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ABSTRACT

Prompt tuning in natural language processing (NLP) has become an increasingly
popular method for adapting large language models to specific tasks. However, the
transferability of these prompts, especially continuous prompts, between different
models remains a challenge. In this work, we propose a zero-shot continuous
prompt transfer method, where source prompts are encoded into a relative space
and the corresponding target prompts are searched for transferring to target mod-
els. Experimental results confirm the effectiveness of our method, showing that
“task semantics” in continuous prompts can be generalized across various lan-
guage models. Moreover, we find that combining “task semantics” from multiple
source models can further enhance the performance of transfer.1

1 INTRODUCTION

Recently, natural language processing (NLP) has witnessed a paradigm shift from the finetuning of
full language models to the optimization of a small subset of prompt tokens (Shin et al., 2020; Lester
et al., 2021; Li & Liang, 2021; Zhong et al., 2021). As language models have dramatically increased
in size and may contain billions of parameters (Brown et al., 2020), the strategy of freezing language
models while optimizing the learnable prompt parameters becomes the most affordable and efficient
alternative for downstream tasks. This technique, referred to as prompt tuning, has gained substantial
recognition for its effectiveness across a range of language models (Shin et al., 2020; Lester et al.,
2021; Li & Liang, 2021; Zhong et al., 2021).

Various prompt tuning methods have been explored, which can be generally categorized into discrete
and continuous cases. Discrete prompt tuning, such as AutoPrompt (Shin et al., 2020), primarily fo-
cuses on the selection and optimization of a predetermined set of tokens within a language model’s
vocabulary. By contrast, continuous prompt tuning (Zhong et al., 2021) allows the modification of
continuous prompt embeddings by gradient descent. The latter typically offers better performance
on downstream tasks due to its greater flexibility in the prompt space. However, existing prompt
tuning often requires accessing the model’s internal states, as the gradient needs to be backpropa-
gated to the first layer of token embeddings (Shin et al., 2020; Zhong et al., 2021), which contradicts
the goal of avoiding gradient computation for large language models.

Therefore, it would be ideal if we can perform prompt tuning on a small model (which is compu-
tationally inexpensive) and transfer the prompt to large models. We thus question: How transfer-
able are these prompts between different language models? Prior research on transferring prompts
mainly focuses on discrete prompts (Rakotonirina et al., 2023). Such transfer is often straightfor-
ward, as discrete prompt tokens usually carry semantic meanings by their nature and can be directly
accepted by different language models. For continuous prompts, however, prompt transfer becomes
less straightforward because they are unexplainable and sparsely distributed in a high-dimensional
space (Khashabi et al., 2022; Su et al., 2022). Moreover, different models might learn the embedding

1Our code is available at https://github.com/MANGA-UOFA/PTfer
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space differently, due to their designs, sizes, training paradigms, as well as parameter random initial-
izations. Therefore, transferring a continuous prompt tailored for one model to another, especially
with different dimensions, remains a challenge.

Attempts to bridge this gap have centered around introducing a neural projector that aligns continu-
ous prompts across different models. However, the learned projectors are specific to unique model
pairs. More importantly, it introduces extra computational cost because the training requires task
supervision on the target model and the source prompt embeddings, or even the need to utilize the
parallel prompt embeddings for both models (Su et al., 2022). These approaches cannot be applied
in a zero-shot transfer scenario, and are undesired in real applications.

In this work, we propose a novel approach to zero-shot continuous prompt transfer without the need
for task supervision or additional training of neural projectors. We introduce an encode-then-search
strategy, where we encode the source prompts into a relative space (Norelli et al., 2022; Moschella
et al., 2023) and then search for the corresponding target prompt embeddings. Our intuition is
that the induced continuous prompt contains implicit information for a task (Vu et al., 2022; Wang
et al., 2022), referred to as “task semantics”, which may be carried over from the source embedding
space to the target. We suggest that, although direct transfer of prompt embeddings is problematic
because different language models have their own embedding spaces, the position of the continuous
prompt embedding relative to the embeddings of known words is more likely to share the same
structure in different language models, inspired by the evidence of representation learning literature
in other domains, such as word embeddings (Faruqui & Dyer, 2014; Lazaridou et al., 2015; Artetxe
et al., 2018), synthetic structure discovery (Wu et al., 2023), unsupervised neural translation (Lample
et al., 2018), and cognitive science (Levakov et al., 2021; Chersoni et al., 2021). In our approach,
the transfer of prompts only requires a shared vocabulary of common tokens, which serve as the
anchors of the relative embedding space. For the target model, we search for its prompt embeddings
that preserve the same relative structure as that of the source language model.

