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A B S T R A C T

The prediction of pedestrian trajectories plays a crucial role in practical traffic scenarios. How-
ever, current methodologies have shortcomings, such as overlooking pedestrians’ perception of 
motion information from neighbor groups, employing simplistic and fixed social state interaction 
models, and lacking in final position correction. To address these issues, SocialTrans is proposed. 
It utilizes global observations to model the motion states of pedestrians and their neighbors, 
constructing separate state tensors to encapsulate social interaction information between them. 
This design includes a Subject Intention Extraction Module and a Neighbor Perception Intentions 
Extraction Module, which operate in parallel throughout the observation period to facilitate deep 
interaction of social states rather than simple end-to-end external fusion. Furthermore, a trajec-
tory prediction optimizer is developed to correct final position predictions and simulate pedes-
trian motion diversity through trajectory clustering. Experimental validation is conducted on the 
ETH/UCY and SDD public datasets to evaluate the effectiveness of the proposed approach. The 
results demonstrate the method’s capability to learn historical trajectory information, achieve 
high-precision predictions, and achieve state-of-the-art performance, particularly outperforming 
existing SOTA models on the SDD dataset. The algorithm will be made available at https://github. 
com/XiaodZhao/SocialTrans.

1. Introduction

Pedestrian trajectory prediction (PTP) involves forecasting potential movement paths of pedestrians within a future time frame 
based on historical positional data. This technology has broad applications, including autonomous driving and human-machine 
interaction in smart manufacturing. With continued advancements in deep learning models and their integration into intelligent 
systems, the development of effective PTP models has become increasingly feasible. Analyzing pedestrians’ historical trajectory states 
through deep learning and incorporating scenario-based assessments of short-term intentions [1–5] have shown promise in improving 
the accuracy of PTP models, thus enhancing traffic safety. This capability also facilitates safety alerts in smart factories, helping 
prevent hazardous incidents. As a result, achieving high accuracy in PTP remains a significant focus of ongoing research.

Human behavior exhibits a significant degree of independence and adaptability, particularly in social environments, where pe-
destrians’ movement paths are influenced by numerous intricate factors. While in motion, individuals are not only influenced by their 
immediate surroundings and objects but also may anticipate the actions of nearby individuals, prompting adjustments to their planned 
routes. Furthermore, when faced with unforeseen circumstances, they may rely on instinctive movement decisions. Additionally, even 
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within the same environment, individuals may pursue different trajectories due to varying intentions; thus, complicating PTP due to 
this unpredictability. Therefore, as shown in Fig. 1, it is crucial to focus on the interaction of the pedestrians’ intention information.

PTP work can be classified into two categories: deep learning models and knowledge-driven models [6]. Early approaches [7–20]
encountered challenges in capturing complex environmental and latent state information. With advancements in hardware technol-
ogy, these methods have gradually been replaced by data-driven deep learning techniques. Current methods have addressed various 
challenges. Long short-term memory (LSTM) based models [5,21–29] analyze individual movement states and social interaction 
behavior among subjects using specialized memory units. However, these models treat all interaction information equally, which does 
not align with social behavior norms. Additionally, they only consider memory from the previous moment, overlooking potential key 
information from future instances. Attention mechanism based models [30–36] have been refined to address imbalances in intentions 
information between subjects and neighbors. However, these improvements are limited to external interactions within attention 
mechanisms and fail to fully capture the intrinsic connections between subjects and their neighbors. Considering that it forces the 
computation of similarity between all query-keyword pairs, more computational resources are wasted on the processing of very weakly 
important long-distance pedestrian information. Inspired by the uncertainty of pedestrian motion, Variational autoencoder (VAE) 
based models [37–42] use latent variables generated over time for trajectory distribution estimation. Although they have resulted in 
improvements in the accuracy of prediction, the social analysis of neighbor relationships remains insufficiently thorough, and features 
processing overlooks potential future factors. Furthermore, existing methods encounter a common challenge where errors gradually 
increase with the lengthening of the prediction period, regardless of prediction effectiveness.

In response to the challenges identified in the aforementioned methods, this paper presents four key contributions: 

(1) In addressing the fluctuating number of pedestrians within the scenario, we adopt motion state decomposition for modeling 
both the motion states of a selected individual and those of neighbor groups separately. We construct tensors for both the 
individual’s state and the states of neighbor groups, adjusting them according to the varying pedestrian count in the scenario. 
Furthermore, latent perceptual information is incorporated into these tensors, providing the basis for intention extraction;

(2) The SocialTrans network is developed, incorporating the Subject Intention Extraction (SIE) Module and the Neighbor 
Perception Intentions Extraction (NPIE) Module. These modules operate simultaneously across time steps, fostering profound 
interaction of social states within them and conducting intention extraction. This facilitates more effective and precise learning 
of interaction information between the subject and neighbors. Ultimately, the interaction result decoder processes this infor-
mation to derive trajectory prediction outcomes;

(3) We developed a trajectory prediction optimizer that considers both the distance error between each moment and the actual 
trajectory and the angle information between the distance vector determined by adjacent time points and the real trajectory. 
This addresses the challenge of error correlation with the prediction period. Furthermore, we apply cluster analysis to the 
multiple trajectory prediction results to replicate the diversity of pedestrian movement in the scenario;

(4) We assessed SocialTrans and contrasted it with existing methods using the openly accessible datasets ETH/UCY. The experi-
mental outcomes indicate that SocialTrans achieves state-of-the-art performance, particularly in ETH scenarios, showcasing an 
average reduction in prediction error of about 40 % compared to existing methods. Moreover, when tested on the SDD dataset, 
it demonstrated an average reduction in prediction error of around 50 % compared to existing methods.

2. Related works

When considering object relations, PTP research can be split into two models: person-person models and person-space models. 

Fig. 1. Illustration of intentions interacion. It is acknowledgeed that intention information is crucial for the trajectory prediction task. We propose 
SocialTrans, which analyses historical trajectories, extracts pedestrian social intentions information and deeply interacts with them, finally outputs 
pedestrian trajectories that conform to social norms.
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While the latter analyzes pedestrian trajectories within particular scenarios [43–45], relying on environmental cues, we assert that 
understanding the highly autonomous interaction of human movement is pivotal for trajectory prediction.

