
ference classically refers to an update negatively impacting the agent’s previous learning—eroding
the agent’s knowledge stored in the value function. Therefore it makes sense to first characterize
interference in the value function updates, instead of the policy or return. We define interference
in terms of prediction error for two common approximate dynamic programming algorithms, ap-
proximate policy iteration and fitted Q iteration. Most value-based deep RL algorithms are based on
these two algorithms. The interference is defined as the change in prediction errors, which is similar
to previous definitions of interference in supervised learning. Additionally, our approach yields an
online estimate of interference, which can even be directly optimized.

In this work, we provide a clear justification for the use of differences in squared TD errors as the
definition of interference. We highlight the definitions of interference at different granularities, and
the utility of considering different statistics to summarize interference within iterations versus over
time. We evaluate our interference measure by computing the correlation to a forgetting metric,
which reflects instability in control performance. We show that high interference correlates with
forgetting, and simultaneously show interference and forgetting properties across a variety of archi-
tectures and optimization choices. We then use our measure to highlight that updates to internal
layers of the network—the representation—contribute much less to interference than updates on the
last layer. This motivates the design of a new algorithm that learns representation online that ex-
plicitly minimize interference. We conclude with a demonstration that this algorithm does indeed
significantly improve stability and reduce interference.

2 PROBLEM FORMULATION AND LEARNING ALGORITHMS

In reinforcement learning (RL), an agent interacts with its environment, receiving observations and
selecting actions to maximize a reward signal. We assume the environment can be formalized as a
Markov decision process (MDP). An MDP is a tuple (S,A,Pr, R, γ, d0) where S is a set of states,
A is an set of actions, Pr : S × A × S → [0, 1] is the transition probability, R : S × A × S → R
is the reward function, γ ∈ [0, 1] a discount factor, and d0 is the initial distribution. The goal of the
agent is to find a policy π : S ×A → [0, 1] to maximize the expected discounted sum of rewards.

Given a fixed policy π, the action-value function Qπ : S × A → R is defined as Qπ(s, a) :=
E[
∑∞
k=0 γ

kRt+k+1|St = s,At = a], where Rt+1 = R(St, At, St+1), St+1 ∼ Pr(·|St, At),
and actions are taken according to policy π: At ∼ π(·|St). Given a policy π, the value func-
tion can be obtained using the Bellman operator for action values T π : R|S|×|A| → R|S|×|A|:
(T πQ)(s, a) :=

∑
s′∈S Pr(s′|s, a)

[
R(s, a, s′) + γ

∑
a′∈A π(a′|s′)Q(s′, a′)

]
. Qπ is the unique

solution of the Bellman equation T πQ = Q.

The optimal value function Q∗ is defined as Q∗(s, a) := supπ Q(s, a), with π∗ the policy
that is greedy w.r.t. Q∗. Similarly, the optimal value function can be obtained using the
Bellman optimality operator for action values T : R|S|×|A| → R|S|×|A|: (T Q)(s, a) :=∑
s′∈S Pr(s′|s, a) [R(s, a, s′) + γmaxa′∈AQ(s′, a′)]. Q∗ is the unique solution of the Bellman

equation T Q = Q. We can use neural networks to learn an approximation Qθ to the optimal
action-value, with parameters θ.

In this work, we restrict our attention to Iterative Value Estimation algorithms. These are algorithms
where there is an explicit evaluation phase with a fixed policy, where the agent has several steps Teval
to improve its value estimates. Two examples of such algorithms are Approximate Policy Iteration
(API) and Fitted Q-Iteration (FQI) (Ernst et al., 2005). In API, for the current policy πk, the agent
updates its estimate of Qπk by taking Teval steps in the environment and performing a mini-batch
update from a replay buffer on each step using the Sarsa update:

θt+1 ← θt + αδt∇θt
Qθt

(St, At) where δt := Rt+1 + γQθt
(St+1, πk(St+1))−Qθt

(St, At).

In FQI, the policy and targets Qk are held fixed for Teval steps, with these fixed targets used as a
regression target in the update. Again, a mini-batch update update from a replay buffer is used on
each step as above, but with a different δ = Rt+1 + γmaxa′∈AQk(St+1, a

′) − Qθt(St, At). The
procedure for both algorithms is summarized in Algorithm 1.