Our experiments confirm that, with our proposed zero-shot approach, continuous prompts are trans-
ferable to different language models, largely outperforming baseline approaches such as training
neural projectors. We also discover that utilizing continuous prompts from multiple distinct source
models enhances the generalizability on target models. This is because the semantics of the prompts
induced from a single source might be model-specific, whereas the multi-source method provides a
more robust view of the task semantics, therefore achieving higher performance of prompt transfer.
In short, our contributions are summarized as follows:

• We address a novel setting of zero-shot continuous prompt transfer, which allows for the
reuse of continuous prompts across different language models.

• We propose an encode-then-search strategy that maps a continuous prompt into a relative
space for transfer between language models. Our approach facilitates multi-source transfer,
which cannot be easily done by previous work.

• We provide detailed experimental analysis on a factual-probing suite of 41 types of ques-
tions to show the effectiveness of our approach.

2 METHODOLOGY

In this section, we begin with an overview of continuous prompt tuning in §2.1. We then introduce
our encoding (§2.2) and decoding (§2.3) methods for transferring continuous prompt embeddings
between language models. Finally in §2.4, we discuss our multi-source transfer approach for im-
proving the performance of transfer.

2.1 CONTINUOUS PROMPT TUNING

Continuous prompt tuning (Zhong et al., 2021) optimizes the embeddings of a prompt in the con-
tinuous space for a downstream task, which essentially introduces virtual tokens to the language
model. During this process, the continuous prompt, which is a set of learnable embedding vec-
tors, can capture the implicit information for the task of interest (Vu et al., 2022). Different from
full-model finetuning methods (Zhou & Srikumar, 2022), the gradient from the final loss function
backpropagates through the model but only updates the initial embedding layers.
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Figure 1: (a) The goal of transferring the induced continuous prompts on a source model to a target
model. (b) Our proposed method for this transfer in a zero-shot manner, where the target prompts
should be aligned with the induced source prompts in the relative space.

Consider prompting a language model for some task. A continuous prompt has the following format:

Prompt(x) = x v1 v2 · · · vm (1)

where x is an input data sample, and m is a pre-defined prompt length, i.e., the number of learnable
vectors. The configuration of vi as either a prefix or postfix to x is an aspect of prompt design. In our
implementation, we append these tokens as a postfix to x. For each virtual token vi, its embedding
is a learnable vector vi ∈ Rd that has the same dimension d as the embedding layer of the language
model. The soft prompt tuning objective is to maximize the likelihood of the output y of the training
sample, given by the source model Ps(·) as

argmax
v1,··· ,vm

∑
(x,y)∈D

logP (y | v1, · · · ,vm, x) (2)

After the continuous prompts v1, . . . ,vm are optimized, they are usually used to make inference on
the same model for the same task (Lester et al., 2021; Li & Liang, 2021; Zhong et al., 2021).

Prompt tuning is more efficient than full-model finetuning because only a small number of param-
eters, i.e., the embeddings of the virtual tokens, are updated for a downstream task. Meanwhile, it
maintains substantial flexibility and achieves similar performance to full-model finetuning (Lester
et al., 2021). However, learning these virtual tokens may still be expensive for large language mod-
els because we need to perform backpropagation through the entire model structure. Our goal is to
explore the feasibility of learning a continuous prompt with a small language model and transferring
it to larger ones, therefore avoiding excessive gradient computations of prompt tuning for different
large language models.

2.2 ENCODING TO A RELATIVE SPACE

We propose to transfer continuous prompts from a source language model to target models. The
process involves two key phases: (1) encoding the source prompt embeddings into a relative repre-
sentation and (2) searching for target prompt embeddings whose corresponding relative representa-
tion aligns with those of the source. This two-phase method facilitates the effective transfer of task
semantics between different embedding spaces, allowing the transferred prompts to accomplish the
task on the target model.

The concept of relative representation involves encoding a data point based on its similarities to
certain reference points, known as anchors (Norelli et al., 2022; Moschella et al., 2023). In our
work, the relative space, where these encoded representations reside, serves as a shared semantic
space across different models and facilitates the transfer process of continuous prompts.