Initially, conventional person–person interaction models are utilized to tackle trajectory prediction challenges. They are mainly 
knowledge-driven and can be broadly categorized into models based on social force, geometric analysis, Markov estimation and game 
theory. ①①Social force based models. Helbing et al. [7] analyses pedestrian trajectories inspired by the attractive and repulsive forces 
of microscopic particles. However, it is sensitive to changes in model parameters and exhibits low generalizability; ②②Geometric 
analysis based models. PORCA[8] and ORCA[9] examine the geometric structures of observed objects, transforming trajectory 
analysis of person-person interactions into optimization problems; ③③Markov estimation based models.

The implicit Markov model for trajectory prediction proposed by Morris et al. [10] is employed for spatiotemporal probability 
modeling of diverse pedestrian trajectories. However, it heavily relies on time series and maintains stable state transition probabilities, 
which does not align with the complex variability of social norms. Consequently, this method is only suitable for short-term PTP; 
④④Game theory based models. simulate interactions between pedestrian flows [11,12] and evacuation processes [13–15]. Some 
methods also consider latent factors like pedestrian attributes [16,17], walking groups [18,19], and stationary groups [20]. Essen-
tially, most of these approaches are based on manual design and rules, which are not only unable to face subtle human interaction 
situations, but also make it difficult to perceive potential changes in the future.

In recent years, remarkable advancements have been achieved with learning-based data-driven models, thanks to the innovative 
progress in artificial intelligence technology. It is broadly categorized into LSTM, Attention mechanism and VAE based models.

2.1. LSTM based models

SocialLSTM [22] introduce a “social” pooling layer to enable sequences in close spatial proximity to share states with each other. 
However, it only considers information about pedestrian intentions within the grid, posing challenges in modeling complex temporal 
dependencies and simulating social interactions among all pedestrians. SocialGAN [25] addresses this by treating pedestrians in 
neighbor regions equally using pooling mechanisms. Nevertheless, this approach contradicts real-world pedestrian social norms, as 
subjects typically allocate varying levels of attention to surrounding neighbors.

2.2. Attention mechanism based models

STAR [31] significantly enhances temporal modeling by combining spatio-temporal perspective with graph convolution to address 
this issue. However, merely fusing spatio-temporal information in an end-to-end serial and parallel form does not allow for accurate 

Fig. 2. Overall architecture of SocialTrans. In Section I, given the frame sequence of the pedestrian to be observed, multichannel state tensors for 
both the subject and its neighbors are constructed through data extraction and motion state modeling. These tensors are then input into the network 
in Section II, where the internal interaction of social states and intentions extraction occur. Finally, in Section III, the trajectory prediction optimizer 
refines the obtained trajectory results.
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learning of high-quality social information. [34,35] performed the PTP task by analysing the social intentions of pedestrians through 
attention mechanism. However, they only process the intention of target pedestrians and neighbors with a single-attention module, 
which causes the model to learn ambiguous information about the intention, which in turn affects the final prediction results. 
Additionally, considerable effort is required to handle weakly influencing neighbors.

2.3. VAE based models

SocialVAE [1] employs an uncertainty model with RNN [46] as the primary architecture for predicting pedestrian trajectories. 
However, its social features only consider the information of the current moment, neglecting potential future features of neighbors that 
could impact pedestrian trajectories, posing challenges for modeling high-precision time series. Furthermore, these methods encounter 
a common challenge where errors are positively correlated with the prediction period, regardless of prediction effectiveness.

To address the above problems in knowledge-driven and data-driven models. We carry out research in three aspects: data scenario 
modelling, network design and optimization of prediction results. Finally, SocialTrans: Transformer Based Social Intentions Interaction 
for Pedestrian Trajectory Prediction is proposed.

3. Proposed approach

In PTP, capturing complex temporal dependencies over time is of utmost importance. Current models often focus solely on 
pedestrian trajectories at the present moment, overlooking potential crucial information in future instances. In dynamic environments 
with a continuously changing number of neighbors, preserving social information and comprehensively learning intricate interactions 
among neighbors is vital. Furthermore, in scenarios where pedestrians move toward each other, improving the accuracy of final 
position predictions is critical for enabling pedestrians to make timely decisions. These considerations motivate our proposal of the 
SocialTrans to tackle these challenges.

Our approach utilizes a transformer network to forecast the future trajectory distribution of each pedestrian, using the provided 
global historical observations. As depicted in Fig. 2, it comprises three primary modules: the data preprocessing module, the social 
state interaction module, and the trajectory prediction optimizer. In a scenario comprising (Nn+1) pedestrians, let 

{
pt

i
}Tob

t=+1 represent 
the trajectory sequence of subject i during the observation period Tob. Here, pt

i denotes the two-dimensional spatial coordinates of 
subject i at time step t. By globally analyzing the trajectory information of all pedestrians during the period Tob, we can construct state 
tensors for both the subject and its neighbor groups, incorporating potential future information. Using our custom-designed network 
structure, the trajectory sequence 

{
pt

i
}Tpred

t=Tob+1 can be predicted for subject i. Angle information is backpropagated during training to 
refine the predicted trajectories

3.1. Data preprocessing module

In real-world scenarios, pedestrians encounter varying numbers of neighbors, a dynamic aspect often overlooked by methods such 
as those outlined in [22,25], which rely on pooling mechanisms. These mechanisms can lead to information loss and struggle to handle 
the complexities of changing neighbor counts. Hence, accurately modeling different neighbor numbers is essential for precise tra-
jectory prediction. Inspired by [21], we introduce the data extraction module and a motion state module. By inputting frames of the 
pedestrian to be predicted, we extract data and analyze pedestrian motion in the scenario. This process constructs a three-dimensional 
state tensor for the target subject and a four-dimensional state tensor for their neighbors, capturing trajectory changes and interaction 
information from both perspectives.

