
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS HYPERPARAMETER-FREE OPTIMIZATION
WITH DIFFERENTIAL PRIVACY

Anonymous authors
Paper under double-blind review

ABSTRACT

Differential privacy (DP) is a privacy-preserving paradigm that protects the train-
ing data when training deep learning models. Critically, the performance of mod-
els is determined by the training hyperparameters, especially those of the learn-
ing rate schedule, thus requiring fine-grained hyperparameter tuning on the data.
In practice, it is common to tune the learning rate hyperparameters through the
grid search that (1) is computationally expensive as multiple runs are needed, and
(2) increases the risk of data leakage as the selection of hyperparameters is data-
dependent. In this work, we adapt the automatic learning rate schedule to DP
optimization for any models and optimizers, so as to significantly mitigate or even
eliminate the cost of hyperparameter tuning when applied together with automatic
per-sample gradient clipping. Our hyperparamter-free DP optimization is almost
as computationally efficient as the standard non-DP optimization, and achieves
state-of-the-art DP performance on various language and vision tasks.

1 INTRODUCTION

The performance of deep learning models relies on a proper configuration of training hyperparam-
eters. In particular, the learning rate schedule is critical to the optimization, as a large learning rate
may lead to divergence, while a small learning rate may slowdown the converge too much to be
useful. In practice, people have used heuristic learning rate schedules that are controlled by many
hyperparameters. For example, many large language models including LLAMA2 Touvron et al.
(2023) uses linear warmup and cosine decay in its learning rate schedule, which are controlled by 3
hyperparameters. Generally speaking, hyperparameter tuning (especially for multiple hyperparam-
eters) can be expensive for large datasets and large models.

To address this challenge, it is desirable or even necessary to determine the learning rate schedule in
an adaptive and data-dependent way, without little if any manual effort. Recent advances such as D-
adaptation Defazio & Mishchenko (2023), Prodigy Mishchenko & Defazio (2023), DoG Ivgi et al.
(2023), DoWG Khaled et al. (2023), U-DoG Kreisler et al. (2024), and GeN Bu et al. (2023b) have
demonstrated the feasibility of automatic learning rate schedule, with some promising empirical
results in deep learning (see a detailed discussion in Section 2.3).

While these learning rate methods are evolving in the standard non-DP regime, their adaptive de-
pendency on the data can raise the privacy risks of memorizing and reproducing the training data.
As an example, we consider the ZO-SGD optimizer

wt+1 = wt − ηZO-SGDzt

where wt is the model parameters, zt is a random vector that is independent of any data, and
ηZO-SGD ≈ ∂L

∂wt

⊤
zt ∈ R is the effective learning rate, with L being the loss value. In Malladi

et al. (2023), ZO-SGD can effectively optimize models such as OPT 13-60B in the few-shot and
many-shot settings. Hence, by using an adaptive hyperparameter ηZO-SGD, the models are able to
learn and possibly memorize the training data even if the descent direction is data-independent.
In fact, the private information can also leak through other hyperparameters and in other models,
where an outlier datapoint can be revealed via the membership inference attacks in support vector
machinesPapernot & Steinke (2021).

Specifically, in the DP deep learning regime, the privacy risks from the non-DP hyperparameter
tuning could render the privacy guarantee non-rigorous. In practice, most work has leveraged the DP

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

optimizers Abadi et al. (2016) to offer the privacy guarantee, where the privatization is only on the
gradients, but not on the hyperparameters such as the clipping threshold Rg and the learning rate η. A
common approach is to trial-and-error on multiple (Rg, η) pairs and select the best hyperparameters,
as showcased by Li et al. (2021); Kurakin et al. (2022).

At high level, there are two approaches to accommodate the privacy risk in hyperparameter tuning:
(1) The more explored approach is to assign a small amount of privacy budget to privatize the hy-
perparameter tuning. Examples include DP-Hypo Liu & Talwar (2019); Papernot & Steinke (2021);
Wang et al. (2023) and DP-ZO-SGD Tang et al. (2024); Liu et al. (2024); Zhang et al.. However,
these methods may suffer from worse performance due to larger DP noise addition from the re-
duced privacy budget, or high computation overhead. (2) The less explored approach is to adopt
hyperparameter-free methods. For instance, Bu et al. (2023b); Yang et al. (2022) replace the per-
sample gradient clipping with the per-sample gradient normalization (i.e. setting Rg = 0), so as to
remove the need to tune the hyperparameter Rg in DP optimizers.

In this work, we work towards the hyperparameter-free optimization with DP, by adapting learning-
rate-free methods in DP optimization:

DP-SGD =⇒

Vanilla: wt+1 = wt − ηmanual

(∑
i∈B min{ Rg

||gi|| , 1}gi + σRgz
)

Hyperparameter-free: wt+1 = wt − ηGeN-DP

(∑
i∈B

gi

||gi|| + σz
)

(1)

Our contributions are summarized as follows: 1) We propose HyFreeDP, a hyperparameter-free
DP framework that rigorously guarantees DP on the hyperparameter tuning of (Rg, ηt), and works
with any optimizer. 2) We apply the loss privatization to leverage GeN learning rate under DP,
with a specific auto-regressive clipping threshold Rl that aims to minimize the clipping bias. 3) We
give an end-to-end privacy accounting method that adds < 1% more noise on the gradient, while
accurately capturing the loss curvature to determine the adaptive learning rate. 4) We show the
strong performance and high efficiency of our method empirically.

2 PRELIMINARIES AND RELATED WORKS

2.1 DIFFERENTIALLY PRIVATE OPTIMIZATION

Overview of DP optimization. We aim to minimize the loss
∑

i L(w,xi) where w ∈ Rd is the
model parameters and xi is one of data points with 1 ≤ i ≤ N . We denote the per-sample gradient
as gi(w) := ∂L(w,xi)

∂w ∈ Rd and the mini-batch gradient at the tth updating iteration as mt ∈ Rd:
for a batch size B ≤ N ,

mt({gi}Bi=1;Rg, σg) := [

B∑
i

ci(Rg)gi + σgRg · zg]/B (2)

where zg ∼ N (0, Id) is the Gaussian noise, and ci(Rg) = min(Rg/|gi|, 1) is the per-sample
gradient clipping factor in Abadi et al. (2016); De et al. (2022) with Rg being the clipping threshold.

In particular, mt reduces to the standard non-DP gradient
∑

i gi/B when σg = 0 and Rg is suffi-
ciently large (i.e., no clipping is applied). The clipped and perturbed batch gradient becomes the DP
gradient m ≡ mDP whenever σg > 0, with stronger privacy guarantee for larger σg . On top of m,
models can be optimized using any optimizer such as SGD and Adam through

wt+1 = wt − ηt ·Gt(m{gi}) (3)

in which Gt is the post-processing such as momentum, adaptive pre-conditioning, and weight decay.

Hyper-parameter matters for DP optimization. Previous works De et al. (2022); Li et al. (2021)
reveal that the performance of DP optimization is sensitive to the hyper-parameter choices. On
the one hand, DP by itself brings extra hyper-parameters, such as the gradient clipping threshold
Rg , making the tuning more complex. An adaptive clipping method Andrew et al. (2021) proposes
to automatically learn Rg at each iteration, with an extra privacy budget that translates to worse
accuracy. While there are methods that does not incur additional privacy budget. Automatic clipping

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(or per-sample normalization, or AutoClip) Bu et al. (2023b); Yang et al. (2022) is a technique
that uses ci = 1/||gi|| to replace the Rg-dependent per-sample clipping, and thus removes the
hyperparameter Rg from DP algorithms. On the other hand, hyper-parameter tuning for DP training
has different patterns than Non-DP training and cannot borrow previous experience on Non-DP. For
example, previous works Li et al. (2021); De et al. (2022) observe that there is no benefit from
decaying the learning rate during training and the optimal learning rate is much higher than the
optimal one in Non-DP training.

