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Abstract
A transport map is versatile and useful for many
downstream tasks, from training generative mod-
eling to solving Bayesian inference problems.
(Marzouk et al., 2016) pioneered the measure
transport approach for sampling by introducing
its connection with transport map T♯ρ = µ, where
samples from µ can be easily drawn. When the
transport map is a lower-triangular map or Knothe-
Rosenblatt map, we can also draw conditional
samples µ2|1(·|x1) from the target distribution
µ generalized by (Kovachki et al., 2020). This
state-of-the-art sampling approach deviates from
traditional methods such as MCMC or variational
inference and has received many research interests
in recent years. In our work, we introduce a new
approach to approximate this transport map to
perform conditional sampling tasks using a recent
computational advance in generative modeling –
flow matching. Specifically, we use (Pooladian
et al., 2023a)’s joint flow matching approach with
a twisted Euclidean cost to ensure the triangular
property of the map. We empirically verify our
method through benchmark examples and quanti-
fying the approximated map errors.

1. Introduction
Conditional sampling for generative models is widely appli-
cable in many areas from image editing to super resolution
medical imaging. Indeed, generative models such as dif-
fusion models are accredited for many of these real-world
applications for their impressive unconditional generation
abilities, but altering these models from unconditional to
conditional can be challenging. In this paper, we examine
from a different perspective and connect two frameworks
to introduce a simple and elegant way for conditional sam-
pling. We tackle this task mainly from the measure transport
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perspective and merge two frameworks: joint flow match-
ing and optimal transport with a twisted cost function. In
particular, we build upon the following result from (Ko-
vachki et al., 2020) which proved a generalized version of
(Marzouk et al., 2016) lemma one.

T (2)(x1, ·)♯ρ2 = µ2|1(·|x1) (1)

where T : Rd1+d2 → Rd1+d2 is a transport map be-
tween two probability measures ρ and µ, over Rd1 × Rd2 ,
written T♯ρ = µ, if for X ∼ ρ, then T (X) ∼ µ, and
T (2)(x1, ·) : Rd2 → Rd2 for every fixed x1 ∈ Rd1 is the
second component of the map.

Estimating this transport map or conditional Brenier map
can be daunting, especially in high-dimensional settings.
Here, we utilize joint flow matching (Pooladian et al.,
2023a), a recent advancement in generative modeling, and
the connection between the conditional Brenier map and
another type of transport map: Knothe-Rosenblatt map or
KR map to estimate the latter one instead. The KR map
is a lower triangular lexicographic order map. It is much
easier to estimate as it is essentially one-dimensional, easy
to construct with explicit formula,and its structure is well-
suited for conditional sampling tasks. We can do so by using
the optimal transport theory and a twisted cost function to
impose the KR map structure (Carlier et al., 2010).

2. Background
We provide only a bare-bones introduction to optimal trans-
port; we recommend (Santambrogio, 2015; Villani, 2009)
for more information on this topic.

Optimal transport Let ρ, µ ∈ P(Rd) be two probability
measures in Rd. Let c : Rd × Rd → R be a cost function
of the form c(x, y) := h(x − y) for h : Rd → R strictly
convex. The Wasserstein distance for the cost c is given by
the Kantorovich formulation (Kantorovitch, 1942)

Wc(ρ, µ) := min
π∈Γ(ρ,µ)

∫∫
c(x, y)dπ , (2)

where Γ(ρ, µ) ⊆ P(Rd × Rd) is the set of couplings be-
tween ρ and µ: the first marginal of π is ρ, and the second is
µ. When ρ and µ have finite second-moment, a minimizer
to Wc always exists, called the optimal coupling, and is
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denoted by πc. Equation 2 is known as the primal optimal
transport problem associated to the cost function c.