Fig. 3. Schematic diagram of the data extraction module. In order to cope with the changing number of pedestrians in the scenario, the current 
positions of all pedestrians in each frame are extracted under global observation to construct the data list.
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Data Extraction. Redundant information and noise in the original input images may have unpredictable challenges for the PTP. 
Therefore, focusing on pedestrians within the images and retaining complete information for each of them is vital. For each observed 
frame, we directly extract the current positions of all pedestrians to form a data list. Fig. 3 exemplifies the scenario at T = 3, with 
pedestrian 1 selected as the subject for observation. We analyze one target subject at a time, while temporarily treating other pe-
destrians as global neighbors. Extracting position information of various pedestrians from the input image sequence establishes the 
data foundation for analyzing pedestrian motion states and constructing state tensors.

Motion State Module. Given that pedestrian trajectories are influenced by their perception of surrounding neighbors and neighbor 
movements, we introduce pedestrian perception information and develop a motion state module. This module captures the re-
lationships between selected individuals and their neighbor groups. As depicted in Fig. 4, the motion states of the selected subject i and 
its neighbor j are decomposed, integrating perception information to construct the state tensor of the individual and its neighbor 
groups further.

Subject Motion State. The position of subject i in the scenario at moment t is labeled as (xt
i ,yt

i), while tangential velocity is denoted 
as vt

ix, and normal velocity denoted as vt
iy. According to the processing in [43], the current position (xt

i ,yt
i), is necessary, but the efficient 

and concise extraction of the subject’s motion state is a primary concern. Although velocity and acceleration are identified as crucial in 
[55], directly utilizing individual pedestrians’ forward direction, velocity, and acceleration as motion state inputs, without pre-
processing as in SocialVAE [1], can lead to less focused network training. Given our relatively short observation time period, the 
velocity state of the pedestrian over a brief duration holds greater significance for trajectory prediction. Additionally, the computa-
tional costs incurred by integrating acceleration information outweigh the benefits throughout the entire process [31]. Therefore, we 
opt to describe the motion state based on the subject’s position and velocity vectors, as depicted in (1) and (2). Consequently, the 
motion state of the currently selected subject i at moment t is denoted as (xt

i ,yt
i ,vt

i ,θ
t
i), then the state tensor of the subject in the whole 

observation period Tob is S ∈ RN×Tob×4, where N denotes the batch of subjects to be processed. 

vt
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
vt

ix
)2

+
(

vt
iy

)2
√

(1) 

θt
i = arctan

(vt
iy

vt
ix

)

(2) 

Neighbor Perception Motion State. After constructing the state tensor for subject i, we follow a similar procedure to decompose 
the motion state of each individual within the neighbor groups. Subsequently, we aim to articulate the interaction dynamics between 

the subject and the neighbor groups. As mentioned in the related work [31], the distance 
⃦
⃦
⃦ ltij
→⃦⃦
⃦ between subject i and neighbor j at 

moment t stands out as the crucial metric employed to depict their ongoing interaction [1], as depicted in (3). However, relying solely 
on distance fails to capture the full scope of social perception information. Moreover, when multiple paths exist between the subject 
and the interacting neighbor at the same distance, it complicates the characterization of social movement states. To enhance our 
understanding of social behaviors and more accurately represent the social dynamics, we address this challenge by incorporating the 
angle of their velocities θt

ij as illustrated in (4). 

ltij
→

=
(

xt
j − xt

i , y
t
j − yt

i

)
(3) 

Fig. 4. Schematic diagram of trajectory analysis. Motion state analysis is performed for the selected subject i and neighbor j, while the trajectory 
changes are perceived at the current moment t for the final moment in the historical observation period.
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θt
ij = arccos

(
vt

i
→

· vt
j

→

⃦
⃦
⃦vt

i
→⃦⃦
⃦

⃦
⃦
⃦vt

j
→⃦⃦
⃦

)

(4) 

In contrast to numerous existing approaches [22,47,54], our method differs by integrating the social decisions of both the subject 
and its neighbors within the scenario. Unlike methods that rely solely on a combination of historical and current information, our 
approach also includes the anticipation of potential future impacts across the temporal domain. According to the law of inertia, an 
object in motion maintains its direction and speed. Therefore, we assume that pedestrians will continue to move along their tangential 
velocity unless they are influenced by unexpected factors during their travel. By examining the size of the time period (Tob-t) at the 
current moment relative to the end of the observation period, as well as the time ξ required for subject i and neighbor j to meet at their 
current speed, we select the shorter duration for their continued movement along the tangential direction with their tangential ve-
locity. This process, correlated with the distance at the current moment, yields the final distance obt

ij under the observation period as in 

(5), (6). The final motion-aware state of neighbor j at moment t is denoted as (
⃦
⃦
⃦ ltij
→⃦⃦
⃦,θt

ij,obt
ij), then the state tensor of the neighbor groups 

in the whole observation period Tob is O ∈ RN×Nn×Tob×3, where Nn indicates the number of neighbors. 

ξ =

⃒
⃒
⃒
⃒
⃒
⃒

ltij
→

· vt
ij
→

⃦
⃦
⃦vt

ij
→⃦⃦
⃦

2

⃒
⃒
⃒
⃒
⃒
⃒

(5) 

Fig. 5. Network structure diagram. The state tensors of the subject and neighbor groups are inputted into the subject intention extraction (SIE) and 
neighbor perception intentions extraction (NPIE) modules through a linear layer and position encoding, respectively, and then decoded by an 
interaction result decoder to obtain preliminary prediction results.
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obt
ij =

⃦
⃦
⃦ ltij
→

+ min(ξ,Tob − t) ·
(

vt
jx
̅→

− vt
ix
̅→)⃦⃦

⃦ (6) 

We created a data list by extracting information from the input image sequences and developed a motion state module to analyze 
pedestrian motion in the scenario and integrate perceptual information. Subsequently, we constructed the state tensor S of the subject 
and the state tensor O of the neighbor groups within Tob. For scenarios in the historical observation period where there are no 
neighbors or only a single subject, we handle them as follows: we introduce an invalid neighbor as a placeholder, with motion feature 
values (x, y, vx, vy) set to 1e9. By assigning this extreme value (1e9), which exceeds the physical range, we create distinguishable 
invalid sample identifiers. In Section 3.2, the proposed Perception Mask Attention module will filter out these marked invalid inputs. It 
should be noted that the above construction process is all automated, without manual labelling. This not only improves the efficiency 
of data processing, but also establishes a good foundation for the subsequent extraction and processing of social interaction states.