2.2 END-TO-END DP GUARANTEE FOR OPTIMIZATION AND TUNING

However, hyper-parameter tuning enlarges privacy risks Papernot & Steinke (2021), and it is neces-
sary to provide end-to-end privacy guarantee for DP. There are two existing technical paths to solve
this problem: 1) Guaranteeing DP for the entire tuning and training process Mohapatra et al. (2022);
Papernot & Steinke (2021); Wang et al. (2023); Liu & Talwar (2019), which either requires prior
knowledge or consumes significant privacy budget. For instance, Liu & Talwar (2019) showed that
repeated searching with random iterations satisfies (3ϵ, 0)-DP if each run was (ϵ, 0)-DP. 2) Mak-
ing DP optimization hyper-parameter free through automatic clipping Bu et al. (2023b); Yang et al.
(2022), though learning rate tuning η remains necessary as clipping coefficients are absorbed into
it. Our work follows the second approach, aiming to resolve tuning on η—the last critical hyper-
parameter—by finding a universal configuration across datasets and tasks.

Following the framework of previous works Liu & Talwar (2019); Papernot & Steinke (2021), sup-
pose there are m privacy-preserving training algorithms M1, · · · ,Mm which corresponds to m
possible hyper-parameters. Denoting the whole process of training and hyper-parameter tuning as
M, it takes input as a training dataset D and outputs the best outcome over a finite set of m possible
hyper-parameters by running M1, · · · ,Mm. The end-to-end DP ensures that M satisfies (ϵ, δ)-DP
with respect to any neighboring datasets and any outcome. And the outcome includes the best model
parameters and the corresponding hyper-parameters. In our hyper-parameter-free solution, there is
a single training with m = 1, and the output hyper-parameters are data-independent.

2.3 AUTOMATIC LEARNING RATE SCHEDULE

Automatic learning rate schedules (also known as learning-rate-free or parameter-free methods) have
demonstrated promising performance in deep learning, with little to none manual efforts to select
the learning rate. Specifically, D-adaptation Defazio & Mishchenko (2023), Prodigy Mishchenko &
Defazio (2023), and DoG Ivgi et al. (2023) (and its variants) have proposed to estimate η ≈ D

G
√
T

where D = ||w0 − w∗|| is the initialization-to-minimizer distance, G is the Lipschitz continuity
constant, and T is the total number of iterations. These methods have their roots in the convergence
theory under the convex and Lipschitz conditions, and may not be accurate when applied in the DP
regime when the gradient is noisy. In fact, the estimation of D and G can deviate significantly from
the truth when ϵ is small, i.e. the DP noise in gradient is large, as shown in Table 2.

Along an orthogonal direction, GeN Bu & Xu (2024) leverages the Taylor approximation of Hessian
information to set the learning rate ηGeN, without assuming the Lipschitz continuity or the knowledge
of D. Given any descent vector m1, we re-write their quadratic function with our notations in (4):

ηGeN(m) :=
G̃⊤m

mH̃m
= argminηL(w)− G̃⊤mη +mH̃m

η2

2
≈ argminηL(w − ηm) (4)

Numerically, ηGeN can be computed up to any precision by curve fitting or finite difference. Under
the non-DP regime, given a series of ηi and loss values L(w − ηim),Bu & Xu (2024) obtains the
numerator and denominator of ηGeN by solving the problem in Equation (4):

m⊤H̃m, G̃⊤m ≈ argmina,b

∑
i

∣∣∣∣L(w − ηim)−
(
L(w)− bηi + a

η2i
2

)∣∣∣∣2 (5)

Nevertheless, directly applying these non-DP automatic learning rate scheduler with DP gradient in
(2) and using ηGeN(m) will violate DP because the learning rate estimation is obtained from forward
passes on batches of private data. We defer the explanation and solution to Section 3.

1We omit the iteration index t for a brief notation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 LOSS VALUE PRIVATIZATION WITH MINIMAL CLIPPING BIAS

3.1 PRIVATIZED QUADRATIC FUNCTION

We emphasize that the learning rate ηGeN(m) is not DP, because even though m is privatized, the
data is accessed without protection through G̃ and H̃ in (5). To solve this issue, we introduce a
privatized variant of (5),

(m⊤H̃m)DP, (G̃
⊤m)DP := argmina,b

∑
i

∣∣∣∣L̃(w − ηimDP)−
(
L̃(w)− bηi + a

η2i
2

)∣∣∣∣2 (6)

which not only replaces m with the DP gradient mDP but also privatizes the loss by L̃(w− ηimDP)

as in (7). The resulting learning rate is ηGeN-DP = (G̃⊤m)DP

(m⊤H̃m)DP
, which is DP since every quantity

in (6) is DP and because of the post-processing property. We now discuss the specifics of the loss
value privatization L̃(w − ηim) ∈ R. In Table 1, we emphasize that the loss privatization is
distinctively different from the gradient privatization because the loss is scalar, whereas the gradient
is high-dimensional.

Table 1: Difference between the privatization of loss and gradient.
Aspects Loss Privatization Gradient Privatization

Dimension 1 d
Clipping Norm L2 or L1 L2

Noise Magnitude
√

2
π

σlRl

B

√
d
σgRg

B

Key to Convergence Clipping Bias Noise Magnitude
Per-sample Operation Clipping (Rl ≈ L) Normalization (Rg ≈ 0+)

From the perspective of per-sample clipping, the gradient is ubiquitously clipped on L2 norm, be-
cause ||gi||2 ≪ ||gi||1 in large neural networks, and consequently a Gaussian noise is added to
privatize the gradient. In contrast, we can apply L2 or L1 norm for the loss clipping, and add Gaus-
sian (by default) or Laplacian noise to the loss, respectively.

From the perspective of noising, the expected noise magnitude for loss privatization is E|zl|σlRl

B =√
2
π

σlRl

B where zl ∼ N(0, 1) is the noise on loss, and that for gradient privatization is

E||zg||σgRg

B ≈
√
d
σgRg

B where the gradient noise vector zg ∼ N(0, Id) by the law of large num-
bers. On the one hand, the gradient noise zg is large and requires small Rg to suppress the noise
magnitude, as many works have use very small R Li et al. (2021); De et al. (2022). This leads to the
automatic clipping in Bu et al. (2023b) when the gradient clipping effectively becomes the gradient
normalization as Rg → 0+. In fact, each per-sample gradient (as a vector) has a magnitude and
a direction, and the normalization neglects some if not all magnitude information about the per-
sample gradients. On the other hand, we must not use a small Rl for the loss clipping because the
per-sample loss (as a scalar) only has the magnitude information. We will show by Theorem 1 that
the choice of threshold Rl creates a bias-variance tradeoff between the clipping and the noising for
the loss privatization:

L̃ =
1

B

[∑
i

min(
Rl

Li
, 1)Li + σlRl ·N(0, 1)

]
(7)

We note (7) is a private mean estimation that has been studied in previous works Biswas et al.
(2020); Kamath et al. (2020), though many use an asymptotic threshold like Rl+O(logB), whereas
Theorem 1 is more suited for our application in practice.