Conditional Brenier map Let ρ, µ ∈ P(Rd1 × Rd2).
Suppose ρ1, µ1 ∈ P(Rd1), and ρ1 has a density. Let
∇ϕ(1) : Rd1 → Rd1 be the optimal transport map for
the quadratic cost c(x, y) := 1

2∥x − y∥2 between ρ1 and
µ1, where ϕ is a convex function called an optimal Bre-
nier potential. Now, for any x1 ∈ supp(ρ1), consider
ρ2|1(·|x1) and µ2|1(·|x1), both in P(Rd2), and again as-
sume the source measure ρ2|1(·|x1) has a density. Now,
define ∇ϕ(2)(x1, ·) : Rd2 → Rd2 to be the optimal trans-
port map for the squared-Euclidean cost between these two
measures. The conditional Brenier map is defined as

TCB(x1, x2) := [∇ϕ
(1)
CB (x1);∇ϕ

(2)
CB (x1, x2)] . (3)

Knothe-Rosenblatt map Suppose d1 + d2 = d; we can
recursively apply the definition of Equation 3 until we obtain
d conditional measures with d conditional maps. Stacking
the maps as before, this results in the Knothe-Rosenblatt
map

TKR(x1, . . . , xd) = [∇ϕ
(1)
KR(x1);∇ϕ

(2)
KR(x1, x2); · · · ;

∇ϕ
(d)
KR (x1, x2, . . . , xd)] . (4)

Note that unlike the conditional Brenier maps, each compo-
nent is univariate. See more in section 3.

2.1. Flow Matching

Flow matching (Lipman et al., 2022; Albergo et al., 2023;
Liu et al., 2022) belongs to the family of continuous normal-
izing flow (CNF) (Chen et al., 2022) – a class of generative
model approach where a simple prior distribution such as
standard Gaussian flow along a neural network trained vec-
tor field vt to the target data distribution. (Lipman et al.,
2022) used individual data samples to construct the prob-
ability path. Specifically, it used conditional probability
to simplify a previously intractable learning objective for
the unknown pair: vector field vt and probability path pt
generated by ut through the following:

min
θ

∫ 1

0

∫∫
∥vθ(t, xt)− ut(xt|y)∥22dρt(xt|y)dµ(y)dt ,

(5)

where ρt(·|y) and ut(·|y) are known by design.

Joint Straight Flow Matching (JSFM) (Pooladian et al.,
2023a; Tong et al., 2023) further build on (Lipman et al.,
2022)’s flow matching by introducing a more general frame-
work with joint distribution and mini-batches training called
Multisample Flow Matching or OT-CFM. The key improve-
ments of this approach are as follows: it decreases the com-
putational cost of flow matching by inducing optimality in

the trajectories, resulting in fewer evaluation calls to the
fitted neural network to generate samples. The optimal
transport path applied here constructs a straighter path. The
training objective is as follows:

min
θ

∫ 1

0

∫∫
∥vθ(t, xt)− (y − x)∥22dq(x, y)dt , (6)

3. Conditional Sampling with JSFM
In this section, we introduce our approach to drawing con-
ditioned samples using Joint Straight Flow Matching by
introducing a twisted Euclidean cost, the algorithm, and
discussing the advantage of using KR rearrangement for
estimating the transport map.

3.1. Twisted Euclidean Cost

The conditional Brenier map and the Knothe-Rosenblatt
map are two types of transport maps. The former map is
challenging to approximate in high dimensional settings
but crucial as it is the optimal transport map to solve the
Monge-Kantorovich problem in Equation 2 (Villani, 2021).
The KR map is essentially a one-dimensional monotonically
non-decreasing map, so it is easy to compute and estimate
using an explicit construction formula. (Carlier et al., 2010)
drew the link between the two maps by showing that the
KR map is the limit of the Brenier map under a degenerated
quadratic function.

Before introducing this linkage, let us define a twisted Eu-
clidean cost function as the following:

cβ,d(x, y) =
1
2 (x− y)⊤Aβ,d(x− y) = 1

2∥A
1/2
β,d(x− y)∥22

(7)

where β ∈ (0, 1), take 1d1
:= (1, . . . , 1) ∈ Rd1 and

β1d2
∈ Rd2 and define the matrix

Aβ,d = diag(1d1
, β1d2

) ∈ Sd++ , (8)

with d = d1 + d2. Although this illustration is in two
dimensions, it can easily applied to higher dimensions.

Theorem 3.1. (Carlier et al., 2010) Suppose ρ and µ have
densities with respect to Lebesgue measure. Let Tβ,d define
the optimal transport map with respect to the cost cβ,d(x, y).
Then the following convergence holds in L2(ρ): as β → 0,
Tβ,d → TCB, where TCB is given by Equation 3.