3.2. Social states interaction

In order to clearly extract the intentions information of pedestrians and realise the deep interaction of social information, we design 
the social states interaction network structure as shown in Fig. 5. In order to maintain the temporal information, we process the state 
tensor S of the subject and the state tensor O of the neighbor groups by linear transformation and positional encoding. Previous studies 
[25,29,39] have typically applied the attention mechanism solely at the last frame of an observation sequence. Social VAE [1] only 
uses the attention mechanism at each moment separately.

The repetitive superposition of the attention mechanism still does not take into account the connection between each moment well. 
Therefore, in order to optimize both the navigation strategies of subject pedestrians and the social influence of their neighbors from a 
macroscopic point of view, we designed two intention extraction networks that operate concurrently throughout the observation 
period. Furthermore, unlike in [31], where processing results are simply connected in series or parallel, our approach involves 
overlaying the weights of the SIE onto those of the NPIE, facilitating internal interaction of social interaction information throughout 
the entire processing pipeline.

Neighbor Perception Intentions Extraction (NPIE). The input of NPIE Ope ∈ RN×Nn×Tob×dmdoel is derived through a linear trans-
formation and positional encoding following O. The subject appears in every frame of the historical observation period. For other 
agents in each frame, they are stored in a neighbor list. If a certain neighbor does not appear in the current historical frame, its motion 
feature information (x, y, vx, vy) is set to 1e9, in order to match the feature dimensions of the state tensor O. We project to query vector 
Qh

O, key vector Kh
O and value vector Vh

O [31] with a few different, learned linear projections ε times. Qh
O, Kh

O,V
h
O ∈ RN×Nn×1×Tob×dε , 

h= 1, …, ε, and dε is the feature dimension after ε projections. According to (7), we obtain the attention weight Ah
O for each head in the 

neighbor cluster. By examining the relationship between the distance 
⃦
⃦
⃦ ltij
→⃦⃦
⃦ and the observation radius ri between subject i and each 

global neighbor j throughout the entire Tob period, we designate distances larger than ri as non-neighbors, assigning them a value of 
0 in the perception mask. Distances within the observation radius are treated as neighbors and assigned a value of 1, resulting in a 
sparse perception mask. As shown in Fig. 6, it sparsifies the huge similarity information of Kh

O and Vh
O, eliminates the computational 

overhead of weakly important distant pedestrians during processing, reduces the amount of computation and memory usage, and thus 
reduces the computational complexity. Considering that when a certain neighbor and a subject are far enough away from each other, 
we comprehensively consider shedding the impact of the neighbor on the subject’s short-term trajectory to make the network 
computation more efficient and convenient.

We get the intention matrix H ∈ RN×Nn×Tob×dmdoel of neighbor groups in (7), (8) and (9). To realize social state interaction, {Ah
O}

ε
h=1 is 

Fig. 6. Perception mask attention mechanism. The sparse perceptual mask is applied to each head to obtain the attention weight Ah
O, highlighting 

key information while minimizing the computational overhead caused by weak influences.
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used as one of the inputs to the SIE. 

Ah
O = Softmax

(

MO ·
Kh

O ·Qh
O̅̅̅̅̅

dε
√

)

(7) 

Atth
O = Ah

O ·Vh
O (8) 

H =
(
Att1

O ∘ Att2
O ∘ ⋯ ∘ Atth

O
)
·WO (9) 

where Ah
O ∈ RN×Nn×1×Tob×Tob denotes attention weight of the head h. Mh

O ∈ RN×Nn×1×Tob×Tob is perception mask. Atth
O ∈ RN×Nn×1×Tob×Th is 

attention score of the head h, and WO ∈ Rεdε×dmdoel is projection matrix. ’ ◦ ’ is used to concatenate the results of the attention functions 
of the ε heads indexed by Atth

O.
Subject Intention Extraction (SIE). The input of SIE Spe ∈ RN×Tob×dmdoel is derived through a linear transformation and positional 

encoding following S. After applying three linear transformations, we obtain the query vector QS, key vector KS, and value vector VS, 
where QS,KS,VS ∈ RN×Tob×dmdoel . To eliminate the influence of random errors and outliers in the neighbor groups, we filter the number of 

neighbors Nn of {Ah
O}

ε
h=1 and obtain filter matrix sequence {Ah

O}
ε
h=1, where Ah

O ∈ RN×ε×Tob×Tob . Considering the match with Ah
O, we 

dimensionally expand VS to obtain ascending dimension value vector VUS ∈ RN×ε×Tob×dmdoel . Meanwhile, as shown in (10), after 
obtaining the attention weight AS in SIE, the same dimensional expansion is applied to it to obtain ascending dimension attention 
weight AUS ∈ RN×ε×Tob×Tob . We introduce the scaling factor λ (this parameter is ultimately obtained through training) to regulate the 
effect of the introduced neighbor groups attention weights and obtain the final attention score F through full connectivity, as shown in 
(11). 

AS = Softmax
(

KS ·QS̅̅̅̅̅̅̅̅̅̅̅
dmodel

√

)

(10) 

F =
(
AUS + λAh

O
)
·VUS ·WS (11) 

where AS ∈ RN×Tob×Tob is the attention weight in NIE and WS ∈ RN×Tob×dmdoel is the learned linear transformation matrix.
Interaction Results Decoder. To address the challenges associated with vanishing and exploding gradients and ensure smoother 

gradients, the initial segment of the encoder is structured as a residual connection. This section integrates a dropout function, an 
addition operation, and layer normalization. After processing the inputs, intention normalization matrix CS of subject and CO of 
neighbor groups are obtained respectively as in (12), (13). 