3.2 BIAS-VARIANCE TRADE-OFF IN LOSS PRIVATIZATION

Theorem 1. The per-sample clipping bias of (7) is∣∣∣∣E(L̃)− ∑
i Li

B

∣∣∣∣ =
∣∣∣∣∣ 1B ∑

i

min(
Rl

Li
, 1)Li −

1

B

∑
i

Li

∣∣∣∣∣ =
∣∣∣∣∣ 1B ∑

i

(Li −Rl)I(Li > Rl)

∣∣∣∣∣
4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝜖, 𝛿

Update model

Algorithm 1: Activate auto-tuning when t % K == 0

𝜂

𝜎= GetSigma(𝜖, 𝛿, B, T, N)

𝜖!"#$ 𝐵,𝑇,𝑁,𝜎%, 𝜎&, 𝐾 =
𝜖 𝐵,𝑇,𝑁,𝜎 , where 𝜎%=1.01 𝜎

𝒎𝒕 𝑮𝑫𝑷= 𝑮𝒕(𝒎𝒕)𝑅!

K

DP-related

w), ±𝜂𝐺*+, ±2𝜂𝐺*+, …

Loss clipping

Loss perturbation

Sample & forward

Curve fitting

𝒘𝒕(𝟏 = 𝒘𝒕 − 𝜼𝑮𝑫𝑷

𝑅,
𝐵, 𝑇,𝑁

Sample a
batch Privatized update

Privacy Accounting

Update
loss
clipping
threshold

Non-DP and Data-independent Data-dependent

Auto-updated
params

𝜎- 𝜎.Solve the equation
for loss noise

Figure 1: HyFreeDP overview with three types of hyper-parameters in the DP training.
HyFreeDP saves tuning efforts via automatically tuning hyper-parameters in red text, and sets other
parameters as default constants. We showcase with 5 points in curve fitting.

which is monotonically decreasing in Rl, and converges to [E(Li|Li > Rl) − Rl] · P(Li > Rl) as
B → ∞. In contrast, the noise variance is Var(L̃) = (σlRl/B)2 which is increasing in Rl.

In words, a large Rl reduces the clipping bias but magnifies the noise, and vice versa for a small
Rl. We propose to use Rl ≈ L so that the clipping bias is close to zero (i.e. L̃ is approximately
unbiased), and the loss noise shown in Table 1 is reasonably small for large batch size.

To put this into perspective, we give the explicit form of clipping bias when Li follows a Gaussian
distribution in Corollary 1.
Corollary 1. Suppose Li ∼ N(µ, ξ2), then the asymptotic clipping bias in Theorem 1 is

[E(Li|Li > Rl)−Rl] · P(Li > Rl) = ξ[ϕ(α)− α(1− Φ(α)], (8)

where α = Rl−µ
ξ , ϕ is the probability density function and Φ is the cumulative distribution function

of standard normal distribution. The term (8) is strictly decreasing in α as well as in Rl.

4 ALGORITHM

4.1 HYPERPARAMETER-FREE DP OPTIMIZATION

We present our algorithm in Algorithm 1, which is DP as guaranteed in Theorem 2, almost as
efficient as the standard non-DP optimization by Section 4.4, and highly accurate and fast in con-
vergence as demonstrated in Section 5. Importantly, we have split the hyperparameters into three
classes, as shown in Figure 1: (1) DP-related hyperparameters that do not depend on the tasks, such
as the gradient noise σg , the loss noise σl, and the update interval K, can be set as default constants
For example, we fix Rg → 0+ and re-scale the learning rate by 1/Rg according to Auto Clipping
and set K = 5. (2) Training hyperparameters that are robust to different models and datasets, which
we view as data-independent, need-not-to-search, and not violating DP, such as the batch size B,
the number of iterations T . We can set with default values based on Non-DP training experience
or it is given as the dataset size N . We also fix other hyperparameters not explicitly displayed in
Algorithm 1, e.g. throughout this paper, we fix the momentum coefficients and weight decay in
AdamW at (β1, β2,weight decay) = (0.9, 0.999, 0.01), which is the default in Pytorch. (3) Train-
ing hyperparameters that are data-dependent, which requires dynamical searching under DP, such
as Rl and η. For these hyperparameters, Algorithm 1 adopts multiple auto-regressive designs, i.e.
the variables to use in the t-th iteration is based on the (t − 1)-th iteration, which has already been
privatized. These auto-regressive designs allow new variables to preserve DP by the post-processing
property of DP2.

To be specific, we have used L̃
(0)
t−1 as the loss clipping threshold Rl for the next iteration in Line

7, because loss values remain similar values within a few iterations; In practice, we set a more
conservative loss clipping threshold Rl =

∑
L̃
(k)
t−1 to avoid the clipping bias. We have used the

previous η to construct next-loss in Line 6, which in turn will determine the new η by Line 9.
2The post-processing of DP ensures that if X is (ϵ, δ)-DP then g(X) is also (ϵ, δ)-DP for any function g.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Hyperparameter-free Optimization with Differential Privacy
1: INPUT: initial η=1e-4, initial Rl = 1

2: Forward pass to compute per-sample losses L(0)
t,i = L(wt,xi)

3: Compute the mini-batch loss L(0)
t = 1

B

∑
i L

(0)
t,i

4: Back-propagate from L
(0)
t to compute mDP in (2) with Auto Clipping

5: Post-process mDP by any optimizer GDP := G(m) in (3)
6: if t%K == 0 (e.g. K = 10) then
7: Forward pass to get per-sample losses L(±1)

t,i = L(wt ± ηGDP,xi)

8: Privatize losses L̃(k)
t by (7) with Rl = L̃

(0)
t−1 for k ∈ {−1, 0,+1}

9: Fit the quadratic function in (6) from {−η, 0, η} to {L̃(−1)
t , L̃

(0)
t , L̃

(+1)
t }

10: Extract coefficients of the fitted quadratic function (m⊤H̃m)DP, (G̃
⊤m)DP

11: Update η with ηGeN-DP = (G̃⊤m)DP

(m⊤H̃m)DP
≈ argminηL̃(wt − ηGDP)

12: end if
13: Update wt+1 = wt − ηGDP

0.02 0.01 0.00 0.01 0.02
Learning Rate Update

2

3

4

5

6

Lo
ss

 V
al

ue
s

Iteration 10
Curve fitting
w/o clipping w/o noise
w/ clipping w/o noise
w/ clipping w/ noise
Gaussian noise

0.02 0.01 0.00 0.01 0.02
Learning Rate Update

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

 V
al

ue
s

Iteration 20

0.02 0.01 0.00 0.01 0.02
Learning Rate Update

0.8

1.0

1.2

1.4
Lo

ss
 V

al
ue

s

Iteration 40

0.02 0.01 0.00 0.01 0.02
Learning Rate Update

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

 V
al

ue
s

Iteration 50

Figure 2: Impact of loss value clipping and perturbation on curve fitting along different training
iterations on CIFAR100 with Vit-small fully fine-tuning, with zero in x-axis denotes the current wt.
We use 5 points for the ease of illustration and use 3 points in Algorithm 1 and experiments.

4.2 PRIVACY GUARANTEE

Theorem 2. Algorithm 1 is (ϵours, δ)-DP, where ϵours depends on the batch size B, the number
of iterations T , the noises (σg, σl), and the update interval K. In contrast, vanilla DP-SGD is
(ϵvanilla, δ)-DP, where ϵvanilla depends on B, T, σ. Furthermore, we have ϵours(B, T,N, σg, σl,K) >
ϵvanilla(B, T,N, σ) if σg = σ.