Consider a continuous prompt v1,v2, · · · ,vm ∈ Rds , where ds indicates the embedding dimension
of the source language model. We aim to transform it into a relative representation. This can be
shown in Figure 1b as transferring orange stars to orange triangles.

To encode the relative embeddings of the prompt, we need a set of common tokens, serving as
anchors, that are shared between both source and target language models. We simply choose the
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shared tokens as the set of anchors, as they provide a common ground for expressing a prompt
in relative terms, regardless of differently learned embedding spaces. Specifically, the anchors’
embeddings in the source model can be represented by a matrix As = [as

1,a
s
2, · · · ,as

k] ∈ Rds×k,
where k is the number of anchors, and [, ] concatenates column vectors into a matrix.

We then encode a prompt embedding vi in a relative space with respect to these anchors, where we
compute the cosine similarity between a prompt embedding and each anchor’s embedding, given by

rAs(vi) = (cos(vi,a
s
1), · · · , cos(vi,a

s
k))

⊤ (3)

This encoding step translates a continuous prompt from the source language model into a language
using the relationship among common tokens so that other models can potentially understand. It
bridges the source and target language models and passes implicit task information contained in the
source continuous prompt.

2.3 SEARCH IN THE TARGET SPACE

We search a continuous prompt for the target language model, based on the intuition that the relative
embeddings are model-agnostic and can be aligned across different language models, i.e., the orange
and green triangles in Figure 1 should have the same structure. In this way, we can search the
(absolute) target prompt embeddings by maximizing the alignment of the source and target relative
spaces.

Concretely, the target embeddings vt
1,v

t
2, · · · ,vt

m ∈ Rdt are randomly initialized, where dt is the
target embedding dimension and may not be the same as ds. They are represented by green stars
in Figure 1b. These target embeddings are then encoded using the target anchor embeddings At =
[at

1,a
t
2, · · · ,at

k] ∈ Rdt×k, shown by green squares in Figure 1b. These target anchors are the same
as source anchors, and their embeddings are given by the target language model. Similar to encoding
the source prompt, the target embeddings can be represented in the relative space by

rAt(vt
i) = (cos(vt

i,a
t
1), · · · , cos(vt

i,a
t
k))

⊤ (4)

To align source and target relative embeddings, i.e., Eqns. (3) and (4), we seek a target embedding
vt
i that maximizes their similarity. The objective is

maximize
vt
i

cos(rAs(vi), rAt(vt
i)). (5)

which can be accomplished by gradient descent. This procedure is repeated for i = 1, · · · ,m to
obtain all the embeddings of a length-m prompt for the target language model.

It is noted that such searched prompt embeddings may not have the same scale as the target language
model’s word embeddings, partially because the cos measure used in (3) and (4) is insensitive to
vector magnitude. Therefore, we normalize them as

ṽt
i =

vt
i − µv

σv
· σ + µ (6)

with µv, σv ∈ R being the mean and standard deviation of all searched prompt embedding values,
and µ, σ ∈ R being those of pretrained word embeddings of the target model.

The transferred continuous prompt, after the normalization, is directly used to query the target model
Pt(·) for inference, given by Pt(y | ṽt

1, · · · , ṽt
m, x).

2.4 MULTI-SOURCE TRANSFER

We argue that the induced prompt embeddings from a single model might be model-specific, which
is supported by the evidence in Khashabi et al. (2022) that a language model can generate numerous
continuous prompts capable of performing the same task. Such flexibility is believed to arise from
the high expressiveness of the model’s lower layers (Telgarsky, 2016; Raghu et al., 2017). There-
fore, the induced continuous prompt from a specific model may be one of the many plausible ones,
carrying model-specific information in addition to task semantics and limiting the transferability to
other language models.
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To enhance the generalization of the induced continuous prompt, we propose a multi-source transfer
approach. Specifically, we search for the target embeddings vt whose encoded embeddings rAt(vt)
align closely with the encoded embeddings rAsi (vsi) from multiple source models si in the relative
space. In other words, the goal is to search for vt such that the sum of similarities between rAt(vt)
and each source prompt rAsi (vsi) is maximized. Given S-many source models, the objective of
searching a target embedding vt

i is:

maximize
vt
i

S∑
j=1

cos(rAsj (v
sj
i ), rAt(vt

i)). (7)

We follow Eqn. (6) to normalize vt
i to target model’s embedding space, and use the resulting vectors

ṽt
i for inference.