CS = LN
(
Dropout(H)+ Spe

)
(12) 

CO = LN
(
Dropout(F)+Ope

)
(13) 

The CS and CO are fed into the multilayer perceptron for processing as in (14), (15). It has been shown in [56,57] that multilayer 
perceptron of this structure help to improve the embedding quality. 

Cʹ
S = FC(ReLU(FC(CS))) (14) 

Cʹ
O = FC(ReLU(FC(CO))) (15) 

where Cʹ
S and Cʹ

O are the processing results of CS and CO after the multilayer perceptron, respectively.
To slow the model degradation, we have a layer of residual links superimposed after the multilayer perceptron. The final decoding 

matrix Cʹ́
S of subject and Cʹ́

O of neighbor groups are obtained as in (16) and (17), respectively. 

C ʹ́
S = LN

(
Dropout

(
C ʹ

S +CS
))

(16) 

C ʹ́
O = LN

(
Dropout

(
C ʹ

O +CO
))

(17) 

In the final layer of the decoder, Cʹ́
S from the branch containing S is passed through a fully connected process to obtain the trajectory 

representation matrix T ∈ Rl×Tpred×2, where l denotes the number of predicted trajectories and Tpred represents the number of time steps 
for the predicted trajectories.

In this approach, the network utilizes the state tensor S of the subject, and the state tensor O of the neighbor groups. These tensors 
undergo intentions extraction and deep internal interactions of social information within the NPIE and SIE modules. Subsequently, the 
decoder decodes the processed output, resulting in trajectory predictions. These predicted trajectories that closely align with ground 
truth trajectories and adhere to social norms.
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3.3. Trajectory prediction optimizer

While prior work [1,31,47] primarily focuses on predicting entire trajectories, it overlooks the tendency for prediction errors to 
escalate with longer prediction periods. Additionally, it neglects the significance of accurately predicting final positions for optimizing 
the rapid decision-making of intelligent systems, especially in scenarios involving opposing directions without meeting. By directly 
predicting final positions across multiple periods with lower information value, we circumvent the need for extensive computations, a 
critical consideration for resource-intensive intelligences.

The directional dynamics of pedestrians walking in opposite versus the same directions have distinct effects on their motion states. 
Hence, during the backpropagation of predicted trajectories, we posit that, in addition to position error, trajectory direction error 
significantly influences prediction accuracy. Thus, we introduce angular loss, derived from existing trajectory distance error [21], to 
supervise the training process during backpropagation. This approach facilitates trajectory

correction and yields improved prediction outcomes within the Tpred. As illustrated in Fig. 7, the red trajectory denotes the actual 
trajectory, the blue one signifies the predicted trajectory, and we select the (Tob+t) moment to assess both distance and angle errors.

For the distance, we select the predicted position of each period for comparison with the true position. The Euclidean distance is 
calculated, and thus, the distance prediction error for each period is obtained as expressed in (18). 

Ldis =
∑Tpred

t=Tob+1

⃦
⃦
⃦pt

i − pt
igt

⃦
⃦
⃦ (18) 

where pt
igt is the true position of subject i at moment t

To address angular considerations, we introduce the final moment of the observation period, Tob. The direction vector is formed by 
connecting each predicted moment to the preceding one. Subsequently, we evaluate the angle relative to the direction vector of the 
true trajectory, as described in Eq. (19).

For the treatment of angles, we introduce the last moment of the observation period. The direction vector is constructed by linking 
each predicted moment to its preceding moment, and then the angle with the direction vector of the true trajectory is examined as 
expressed in (20). 

Langle =
∑Tpred − 1

t=Tob

arccos

((
pt

i − pt+1
i
)
·
(

pt
igt − pt+1

igt

)

⃦
⃦pt

i − pt+1
i

⃦
⃦
⃦
⃦
⃦pt

igt − pt+1
igt

⃦
⃦
⃦

)

(19) 

L = Ldis + Langle (20) 

The model’s objective loss function, as shown in (20), aims to minimize the loss function L by backpropagating both the distance 
error and angular error between each prediction and the corresponding ground truth to the network. In Section 4.5, ablation ex-
periments will be conducted to demonstrate the optimization effect of this loss function.

For the final set of multiple trajectories, we apply DBSCAN (Density-Based Spatial Clustering of Applications with Noise), a density- 
based clustering algorithm. Unlike the final position clustering approach in [1], this method dynamically determines the number of 
categories, providing increased flexibility and better alignment with pedestrian autonomous navigation strategies by avoiding the 
need to artificially preset the number of categories.

4. Experiments

In this section, we investigate the entire implementation process of SocialTrans. We utilize datasets from ETH/UCY and SDD for 
experimentation, along with a detailed description of evaluation metrics. SocialTrans is compared with existing trajectory predictors, 
including state-of-the-art (SOTA) models [1]. Additionally, through ablation studies, we examine the specific impact of each 
component, providing a deeper understanding of key aspects of trajectory prediction tasks.

Fig. 7. Loss function for multidimensional information fusion. This function contains distance information and angle information to supervise and 
correct the prediction results of the network in backpropagation so that it can maintain good performance in the prediction of the final position.
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4.1. Datasets and metrics

Datasets. The Stanford Drone Dataset (SDD) [52] contains the movement paths of 5232 individuals across eight different scenarios, 
making it one of the largest datasets available. It includes various entities like pedestrians, cyclists, skateboarders, cars, buses, and golf 
carts, navigating through real-world outdoor settings such as university campuses. On the other hand, the ETH/UCY benchmark [48, 
49] documents the trajectories of 1536 pedestrians across five distinct scenarios: ETH, HOTEL, UNIV, ZARA1, and ZARA2. These 
datasets serve as valuable resources for trajectory data, capturing complex pedestrian dynamics like co-directional and counter- 
directional movements; thus, presenting significant challenges for trajectory prediction tasks.