2

Under review as a conference paper at ICLR 2021

Algorithm 1 Iterative Value Estimation: A General Framework for API and FQI

Initialize weights θ0. Initialize an empty buffer of size B.
for t← 0, 1, 2, . . . do

If t mod Teval = 0 then Qk ← Qθt
, update πk to be greedy w.r.t Qk, bk to be ε-greedy

Choose at ∼ bk(st), observe (st+1, rt+1), and add the transition to the buffer
Sample a mini-batch of transitions Bt from the buffer and update the weights:
θt+1 ← θt + α 1

|Bt|
∑

(s,a,r,s′)∈Bt
δ(θt; s, a, r, s

′)∇θQθt
(s, a)

where for API: δ(θt; s, a, r, s′) = r + γQθt
(s′, πk(s′)))−Qθt

(s, a)
and for FQI: δ(θt; s, a, r, s′) = r + γmaxa′ Qk(s′, a′)−Qθt

(s, a)

3 DEFINING INTERFERENCE IN VALUE ESTIMATION

In this section, we define interference for Iterative Value Estimation algorithms. Because these
methods have an evaluation phase which corresponds to one iteration, we can more clearly define
interference within one iteration. We discuss interference at four different levels of granularity.

Within each iteration—in each evaluation phase—we can ask: did the agent’s knowledge about its
value estimates improve or degrade? The evaluation phase is more similar to a standard prediction
problem, where the goal is simply to improve the estimates of the action-values towards a clear
target. Let f∗ be the target function, which is either f∗(s, a) = Qπk(s, a) for API or f∗(s, a) =
E[R+ maxa′ Qk(S′, a′)|S = s,A = a] for FQI.

Pointwise Interference At the most fine-grained, we can ask if an update, going from θt to θt+1,
resulted in interference for a specific point (s, a). The change in accuracy at s, a after an update is

Accuracy Change((s, a),θt,θt+1) := (f∗(s, a)−Qθt+1(s, a))2 − (f∗(s, a)−Qθt(s, a))2

where if this number is negative it reflects that accuracy improved. This change resulted in interfer-
ence if it is positive, and zero interference if it is negative, and so we have

Pointwise Interference((s, a),θt,θt+1) := max (Accuracy Change((s, a),θt,θt+1) , 0) .

Update Interference At a less fine-grained level, we can ask if the update generally improved our
accuracy—our knowledge in our value estimates—across points.

Update Interference(θt,θt+1) := max
(
E(S,A)∼d [Accuracy Change((S,A),θt,θt+1)] , 0

)
where (s, a) are sampled according to distribution d, such as from a buffer of collected experience.

Notice that this differs from the expected Pointwise Interference. There are settings where they
could produce notably different values. For example, an agent could have high positive and negative
Accuracy Change that cancel. The Update Interference reflects that, on average, the agent’s knowl-
edge has not changed: it improved in some places, and degraded in others. The expected Pointwise
Interference, on the other hand, would be high, because for some points interference was high. We
focus first on Update Interference, since it is the coarser measure; future work is to look in a more
fine-grained way at Pointwise Interference.

Both Pointwise Interference and Update Interference are about one step. At an even higher level,
we can then ask how much interference we have across multiple steps, both within an iteration
and across multiple iterations. At this higher level, it becomes more sensible to consider upper
percentiles, to ask if there was significant interference within an iteration and across iterations. For
this we take expectations over only the top α percentage of values. In finance, this is typically called
the expected tail loss or conditional value at risk. Previous work in RL (Chan et al., 2020) has used
conditional value at risk to measure the long-term risk of RL algorithms.

Iteration Interference reflects if there was significant interference in updating during the evaluation
phase (an iteration). Even a few update steps having significant interference within an iteration could
cause significant instability; an average over the steps might wash out those few significant steps. We
therefore define Iteration Interference for iteration k using expectation over the top 10% of values

Iteration Interference(k) := E[X|X ≥ Percentile0.9(X)] for X = Update Interference(θT,k,θT+1,k)

3

Under review as a conference paper at ICLR 2021

where T is the time step in the iteration k, uniformly distributed and Percentile0.9(X) is the 0.9-
percentile of the distribution of X . Other percentiles could be considered, where smaller percentiles
average over more values and a percentile of 0.5 gives the median.

Interference Across Iterations reflects if an agent has many iterations with significant interfer-
ence. Once again, even a few iterations with significant interference could destabilize learning;
expectations over tails are more suitable than over all iterations. For iteration K a random variable,

Interference Across Iterations := E[X|X ≥ Percentile0.9(X)] for X = Iteration Interference(K)

These definitions are quite generic, assuming only that we have well-defined targets for the evalu-
ation phase and an algorithm that proceeds in iterations. Though we have only discussed API and
FQI, the algorithm DQN also fits well into this class—and so could be analyzed—because the use of
target networks mimics FQI. The primary difference is that the policy changes within an iteration.
This is not logistically an issue, as updates are off-policy from a replay buffer; but, it does add an
additional changing variable. We therefore focus our experiments on API and FQI.

4 APPROXIMATING ACCURACY CHANGE AND UPDATE INTERFERENCE

The primary difficulty now is estimating the Accuracy Change, which involves the true values Qπ
for API and expectations over next state and reward for FQI. With a simulator, these can in fact be
estimated. For small experiments, therefore, the exact Accuracy Change could be computed. More
generally, the cost is prohibitive, and approximations are needed. In this section, we motivate the
use of TD errors as a reasonable approximation.