3 EXPERIMENTS

3.1 DATASET

We utilized a widely used factual probing dataset, LAMA (Petroni et al., 2019), to evaluate the
effectiveness of our continuous prompt transfer approach. We followed recent factual probing stud-
ies (Shin et al., 2020; Zhong et al., 2021) that focus on the TREx split of LAMA. Specifically,
LAMA-TREx presents a factual knowledge piece as a triple ⟨subject, relation, object⟩. For example,
the fact that “Dante was born in Florence” is represented as ⟨Dante, place of birth,Florence⟩, where
“place of birth” is a pre-defined relation in the dataset. In total, there are 41 distinct relations as
subtasks, each of which contains up to 1, 000 tuples. We chose factual probing for two key reasons:
First, induced prompts represent different task semantics from 41 sub-tasks (distinct pre-defined re-
lations), providing a robust way to evaluate the generalizability of our transfer approach in various
scenarios. Second, the factual probing task requires the model to precisely predict the correct entities
from its vocabulary. This makes it easier to judge the performance of a prompt.

On the source pretrained language model, we adopted OptiPrompt (Zhong et al., 2021) for inducing
a continuous prompt for each of the 41 sub-tasks. Given a sub-task of a certain relation, the source
language model is queried using the prompt defined in Eqn. (1), where the prompt embeddings are
randomly initialized and then optimized according to Eqn. (2).

3.2 CHOICE OF MODELS AND OTHER IMPLEMENTATION DETAILS

We investigated our transferring approach across a range of language models, namely, BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and ALBERT (Lan et al., 2020), including base and
large variants. It should be noted that ALBERT utilizes parameter sharing across layers and reduced
embedding dimensions, which, to some extent, ties the semantics of embeddings and hidden lay-
ers. Therefore, we only used BERT and RoBERTa as the source language models while excluding
ALBERTA due to its unique architecture that does not support full compatibility with BERT and
RoBERTa. All these models are considered as target models for transfer.

In the main experiments, we set the default number of prompt embeddings m to 5, and the number
of anchors k to 8192. We report the standard evaluation metric, micro-average accuracy, which is
calculated by averaging the accuracy of 41 sub-tasks of distinct relations in the LAMA dataset (Shin
et al., 2020; Zhong et al., 2021). These settings are applied to both our approach and baselines.
More implementation details are shown in Appendix A.1.

3.3 MAIN RESULTS

Direct transfer. We first analyze a naı̈ve method, direct transfer, which directly applies the source-
induced continuous prompt to the target model. This provides us with a general understanding
of whether continuous prompts are directly transferable. We show the results of direct transfer in
Table 1 as a standalone experiment, as it does not fit our main table because direct transfer is only
feasible when the source and target embedding dimensions match.
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Table 1: Accuracy of direct transfer between models with
the same embedding dimension. Results are in percentage.

Source Target dembedding Transfer acc (%)

BERTbase RoBERTabase 768 0.11
RoBERTabase BERTbase 768 0.12
BERTlarge RoBERTalarge 1024 6.27
RoBERTalarge BERTlarge 1024 0.49

The results reveal that continuous
prompts induced from the base mod-
els of BERT and RoBERTa (both with
768 dimensions) perform poorly when
transferred to each other (around 0.1%
accuracy). For their large variants, the
transfer performance from RoBERTa
to BERT improves marginally, achiev-
ing around 0.5% accuracy. Transfer-
ring from BERT to RoBERTa achieves nearly 6.3% accuracy, but is still far from ideal. Overall, this
experiment verifies that continuous prompts are not directly transferable, signifying the importance
of prompt transfer research.

Baselines and single-source transfer. Table 2 represents the results of non-transfer baselines for
reference. In the random method, prompt embeddings are randomly sampled from a normal dis-
tribution fitted to the target models’ word embeddings. Its all-zero performance implies that factual
probing is a challenging task that requires non-trivial efforts from a machine learning model. In
direct tuning, the continuous prompt is directly tuned with the target model. As expected, direct
tuning achieves high performance, but is undesired as it requires backpropagation through the target
model; it serves as an “upper bound” of prompt transfer in the factual probing task. We also present
the performance of manual prompts, provided by the LAMA dataset (Petroni et al., 2019), serving
as another reference score for evaluating prompt transfer methods.