Metrics. To assess our model’s performance, we utilize the following two metrics: 

(1) Average Displacement Error (ADE): This metric calculates the average Euclidean distance between the ground truth coordinates 
and the predicted coordinates across all time steps [50]. 

ADE =

∑num

i=1

∑Tpred

t=Tob+1

⃦
⃦
⃦pt

i − pt
igt

⃦
⃦
⃦

num × Tpred
(21) 

Where num represents the number of pedestrians.
(2) Final Displacement Error (FDE): The Euclidean distance between the predicted points and the ground truth point at the final 

prediction time instant Tpred [22].

FDE =

∑num

i=1

⃦
⃦
⃦pTpred

i − pTpred
igt

⃦
⃦
⃦

num
(22) 

4.2. Implementation details

Our network architecture, training process, and prediction implementation rely on PyTorch. To mitigate the impact of pedestrians’ 
inherent movement patterns, we employ data augmentation techniques such as horizontal flipping and rotation to augment the 
extracted data. Based on the processing of [58–60] we set the model parameters as follows: dmodel= 512, ε= 8, dε= 64. λ is trained to 
obtain the optimal result with the minimum loss value. Considering previous work [1], the number of neighbors Nn is determined by 
the number of pedestrians present in the scene during the historical observation period. Since our network simultaneously performs the 
attentional mechanism for the entire period of historical observations, the number of frames for the observations and predictions is 
kept equal during training, where we set to Tob=Tpre d= 8. Considering the diversity of pedestrian movements, some historical ob-
servations cannot correctly predict the future, so multiple trajectories are reasonable and conform to social norms. Therefore, we set 
the number of predicted trajectory bars l for the subject to 20 to provide rich choices. For each scene in the ETH/UCY and SDD datasets,

we defined specific training hyperparameters. In the ETH/UCY dataset, the initial learning rate for the Eth scene is set to 0.0005, 
with 600 training epochs and testing performed every 200 epochs. For the Hotel scene, the initial learning rate is 0.0007, with 600 
training epochs and testing performed every 200 epochs. The Univ scene uses an initial learning rate of 0.0001, with 200 training 
epochs and testing performed every 100 epochs. For the Zara01 scene, the initial learning rate is 0.0003, with 600 training epochs and 
testing performed every 200 epochs. The Zara02 scene also has an initial learning rate of 0.0005, with 600 training epochs and testing 
performed every 200 epochs. In the case of the SDD dataset, the initial learning rate is 0.0007, with 600 training epochs and testing 
performed every 200 epochs.

Utilizing leave-one-out cross-validation, as described in previous research [28], the dataset mentioned in Section 4.1 is employed. 
The Adam optimizer [51], an extension of stochastic gradient descent, is utilized within the SocialTrans network for updating network 
weights during training. A learning rate of 0.001, dropout rate of 0.2, gradient clipping threshold of 10, and weight decay of 0.0001 are 
applied, with 1000 epochs performed per training session. During training, the best parameter model is identified based on the 
validation set, achieving the lowest ADE. The inference process involves observing 8 frames and predicting the subsequent 8 frames by 
utilizing the best parametric model. This process is executed on a machine equipped with two RTX3090 GPUs.

4.3. Quantitative results and analysis

In the SDD dataset, as described in [53], we perform trajectory prediction for each of the eight scenarios using image segmentation 
techniques to extract pedestrian positional information on a pixel-by-pixel basis. It is worth noting that, unlike previous experimental 
methods, we adopt the same approach of observing 8 frames and predicting 8 frames for other trajectory prediction models to ensure 
the fairness of the experiments. Our proposed SocialTrans method stands out, achieving a remarkable 52 % reduction in ADE and a 
56 % decrease in FDE compared to the current state-of-the-art performance of 6.94/9.46.

As illustrated in Table 1, the analysis of the ETH/UCY datasets, especially in the HOTEL scenario marked by reduced crowding and 
simpler trajectory distributions, demonstrates the superior performance of the linear method over several LSTM-based deep learning 
approaches, including SocialGAN [25], SR-LSTM [27], SoPhie [28], and SocialWays [29]. However, large errors still occur in more 
complex scenarios with these methods. Temporal dependency issues inherent in
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LSTM approaches are effectively addressed by Transformer-based methods, such as STAR [31] and TransformerTF [36], which 
demonstrate superior performance across both datasets. Nevertheless, these models often overlook the deeper social factors influ-
encing pedestrian behavior, and their integration of spatio-temporal interactions remains relatively simplistic. VAE-based approaches 
like Trajectron+ + [38], SGNet-ED [39], BiTraP [40], and SocialVAE [1] (with or without FPC post-processing) have significantly 
reduced errors. While SocialVAE has achieved state-of-the-art (SOTA) results in many scenarios, its treatment of social features re-
mains focused on the present moment, overlooking potential key future information. Its attention covers only isolated single moments, 
leading to weaker macro control of trajectory predictions and leaving room for improvement. Our SocialTrans compre-hensively 
addresses these issues, achieving SOTA performance on these datasets, particularly in the ETH scenario, with a 50 % improvement 
in ADE and a notable 72 % enhancement in the FDE.

4.4. Qualitative results and analysis

To preliminarily evaluate SocialTrans’s predictive performance, we conducted trajectory visualization on the ETH, HOTEL, 
ZARA01, and ZARA02, comparing outcomes with those of SocialVAE. As shown in Fig. 8, the visualization results for the simple 
scenario are presented. In the HOTEL scenario, predictions from SocialVAE notably deviated from ground truth, especially in direction, 
while SocialTrans effectively inferred intent information from historical trajectories, resulting in accurate predictions. Specifically, in 
HOTEL(a) and HOTEL(d), where the subject exhibited multiple directional changes, SocialTrans accurately predicted trajectory al-
terations, closely aligning ground truth. This accuracy can be attributed to the effectiveness of our designed loss function. Regardless of 
neighbor density, SocialTrans effectively captured interaction cues among neighbors and produced precise predictions. Furthermore, 
in most subsequent phases, outcomes closely aligned with ground truth. Conversely, predictions by SocialVAE tended to cluster around 
the initial phase or produced short trajectories, indicating a failure to effectively grasp intent interaction information between the 
subject and its neighbors.