We focus on finding a useful proxy measure for Update Interference, where the simply need our
approximation to be reflective of the average of Accuracy Change, rather than get it correct for a
particular point. Our goal is to find a proxy measure that is easy to compute and that at least reflects
the same sign as the Update Interference. For FQI, the target in Accuracy Change corresponds to
the expected TD error, E[δ|S = s,A = a], for the δ defined for FQI. For API, the expected TD error
is the Bellman error: E[δ|S = s,A = a] = T πQ(s, a) − Q(s, a), where T πQ(s, a) = Eπ[R +
γQ(S′, A′)|S = s,A = a]. The term T πQ(s, a) does not match the target f∗(s, a) = Qπ(s, a).
Fortunately, there is quite a lot of theory showing that the Bellman error provides an upper bound
on the value error (Williams, 1993), and further that using Bellman errors is sufficient to obtain
performance bounds for API (Munos, 2003; 2007; Farahmand et al., 2010).

Therefore, a unified choice to approximate Accuracy Change for both API and FQI is to approximate
the expected TD errors. We can get an unbiased sample of these TD errors, but the square of these
TD errors does not correspond to the squared expected TD error (Bellman error). Instead, there is a
residual term, that reflects the variance of the targets (Antos et al., 2008)

E[δ2|S = s,A = a] = Eπ[δ|S = s,A = a]2 + Varπ [R+Qθ(S′, A′)|S = a,A = a] .

When we consider the difference in TD errors, after an update, for (s, a), we get

E[δ(θt+1)2|S = s,A = a]− E[δ(θt)
2|S = s,A = a]

= Eπ[δ(θt+1)|S = s,A = a]2 − Eπ[δ(θt)|S = s,A = a]2

+ Varπ
[
R+Qθt+1

(S′, A′)|S = a,A = a
]
−Varπ [R+Qθt

(S′, A′)|S = a,A = a] .

For a given (s, a), we would not expect the variance of the target to change significantly. When
subtracting the squared TD errors, therefore, we expect these residual variance terms to cancel.
When further averaged across (s, a), it is even more likely for this term to be negligible. If the
environment is deterministic, then this variance is already zero and there is no approximation.

The use of TD errors for interference is related to previous interference measures based on gradient
alignment. To see why, notice if we perform an update using one transition (st, at, rt, s

′
t), then the

interference of that update to (s, a, r, s′) is δ2(θt+1, s, a, r, s
′) − δ2(θt, s, a, r, s

′). Using a Taylor
series expansion, we get the following first-order approximation assuming a small step-size α:

∇θδ
2(θt; s, a, r, s

′)>(θt+1 − θt) = −α∇θδ
2(θt; s, a, r, s

′)>∇θδ
2(θt; st, at, rt, s

′
t)

This approximation corresponds to gradient alignment, which has been used to learn neural net-
works that are more robust to interference (Lopez-Paz et al., 2017; Riemer et al., 2018). They

4

Under review as a conference paper at ICLR 2021

measure if this dot product is greater than zero, to determine if there is transfer between two sam-
ples; they generally encourage these dot-products to be positive. Other work used gradient cosine
similarity, to measure the level of transferability between tasks (Du et al., 2018), and to measure the
level of interference between objectives (Schaul et al., 2019). A somewhat similar measure was used
to measure generalization in reinforcement learning (Achiam et al., 2019), using the dot product of
the gradients of Q functions ∇θQθt

(st, at)
>∇θQθt

(s, a). This measure neglects the direction of
the gradients, and so measures both positive generalization as well as interference.

Gradient alignment has a few disadvantages, as compared to using differences in the squared TD
errors. First, as described above, it is actually a first order approximation of the difference, introduc-
ing further approximation. Second, it is actually more costly to measure, since it requires computing
gradients and taking dot products. Computing Update Interference on a buffer of data only requires
one forward pass over each transition. Gradient alignment, on the other hand, needs one forward
pass and one backward pass for each transition.

5 MEASURING CATASTROPHIC INTERFERENCE AND FORGETTING IN RL

In this section, we empirically show that our Interference Across Time measure is correlated with
forgetting, where agent performance drops. We define forgetting at each iteration as the difference
between the best performance achieved before this iteration, and the performance after the policy
improvement step. Precisely, let E(s,a)∼d0 [Qπk+1(s, a)] be the agent performance after policy im-
provement step at iteration k where d0 is the start-state distribution, where a random action is taken
in the first step. We estimate this value using 100 rollouts. Forgetting from iteration k is defined as

Iteration Forgetting(k) := max
i=1,...,k

E(s,a)∼d0 [Qπi(s, a)]− E(s,a)∼d0 [Qπk+1(s, a)].