Table 3 shows the main results of our proposed method along with several continuous prompt trans-
fer baselines. We experimented with a straightforward method, called discretization (Khashabi
et al., 2022), for continuous prompt transfer. Specifically, each prompt embedding is projected to its
nearest-neighbor token embedding, and these discrete tokens are transferred to the target model. As
analyzed in Khashabi et al. (2022), such a method yields poor transferability, probably due to the

Table 2: Results of the non-transfer baselines, serving as reference scores for transfer.

Method
Target BERTbase BERTlarge RoBERTabase RoBERTalarge ALBERTbase ALBERTlarge

Random 0.00 0.00 0.00 0.00 0.00 0.00
Manual 30.64 32.22 20.48 23.59 18.63 24.44
Direct tuning 50.56 51.97 46.24 41.06 42.98 43.78

Table 3: Main results. Best performance is highlighted in bold, while second-best performance is
underlined. The numbers in gray are the self-transfer performance.

Source
Target BERTbase BERTlarge RoBERTabase RoBERTalarge ALBERTbase ALBERTlarge

Discretization
BERTbase 12.93 10.76 10.88 11.96 11.44 11.10
RoBERTabase 12.31 10.35 13.51 11.01 11.67 12.33
BERTlarge 9.00 11.02 5.64 11.93 7.35 6.66
RoBERTalarge 1.35 0.70 2.28 6.22 3.15 2.64

Neural projector
BERTbase 26.82 12.49 14.36 9.78 10.99 18.77
RoBERTabase 23.46 17.46 35.37 20.16 11.63 14.44
BERTlarge 3.15 4.77 5.64 4.66 8.18 14.55
RoBERTalarge 2.62 3.20 5.54 12.80 7.45 8.25

Single source (ours)
BERTbase 49.82 31.40 17.68 21.07 20.83 16.80
RoBERTabase 31.33 27.52 45.17 25.09 26.11 24.72
BERTlarge 26.78 50.21 7.64 16.91 15.10 13.44
RoBERTalarge 3.81 12.45 3.63 40.91 4.48 2.94

Dual sources (ours)
BERTbase + BERTlarge 49.21 47.78 27.60 23.21 23.67 22.32
BERTbase + RoBERTabase 48.79 32.83 43.83 25.26 27.13 26.54
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Figure 2: Validation accuracy vs. matching loss, with the curves showing the performance of various
target models.

expressive power in the neighbor of discrete token embeddings. Our results also demonstrate the
low performance of discretization, which is consistent with previous work and indicates that a more
nuanced approach is needed for effective prompt transfer.

In addition, we included an intuitive baseline method, the neural projector (Su et al., 2022), for
comparison. Specifically, we first trained a two-layer projector to map the source embedding space
to the target one based on anchor words. Then, we projected the source-induced prompt embed-
dings to the target model using the trained projector. Detailed settings and results are provided in
Appendix A.2. As seen, transferring the induced prompt embeddings through the projector provides
better results but still falls short of manual prompting.

Now, we consider our proposed prompt transfer method with a single source. As seen, our method
yields consistent improvement compared with the neural projector, which is a compelling result as
our method does not require learning a mapping from the source embedding space to the target.
This verifies that our proposal of working with a relative space is more effective than the original
embedding space for continuous prompt transfer. More profoundly, the prompts transferred from
the base models of BERT and RoBERTa surpass the manual prompting baseline, manifesting the
practical value of our proposed prompt transfer method.

Multi-source transfer. Finally, we evaluate our proposed multi-source prompt transfer method
as described in Section 2.4. We consider two dual-source settings: BERTbase+BERTlarge and
BERTbase+RoBERTabase. The results are also shown in Table 3. As seen, using multiple sources
generally improves transferability. For example, the BERTbase+BERTlarge dual-source setting outper-
forms BERTbase by 2–10 percentage points, although BERTlarge alone is not a strong source model.
Compared with the best single source, the BERTbase+RoBERTabase dual-source setting yields an
improvement of 1–2 points on the target models of ALBERTbase and ALBERTlarge, which are not in-
volved in the prompt tuning process. Overall, this experiment verifies that multiple sources improve
the transferability of continuous prompts.

