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Abstract

Augmenting large language models (LLMs) with external retrieval has become a
standard method to address their inherent knowledge cutoff limitations. However,
traditional retrieval-augmented generation methods employ static, pre-inference
retrieval strategies, making them inadequate for complex tasks involving ambigu-
ous, multi-step, or evolving information needs. Recent advances in test-time
scaling techniques have demonstrated significant potential in enabling LLMs to
dynamically interact with external tools, motivating the shift toward adaptive
inference-time retrieval. Inspired by Information Foraging Theory (IFT), we
propose InForage, a reinforcement learning framework that formalizes retrieval-
augmented reasoning as a dynamic information-seeking process. Unlike existing
approaches, InForage explicitly rewards intermediate retrieval quality, encouraging
LLM:s to iteratively gather and integrate information through adaptive search behav-
iors. To facilitate training, we construct a human-guided dataset capturing iterative
search and reasoning trajectories for complex, real-world web tasks. Extensive
evaluations across general question answering, multi-hop reasoning tasks, and a
newly developed real-time web QA dataset demonstrate InForage’s superior perfor-
mance over baseline methods. These results highlight InForage’s effectiveness in
building robust, adaptive, and efficient reasoning agents. We provide all codes and
datasets in the supplementary materials as well as in this repository.

1 Introduction

Augmenting large language models (LLMs) with external knowledge retrieved via search tools
is a common approach to address their inherent knowledge cutoff limitation [Lewis et al.l [2020al
Zhao et al.l [2024a]]. Existing methods typically apply a static, pre-inference retrieval strategy by
concatenating retrieved information into the input prompt, enabling the LLM to generate answers
based on the provided external knowledge [Gao et al., 2024]. However, this approach often lacks
adaptiveness, especially for complex tasks in which users’ information needs are ambiguous, rationale-
based, or not directly searchable, as these tasks require iterative reasoning to progressively uncover
the necessary evidence for answer generation [Qian et al., [2025a].

Recent advances in test-time scaling techniques have significantly strengthened LLMs’ reasoning
abilities, enabling complex behaviors such as long chain-of-thought reasoning and dynamic tool
use [Snell et al.|, 2024, Muennighoff et al.,|2025]. Reasoning-based models such as OpenAl’s ol and
DeepSeek R1 have demonstrated significant gains on challenging tasks, particularly in areas like
mathematical problem-solving and coding, where iterative self-reflection and refinement are essential
for success [OpenAll [2024] DeepSeek-AlL [2025]. Inspired by these developments, a natural extension
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Figure 1: Illustration of InForage. Complex tasks often require multi-hop reasoning and iterative
retrieval across dispersed knowledge sources. InForage integrates retrieval into each reasoning step
and assigns structured rewards based on the relevance and utility of each retrieved patch. This dynamic
supervision encourages the model to progressively gather, evaluate, and integrate evidence—mirroring
human-like information foraging.

for retrieval-augmented generation is to shift retrieval from a static, pre-inference step to a dynamic,
inference-time process. This transition allows LLMs to iteratively retrieve and adaptively integrate
external knowledge during reasoning, aligning more closely with the evolving and multi-layered
information needs inherent to complex information seeking tasks [Li et al.,[2025| Jin et al., 2025a].

However, effectively supporting such dynamic search-enhanced reasoning for complex tasks presents
two key challenges. First, due to the implicit and evolving nature of such tasks, it is difficult to
retrieve all necessary evidence through a single retrieval action. Each retrieval typically uncovers
only a local information patch, which is a partial subset of the expected knowledge space, and it
requires iterative accumulation and integration via reasoning to form a complete answer [Qian et al.|
2025b]. Second, the value of an information patch is not intrinsic to the retrieved content itself but
depends on its contribution to the overall reasoning process and final answer accuracy [Zhu et al.,
2024, |Zhou et al.| [2024]]. Therefore, each retrieval decision significantly influences not only the
immediate reasoning step but also the ultimate correctness of the final response. To illustrate these
challenges concretely, consider a simplified case shown in Figure[I} “I am attending NeurIPS. Do I
need a visa?”’ Addressing this question requires navigating the vast information space by iteratively
retrieving local information patches from distinct sources (e.g., external web pages and personal
profiles). The system must first uncover the event’s location before accurately resolving the user’s
actual visa requirement. These sequential dependencies, where each retrieval clarifies only part of
the information need, highlight the importance of adaptive, iterative retrieval strategies capable of
dynamically refining the reasoning trajectory.