To better demonstrate the prediction effect of SocialTrans, we choose the ZARA02 and UNIV scenarios, which are rich in pedes-
trians and have a large number of pedestrians, for visualization, as shown in Fig. 9. Whether subjects remain stationary or maintain 
their initial motion state, SocialTrans effectively models complex pedestrian interactions and delivers more precise predictions 
compared to SocialVAE. In the ZARA02 scenario’s first column, where both motorial and stationary motion states of neighbors are 
observed, SocialTrans captures subjects’ intentions, yielding predictions that closely clustered like ground truth, while SocialVAE 
produces trajectories in a slow motorial state. In the UNIV scenario, characterized by a large number of neighbors, SocialTrans 
maintains accuracy even when some neighbor trajectories intersect with the subject. Notably, the subject appears to prioritize 
neighbors closer in contemporaneous distance, as evident from the transparency of gray trajectories. However, in the ZARA02 sce-
nario’s second column (d) and the UNIV scenario’s first column (b), even neighbors at similar distances during the heterogeneous 
period do not receive higher attention scores. This highlights the effectiveness of our self-designed attention mechanism, which 
operates not only at individual moments but also globally throughout the entire observation period to comprehensively examine 
interactions.

To illustrate the functioning of our self-designed attention mechanism, attention maps are presented in Fig. 10 across three sce-
narios: the first row depicts HOTEL, the second row UNIV, and the third row ZARA. These maps visualize the attention weights of each 

Table 1 
Quantitative results of the correlation methods analyzed on the TWO datasets. All the work is realised using 8 frames of prediction for 8 frames and 
the average of the 20 predicted values for the best effect of ADE/FDE is selected. D: deterministic version of the model. i: requires image input. ◦P: 
reproduces the results after optimizing the existing problem.

SDD ETH HOTEL UNIV ZARA01 ZARA02

Linear 16.53/35.12 1.23/2.56 0.41/0.76 0.86/1.54 0.62/1.24 0.76/1.56
S-LSTM [22] – 0.81/1.68 0.39/0.82 0.59/1.21 0.54/0.98 0.42/0.85
CIDNN [24] – 1.17/2.07 1.12/1.69 0.60/1.19 0.84/0.94 0.45/0.92
S-GAN [25] 22.51/34.65 0.57/0.89 0.41/0.86 0.49/0.96 0.29/0.59 0.24/0.54
Trafficpredict [26] – 5.14/8.85 2.32/3.35 3.07/5.97 3.46/6.17 3.35/6.89
SR-LSTM [27] – 0.59/1.14 0.33/0.69 0.44/0.91 0.36/0.89 0.29/0.65
SoPhiei [28] 12.31/23.62 0.64/1.27 0.69/1.56 0.49/1.16 0.26/0.57 0.34/0.65
Socialways [39] – 0.37/0.56 0.35/0.59 0.51/1.27 0.39/0.57 0.45/0.88
MemoNetOP [4] 7.24/9.54 0.37/0.54 0.12/0.20 0.21/0.42 0.18/0.24 0.12/0.19
STARD – 0.52/1.06 0.23/0.45 0.38/0.84 0.28/0.66 0.40/0.81
STAR [31] – 0.32/0.59 0.18/0.29 0.29/0.60 0.22/0.45 0.19/0.44
TransformerTF [36] – 0.57/1.09 0.17/0.23 0.31/0.56 0.18/0.34 0.15/0.24
MANTRA [3] 7.83/13.68 0.44/0.91 0.17/0.28 0.33/0.68 0.19/0.35 0.16/0.24
PECNet [37] 8.09/13.76 0.51/0.82 0.16/0.24 0.32/0.52 0.20/0.34 0.14/0.26
Trajectronþ þOP [38] 8.94/14.32 0.49/0.89 0.14/0.21 0.26/0.47 0.17/0.37 0.13/0.26
SGNet-EDOP [39] 8.07/15.67 0.45/0.88 0.19/0.47 0.30/0.65 0.16/0.32 0.13/0.30
BiTraPOP [40] 7.96/13.64 0.52/0.86 0.17/0.25 0.23/0.42 0.21/0.41 0.15/0.29
AgentFormer [41] – 0.43/0.69 0.13/0.19 0.22/0.41 0.16/0.24 0.13/0.19
SocialVAE [1] 7.34/11.74 0.42/0.73 0.14/0.22 0.25/0.47 0.20/0.37 0.14/0.28
SocialVAEþFPC 6.94/9.46 0.35/0.59 0.13/0.19 0.21/0.36 0.17/0.29 0.13/0.22
SocialTrans 3.30/4.11 0.22/0.18 0.11/0.12 0.17/0.16 0.16/0.18 0.10/0.11
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neighbor using gradient-filled circles, where the opacity and radius correlate with the neighbor’s weight in their respective scenarios. 
Overall, subjects prioritize neighbors moving in the same direction and those approaching from opposite directions. Conversely, 
neighbors behind the subjects, regardless of whether they are moving toward or away from them post-encounter, receive minimal 
attention. Furthermore, influenced by DBSCAN, the number of decision trajectories for the subjects continuously adjusts in response to 
changes in scenarios and motion states.

For a more intuitive representation of the interaction between the subject and its neighbors, we present it visually in Fig. 11. In row 
(a), as the horizontal axis increases while the vertical remains constant, the color intensity gradually increases, indicating that the 
subject’s state at a historical moment is influenced by the entire historical period, with greater influence from more distant moments, 
highlighting the subject’s anticipation of future instances. In row (b), only a few regions in the heatmap are highlighted in red, 
demonstrating that our designed perception mask effectively filters out distant neighbors during neighbor cluster processing at each 
historical moment, focusing only on relevant close neighbors and adhering to social norms, thereby reducing unnecessary compu-
tational cost. Row (c) depicts the influence weights in the subject-neighbor groups interaction, which, when combined with the VUS to 
get the final attention score, serving as the foundation for subsequent decoding in the network.