Transferability and expressive power. We observed in Table 3 that a larger source model (ei-
ther BERTlarge or RoBERTalarge) has lower transfer performance. This aligns with the intuition
in Khashabi et al. (2022) that there could be a large number of similarly performing continuous
prompts, residing in a large (and also deep) model’s expressive embedding space (Telgarsky, 2016;
Raghu et al., 2017). Therefore, the induced prompt may carry model specificity in addition to task
semantics, limiting its transferability to other models.

Fortunately, the low transferability of large source models does not affect the value of our work,
because our typical application scenario is to tune a continuous prompt on a small source model and
use it for a large model. This is precisely the setting where our approach is especially effective.

3.4 ANALYSIS

Matching in relative space vs. transferability. Our approach is based on the intuition that the
task semantic is carried in a relative space, which can be aligned for different language models.
We analyze whether a closer matching of the relative space yields a higher transferability of the
continuous prompts. In Figure 2, we show the trend of validation accuracy versus matching loss
along the search process in Eqn. (5), where for each source–target combination, we averaged the
performance of all sub-tasks.
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Figure 3: The effect of normalization.

Figure 4: The effect of the anchor number and prompt length. Each value (dot) was computed by
averaging the accuracy from all source–target combinations.

In Figure 2, we observe that, as the matching loss decreases (towards right in the plots), the validation
accuracy of target models increases. In the special case where source and target models are identical,
the matching loss of the relative space is able to approach zero, and the accuracy of the transferred
prompt is close to that of the source prompt. This demonstrates that our approach is able to recover
the original embeddings from the relative space, even if a normalization is performed to the target
embeddings in Eqn. (6).

When source and target models are different, the matching loss does not approach zero, which is
reasonable because the different language models’ embedding spaces may not be perfectly aligned.
Nevertheless, the correlation between matching loss and validation accuracy is highly consistent
across all source–target combinations, convincingly showing that a better matching in the relative
space leads to a more transferable continuous prompt.

Effect of normalization to target embedding space. We further provide an ablation study on the
normalization of target embeddings introduced in Eqn. (6). Specifically, we compare the perfor-
mance of the target prompts with or without the normalization treatment.

From Figure 3, we observe that, when the source and target models are identical (non-transfer set-
tings), the normalization hurts the performance, as it distorts the original word embedding space.
However, the gap is minimal, which provides additional evidence that we are able to recover the
original embeddings through our relative space even with the normalization.

When the source and target models are different, however, the normalization significantly improves
the performance. The results confirm that the normalization treatment can better cast the relative
embedding of a source-induced continuous prompt into the target embedding space, directly under-
stood by the target language model.

Effect of the anchor numbers and prompt length. We analyze the number of anchors and the
prompt length. We first varied the number of anchors from the set {512, 1024, 2048, 4096, 17230},
where 17, 230 is the number of the shared tokens in different language models considered in this
study. The anchor number decides the feature dimensionality of the relative representations, shown
in Eqns. (3) and (4). Figure 4a reveals a general trend of improved transfer performance with an
increasing number of anchors. When we have 512 anchors, the transfer performance is the lowest,
which is due to the inadequate capacity of the low-dimensional relative space. On the other hand,
using the entire shared vocabulary results in a marginal decrease in performance. This is reasonable
because the embeddings of rare words may not be well trained, consequently introducing noise to
the high-dimensional feature space.
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We then investigate the effect of prompt length on transfer performance, where we chose the length
from the set {1, 3, 5, 10}. We observe in Figure 4b that the performance of transfer improves until
a certain point, namely, five virtual tokens in our case. With a prompt length of 10, the transfer
performance decreases slightly.

Overall, our approach is robust to these hyperparameters. Based on this analysis, we set the number
of anchors to 8192 and the prompt length to 5 in our main experiments (see § 3.2).

Additional results. We provide additional results in the appendices. These include a study of
transferring induced prompts across different model architectures, such as from BERT to GPT-2,
detailed in §B.1. Furthermore, we demonstrate the applicability of our method to classification
tasks, discussed in §B.2.