As before, we take the expected tail over all iterations, to measure if the agent suffered from signif-
icant forgetting. If even a few iterations involve forgetting, and most steps do not, we should still
consider Forgetting to be high. We therefore define Forgetting across iterations as

Forgetting := E[X|X ≥ Percentile0.9(X)] for X = Iteration Forgetting(K)

We chose two environments: CartPole and Acrobot. In CartPole, the agent tries to keep a pole
balanced, with a positive reward per step. We chose CartPole because RL agents have been shown
to exhibit forgetting in this environment (Goodrich, 2015). In Acrobot, the agent has to swing
up from a resting position to reach the goal, receiving negative reward per step until termination.
We chose Acrobot because the physical dynamics are similar to Cartpole, but it induces different
learning dynamics: instead of starting from a good location, it has to explore to reach the goal.

We ran a variety of agents to induce a variety of different learning behaviors. We generate a set
of API and FQI algorithms by varying buffer size ∈ {1000, 5000, 10000}, hidden layer size ∈
{64, 128, 256, 512} and number of steps in one iteration M ∈ {100, 200, 400}. Each algorithm
has 400 iterations. Additionally, we include neural networks with tile coded inputs, which has been
shown to break generalization in neural networks (Ghiassian et al., 2020). All experiments are
averaged over 30 runs. A buffer for measuring Interference is obtained using reservoir sampling
from a larger batch of data, to provide a reasonably diverse set of transitions.

We show the correlation plot between Interference and Forgetting in Figure 1. In all figures except
Figure 1 (b), there is a strong correlation between our definitions of Interference and Forgetting. In
Figure 1 (b), the correlation is unclear for M=100, possibly because all algorithms do not perform
well, with all suffering from similarly high Forgetting which reduces as M increases. We note a few
clear outcomes. (1) Neural networks with a smaller hidden size have less interference and forgetting.
(2) Large buffer sizes seem to help with small networks. (3) FQI has lower magnitude Interference
and less Forgetting than API on both environments. (4) Tile coded inputs reduce Interference and
Forgetting for API but not for FQI, possibly because API bootstraps in its targets unlike FQI.

6 MITIGATING INTERFERENCE VIA ONLINE-AWARE REPRESENTATIONS

It is common to assume that the first layers of a neural network play the role of producing a represen-
tation, that transforms the inputs into a form that (1) provides suitable abstraction and (2) facilitates

5

Under review as a conference paper at ICLR 2021

(a) API on CartPole (b) API on Acrobot

(c) FQI on CartPole (d) FQI on Acrobot

Figure 1: Correlation plot of interference and forgetting. Each point represents one algorithm aver-
aged over 10 runs. Outliers (which have interference larger than 5 and forgetting larger than 80 on
CartPole) are excluded from the plots.

learning in the future (typically called transfer). In the online setting, it has also been noted that
the representation plays a third role: improving learning under online updating (Sutton, 1996; Liu
et al., 2019; Javed and White, 2019). We can view a value function as a two-part approximation
with a representation function and a linear weight Qw,β(s, a) := φβ(s, a)>w, where w ∈ Rd is the
weights in the last layer and φβ : S × A → Rd is the representation learned by the network with
weights β, composed of all the hidden layers in the network. The function φβ(s, a)>w corresponds
to the last layer in the network, with w the weights of the network.

In this section, we first show that updates in the final layer result in significantly more interference
than updates in internal layers. This matches recent insights that learning a sparse representation, of-
fline, can significantly improve stability in online learning (Liu et al., 2019; Javed and White, 2019).
Beyond these works, it highlights that the effort spent mitigating interference should be on pro-
ducing a representation that mitigates interference. We then design an online-aware representation
learning approach, that directly minimizes interference.

6.1 COMPARING INTERFERENCE DUE TO INTERNAL LAYERS VERSUS THE FINAL LAYER

In this section, we study interference due to updates in the internal layers and the last layer.
To study interference separately within the network, we use stochastic block coordinate de-
scent to update β and w separately, as shown in Algorithm 2. We first update βt and com-
pute Update Interference([βt+1,wt], [βt,wt]) due to this update. Then we update wt and
compute Update Interference([βt+1,wt+1], [βt+1,wt]) again. Finally, we compute the Update
Interference([βt+1,wt+1], [βt,wt]) for the whole update, so that we can measure the percentage
contribution from each of the separate updates.

We report the percentage contribution of interference in each layer in Figure 2. We found that
the last layer exhibits more interference than the internal layers consistently across the size of neural
networks. Note that for neural networks with hidden size 512 on CartPole, the internal layers contain
about 264,000 parameters while the last layer only has about 2,000 parameters. However, the last
layer still exhibits significantly higher interference than the internal layers. This suggests that the
internal layers change slowly or they change the TD errors slowly during the optimization process.
Examining the distributions of interference over state-action pairs (see Appendix B), we do in fact
find that updates in the internal layers result in smaller magnitude interference.