Moreover, there is also a linkage between Tβ and the KR
map TKR : Assumes that ρ is absolutely continuous with
respect to Lebesgue measure and both ρ and µ have no
atoms.
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FM (Lipman et al., 2022) Multisample / OT-CFM (Pooladian et al., 2023a)(Tong et al., 2023)

Stochastic Interpolants (Albergo and Vanden-Eijnden, 2022) Ours

Figure 1: standard Gaussian to checkerboard; blue is the estimated conditional density; red is the true conditional density

Corollary 3.2 (Convergence to Knothe-Rosenblatt maps).
(Carlier et al., 2010)(see Theorem 2.1) Let γβ be an optimal
plan with costs cβ,d(x, y) = Σd

i=1λi(β)(xi−yi)
2, for some

weights λi(β) > 0. TKR is the KR map between ρ,µ and γK
the associated transport plan. Then γβ → γK as β → 0. if

the plan γβ is induced by Tβ,d, then, as β → 0, Tβ,d
L2(ρ)→

TKR.

These two results show that we can use the KR map to esti-
mate the conditional Brenier map. By imposing the KR map
structure through a twisted Euclidean cost function, the op-
timal transport map can converge to our desired conditional
Brenier map (resp. Knothe-Rosenblatt map).

3.2. Drawing Conditional Samples

First, we train the JSFW following (Pooladian et al., 2023a)
with the twisted Euclidean cost. To optimize Equation 6
in practice, we simply need to generate samples from the
joint distribution q. When training from batches of sam-
ples {x(i)}ni=1 ∼ ρ and {y(i)}ni=1 ∼ µ, we can consider
any doubly-stochastic matrix q̂ ∈ Rn×n

+ whose entries de-
pend on the samples. Over data, the training objective then
becomes

min
θ

n∑
i,j=1

∥vθ(t, (1− t)x(i) + ty(j))− (y(j) − x(i))∥2q̂(i, j)

(9)

where t ∼ U([0, 1]). As a special case, when q̂ is
chosen to solve Equation 2 with the empirical measures
ρn = 1

n

∑n
i=1 δx(i) and µn = 1

n

∑n
i=1 δy(i) . In this set-

ting, we can consider the optimal coupling matrix that
solves (2) with cost c, denoted by q̂c. In this case, the
coupling matrix is a permutation matrix, represented by
σc : {1, . . . , n} → {1, . . . , n} (Peyré and Cuturi, 2019).

Algorithm 1 Conditional sampling with joint flow matching

Input: {x(i)}ni=1 ∼ ρ and {y(i)}ni=1 ∼ µ, β, t
Step 1: train vector field vθ(t, xt)
for k = 0, 1, 2, 3, . . . do

source :x0 = {x(i)}ni=1 ; target : x1 = {y(i)}ni=1

permutation matrix σc

→ solve Monge-Kantorovich (x0,x1,β)
x1 = xσc

1

xt = x1 − x0

train vector field vθ(t, xt)

loss cθ = minθ
∑n

i=1 ∥vθ(t, xt)− (x
σc(i)
1 − x0)∥2

end for
Step 2: integration using neural ODE
Input: fix y1 value and y2 ∼ ρy2|y1

, n, t
initial condition Y = [y1, y2] → repeat n times
sample = NeuralODE( trained vθ(t, xt), Y, t)
conditioned sample = sample[-1, : , dim:]
→ only need the last number of dims

As a result, the training objective simplifies to

min
θ

n∑
i=1

∥vθ(t, (1− t)x(i) + tyσc(i))− (yσc(i) − x(i))∥2

(10)

We use POT package (Flamary et al., 2021) to solve the
Monge-Kantorovich problem in Equation 2 to get the per-
mutation matrix. Finally, we use neural ODE (Chen et al.,
2018) to numerically integrate the trained vector fields of
generate the conditional samples. We summarize this pro-
cedure in Algorithm 1. See Appendix A for a detailed
explanation. We provide an error analysis for sampling
using 2-Wassersetin distance by following (Albergo and
Vanden-Eijnden, 2022)’s proof strategy and expand it into
the conditional sampling setting. See Appendix B for proof
details.
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3.3. Dimensional Reduction, Sparsity and Map
Ordering

Estimating a transport map in high-dimensional settings is
a challenging task. A common idea is to reduce the dimen-
sions to a lower setting using PCA and VAE or project the
probability measures onto a lower-dimensional subspace
(Muzellec and Cuturi, 2019; Cuturi et al., 2023). Our ap-
proach reduces the dimensions by incorporating the twisted
cost function to reduce the estimation complexity of the
transport map, as this degenerate cost function penalizes the
dimensions that the input data is conditioned on.