While such information-seeking tasks remain challenging for current retrieval-augmented systems,
humans often resolve them efficiently with just a few iterative online searches [Nakano et al., 2021,
Shani et al.,2024]]. This suggests that humans inherently possess adaptive strategies for navigating
complex information spaces. Drawing inspiration from cognitive science, we turn to Information
Foraging Theory (IFT) [Pirolli and Card, |1999], which provides a formal explanation for how
humans strategically seek information by balancing the expected value gained from an information
patch against the cognitive and time costs involved in exploring it. Central to IFT is the concept
of information scent, defined as the perceived relevance or utility of available informational cues.
Analogous to how animals follow scent trails to valuable resources, humans use information scent
to guide their search toward promising information sources. Translating this analogy into retrieval-
augmented reasoning, the model’s intermediate reasoning steps and generated subqueries can be
viewed as dynamically evolving assessments of information scent. Stronger information scent thus
corresponds to higher-quality reasoning paths and subqueries, which lead retrieval actions toward
more relevant and information patches. Consequently, optimizing intermediate information gain
throughout the reasoning trajectory becomes as critical as ensuring the correctness of the final answer.

Building on this perspective, we propose InForage, a reinforcement learning (RL) framework
designed to enhance the search-augmented reasoning capabilities of LLMs. Previous reasoning
methods typically optimize models based solely on the correctness of final answers, overlooking
the crucial role of intermediate retrieval steps. In contrast, InForage explicitly rewards effective
information-seeking behavior at each stage of the reasoning process, recognizing that meaningful
retrieval actions incrementally shape both the reasoning trajectory and the accuracy of the final
response. Inspired by IFT, we introduce three complementary reward mechanisms to incentivize
comprehensive reasoning behaviors: (1) an Outcome Reward, which credits trajectories leading
to correct final answers; (2) an Information Gain Reward, which rewards intermediate retrieval



steps that uncover valuable evidence; and (3) an Efficiency Penalty, which discourages unnecessarily
prolonged reasoning, encouraging concise and cost-effective information foraging.

Most existing QA datasets provide only final question—answer pairs, lacking records of intermediate
reasoning or retrieval steps. Moreover, they often feature shallow queries that can be resolved with
one or two retrievals, limiting their utility for training models on complex, multi-step reasoning.
To address this gap, we construct a dataset that captures fine-grained human information-seeking
trajectories through open-ended web browsing. Starting from a seed claim, annotators iteratively
query search engines, select relevant documents, and extract rationale-dependent claims to formulate
subsequent queries. After gathering sufficient evidence, we use a strong LLM (e.g., GPT-40) to
generate QA pairs that require multi-hop reasoning and layered evidence integration. Each example
involves at least three information hops or intersecting conditions to ensure true complexity. Crucially,
the dataset records every step of the search and reasoning process, enabling reward supervision over
final answer correctness, intermediate retrieval quality, and overall reasoning efficiency.

We evaluate InForage on standard QA, multi-hop reasoning, and a self-constructed real-time web
QA benchmark. Results show that InForage consistently outperforms baselines, validating the
effectiveness of learning from richly supervised, search-augmented reasoning data.

In summary, the contributions of this paper are threefold: (1) We formalize search-enhanced reason-
ing through information foraging theory, modeling retrieval decisions as a dynamic optimization
of information scent and patch value along the reasoning trajectory. (2) We propose InForage, a
reinforcement learning framework that jointly optimizes outcome correctness, intermediate infor-
mation gain, and reasoning efficiency, enabling LLMs to perform adaptive, multi-step information
foraging. (3) We construct a human-guided search reasoning dataset that captures multi-step web
browsing trajectories and rationale-dependent query formulation, providing the structured supervision
necessary to train and evaluate InForage effectively.