We omit the concrete formulae of ϵ because it depends on the choice of privacy accountants. For
example, if we use µ-GDP as an asymptotic estimation, then we show in Appendix B that

µvanilla =

√(
B

N

)2

T (e1/σ2 − 1), µours =

√
µ2

vanilla +

(
B

N

)2
3T

K
(e1/σ

2
l − 1) (9)

which can translate into (ϵ, δ)-DP by Equation (6) in Bu et al. (2020). Note in our experiments, we
use the improved RDP as the privacy accountant.

Theorem 2 and (9) show that given the same (B, T, σ), our Algorithm 1 uses more privacy budget
because we additionally privatize the loss, whereas the vanilla DP-SGD does not protect the hyper-
parameter tuning. To maintain the same privacy budget as vanilla DP-SGD, we use an ≈ 1% smaller
budget for the gradient privatization, so that the saved budget can be used on the loss privatization.
Therefore, we need ≈ 1% larger gradient noise σg = γσ and then select σl based on

ϵours(B, T,N, γσ, σl,K) = ϵvanilla(B, T,N, σ),where we can use γ ≤ 1.01. (10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.3 END-TO-END NOISE DETERMINATION

We use autoDP library3 to compute σl based on σg in (10). We give more details of our imple-
mentation in Appendix C. We visualize both noises in Figure 3 with RDP accounting and Gaussian
and mechanisms for loss privatization, dashed line indicates the case when σg and σl are set equally.
More examples for different mechanisms or different accounting are shown in Appendix. Note that
we only adds a little more gradient noise, hence σg introduces negligible accuracy drop to Algo-
rithm 1, as empirically shown in Section 5. Additionally, we demonstrate in Figure 2 that σl has
negligible interference with the precision of estimating ηGeN.

4.4 EFFICIENCY OF ALGORITHM

2 4 6 8 10 12 14
Update interval K

101

2 × 100

3 × 100

4 × 100

6 × 100

No
ise

 sc
al

e
fo

r g
ra

di
en

t a
nd

 lo
ss

RDP Composition (Gauss and Gauss)
g with =1.05
l with =1.05
g = l

g with =1.01
l with =1.01

Figure 3: Gradient and loss noise.

We illustrate that Algorithm 1 can be almost as efficient as
the standard non-DP optimization, in terms of training time
and memory cost. We identify three orthogonal components
that are absent from non-DP optimization: 1) Gradient pri-
vatization. DP optimization (including vanilla DP-SGD) al-
ways requires per-sample gradient clipping. Due to the high
dimension of gradients, this could incur high cost in memory
and time if implemented inefficiently. We directly leverage the
recent advances like ghost clipping and book-keeping (BK;)
which have allowed DP optimization to be almost as efficient
as non-DP optimization, up to 256 GPUs and 100B param-
eters. 2) Loss privatization. The cost of loss privatization
alone is O(B) and thus negligible, compared to the forward
passes and back-propagation which are O(Bd). 3) Learning rate computation. The cost of com-
puting ηGeN-DP in (6) mainly comes from the additional forward passes4 for L(±1)

t,i . Given that the
back-propagation approximately costs 2× the training time of forward pass, the optimizer without
GeN learning rate (non-DP or DP) roughly uses 3 units of time at each iteration. In contrast, Algo-
rithm 1 uses 3 + 2/K ≈ 3.2 units if we set K = 10 with < 7% overhead. We emphasize that the
actual overhead to training time is even lower, because the training also includes non-optimization
operations such as data loading and inter-GPU communication. In short, the efficiency gap between
Algorithm 1 and non-DP optimization is negligible in practice.

5 EXPERIMENTS

To comprehensively evaluate the effectiveness of the proposed method, we conduct experiments on
both computer vision tasks and natural language tasks, across different model architectures (Vit Yuan
et al. (2021), GPT2 Radford et al. (2019) and Llama2-7B Touvron et al. (2023)) and fine-tuning
paradigms (Full, BitFit Zaken et al. (2021) and LoRA Hu et al. (2021)). BitFit only tunes the bias
terms of a pre-trained model, while LoRA only tunes the injected low-rank matrices, both keeping
all other parameters frozen. Following common practice5, we set δ = N−1.1 where N is data size.

As the first hyperparameter-free method for differentially private optimization, we compare
HyFreeDP with the following baselines: 1) NonDP-GS: We manually perform grid search over
a predefined range of learning rates, selecting the best without accumulating privacy budget across
runs. This serves as the performance upper bound since tuning is non-DP. We also experiment with
a manually tuned learning rate scheduler, noted as NonDP-GS w/ LS. We search the learning rate
over the range [5e-5, 1e-4, 5e-4, 1e-3, 5e-3] based on previous works Bu et al. (2023b;a) to cover
suitable η for various DP levels. 2) DP-hyper Liu & Talwar (2019); Wang et al. (2023); Papernot &
Steinke (2021): We simulate with a narrow range around the optimal η, spending 85% of the privacy
budget for DP training with the searched η. 3) D-Adaptation Defazio & Mishchenko (2023) and
Prodigy Mishchenko & Defazio (2023): Both are state-of-the-art learning rate tuning algorithms
in non-DP optimization. We adopt their optimizers with recommended hyperparameters, alongside

3https://github.com/yuxiangw/autodp
4The number of {ηi}i in (6) is at least two since there are two unknown variables. More ηi may stabilize

the algorithm, at cost of more forward passes, longer training time, and using more privacy budget.
5https://github.com/lxuechen/private-transformers

7

https://github.com/yuxiangw/autodp
https://github.com/lxuechen/private-transformers

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison of HyFreeDP to other baselines. We use consine learning rate
decay for NonDP-GS w/ LS baseline in the BitFit fine-tuning. We omit results of ϵ = 8 in Appendix.

Full Fine-Tune Vit-small Vit-base

Privacy budget Method CIFAR10 CIFAR100 SVHN GTSRB Food101 CIFAR10 CIFAR100 SVHN GTSRB Food101

ϵ =1 NonDP-GS 96.48 77.40 90.09 66.96 70.51 95.18 67.62 89.07 80.95 58.76
D-adaptation 23.94 0.81 15.36 1.86 1.18 19.58 0.83 18.60 4.74 1.48

Prodigy 28.16 0.81 15.36 1.86 1.19 19.58 0.83 18.60 4.74 1.43
DP-hyper 93.11 74.64 35.20 28.80 19.40 94.84 6.82 80.56 78.04 56.94
HyFreeDP 96.49 81.26 93.29 75.51 74.09 96.98 80.94 94.07 84.77 73.07

ϵ =3 NonDP-GS 96.90 83.55 94.41 83.78 74.84 95.80 78.93 91.09 91.05 66.86
D-adaptation 41.95 0.95 17.30 2.68 1.38 30.58 1.08 19.82 5.68 1.68

Prodigy 79.06 0.96 18.26 2.73 1.50 30.58 1.08 19.82 5.68 1.67
DP-hyper 95.11 78.98 49.83 42.52 37.04 95.80 20.64 87.99 90.67 66.13
HyFreeDP 96.92 84.07 94.44 88.87 78.38 97.52 85.93 94.70 91.48 79.15

NonDP NonDP-GS 98.34 89.21 95.42 98.64 85.32 98.55 92.37 96.75 98.39 89.53
D-adaptation 54.90 86.41 97.06 97.65 75.79 63.20 88.36 97.04 98.50 79.47