64 128 256 512
Hidden Size

0%

45%

90% env = CartPole

64 128 256 512
Hidden Size

env = Acrobot

Last layer
Internal Layers

Figure 2: Contribution to
Update Interference due to
updates of the internal lay-
ers versus the last layer.
The percentages are aver-
aged over 10 runs.

6

Under review as a conference paper at ICLR 2021

Algorithm 2 API with Online Representation Learning

Initialize weights β,w randomly. Initialize an empty buffer B of size N
for t← 1, 2, ...N do

If t mod Teval = 0 then Qk ← Qθt , update πk, bk to use Qk
Choose at ∼ bk(st), observe (st+1, rt+1), and add the transition to the buffer
Sample a mini-batch of transitions Bt from the buffer
Update βt+1, using Bt and the representation learning loss (see Appendix A.4)
wt+1 = wt + α 1

|Bt|
∑

(s,a,r,s′)∈Bt
δ(βt+1,wt; s, a, r, s

′)∇wt
Qβt+1,wt

(s, a)

6.2 AN ONLINE-AWARE REPRESENTATION LEARNING ALGORITHM

In this section, we develop an algorithm to explicitly learn representations that mitigate interference.
The idea is simple, and actually allows a variety of offline representation learning approach to be
incorporated into API and FQI. The first step is to separate the update to the representation, using
a block coordinate update, as we used in the last section to measure interference in different lay-
ers. The second is to incorporate a representation learning loss, which can be update as it would
be offline simply by using a replay step from the replay buffer. This allows us to both incorporate
two recently proposed offline objectives: Sparse Representation NN (SRNN) which uses a distribu-
tional regularizer on the hidden nodes (Liu et al., 2019) and Online-Aware Meta-Learning (OML)
which uses a meta-learning approach to adjust the representation to minimizes the loss after n on-
line updates (Javed and White, 2019). To the best of our knowledge, this is the first time these two
approaches have been extended to the online setting, which the representation being learned concur-
rently with the value estimates.1 We summarize this generic approach in Algorithm 2, with more
specific details for each representation learning approach in Appendix A.4 and A.5.

We can adapt the objective from Javed and White (2019) to minimize Update Interference in RL.
The goal is to learn a representation to minimize Update Interference from n updates. We can
sample a random evaluation buffer B, from the larger replay buffer, that implicitly specifies the dis-
tribution d in the Update Interference. Then we get wt+n the weights after n experience replay up-
dates, for a fixed representation βt. We get the resulting Update Interference([βt,wt+n], [βt,wt] =∑|B|
i=1 δi([βt,wt+n])2 − δi([βt,wt])

2. The goal is to optimize the current representation βt so it
produces the lowest interference after these n updates to wt. Because we do not update wt from βt
in the second term, we only need to adjust βt for the first term. Effectively, we are adjusting βt so
that it allows for a better final wt+n. This is precisely how OML was defined, but for a supervised
loss. In this sense, in its standard form, it is already implicitly minimizing interference.

6.3 EMPIRICAL COMPARISON

API-ORL
API-SRNN

API-OML FQI0

20

40

Fo
rg

et
tin

g

(a) Total Forgetting across iterations.

0 200 400
Number of Iterations

100

80

60

Re
tu

rn

API-ORL
API-SRNN
API-OML
FQI

(b) Expected return vs iterations.

Figure 3: Acrobot results, averaged over 30 runs with standard errors.

We compare FQI, API-
ORL, API-SRNN and API-
OML on three classic con-
trol problems. API-ORL
simply involves learning βt
with the two stage pro-
cedure described in Sec-
tion 5.1, without special
representation learning ap-
proaches. Figure 3 sum-
marizes the performance in
Acrobot. The improvement
for API-OML is made even more apparent when looking at Forgetting—which reflects stability. The
results for Mountain Car and Cartpole can be found in Appendix C. All results are averaged over 30
independent runs and learning curves and bar plots show standard error.

1A related approach, Meta-Experience Replay (MER) (Riemer et al., 2018), directly optimizes gradient
alignment. MER does not explicitly learn a representation. Instead, it updates the entire network in the inner
loop and outer loop. As a result, it is significantly more computationally intensive. This necessitates the use of
a first-order approximation, and we were unable to get it to perform consistently.