4 RELATED WORK

In recent years, language models (LMs) have shown impressive few-shot learning capabilities
that allow them to be adapted to a variety of downstream tasks through the design of textual
prompts (Brown et al., 2020). Subsequent research improves the performance of NLP tasks by
creating discrete prompts that are manually crafted, searched through gradient descent (Shin et al.,
2020), or using reinforcement learning (Deng et al., 2022). Meanwhile, there has been a growing
interest in continuous prompts tuning (Li & Liang, 2021; Lester et al., 2021; Zhong et al., 2021).
These studies suggest that tuning a small number of parameters in prompt embeddings can match
the performance of full-model finetuning (Houlsby et al., 2019; Lester et al., 2021), which shows
the potential of continuous prompt tuning.

Several previous studies have tried to utilize the induced continuous prompt to other tasks or other
LMs. For example, Vu et al. (2022) show that prompt embeddings induced on a certain task can
be used to initialize the prompts for similar tasks. This led to further research on retrieving and
mixing continuous prompts for new tasks (Asai et al., 2022; Su et al., 2022; Wang et al., 2023). Su
et al. (2022) further study the transferability of continuous prompts in cross-LM scenarios. They
propose to train a projector between the embedding space of two LMs with parallel induced prompt
embeddings or task signals, which contrasts with the zero-shot transfer approach in this work.

Rakotonirina et al. (2023) and Wen et al. (2023) investigate zero-shot transferability between differ-
ent LMs using the induced discrete prompts. Their work is orthogonal to ours as we focus on the
cross-model transfer of continuous prompts. Although transferring discrete prompts offers greater
simplicity compared with our proposed continuous prompt transfer, continuous prompts are more
versatile and can be adapted to a broader range of applications.

The concept of mapping different embeddings into a shared latent space has been well explored
in the cross-lingual scenario (Faruqui & Dyer, 2014; Lazaridou et al., 2015; Artetxe et al., 2018),
which further paves the way for unsupervised neural machine translation (Lample et al., 2018).
We follow the assumption from these studies and assume the induced task embeddings (Vu et al.,
2022) from different language models share similar latent structures. We employ relative represen-
tation (Moschella et al., 2023) to encode a source-induced prompt, and decode it to the embedding
space of the target model.

5 CONCLUSION

We introduced a zero-shot method for transferring continuous prompts between different language
models through a relative space. Experiments confirm the effectiveness of our approach, and we
further provide insights into the correlation between a model’s transferability and its expressive
power. Moreover, we propose a simple method to improve the generalizability of prompt transfer
by using multiple source models.

Given the shift towards unified large language models (Brown et al., 2020), our method could enable
smaller source models to act as effective “soft prompt engineers” that perform better than manual
prompting. Additionally, it is a promising direction to explore direct human–model interactions
that bypass the need for discrete language. This will involve prompting pretrained language models
using continuous prompts transferred from sources like encoded brain signals (Zou et al., 2021).
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Table 4: Details of the pretrained language models considered in this study. MLM, NSP, SOP, and
NTP stand for masked language modeling, next sentence prediction, sentence order prediction, and
next token prediction, respectively. It should be noted that ALBERT employs weight sharing, and
its memory consumption is similar to BERT and RoBERTa.

Model #Parameters dhidden dembedding Pretraining task Pretraining data

BERT base 110M 768 768 MLM & NSP BookCorpus, English Wikipedialarge 340M 1024 1024

RoBERTa base 125M 768 768 MLM BookCorpus, English Wikipedia,
large 355M 1024 1024 CC-News, OpenWebText, Stories

ALBERT base 12M 768 128 MLM & SOP BookCorpus, English Wikipedialarge 18M 1024 128

GPT-2
small 117M 768 768

NTP WebTextbase 345M 1024 1024
large 774M 1280 1280

A IMPLEMENTATION DETAILS

A.1 DETAILS OF THE MODELS

Table 4 provides an overview of the language models used in this study, including base and large
variants of BERT, RoBERTa, and ALBERT. Each model is trained with distinct pretraining tasks
and datasets. In this study, we focus on transferring continuous prompts between masked language
models, as this fill-in-the-blank mechanism is a natural way to probe knowledge (Shin et al., 2020).
We also provide a preliminary empirical investigation of transferring continuous prompts between
different model structures, e.g., from the encoder-only BERT model to the decoder-only GPT-2
model, which is discussed in §B.1.