Prodigy 97.82 89.26 96.95 98.17 87.45 98.64 90.91 97.03 98.78 89.40
HyFreeDP 98.23 90.86 96.80 99.00 86.39 98.82 92.33 95.00 94.07 88.70

BitFit Fine-Tune Vit-small Vit-base

Privacy budget Method CIFAR10 CIFAR100 SVHN GTSRB Food101 CIFAR10 CIFAR100 SVHN GTSRB Food101

ϵ =1 NonDP-GS 96.74 84.22 90.18 86.20 77.39 97.34 84.97 90.91 87.15 76.61
NonDP-GS w/ LS 97.40 81.36 67.95 48.64 74.55 97.90 81.87 79.86 55.66 73.76

Prodigy 96.36 82.23 90.30 86.85 76.36 97.13 84.87 91.08 81.54 78.72
HyFreeDP 96.92 86.65 90.02 88.08 82.91 97.55 87.84 92.21 81.83 83.98

ϵ =3 NonDP-GS 97.13 85.95 91.42 91.50 80.37 97.73 87.00 92.20 91.46 80.06
NonDP-GS w/ LS 97.61 84.87 78.91 60.13 78.08 98.05 85.48 86.22 69.03 78.71

HyFreeDP 97.23 88.07 89.98 92.38 84.68 97.68 89.53 92.37 90.67 86.26
NonDP NonDP-GS 97.91 89.39 91.88 95.20 86.29 98.56 91.59 94.42 92.87 88.37

NonDP-GS w/ LS 97.89 89.40 91.98 90.31 86.27 98.56 91.61 94.43 92.90 88.39
Prodigy 97.88 87.85 95.19 95.34 86.56 98.41 90.70 96.02 95.02 88.60

HyFreeDP 97.97 89.86 93.60 95.19 87.24 98.43 91.69 95.48 95.23 89.06

DP-specific clipping and perturbation. 4) HyFreeDP : We initialize Rl = 1 and η = 1e − 4 by
default, allowing automatic updates in training.

5.1 IMAGE CLASSIFICATION TASKS

Experimental setups. As the main result shown in Table 2, we compare HyFreeDP to other base-
lines by experiments on CIFAR10, CIFAR100, SVHN, GTSRB and Food101 for models of Vit-
Small and Vit-Base. We use the privacy budget ϵ = {1, 3, 8} with δ ≪ n−1.1 for training dataset
with n samples and also perform non-DP baseline (ϵ = ∞), with more setup details in Appendix.

Evaluation results. HyFreeDP outperforms all end-to-end DP baselines. While Non-DP automatic
learning rate schedulers (D-adaptation and Prodigy) sometimes match grid-searched constants, they
perform poorly in DP training, especially with tighter privacy budgets, confirming our analysis in
Section 2.3. Although DP-hyper surpasses these schedulers—likely due to our intentionally narrow
search range—finding suitable ranges remains challenging as training dynamics vary by dataset and
privacy budget. Even in this optimistic setting, DP-hyper underperforms due to increased gradient
noise. In contrast, HyFreeDP achieves consistent performance across various ϵ values and datasets
without manual tuning, thanks to our gradient noise control and efficient learning rate estimation
with minimal loss value perturbation.
HyFreeDP achieves comparable or superior performance to NonDP-GS baseline without manual
learning rate tuning in BitFit experiments. NonDP-GS w/ LS and Prodigy show improved stabil-
ity compared to full fine-tuning, suggesting sensitivity to training paradigms and trainable model
size. In Figure 4, we illustrate training dynamics (Rl, η, loss, test accuracy) across methods.
HyFreeDP automatically finds optimal learning rate schedules, with clipping thresholds peaking
early and decreasing gradually, enabling more accurate rate estimation as training progresses. While
updating with K = 1 yields optimal convergence, HyFreeDP remains robust to less frequent updates
(e.g., K = 5), balancing tuning cost and convergence speed.

5.2 NATURAL LANGUAGE GENERATION TASKS

Experimental setups. We conduct experiments on E2E dataset with a table to text task on GPT-2
model, and also evaluate the language generation task with PubMed dataset by fine-tuning llama2-
7B model with LoRA Hu et al. (2021) for demonstrating the scalability and generality of HyFreeDP .
We follow the experimental setups based on previous works Bu et al. (2024) and use the dataset
provided by Yu et al. (2022; 2023). Based on the Non-DP experience, LoRA typically requires a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
Log steps

0

2

4

6

8

Lo
ss

 C
lip

 T
hr

es
ho

ld

Loss Clip Threshold
Ours (K=1)
Ours (K=5)
Ours (K=10)

0 10 20 30 40 50
Log steps

0.000

0.001

0.002

0.003

0.004

Le
ar

ni
ng

 R
at

e

Learning Rate
NonDP-GS
NonDP-GS (w/ LS1)
NonDP-GS (w/ LS2)
Ours (K=1)
Ours (K=5)
Ours (K=10)

0 10 20 30 40 50
Log steps

1.0

1.5

2.0

Tr
ai

n
Lo

ss

Train Loss
NonDP-GS
NonDP-GS (w/ LS1)
NonDP-GS (w/ LS2)
Ours (K=1)
Ours (K=5)
Ours (K=10)

0 10 20 30 40 50
Log steps

20

40

60

80

Te
st

 A
cc

ur
ac

y

Test Accuracy

NonDP-GS
NonDP-GS (w/ LS1)
NonDP-GS (w/ LS2)
Ours (K=1)
Ours (K=5)
Ours (K=10)

0 10 20 30 40 50
Log steps

0

2

4

6

8

10

12

Lo
ss

 C
lip

 T
hr

es
ho

ld

Loss Clip Threshold
Ours (K=1)
Ours (K=5)

0 10 20 30 40 50
Log steps

0.000

0.001

0.002

0.003

0.004

0.005

Le
ar

ni
ng

 R
at

e

Learning Rate
NonDP-GS
NonDP-GS (w/ LS1)
Ours (K=1)
Ours (K=5)

0 10 20 30 40 50
Log steps

0

1

2

3

4

Tr
ai

n
Lo

ss

Train Loss
NonDP-GS
NonDP-GS (w/ LS1)
Ours (K=1)
Ours (K=5)

0 10 20 30 40 50
Log steps

0

20

40

60

80

Te
st

 A
cc

ur
ac

y

Test Accuracy

NonDP-GS
NonDP-GS (w/ LS1)
Ours (K=1)
Ours (K=5)

Figure 4: Automatic learning of clipping threshold, learning rate, training loss, and testing accuracy
for SVHN (top) and GTSRB (bottom). HyFreeDP schedules Rl and η during training, approaching
the manually tuned baseline with end-to-end DP guarantees, and is robust to varying intervals K.

magnitude greater learning rate than fully-finetuning6, thus we scale up our default initial learning
by ×10. We tune the best learning rate for llama2-7B with LoRA fine-tuning on 4,000 samples of
PubMed for NonDP-GS when training on the full dataset.

Table 3: Performance comparison on GPT-2 for E2E dataset with different privacy budgets. Best
end-to-end DP results are bolded, and results surpassing the manually tuned baseline are underlined.