7

Under review as a conference paper at ICLR 2021

Figure 3b suggests our new API-OML method is better than the baselines, but averaging over runs
actually removes much of the interesting structure, which is particularly relevant when investigat-
ing interference. Looking closer, Figure 4a shows the return per run, revealing that API-ORL has
considerable problems learning and maintaining stable performance. API-OML in comparison is
substantially more stable and reaches higher performance. Figure 4b shows the iteration interfer-
ence. Overall API-OML exhibits far less interference, but does exhibit high interference in two
runs. These runs exactly correspond to the two runs in Figure 4a where API-OML is less stable in
the beginning of learning. We do not know exactly why OML struggles in 2 of the 30 runs, but our
measure of interference allows us to pinpoint precisely when it occurs. Finally, in Figure 3a we see
that API-OML exhibits significantly less forgetting than all three baselines, dramatically improving
over API-ORL.

(a) Learning curves for API-ORL and API-OML, one
run per subplot.

(b) Iteration Interference for API-ORL and API-OML.

Figure 4: Learning curves and Iteration Interference for API-ORL and API-OML in Acrobot.

7 CONCLUSION

In this paper, we proposed a definition of interference for iterative value-based methods, API and
FQI, and justified the use of squared TD error to approximate this interference. We showed this in-
terference measure is correlated with control performance. We additionally provided some insights
into interference in deep reinforcement learning algorithms, namely that FQI has lower interference
than API and that API—which uses bootstrapping rather than the fixed targets in FQI—benefits
more from strategies that reduce generalization in inputs. We then used the measure to show that the
interference in updates, for standard neural networks, is due more to updates in the final layer than
due to updates to internal layers. This motivated extending API and FQI to include an a strategy
to do online-aware representation learning, where the representation is explicitly trained to mitigate
interference. The new algorithm provides a simple mechanism to convert two existing offline rep-
resentation learning approaches to the online setting. We concluded with a demonstration that the
resulting algorithm, called API-OML, significantly improved stability, and exhibited low interfer-
ence under our measure as well as low forgetting.

These results highlight several promising avenues for improving stability in RL. One potentially
surprising outcome was the instability, within a run, of a standard method like API. The learning
curve for API actually looked reasonable, and without examining individual runs, this instability
would not be obvious. This motivates re-examining many of our agents with alternative measures,
like forgetting and other measures of stability. It also highlights that there is an exciting opportunity
to significantly improve our agents, by focusing on these robustness improvements.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Joshua Achiam, Ethan Knight, and Pieter Abbeel. Towards characterizing divergence in deep q-
learning. arXiv:1903.08894, 2019.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning,
71(1):89–129, 2008.

Emmanuel Bengio, Joelle Pineau, and Doina Precup. Interference and generalization in temporal
difference learning. In International Conference on Machine Learning, 2020.

Stephanie C.Y. Chan, Anoop Korattikara, Sam Fishman, John Canny, and Sergio Guadarrama. Mea-
suring the reliability of reinforcement learning algorithms. In International Conference on Learn-
ing Representations, 2020.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision, 2018.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. arXiv preprint arXiv:1812.02341, 2018.

Yunshu Du, Wojciech M Czarnecki, Siddhant M Jayakumar, Razvan Pascanu, and Balaji Lakshmi-
narayanan. Adapting auxiliary losses using gradient similarity. arXiv preprint arXiv:1812.02224,
2018.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6(Apr):503–556, 2005.

Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approximate
policy and value iteration. In Advances in Neural Information Processing Systems, 2010.

Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in
dqn. arXiv preprint arXiv:1810.00123, 2018.

William Fedus, Dibya Ghosh, John D Martin, Marc G Bellemare, Yoshua Bengio, and Hugo
Larochelle. On catastrophic interference in atari 2600 games. arXiv preprint arXiv:2002.12499,
2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, 2017.

Stanislav Fort, Paweł Krzysztof Nowak, and Srini Narayanan. Stiffness: A new perspective on
generalization in neural networks. arXiv preprint arXiv:1901.09491, 2019.

Sina Ghiassian, Banafsheh Rafiee, Yat Long Lo, and Adam White. Improving performance in re-
inforcement learning by breaking generalization in neural networks. In International Conference
on Autonomous Agents and Multiagent Systems, 2020.

Benjamin Frederick Goodrich. Neuron clustering for mitigating catastrophic forgetting in supervised
and reinforcement learning. 2015.

Khurram Javed and Martha White. Meta-learning representations for continual learning. In Ad-
vances in Neural Information Processing Systems, 2019.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes, and Christopher Kanan. Mea-
suring catastrophic forgetting in neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
2017.

9

Under review as a conference paper at ICLR 2021

Vincent Liu, Raksha Kumaraswamy, Lei Le, and Martha White. The utility of sparse representa-
tions for control in reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4384–4391, 2019.

David Lopez-Paz et al. Gradient episodic memory for continual learning. In Advances in Neural
Information Processing Systems, 2017.