Moreover, our approach adds more sparsity to the exist-
ing sparsity presented in the lower triangular transport map
structure to promote faster training and sampling efficiency.
Whereas the conditional Brenier map is a dense lower tri-
angular map. (Spantini et al., 2018) noted that the KR map
can be considered as imposing the sparsest structure while
still preserving the coupling. A key advantage of using this
type of map for conditional sampling is that it is anisotropic
dependent on the input data dimensions. The KR map can
capture the conditional distribution without the need for
each component of the map to depend on the entire input
data dimensions.

y = tanh (x+ z), z ∼
N (0, 0.05)

y = z tanh (x), z ∼
Γ(1, 0.3)

Figure 2: The line plots are the true conditional density.
The histograms are the approximated distribution using our
approach

Figure 3: Normal order Figure 4: Reverse order

Furthermore, another approach to increase the sparsity of
the KR map further is to change its ordering to find an op-
timal permutation. This is an NP-hard problem and relies
on heuristics but prior research has shown using methods
such as reversed Cholesky (Saad, 2003) or min-fill and min-
degree methods (Koller and Friedman, 2009) can tackle this

Table 1: Image In-painting / 2D Star results

CIFAR10 N ∼ Star

FID @ NFE=2 4 6 8 10 W 2
2

Ours 44.90 21.69 19.94 19.75 18.72 0.096
Multisample-FM

OT-FM
(Pooladian et al., 2023a)

(Tong et al., 2023) 47.87 23.72 22.09 21.13 20.58 0.127
Independent-FM

(Tong et al., 2023) 44.32 23.12 20.73 20.78 20.14 0.543
Stochastic interpolants

(Albergo and Vanden-Eijnden, 2022) 187.67 39.04 30.47 26.07 20.58 0.146

Figure 5: CIFAR10 image in-painting. order: Original
image, Masked image, Ours at 4k steps,NFE=10, Ours at
100k steps, NFE=10

issue. (Morrison et al., 2017) also explored the linkage be-
tween the sparsity of the transport map and the sparsity of
the probabilistic graphical model where reducing indepen-
dent edges creates more sparsity in the transport map. Our
method does not explore this direction, and the KR map
follows a monotonically non-decreasing order.

4. Related work
Conditional sampling with measure transport Previous
works explored using a neural network-based approach to
approximate the transport map as a convex function for un-
conditional tasks like color transfer (Makkuva et al., 2020;
Korotin et al., 2022; Uscidda and Cuturi, 2023). Our work is
interested in drawing the linkage between optimal transport,
generative model and conditional sampling to solve condi-
tional tasks such as inverse problems like image in-painting
and super resolution. In particular, we are interested in
tackling this problem from the measure transport approach
(Marzouk et al., 2016). Along this line, two recent works are
closely related to our approach: (Kovachki et al., 2020) in-
troduced Monotone-GAN to perform conditional sampling
through a trained generator as the approximated transport
map, where the estimated map is also a lower triangular
shape with an imposed monotonically increasing constraint
and (Shi et al., 2022) uses a Schrodinger bridge based diffu-
sion model to approximate the conditional distribution.
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Figure 7: Conditioning with our SR
method Table 2: CelebA SR 4X

NFE =20 FID ↓ PSNR ↑ SSIM ↑

Ours 25.23 23.84 0.793
CDSB 57.22 19.72 0.504
CSGM 92.02 19.52 0.471

CSGM-C 44.44 20.44 0.566
CDSB-C 28.41 21.11 0.614

Table 3: ImageNet128 SR 2X

σ = 0.05 FID ↓ PSNR ↑ SSIM ↑

Ours 20.45 27.03 0.885
ΠGDM 4.38 32.07 0.831

OT-ODE 4.61 32.59 0.862
RED-Diff 10.54 31.82 0.852

D-flow 4.26 32.35 0.858

Figure 8: Left: this bigger matrix is our input source image where conditioned pixels are in yellow, also added noise in gray;
Middle: compares results reported from (Shi et al., 2022); Right: compares results reported from ΠGDM (Song et al.,
2022),OT-ODE(Pokle et al., 2023),RED-Diff (Mardani et al., 2023) and D-flow (Ben-Hamu et al., 2024) see related works