Full Fine-Tune ϵ = 3 ϵ = 8

Model Method BLEU CIDEr METEOR NIST ROUGE L BLEU CIDEr METEOR NIST ROUGE L

GPT-2

NonDP-GS 0.583 1.566 0.367 5.656 0.653 0.612 1.764 0.385 6.772 0.664
D-Adaptation 0.000 0.000 0.003 0.082 0.016 0.000 0.000 0.000 0.000 0.000
Prodigy 0.082 0.000 0.157 1.307 0.239 0.012 0.000 0.003 0.000 0.003
HyFreeDP 0.585 1.564 0.365 5.736 0.636 0.612 1.768 0.378 6.702 0.655

0 200 400
Log steps

0.002

0.004

0.006

0.008

0.010

0.012

Le
ar

ni
ng

 R
at

e

Learning Rate
NonDP-GS
Ours

0 200 400
Log steps

6

8

10

12

Tr
ai

n
Lo

ss

Train Loss
NonDP-GS
Ours

Figure 5: Training dynamics on Llama2-7B.

Evaluation results. As shown in Ta-
ble 3, we observe that even when the pri-
vacy budget is not small (e.g., ϵ = 8),
Non-DP automatic learning rate sched-
uler does not perform well. We find that
HyFreeDP consistently obtains a com-
parable performance as the NonDP-GS
baseline without extra tuning. In Fig-
ure 5, we observe that HyFreeDP automat-
ically discovers a learning rate schedule
that achieves better generalization perfor-
mance compared to the early-stopped NonDP-GS. The automatically determined learning rate (η)
reveals a consistent pattern across model scales: an “increase-then-decrease” trajectory that holds
true from smaller models (ViT-small) to larger models (Llama2-7B).

Table 4: Comparison of model performance in minutes (mins) with and without auto-tuning across
various datasets. The coefficients represent the ratio relative to the w/o auto configuration.

Models Dataset K=1 K=5 K=10 w/o auto

llama2-7B (LoRA-FT) PubMed (4k) 409.750 mins (× 2.040) 244.333 mins (× 1.217) 222.583 mins (× 1.108) 200.833 mins (× 1.000)
GPT2 E2E 163.333 mins (× 1.888) 97.167 mins (× 1.123) 94.983 mins (× 1.098) 86.500 mins (× 1.000)
Vit-base CIFAR100 152.617 mins (× 1.370) 118.483 mins (× 1.063) 113.317 mins (× 1.017) 111.433 mins (× 1.000)
Vit-base (BitFit-FT) CIFAR100 113.450 mins (× 1.654) 74.733 mins (× 1.089) 73.817 mins (× 1.076) 68.600 mins (× 1.000)
Vit-small SVHN 102.000 mins (× 1.255) 84.500 mins (× 1.040) 82.800 mins (× 1.019) 81.250 mins (× 1.000)

6https://docs.anyscale.com/llms/finetuning/guides/lora_vs_full_param/

9

https://docs.anyscale.com/llms/finetuning/guides/lora_vs_full_param/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 EFFICIENCY COMPARISON

Based on Section 4.4, we compare the training efficiency of HyFreeDP with a single run of DP
training using the same NonDP and data-independent hyperparameters, as shown in Table 4. For
Llama2-7B, we sample 4,000 records from PubMed and train for 3 epochs on a single A100 (80GB).
For smaller datasets and models, we use previous setups on Titan RTX (24GB). HyFreeDP intro-
duces less than ×2 overhead compared to a single run of DP training, even with frequent updates at
K = 1. Smaller models or those using LoRA or BitFit have lower additional costs, especially with
K = 1, and the gap narrows as K increases, approaching a cost factor of 1×.

6 DISCUSSION AND CONCLUSION

In conclusion, we tackle the challenge of hyperparameter tuning in differential privacy (DP) by
introducing a hyperparameter-free DP training method that privately and automatically updates the
learning rate. Combined with automatic clipping, our approach reduces tuning efforts and ensures
end-to-end DP during training. This bridges the gap between hyperparameter-free methods in non-
DP settings and DP optimization, opening promising avenues for future research.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially private
learning with adaptive clipping. Advances in Neural Information Processing Systems, 34:17455–
17466, 2021.

Sourav Biswas, Yihe Dong, Gautam Kamath, and JU COINPRESS. Practical private mean and
covariance estimation. Preprint. Available at, 2020.

Zhiqi Bu and Shiyun Xu. Automatic gradient descent with generalized newton’s method. arXiv
preprint arXiv:2407.02772, 2024.

Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep learning with gaussian differential privacy.
Harvard data science review, 2020(23), 2020.

Zhiqi Bu, Ruixuan Liu, Yu-Xiang Wang, Sheng Zha, and George Karypis. On the accuracy
and efficiency of group-wise clipping in differentially private optimization. arXiv preprint
arXiv:2310.19215, 2023a.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially pri-
vate deep learning made easier and stronger. Advances in Neural Information Processing Systems,
36, 2023b.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private bias-term fine-
tuning of foundation models. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=fqeANcjBMT.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
ing high-accuracy differentially private image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Inter-
national Conference on Machine Learning, pp. 7449–7479. PMLR, 2023.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 84(1):3–37, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

10

https://openreview.net/forum?id=fqeANcjBMT

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pp. 14465–14499. PMLR,
2023.

Gautam Kamath, Vikrant Singhal, and Jonathan Ullman. Private mean estimation of heavy-tailed
distributions. In Conference on Learning Theory, pp. 2204–2235. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. Dowg unleashed: An efficient universal
parameter-free gradient descent method. Advances in Neural Information Processing Systems,
36:6748–6769, 2023.

Itai Kreisler, Maor Ivgi, Oliver Hinder, and Yair Carmon. Accelerated parameter-free stochastic
optimization. arXiv preprint arXiv:2404.00666, 2024.

Alexey Kurakin, Shuang Song, Steve Chien, Roxana Geambasu, Andreas Terzis, and Abhradeep
Thakurta. Toward training at imagenet scale with differential privacy. arXiv preprint
arXiv:2201.12328, 2022.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021.

Jingcheng Liu and Kunal Talwar. Private selection from private candidates. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 298–309, 2019.

Zhihao Liu, Jian Lou, Wenjie Bao, Zhan Qin, and Kui Ren. Differentially private zeroth-order
methods for scalable large language model finetuning. arXiv preprint arXiv:2402.07818, 2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Shubhankar Mohapatra, Sajin Sasy, Xi He, Gautam Kamath, and Om Thakkar. The role of adaptive
optimizers for honest private hyperparameter selection. In Proceedings of the aaai conference on
artificial intelligence, volume 36, pp. 7806–7813, 2022.

Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with renyi differential privacy. arXiv
preprint arXiv:2110.03620, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Xinyu Tang, Ashwinee Panda, Milad Nasr, Saeed Mahloujifar, and Prateek Mittal. Pri-
vate fine-tuning of large language models with zeroth-order optimization. arXiv preprint
arXiv:2401.04343, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hua Wang, Sheng Gao, Huanyu Zhang, Weijie J Su, and Milan Shen. Dp-hypo: an adaptive private
hyperparameter optimization framework. arXiv preprint arXiv:2306.05734, 2023.

Xiaodong Yang, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Normalized/clipped sgd with per-
turbation for differentially private non-convex optimization. arXiv preprint arXiv:2206.13033,
2022.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. In International Conference on Learning Representations (ICLR), 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Da Yu, Arturs Backurs, Sivakanth Gopi, Huseyin Inan, Janardhan Kulkarni, Zinan Lin, Chulin Xie,
Huishuai Zhang, and Wanrong Zhang. Training private and efficient language models with syn-
thetic data from llms. In Socially Responsible Language Modelling Research, 2023.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
558–567, 2021.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Liang Zhang, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. Dpzero: Dimension-
independent and differentially private zeroth-order optimization. In International Workshop on
Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023.