Rémi Munos. Error bounds for approximate policy iteration. In International Conference on Ma-
chine Learning, 2003.

Rémi Munos. Performance bounds in l p-norm for approximate value iteration. SIAM journal on
control and optimization, 2007.

Cuong V Nguyen, Alessandro Achille, Michael Lam, Tal Hassner, Vijay Mahadevan, and Ste-
fano Soatto. Toward understanding catastrophic forgetting in continual learning. arXiv preprint
arXiv:1908.01091, 2019.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning. arXiv preprint arXiv:1810.12282, 2018.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade. Towards gen-
eralization and simplicity in continuous control. In Advances in Neural Information Processing
Systems, 2017.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence. In International Conference on Learning Representations, 2018.

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. arXiv:1904.11455, 2019.

Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In Advances in Neural Information Processing Systems, 1996.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. In International Conference on Learning Representations, 2019.

Ronald J Williams. Tight performance bounds on greedy policies based on imperfect value func-
tions. Technical report, Citeseer, 1993.

10

Under review as a conference paper at ICLR 2021

A EXPERIMENTAL DETAILS

A.1 EXPERIMENT SETUP

We experiment with three environments: CartPole, Acrobot and Mountain Car from the OpenAI
gym (https://gym.openai.com/). We set the maximum steps per episode to 500, and the
number of training iterations to 400. We use a discounting factor γ = 0.99 in all environments.
CartPole, Acrobot, and Mountain Car have 4, 6, and 2 dimensional states respectively. For tile
coded inputs, we use 4 tiles and 8 tilings for each dimension of the state seperately, which results in
input size of 160 and 240 respectively in CartPole and Acrobot.

We use 40 Monte Carlo rollouts to estimate the performance of the policy at each iteration
E(s,a)∼d0 [Qπ(s, a)]. For evaluating the TD error difference, we use a reservoir buffer of size 1000,
which approximates uniform sampling from all the past transition. For the experiment in Section 5,
Interference Across Iterations and Forgetting are computed over the last 200 iterations.

A.2 NETWORK ARCHITECTURE AND HYPERPARAMETERS

For all experiments, we use a two-layer neural network with ReLU activation, He intialization to
initialize the neural networks, and Adam optimizer.

For the experiments in Section 4, we generate a set of hyper-parameter Θ by choosing each param-
eter in the set:

• batch size = 64

• Step size α = 0.0003

• buffer size ∈ {100, 5000, 10000}
• Hidden size ∈ {64, 128, 256, 512}
• Number of step in an iteration M ∈ {100, 200, 400}
• Numver of iteration = 400

• Input type ∈ {state, tile coded state}

For the experiments in Section 5, we sweep the hyperparameter in the range:

• Batch size = 64

• Step size α ∈ {0.001, 0.0003, 0.0001}
• Hidden size = 128

• Buffer size ∈ {1000, 5000, 1000}

The parameters are chosen based on average performance over the last 200 iterations.

A.3 ITERATIVE VALUE ESTIMATION ALGORITHMS WITH SEPARATE UPDATES

We provide a complete description of the algorithm in Algorithm 3.

A.4 ONLINE-AWARE META-LEARNING

This OML objective can be optimized similarly to other gradient-based meta-learning objec-
tives (Finn et al., 2017), and can be implemented in API and FQI. We provide a com-
plete description of the algorithm in Algorithm 4. Note that the original algorithm from
Javed and White (2019) samples B1, . . . , BI in a sequential manner, that is, B1, . . . , BI =
(st+1, at1 , rt+1, s

′
t+1), . . . , (st+I , atI , rt+I , s

′
t+I) is a trajectory from the buffer, but we sample each

of B1, . . . , BI as a random mini-batch of transitions from the replay buffer.

In our experiment, We sweep over the hyperparameters in the set:

• Inner update optimizer = SGD

11

https://gym.openai.com/

Under review as a conference paper at ICLR 2021

• Meta update optimizer = Optimizer for the last layer = Adam
• α ∈ {0.001, 0.0003, 0.0001}
• αinner ∈ {0.01, 0.001, 0.0001, 0.00001}
• Number of inner updates K ∈ {10, 20, 40}

A.5 SPARSE REPRESENTATION NEURAL NETWORKS

Liu et al. (2019) use the distributional regularizers to learn sparse representation neural networks
(SRNN). If the vanilla neural network optimizes the objective J , SRNN simply adds a regularization:

JSRNN (β,w) = J(β,w) + λSKL

d∑
j=1

SKLθ(φ̄β,j)

where SKL(φ̄) is a component-wise regularization on the expected activation φ̄ =∑
(s,a)∼B φ(s, a) and φj denote the j-th component of φ. λSKL controls the weight on the reg-

ularization and θ control the sparsity level. SRNN can be implemented in API and FQI by simply
adding a regularization when updating the parameter β.