Figure 6: CelebA64 SR 4X from 16× 16 to 64× 64 order:
Ground truth, Input image, Output image

Unlike these works, our work uses joint flow matching,
which enjoys faster training time, efficient sampling, and
less computational cost. Moreover, we incorporate a twisted
Euclidean cost to impose a sparse lower triangular transport
map called KR rearrangement to solve the optimal coupling
matrix. Using a diverse cost function to estimate transport
maps has been a recent development where (Klein et al.,
2023; Pooladian et al., 2023b; Neklyudov et al., 2023) have
explored using diverse costs from a computational lens. Our
method ventures in this direction for conditional sampling.
Previously, it was a standard to use the squared-Euclidean
cost to estimate the transport map and is widely applied in
economics, computational biology, and computer graphics
(Bunne et al., 2022; Solomon et al., 2015). Statistical estima-

tion of these maps was made rigorous in (Hütter and Rigol-
let, 2021), which was followed swiftly by (Deb et al., 2021;
Manole et al., 2021; Pooladian and Niles-Weed, 2021).

Other diffusion/flow-based approaches Other than using
measure transport to estimate the true posterior distribution,
previous works also explored using pre-trained flow match-
ing models (Pokle et al., 2023) to solve inverse problems,
using variational inference with diffusion models (Mardani
et al., 2023), incorporating the conditions as prior (Saharia
et al., 2022) or differentiating through the generative pro-
cess of a flow or diffusion model by solving an optimization
problem (Ben-Hamu et al., 2024).

5. Experiments
In this section, we validate our approach through a series
of numerical experiments from lower dimensional data dis-
tribution to solving linear inverse problems such as image
in-painting and super resolution. See Appendix C for more.

5.1. 2D Synthetic data

Conditional tanh functions We test the approach on two-
dimensional non-linear and non-Gaussian distribution ex-
amples from (Kovachki et al., 2020) to illustrate the con-
ditional sampling quality. We draw x ∼ U(−3, 3) and
keep x ∈ [−1.1, 0, 1.1] fixed for the experiments. These
equations have closed-form solutions for the true posteriors
P(y|x), which are the y values. The source distribution is
defined as a joint distribution of (U [−3, 3],N [0, 1]). Figure
2 compares the approximated conditional sampling distri-
bution using our transport map in bars with the true data
distribution in lines.

Reverse ordering This experiment aims to test the robust-
ness of our method by reversing the variable order of a
2D half-moon-shape distribution. Changing the variable
orders adds more complexity to our estimated transport
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Figure 9: ImageNet128 SR 2X from 64× 64 to 128× 128.
order: Ground truth, Input image, Output image

Figure 10: conditional Bre-
nier map estimation error

Figure 11: FID vs. Steps on
Cifar10

map to approximate the conditional distribution. We use
x1 ∼ N (0, 1) and x2 = x2

1 − 1 to create the half-moon
shape. Instead of the usual ordering to assemble the joint
distribution, we now reverse the orders and define the source
distribution as ρ = [x2, x1] and the conditional distribution
µ(x1|x2) is defined as N (x2

1 − 1, 1). Figure 3 and Figure
4 shows that our approximated transport map can capture
the conditional distribution for both the normal and reverse
order distributions.

Model Comparison We first qualitatively compared con-
ditional sampling quality among various flow matching ap-
proaches in Figure 1 where the source is a standard Gaussian
and the target is a 2D checkerboard distribution. Our ap-
proach was the closest to generating samples within the true
conditional density in red. All the models were trained for
2k iterations. Moreover, we quantitatively compared these
methods in terms of fit through 2-Wasserstein distances in
Table 1 which use standard Gaussian as source distribution,
and the star distribution as target and ours has the lowest
W 2

2 distance.

5.2. Conditional Brenier Map Estimation

In this experiment, we first test our approach on a 4-
dimensional Gaussian distribution as a target and compare it
with the true conditional density. Furthermore, we compute
the approximation error between the true conditional Bre-
nier map and our estimated transport map using JSFM in L2.
We fix one dimension and infer the rest 3-dimensional θ. In
Figure 10, we measure the approximation errors between
the true conditional Brenier map and our estimated map
and its relationship with the change of the small β value
used in our cost function. Figure 10 indicates the error in-
creases as β grows since a larger β value has less penalize
power on the conditioned dimensions and does not align
with Corollary(3.2) for Tβ → TKR convergence.