A EXPERIMENTAL DETAILS

We also fix other hyperparameters not explicitly displayed in Algorithm 1, e.g. throughout this
paper, we fix the momentum coefficients and weight decay in AdamW at (β1, β2,weight decay) =
(0.9, 0.999, 0.01), which is the default in Pytorch.

Image classification. We tuned the learning rate for non-automatic baselines according to the rec-
ommended learning rate range provided in previous work Bu et al. (2023b). In fully fine-tuning, we
tried to integrate a constant linear scheduler as a common practice, but the result does not outper-
form the tuned NonDP-GS, so we omit the results in Appendix Table 5. We do not apply the linear
scheduler to Prodigy and D-adaptation for keeping the originally recommended configuration. The
results with ϵ = 8 in Table 2 is omitted in Table 6 with the consistent conclusions across different
datasets.

Vit-small Vit-base

Privacy Budget CIFAR10 CIFAR100 SVHN GTSRB Food101 CIFAR10 CIFAR100 SVHN GTSRB Food101

ϵ = 1 88.02 3.46 29.00 10.16 9.80 96.62 58.74 89.13 64.39 60.74
ϵ = 3 92.48 8.00 35.54 17.68 20.40 97.11 75.73 91.79 82.31 69.09
ϵ = 8 93.79 15.04 43.73 24.15 31.05 97.41 81.31 93.05 88.79 73.65
NoDP 98.00 89.11 96.55 96.94 84.55 98.88 92.51 97.27 98.29 89.10

Table 5: Fully fine-tuning results by adding a linear scheduler to NonDP-GS across different datasets
with privacy budgets for Vit-small and Vit-base models. Results show that directly integrating a con-
stant learning rate scheduler in NonDP does not hurt performance but the DP training performance
is sensitive to the learning rate scheduler.

Additionally, we demonstrate the loss clipping bias in Figure 7.

Table 6: Performance comparison of HyFreeDP to other baselines. We use consine learning rate
decay for NonDP-GS w/ LS baseline in the BitFit fine-tuning setting.

Full Fine-Tune Vit-small Vit-base

Privacy budget Method CIFAR10 CIFAR100 SVHN GTSRB Food101 CIFAR10 CIFAR100 SVHN GTSRB Food101

ϵ =8 NonDP-GS 96.28 84.99 92.53 89.97 77.08 96.14 82.52 92.38 94.91 71.05
D-adaptation 78.31 1.07 19.10 3.67 1.76 40.90 1.25 20.86 6.84 1.94

Prodigy 95.74 1.29 20.75 4.86 2.92 45.89 1.25 20.86 6.84 1.90
DP-hyper 95.70 80.58 64.72 50.10 49.18 96.28 36.46 90.27 94.62 70.63
HyFreeDP 97.04 86.00 95.15 88.06 80.61 97.79 87.57 95.00 94.07 81.91

BitFit Fine-Tune Vit-small Vit-base

Privacy budget Method CIFAR10 CIFAR100 SVHN GTSRB Food101 CIFAR10 CIFAR100 SVHN GTSRB Food101

ϵ =8 NonDP-GS 97.23 86.56 92.23 93.34 82.12 97.81 88.05 93.38 93.04 81.88
NonDP-GS w/ LS 97.63 86.21 83.17 67.35 79.85 98.08 87.17 88.25 75.61 81.18

HyFreeDP 97.31 88.43 89.17 93.54 74.61 97.90 90.34 92.36 93.14 87.14

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

2 4 6 8 10 12 14
Update interval K

101

2 × 100

3 × 100

4 × 100

6 × 100

No
ise

 sc
al

e
fo

r g
ra

di
en

t a
nd

 lo
ss

RDP Composition (Gauss and Lap)
g with =1.05
l with =1.05
g = l

g with =1.01
l with =1.01

2 4 6 8 10 12 14
Update interval K

101

No
ise

 sc
al

e
fo

r g
ra

di
en

t a
nd

 lo
ss

GDP Composition (Gauss and Gauss)
g with =1.05
l with =1.05
g = l

g with =1.01
l with =1.01

Figure 6: Privacy composition for gradient and loss values privatization, with privacy accountants
of RDP and GDP, and loss perturbation of Gaussian and Laplacian mechanisms. Gray dashed line
indicates the naive and even budget splitting for every access to private gradient and loss, which
results in larger noise magnitude on gradient especially when the adjustment is frequent. The privacy
accounting strategy proposed in HyFreeDP effectively restrain the privacy budget consumption on
hyper-parameter tuning and spending it wisely by only perturbing a single-dimensional loss value.

Figure 7: ϕ(α)− α(1− Φ(α)) which is minimized at α = ∞.

B PROOFS

Proof of Theorem 1. It’s not hard to see

E(L̃)−
∑

i Li

B
=

1

B

∑
i

min(
Rl

Li
, 1)Li −

1

B

∑
i

Li

=
1

B

∑
i

(Rl − Li)I(Li > Rl) = − 1

B

∑
i

ReLU(Li −Rl)

in which the non-negative ReLU(x) = x · I(x > 0). Taking the absolute value, we have∣∣∣∣E(L̃)− ∑
i Li

B

∣∣∣∣ = 1

B

∑
i

ReLU(Li −Rl) =

∣∣∣∣∣ 1B ∑
i

(Li −Rl)I(Li > Rl)

∣∣∣∣∣
which is decreasing in Rl because ReLU is increasing in its input (Li − Rl), and this input is
decreasing in Rl.

As B → ∞, the clipping bias tends to

E(ReLU(Li −Rl)) = E(ReLU(Li −Rl)|Li > Rl) · P(Li > Rl)

=E((Li −Rl)|Li > Rl) · P(Li > Rl) = [E(Li|Li > Rl)−Rl] · P(Li > Rl)

where we have used ReLU(x) = x when x > 0.

Proof of Corollary 1. The key part in (8) is E(Li|Li > Rl), which is the expectation of the truncated
normal distribution by one-side truncation. It is known that for α = Rl−µ

ξ ,

E(Li|Li > Rl) = µ+ ξ
ϕ(α)

1− Φ(α)
, P(Li > Rl) = 1− Φ(α)

The proof is complete by inserting these quantities.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Proof of Theorem 2. All privacy budget of Algorithm 1 goes into two components: privatizing the
gradient (with noise level σg) and privatizing the loss (with noise level σl).

Under the same (B, T,N, σg), we have T mechanisms of gradient privatization, each of (ϵg, δg)-DP
and 3T/K mechanisms of loss privatization, each of (ϵl, δl)-DP. Hence it is clear that ϵours > ϵvanilla.

To be more specific, we demonstrate with µ-GDP. The vanilla DP-SGD is µ-GDP with

µvanilla =
B

N

√
T (e1/σ

2
g − 1)

which is the same as the gradient privatization component of our DP-SGD. We additionally spend

µl =
B

N

√
3T

K
(e1/σ

2
l − 1)

leading to a total budget of

µours =
√
µ2

vanilla + µ2
l

by Corollary 3.3 in Dong et al. (2022). It is clear µours > µvanilla.

C END-TO-END PRIVACY ACCOUNTING AND INVERSE

We demonstrate how to determine (σg, σl) given (ϵ, δ)-DP budget. In vanilla DP optimization, we
can leverage privacy accountants such as RDP, GDP, PRV, etc. Each accountant is a function whose
input is hyperparameters (B, T,N, δ, σ) and the output is ϵ (see an example in (9)). In this section,
we denote any accountant as f , so that

f(σ;B,N, δ) = ϵ′ (11)

fT (σ;B,N, δ) = ϵ (12)

f−T (ϵ;B,N, δ) = σ (13)

in which ϵ′ is the single-iteration budget, fT means a composition of T iterations, and f−T is the
inverse function known as GetSigma in Figure 1.