2 Method

2.1 Preliminary

The information-seeking process using LLMs can be formulated as ) = ©(q), where g is the input
query, ) is the generated answer, and ©(-) denotes the LLM.Since the knowledge embedded in most
LLM:s is fixed after training and difficult to update, incorporating external information has become a
common strategy to enhance their performance on information-seeking tasks. Retrieval-augmented
generation (RAG) is a widely adopted approach that follows this paradigm. In RAG, given a query ¢,
the system first retrieves relevant knowledge /C from an external knowledge base D using a retriever
T'(-), and then generates the final answer conditioned on both ¢ and /. The process can be defined as:

where I'(-) represents the retrieval function and D is the external knowledge corpus.

However, in RAG systems, performance is tightly upper-bounded by retrieval quality: if the retrieved
knowledge /C is sub-optimal, the generated answer ) is likely to be flawed. This limitation becomes
even more pronounced in complex knowledge discovery tasks, where information needs are implicit
or multi-layered. In such cases, effective information gathering requires iterative reasoning and
adaptive retrieval over multiple steps.

Recent advances in reasoning LLMs enable a more dynamic retrieval paradigm, shifting retrieval from
a static pre-inference step to an adaptive, inference-time mechanism. Specifically, the generated output
Y typically contains a reasoning segment and an answering segment, denoted as (Vinink, Vanswer) € V-
During reasoning, the model generates a trajectory of intermediate reasoning steps (or subqueries),
exploring potential paths toward solving the task. Retrieval is interleaved into this process as:

V=0 (q|Vuink ® {K:}11) . Ke=T(g"™ | D), ™ € Vinink, 2)

where ¢§*® denotes the subqueries generated during reasoning, used to retrieve intermediate knowledge
KCi. The operator ® indicates that retrieved knowledge is dynamically interleaved into the evolving
reasoning trajectory.



2.2 Information Foraging Perspective on Search-Enhanced Reasoning

Suppose the expected knowledge space required for solving a complex information-seeking task
consists of n documents, denoted as D* = [dy,. .., d,]. Generating the correct answer necessitates
recovering the complete set D* in the reasoning process. At the ¢-th retrieval step, given the generated
subquery ¢{*®, the model may retrieve only a partial information patch Ky C D*, rather than the full
set. Consequently, an ideal optimization objective is to sequentially gather all necessary information
patches in as few reasoning-retrieval steps as possible, enabling accurate answer generation with

minimal search effort.

Inspired by Information Foraging Theory, we characterize the search-enhanced reasoning process
as information foraging, where the evolving information scent is expressed through the model’s
intermediate reasoning steps and generated subqueries. Guided by this scent, the model iteratively em-
ploys retrieval tools to gather local information patches from the broader knowledge space. A strong
information scent—reflected in coherent reasoning trajectories and effective subqueries—facilitates
the retrieval of increasingly relevant documents. Crucially, while accurate final answers depend on the
successful accumulation of relevant information, even in cases where the final prediction is incorrect,
a reasoning trajectory that effectively gathers valuable knowledge patches remains meaningful and
should be explicitly rewarded. Formally, this process can be expressed as the following objective:

T
max [E S(yanswer) +a-C U ICMD* : ﬁTa 3)

by T
{at* Y, =1

where S(Yunswer) denotes the evaluation metric of the final generated answer, C (U;F:1 K, D*)

measures the coverage of the retrieved patches relative to the expected knowledge D*, T is the total
number of reasoning-retrieval steps, and «, 8 € (0, 1) are weighting factors controlling the trade-off
between information completeness and trajectory efficiency.

2.3 The proposed method: InForage

Building on the information foraging perspective, we propose InForage, a search-enhanced reasoning
method that enables LLMs to iteratively reason, retrieve, and integrate external knowledge for solving
complex information-seeking tasks. The reasoning trajectory of InForage is structured into specialized
stages and can be formalized as:

Y = <think> reasoning content </think> <search> subquery </search>

information scent

<info> retrieved information </info> ... <answer> final answer </answer>. (4)

information patch

As illustrated above, the model’s generation process ) unfolds as a sequential composition of blocks:
a <think> block capturing intermediate reasoning contents, a <search> block emitting subqueries,
corresponding retrieval results encapsulated within <info> blocks, and finally, a <answer> block
producing the final response. Throughout this process, the evolving information scent—expressed via
reasoning contents and subqueries—guides the model to retrieve information patches that incremen-
tally reconstruct the expected knowledge space, ultimately supporting accurate answer generation.