Due to the variations in pretraining datasets and tokenizing methods, the language models in differ-
ent families (e.g., BERT vs. RoBERTa) have different vocabularies. We obtained a shared vocabu-
lary of tokens by taking the intersection of these individual vocabularies. During the transfer, we first
encode the source prompt embeddings to the entire relative space. Then, we pick top-k dimensions
of highest values (k = 8192) and set the rest of zero, which follows Norelli et al. (2022).

A.2 DETAILS OF THE PROJECTOR BASELINE

One of our baselines is a projector that maps the source embedding space to the target one. We
trained a two-layer neural network as the projector based on the shared vocabulary. Specifically, we
have

Proj(es
i) = W2(f(W1e

s
i + b1)) + b2, (8)

where f is the Leaky ReLU activation function (Xu et al., 2015). For some anchor word i, we denote
by es

i and et
i the word embeddings of the source model and target model, respectively. We train the

projector by minimizing the mean squared error loss:

LMSE =
1

k

k∑
i=1

(Proj(es
i)− et

i), (9)

where k is the size of shared vocabulary between two language models. We trained the neural
network with 10 epochs using the Adam optimizer (Kingma & Ba, 2014). The learning rate was
5e-3 and the batch size was 16. The hidden dimension of this two-layer neural network was 768.
We ran the validation on target models after each training epoch with the projected target prompt
embeddings. We chose the projector with the highest validation performance and used it for test.

B ADDITIONAL RESULTS

In this appendix, we report preliminary results of the additional experiments conducted during the
author response phase based on the reviewers’ suggestions. In particular, we show the adaptability
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Table 5: Results on transferring prompts between encoder and decoder models.

Method
Target BERTbase RoBERTabase GPT2small GPT2medium GPT2large

Direct tuning 50.56 46.24 31.62 32.23 34.44
Manual 30.64 20.48 4.73 8.01 10.23

So
ur

ce
BERTbase - 17.68 10.46 11.52 5.50
RoBERTabase 31.33 - 14.06 13.70 14.33

GPT2small 6.58 0.39 - 13.72 2.34
GPT2medium 4.06 0.50 5.02 - 1.79

Table 6: Results of transferring prompts from source models to RoBERTalarge on the SST-2 and
DPpedia classification tasks.

Method SST-2 (accuracy) DBpedia (accuracy)

Direct tuning 90.94 84.92
Manual 69.95 72.28

Source: BERTbase 82.45 77.05
Source: RoBERTabase 84.63 80.81

of our method to different model architectures in §B.1, and experiment with classification tasks in
§B.2.

B.1 TRANSFER BETWEEN DIFFERENT MODEL ARCHITECTURES

We first demonstrate the feasibility of transferring continuous prompts across different model archi-
tectures. This experiment explores the transferability between encoder and decoder models, focusing
on generative GPT-2 models of varying sizes: small, medium, and large, as detailed in Table 4. We
selected BERTbase and RoBERTabase, two encoder models, for our primary experiment to examine
the transferability of prompts to or from GPT-2 models.

Table 5 shows the results of transferring continuous prompts across architectures on the LAMA
dataset, including comparisons with the performance of directly tuned and manually prompted tar-
get models for reference. We see that the prompts induced on the encoder models, BERTbase and
RoBERTabase, are transferable to the GPT-2 models with different sizes. Notably, RoBERTabase
shows its best transferability, outperforming the manual prompting baseline across all target mod-
els. However, we found that the GPT-2 models as the source cannot induce as meaningful prompts as
the encoder models, often underperforming manual prompting. The underlying reason contributing
to the poor transferability of the continuous prompts induced on GPT-2 models remains unexplored
and merits further study.

B.2 RESULTS ON CLASSIFICATION TASKS

Now we show our proposed transfer method is effective on other NLP tasks. Specifically, we include
SST-2, a binary sentiment classification task, and DBpedia, a 14-category topic classification task.
Unlike LAMA’s entity prediction which requires the model to consider the whole vocabulary, the
classification task only requires prediction within the label words based on the prompt, for example,
“great” or “bad” for the SST-2 dataset (Sun et al., 2022).

As shown in Table 6, compared to using manual prompts on the target model directly, transferring
prompts from both BERTbase and RoBERTabase to the RoBERTalarge target model yields better re-
sults. In line with our previous findings, RoBERTabase shows its superior transferability. Overall,
our additional results present the potential of applying our approach to various tasks and model
architectures.
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