5.3. Image In-painting

On the CIFAR10 dataset, we masked a randomly placed 20
by 20 square patch on each image denoted as y and the rest
of the image denoted as x, where the final result is a sample
from µ(y|x). We add standard Gaussian noise onto the
masked patch y to create the joint distribution as input data.
To follow Equation 7, the small beta values are applied to
unmasked pixels, and the input source image x0 is flattened
as a requisite for the KR map structure. After solving for
optimal coupling, we assign the indices with the largest
value to the target sample x1, indicating moving the largest
possible optimal “mass” to the destination. Furthermore,
we used the TorchCFM package (Tong et al., 2023) for
comparison with other variations of flow matching.

Conditional Sampling quality We investigated the sample
quality using FID score among various conditional sampling
approaches. Table 1 shows our method achieves the lowest
FID as NFE increases. At a given NFE, our approach almost
always has the lowest FID.

Training Efficiency Figure 5 shows the results from our
method after 100k steps. We also noticed that our approach
was able to generate the high-level shape of the objects at
as low as 4k iterations and 10 NFEs. Moreover, Figure 11
shows our approach in blue line has the lowest FID score
as the training step progresses. (Pooladian et al., 2023a)
proved that using joint flow matching can reduce the gradi-
ent variance during training, thus leading to faster training.

5.4. Super resolution

We also tested on super resolution using the CelebA dataset
and ImageNet-128 with 1k classes. For CelebA, we experi-
mented on SR 4X from 16× 16 low resolution to 64× 64.
The input images use bi-cubic interpolation to the down-
sampled images. For super resolution, we add Gaussian
noise to the input image and conditioned on the down-
sampled low-resolution image, for example, the 16 × 16
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image for CelebA. Note that Gaussian noise was not added
to down-sampled pixel locations for the input image as illus-
trated in Figure 7. In Table 2, we compare the results with
different variations from (Shi et al., 2022) where CDSB-C
is a Schrodinger bridge-based diffusion model, CSGM-C is
a conditional score-based model and both added Gaussian
noise. Furthermore, we experimented on ImageNet-128 for
SR 2X, trained for 500K steps, and compared with the most
recent conditional generation state-of-the-art approaches us-
ing flow matching and diffusion models shown in Table 3.
While the PSNR and SSIM are comparable with the state-
of-the-art methods, we noticed the gap in the FID score. A
limitation of this paper is the need to train more steps to fur-
ther reduce the FID score for much higher dimensional data.
In contrast, our result from 2 trained for 300K outperformed
other methods trained for 500k.

6. Conclusions
In this work, we strengthened the connections between ap-
plications in optimal transport and joint flow matching. By
choosing a particular cost function, we exploited the under-
lying limiting structure of the learned vector field, which
provides an efficient method for conditional sampling. The
limitation of this work is to develop tighter bound statisti-
cal guaranties. Future works could include other easy-to-
implement cost functions that lead to desired behavior in
the limiting flows.
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A. Details on the algorithm
We give an example on generating conditioned samples using a 2D standard Gaussian distribution as source ρ and another
Gaussian distribution as target µ. First, we draw mini-batch samples from both distributions. Second, we solve the
Monge-Kantorovich problem to find the optimal coupling between the source and target mini-batches samples. This allows
us to permute the ordering of the samples to have an optimal matching between the two distributions. We then define the
conditional path as a straight line and interpolate it as xt = (1− t)x1 + tx2. Third, we train the vector fields vθ(t, xt) using
neural nets and use the neural ODE method through torchdiffeq package (Chen, 2018) for integration to get the conditioned
samples. For this step, we first create a joint distribution as the initial input data. We start by choosing and then fixing
the value of the first dimension where x1 ∈ Rd1 , then randomly draw a sample from the standard Gaussian distribution
as the second dimension x2 ∼ ρ. For more complicated distributions, we need to draw x2 conditioned on this fixed x1 as
x2 ∼ ρ(x2|x1) since we can not draw the samples independently. In some cases, we can also get closed-form solutions.
Next, we stack these two dimensions to form X := [x1, x2] ∼ ρ as the joint source distribution. Finally, we can use the
neural ODE to generate conditional samples. The conditioned sample is the last dimension in this 2D case, and it represents
a sample drawn from our approximated distribution µ2|1(·|x1).