In this work, we develop an end-to-end privacy accountant to compose both the gradient privatization
and the loss privatization. Our accountant takes the input (B, T,N, δ, σl, γ,K), where γ = 1.01 by
default and can take smaller value for larger models or smaller (ϵ, δ) budget. Therefore, σg = γσ.

Firstly, we call fT (γσ;B,N, δ) = ϵ̂ to get the reference budget ϵ̂ which is strictly smaller than
ϵ because f is monotonically decreasing in its input. Then we guess the loss noise and call
f3T/K(σl;B,N, δ) = ϵl since there are 3T/K rounds of loss privatization. We continue our guess
until

f3T/K(σl;B,N, δ) + fT (γσ;B,N, δ) = ϵl + ϵ̂ = ϵ

Notice the left hand side is monotonically decreasing in σl. Hence we use bisection method to find
the unique solution σl, at an exponentially fast speed.

Algorithm 2 End-to-End Privacy Accounting
1: INPUT: The end-to-end DP budget (ϵ, δ), GetSigma(·), Compose(·), Solve(·)
2: OUTPUT: Noise magnitude for gradient and loss privatization σg and σl

3: ▷ Compute the gradient noise scale σ by assuming there is only a single training run
4: σ = GetSigma(ϵ, δ, B, T,N)
5: ▷ Compute the σg in Algorithm 1 with a controlled noise increase
6: σg = γ · σ with the constant γ slightly greater than 1 (e.g, γ = 1.01)
7: ▷ Define the composition function with input variable as the loss noise scale c

8: ϵours(c|σg, δ, B,N, T,K) = Compose(fT
g (σg;B,N, δ), f

3T/K
l (c;B,N, δ))

9: ▷ Solve the minimization of the scalar function respect to c
10: σl = Solve(c, ϵ) = argminc |ϵours(c)− ϵ|

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

In the above, we have used the functions GetSigma(·)7, Compose(·)8, and any root-finding
method Solve(·) such as the bi-section in scipy library. We highlight that Algorithm 1 and
Algorithm 2 are sufficiently flexible to work with the general DP notions, including GDP, Renyi DP,
tCDP, per-instance DP, per-user DP, etc.

D MISC

Hyper-parameter matters for DP optimization. Previous works De et al. (2022); Li et al. (2021)
reveal that the performance of DP optimization is sensitive to the hyper-parameter choices, as we
cited in Figure 8. On the one hand, DP by itself brings extra hyper-parameters, such as the gradient
clipping threshold Rg , making the tuning more complex. An adaptive clipping method Andrew
et al. (2021) proposes to automatically learn Rg at each iteration, with an extra privacy budget that
translates to worse accuracy. While there are methods that does not incur additional privacy budget.
Automatic clipping (or per-sample normalization, or AutoClip) Bu et al. (2023b); Yang et al. (2022)
is a technique that uses ci = 1/||gi|| to replace the Rg-dependent per-sample clipping, and thus
removes the hyperparameter Rg from DP algorithms.

0.1
0.1 * 22

0.1 * 24
0.1 * 26

0.1 * 28

Clipping norm

10 3

10 3/22

10 3/24

10 3/26

10 3/28

Le
ar

ni
ng

 ra
te

60.26 59.58 60.01 57.87 35.44

50.48 50.31 50.48 49.25 34.47

33.17 33.18 33.13 32.96 29.50

29.74 29.55 29.61 29.62 27.07

9.69 9.69 9.68 9.65 5.79 10

20

30

40

50

60

10 1 100 101 102 103

Clipping norm

8 * 101

8 * 100

8 * 10 1

8 * 10 2

8 * 10 3

Le
ar

ni
ng

 ra
te

43.0 2.0 0.1 0.1 0.1

22.0 45.0 0.1 0.1 0.1

2.1 22.0 45.0 11.0 0.09

0.29 2.2 22.0 24.0 0.11

0.1 0.25 2.1 13.0 0.44 5

10

15

20

25

30

35

40

45

Figure 8: Hyperparameter tuning of (Rg, η) cited from Figure 1 of Bu et al. (2023b). Here Rg is the
clipping norm and η is the learning rate. Left: BLEU score of GPT2 on E2E dataset Li et al. (2021).
Right: Test accuracy of ResNet18 on ImageNet Kurakin et al. (2022).

End-to-end DP guarantee for optimization and tuning. As shown in Table 7, we compare our
work with other works that try to ensure end-to-end DP guarantee for both optimization and tuning.
As we categorized, there are two orthogonal solutions.

1) One line of works focus on DP-hyper, which guarantee DP for the whole process of hyper-
parameter tuning and training Mohapatra et al. (2022); Papernot & Steinke (2021); Wang et al.
(2023). Recently, Liu & Talwar (2019) enhanced DP bounds for hyper-parameter tuning and showed
that the searching process repeated a random number of times satisfies (3ϵ, 0)-DP if each run was
(ϵ, 0)-DP. Papernot & Steinke (2021) extends by offering more precise Rényi DP guarantees. Wang
et al. (2023) proposes an adaptive hyper-parameter search based on previous results. In summary,
these works either require a given prior knowledge for efficient searching or consumes a large portion
of privacy budget for effective searching. We cited with the representative work of Papernot &
Steinke (2021) in Table 7.

2) The other orthogonal line of works make DP optimization hyper-parameter free, such as Auto
Clipping Bu et al. (2023b), or spend a portion of budget during training to tune the clipping threshold
as the Adaptive Clipping Andrew et al. (2021). We are positioned in the second line of works and
we target to make learning rate hyper-parameter free.

7https://github.com/yuxiangw/autodp/blob/master/example/example_
calibrator.py

8https://github.com/yuxiangw/autodp/blob/master/example/example_
composition.py

15

https://github.com/yuxiangw/autodp/blob/master/example/example_calibrator.py
https://github.com/yuxiangw/autodp/blob/master/example/example_calibrator.py
https://github.com/yuxiangw/autodp/blob/master/example/example_composition.py
https://github.com/yuxiangw/autodp/blob/master/example/example_composition.py

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: Comparison of hyperparameter search strategies. Budget splitting percentages for Adaptive
Clipping and DP-hyper are estimated values, as the actual percentages depend on specific datasets.

Method Searching η Searching Rg % Budget on Hyperparam

Vanilla Abadi et al. (2016) ✓ ✓ 0%
Auto Clipping Bu et al. (2023b) ✓ × 0%
Adaptive Clipping Andrew et al. (2021) ✓ × ≈20%
DP-hyper Papernot & Steinke (2021) ✓ × ≈20%
Ours (this work) × × <1%

16

	Introduction
	Preliminaries and Related works
	Differentially Private Optimization
	End-to-end DP guarantee for optimization and tuning
	Automatic learning rate schedule

	Loss value privatization with minimal clipping bias
	Privatized quadratic function
	Bias-variance trade-off in loss privatization

	Algorithm
	Hyperparameter-free DP optimization
	Privacy guarantee
	End-to-end noise determination
	Efficiency of algorithm

	Experiments
	Image Classification Tasks
	Natural Language Generation Tasks
	Efficiency Comparison

	Discussion and conclusion
	Experimental Details
	Proofs
	End-to-end privacy accounting and inverse
	Misc