In our experiment, we sweep over the key hyper-parameters of SRNN in the set:

• Adam optimization
• α ∈ {0.001, 0.0003, 0.0001}
• λSKL ∈ {0.1, 0.01, 0.001, 0.0001}
• θ ∈ {0.1, 0.2, 0.4}

B DISTRIBUTION OF ACCURACY CHANGE

In this experiment, we visualize the distribution of Accuracy Change over state-action pairs. We
run the API-Stage algorithm on CartPole for 40k steps and choose three time steps corresponding to
the time step (1) when the average Accuracy Change is the largest (2) when the average Accuracy
Change is the smallest (3) when average Accuracy Change is the closest to 0.

We show the distribution of Accuracy Change due to the internal layers and the last layer, for the
three time step we choose, in Figure 5. The results suggests that updates in the internal layers has
smaller magnitude of interference than updates in the last layer for all the three cases.

Accuracy Change

(a) Average is highly positive.

Internal Layer

Last Layer

Accuracy Change

(b) Average is highly negative.

Accuracy Change

(c) Average is close to zero.

Figure 5: Histogram of Accuracy Change in CartPole.

C ADDITIONAL EXPERIMENT RESULTS OF SECTION 6

We compare the algorithms mentioned in Section 6 in CartPole, Acrobot and Mountain Car, and
show the learning curve in Figure 6. We found that OML significantly improve stability and effi-
ciency compared to API-ORL and API-SRNN in Acrobot and Mountain Car. All algorithms per-
form similarly in CartPole, possibly because they all choose the smallest step size in the range in
this domain.

12

Under review as a conference paper at ICLR 2021

(a) CartPole

0 200 400
Number of Iterations

100

80

60

Re
tu

rn

API-ORL
API-SRNN
API-OML
FQI

(b) Acrobot (c) Mountain Car

Figure 6: Learning curve of API with different representation learning algorithms and FQI. The
number are averaged over 30 runs with one standard error.

Algorithm 3 Iterative Value Estimation with separate updates

Initialize weights θ0. Initialize an empty buffer of size B.
for t← 1, 2, ...N do

If t mod Teval = 0 then Qk ← Qθt , update πk to be greedy w.r.t Qk, bk to be ε-greedy
Choose at ∼ bk(st), observe (st+1, rt+1), and add the transition to the buffer
Sample a mini-batch of transitions Bt from the buffer and update the the internal layers
βt+1 = βt + α 1

|Bt|
∑

(s,a,r,s′)∈Bt
δ(βt,wt; s, a, r, s

′)∇βt
Qβt,wt

(s, a)

Update the the last layer
wt+1 = wt − α 1

|Bt|
∑

(s,a,r,s′)∈Bt
δ(βt+1,wt; s, a, r, s

′)∇wt
Qβt+1,wt

(s, a)

Algorithm 4 Iterative Value Estimation with online-aware representation learning

Initialize weights θ0. Initialize an empty buffer of size B.
for t← 1, 2, ... do

If t mod Teval = 0 then Qk ← Qθt , update πk to be greedy w.r.t Qk, bk to be ε-greedy
Choose at ∼ bk(st), observe (st+1, rt+1), and add the transition to the buffer
// Representation inner update:
wt,0 ← wt

for i← 1, 2, ...I do
Sample transitions a mini-batch Bi from the buffer
wt,i ← wt,i−1−αinner

1
|Bi|

∑
(s,a,r,s′)∈Bi

δ(βt,wt,i−1; s, a, r, s′)∇wt,i−1
Qβt,wt,k−1

(s, a)

Sample a mini-batch of Bt from the buffer
// Representation meta update:
βt+1 = βt + α 1

|Bt|
∑

(s,a,r,s′)∈Bt
δ(βt,wt,I ; s, a, r, s

′)∇βtQβt,wt,I
(s, a)

// Last layer update:
wt+1 = wt − α 1

|Bt|
∑

(s,a,r,s′)∈Bt
δ(βt+1,wt; s, a, r, s

′)∇wt
Qβt+1,wt

(s, a)

13

	Introduction
	Problem Formulation and Learning Algorithms
	Defining Interference in Value Estimation
	Approximating Accuracy Change and Update Interference
	Measuring Catastrophic Interference and Forgetting in RL
	Mitigating Interference via Online-aware Representations
	Comparing Interference due to Internal Layers versus the Final Layer
	An Online-aware Representation Learning Algorithm
	Empirical Comparison

	Conclusion
	Experimental Details
	Experiment setup
	Network Architecture and Hyperparameters
	Iterative Value Estimation Algorithms with Separate Updates
	Online-Aware Meta-Learning
	Sparse Representation Neural Networks

	Distribution of Accuracy Change
	Additional Experiment results of Section 6