B. Error analysis on conditional sampling
We use 2-Wassersetin distance as the metric to analyze the conditional sampling error bound between the estimated
conditional pdf ût(·|z) and ut(·|z) conditioned on fixed variable z.

W 2
2 (ût(·|z), ut(·|z)) ≤ exp1+2K̂ Q(v̂t(·|z)), (11)

where K̂ is a Lipschitz constant and Q(v̂t) is defined as

Q(t(·|z)) =
∫ 1

0

∫
Rd ∥vt(Xt(·|z))− vt(X̂t(·|z))∥2π0(dXt, dX̂)dt (12)

Proof: first, by definition we have

W 2
2 (ût(·|z), ut(·|z)) := inf

∫
Rd

∥Xt(x|z)− X̂t(x|z)∥2π0(dXt, dX̂) ≤
∫
Rd

∥Xt(x|z)− X̂t(x|z)∥2π0(dXt, dX̂)

Then define Ẋt(x|z) = vt(Xt(x|z)) and ˙̂
Xt(x|z) = vt(X̂t(x|z)) and

Yt =

∫
Rd

∥Xt(x|z)− X̂t(x|z)∥2π0(dXt, dX̂) (13)

Then differentiate on both sides, we get

Ẏt = 2

∫
Rd
⟨ Xt(x|z)− X̂t(x|z), vt(Xt(x|z)− vt(X̂t(x|z)⟩π0(dXt, dX̂)

= 2

∫
Rd
⟨ Xt(x|z)− X̂t(x|z), vt(Xt(x|z)− vt(X̂t(x|z) + vt(X̂t(x|z)− vt(X̂t(x|z)⟩π0(dXt, dX̂)

Then using 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2

2⟨ Xt(x|z)− X̂t(x|z), vt(Xt(x|z)− vt(X̂t(x|z)
≤ ∥Xt(x|z)− X̂t(x|z)∥2 + ∥vt(X̂t(x|z)− vt(X̂t(x|z)∥2

Moreover because X̂t(x|z) and Xt(x|z) satisfies Lipschitz continuous, we also have the following inequality:

2⟨ Xt(x|z)− X̂t(x|z), vt(Xt(x|z)− vt(X̂t(x|z)⟩
≤ 2K̂t∥X̂t(x|z)−Xt(x|z)∥2
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Putting the above two inequalities together, we have

Ẏt ≤ (1 + 2K̂)Yt +

∫
Rd

∥vt(Xt(x|z))− vt(X̂t(x|z))∥2π0(dXt, dX̂)

Finally, by Gronwall’s inequality and since Y0 = 0, and integrating Ẏt, we have the following

∫
Ẏtπ(dz) ≤ exp1+2K̂

∫ 1

0

∫
Rd

∥vt(Xt(x|z))− vt(X̂t(x|z))∥2π0(dXt, dX̂)dt

Next,define Q(v̂t) as

Q(v̂t) =

∫ 1

0

∫
Rd

∥vt(Xt(x|z))− vt(X̂t(x|z))∥2π0(dXt, dX̂)dt

Then by (Albergo and Vanden-Eijnden, 2022) Equation 27, we also have

W 2
2 (ût(·|z), ut(·|z)) ≤

∫
Ẏtπ(dz)

Thus, finally we obtain the error bound as

W 2
2 (ût(·|z), ut(·|z)) ≤ exp1+2K̂ Q(ût)
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C. Additional Results

Masked Input

Ground Truth

Output Image

Figure 12: Image Inpainting results from CIFAR10 at 100k steps
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Figure 13: Masked Input

Ground Truth

Output Image

Figure 14: Image Inpainting results from CIFAR10 at 100k steps
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Masked Input

Ground Truth

Output Image

Figure 15: Super resolution 2X 64 to 128 on ImageNet-1k at 500k steps
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Masked Input

Masked Input

Output Image

Figure 16: Super resolution 2X 64 to 128 on ImageNet-1k at 500k steps
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Input image

Target image

Output image

Figure 17: Super resolution 4X 16 to 64 on CelebA at 300k steps
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Input image

Target image

Output image

Figure 18: Super resolution 4X 16 to 64 on CelebA at 300k steps
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