Fig. 8. Trajectories visualization in simple scenarios. We sequentially display predictions for the subject itself and neighbors increasing from one to 
four. SocialTrans outperforms the state-of-the-art (SOTA) model SocialVAE, in making more accurate predictions.
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4.5. Ablation experiment

In order to examine the characteristics of the neighbor perception state tensor, the effects of the two attentions as well as the loss 
function. We carry out the ablation experiments shown in Table 2 with a network layer number of 2 and keeping the subject state 
tensor features unchanged. Experiments (1), (2), and (7) investigate the influence of states selection on trajectory prediction results. In 
(1), only the distance is included, while in (2), the experiments continue by adding the velocity angle θt

ij. Experiment (7) incorporates 
all statistics mentioned in the methods section. The results show a significant improvement in the prediction outcomes due to states 
selection, with increases of 50 % and 51 % for the ADE and FDE, respectively. Experiments (3), (4), and (7) primarily examine the 
impact of attention on trajectory prediction results. Experiments (3), (4), and (7) primarily examine the impact of attention on tra-
jectory prediction results. Experiment (3) includes only the SIE without the NPIE output as input. The SIE makes trajectory predictions 
based solely on the subject, which contradicts social norms. In experiment (4), NPIE is retained, but the subject’s information is 
ignored, leading to inaccurate predictions. The results indicate greater prediction accuracy when the SIE and NPIE interact. Experi-
ments (5), (6), and (7) focus on the selection of the optimizer. We experiment separately with Ldis and Langle, as well as with their joint 
application. The findings indicate that when employing both loss functions concurrently, the network can effectively learn the distance 
information between predicted and actual trajectories at each moment, alongside angle information within each time step, resulting in 
improved experimental outcomes. Additionally, by rectifying angle information, a notable enhancement in FDE performance is 
observed.

In the first ablation experiment, the best outcomes are achieved within the experimental group (3). Using this group as the baseline, 
we explored how varying the number of layers in the network affected optimal performance. Table 3 illustrates a noticeable pattern: 
while increasing the number of network layers, the model’s performance does not improve steadily as expected; instead, it demon-
strates a degradation trend. Optimal performance is attained when the network depth is set to 2. This pattern suggests that in social 
scenarios, as network depth increases, the model may excessively focus on learning information between neighbors while overlooking 
other crucial states. This tendency towards overfitting diminishes the model’s ability to generalize, thereby affecting trajectory pre-
diction accuracy. Thus, when designing a network, it is essential to strike a balance between network depth and the model’s 

Fig. 9. Trajectory visualization in complex scenarios. We show scenarios with richer social information and a larger number of pedestrians. 
Neighbors are represented by gray trajectories, and attention scores are characterized by transparency, with lower transparency representing higher 
attention scores and higher transparency representing lower attention scores.
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generalization ability to ensure consistent performance across diverse scenarios.

5. Conclusions

We proposed SocialTrans as a novel approach to PTP, which extracted data information from global observations of selected 
historical periods and could handle an arbitrary number of pedestrians. By modelling the motion states and incorporating future 
potential information, the state tensor of the subject and the neighbors are then constructed separately. SIE and NPIE are designed for 
them respectively to realise the internal interaction of social states in social scenarios. To enable SocialTrans to better learn about 
social information in historical scenarios from a more macroscopic perspective, SIE and NPIE also acted simultaneously throughout the 
period of observation. Considering the unnecessary computational overhead of dealing with the weak effects caused by distant 
neighbors, we designed a perception mask in NPIE to perform local processing. The Trajectory Prediction Optimiser makes SocialTrans 
more accurate in its end-of-period prediction results by fusing distance-angle information, greatly facilitating fast and accurate 
decision-making for pedestrians. Experimental results on the publicly available datasets ETH/UCY as well as SDD showed that the 
method outperformed existing methods.

In future work, we need to incorporate more useful information to improve the accuracy of PTP, especially in scenarios where 
individuals can freely move and change direction at their discretion. This will further demonstrate greater application value in areas 
such as smart transportation and intelligent manufacturing technology.

Fig. 10. Attention map within the observation area. The yellow circle is the observation area of the pedestrian, the red dot is the position of the 
subject itself in the current scenario, the red line segment represents the subject’s historical trajectory in the current scenario, the blue line segment 
represents the real trajectory, and the orange line segment represents the predicted trajectory.
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Fig. 11. Social state interaction attention weight heatmap. Both horizontal and vertical coordinates represent historical moments. Row (a) rep-
resents the subject state interaction weight heatmap at each historical moment, row (b) represents the neighbor groups state interaction weight 
heatmap at each historical moment after perceptual masking, and row (c) represents the interaction weight heatmap after (b) is superimposed 
on (a).

Table 2 
Ablation experiment 1: Both ETH/UCY and SDD are carried out on the test dataset. The ETH/UCY results are averaged over the results computed 
through the five scenarios in meters and the SDD in pixels. The results are reported in the form of ADE/FDE.

Neighbor States Attention Optimizer Datasets
⃦
⃦
⃦ ltij
→⃦⃦
⃦

θt
ij obt

ij SIE NPIE Ldis Langle ETH/UCY SDD

(1) √ - - √ √ √ √ 0.29/0.31 5.91/6.95
(2) √ √ - √ √ √ √ 0.26/0.30 5.12/6.56
(3) √ √ √ √ - √ √ 0.33/0.38 6.22/7.26
(4) √ √ √ - √ √ √ 0.31/0.33 5.10/5.98
(5) √ √ √ √ √ √ - 0.18/0.26 3.95/4.68
(6) √ √ √ √ √ - √ 0.36/0.42 7.68/8.24
(7) √ √ √ √ √ √ √ 0.15/0.15 3.30/4.11

Table 3 
Ablation experiment 2: The effect of the number of network layers on the experimental results.

Layers Datasets

2 4 6 ETH/UCY SDD

(1) √   0.15/0.15 3.30/4.11
(2)  √  0.22/0.24 5.61/6.86
(3)   √ 0.71/0.88 9.67/10.24
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