Reward Design for InForage. Reinforcement learning plays a key role in training reasoning
models by enabling them to self-explore diverse reasoning trajectories and rewarding those that prove
effective. This aligns model behavior with the objective of adaptive information seeking and efficient
decision-making. However, since these trajectories are self-generated and do not always yield correct
final answers, relying solely on outcome-based rewards leads to sparse supervision signals—making
the training process harder to optimize and less sample-efficient [Chen et al., |2025]]. Following
the optimization goal defined in Eq.[3] we decompose the overall reward into three complementary
components: Outcome Reward, Information Gain Reward, and Efficiency Penalty. Together,
these rewards guide the model to reason more strategically, forage information effectively, and
minimize unnecessary retrieval steps.

(1) Outcome Reward: At the end of each rollout, we extract the predicted answer Vswer and
evaluate it using a task-specific metric S(Vanswer)» such as Exact Match or F1 score. The Outcome



Reward directly reflects the final task success:

Roulcome = S(yanswer)- (5)

(2) Information Gain Reward: A strong information scent leads to the retrieval of more relevant
documents, enhancing intermediate knowledge acquisition. To capture this behavior, we compute the
cumulative coverage of the retrieved patches against the expected knowledge set D*. Specifically, at

each retrieval step ¢, we evaluate the partial coverage C (U::1 K, D*) and define the Information
Gain Reward as the maximum coverage achieved during the reasoning trajectory:

t
Rgain = t:Hff.*ffTC <U K,,D ) . (6)

T=1

(3) Efficiency Penalty: Since the minimal trajectory for search-enhanced reasoning involves at least
two steps (one for searching and one for answering), we penalize excessively long reasoning paths.
The Efficiency Penalty is defined as an exponential decay applied to the total reward:

Refﬁciency = ﬁmax(O,T72)’ where 0 < ﬁ < 1. (7)

Final Reward: The final reward assigned to a rollout aggregates the three components as:
R= Refﬁciency . (Routcome +a- Rgain) y (8)

where a € (0, 1) balances the emphasis between final answer correctness and intermediate informa-
tion gathering.

Optimization. We first train the foundation LLMs using supervised fine-tuning (SFT) to enable
the model to perform iterative reasoning and retrieval. Specifically, we construct the SFT dataset by
providing gathered human web browsing trajectories and corresponding QA pairs to a strong LLM,
which then generates step-wise reasoning and retrieval responses as the training target.

Subsequently, we optimize InForage using Proximal Policy Optimization (PPO) [Schulman et al.;
2017|], guided by the rule-based rewards defined previously. For each input prompt p, the model
generates a trajectory )/, interleaved with retrieved information patches ’CttT:1~ At each generation
step t, we calculate the reward 7, and estimate the advantage .4, via Generalized Advantage Estimation
(GAE) [Schulman et al., 2016]. Let ), denote the prefix generated up to step ¢, and X, represent
the retrieved information patches available thus far. The PPO training objective is defined as:

: : mo (Ve | Yt K<t)

Lppo(0) = E; [min (rp Ay, clip(ry, 1 — €, 14+ €).A4;)],  re o | VerKr)' 9
where 7y denotes the current policy, 7y, is the sampling policy from the previous iteration, and
€ is the clipping parameter. Following Jin et al.| [2025al], we restrict gradient updates exclusively
to model-generated tokens, excluding tokens originating from retrieved information patches /C by
applying appropriate masking.

3 Experiments

3.1 Settings

Baselines: We compare InForage against both non-retrieval and retrieval-augmented baselines. For
non-retrieval methods, we consider: (1) Vanilla, prompting the LLM to directly generate answers;
(2) SFT, fine-tuning the LLM on the same QA pairs used by InForage; (3) Reasoning, training
the LLM with reinforcement learning on QA pairs following DeepSeek-Al| [2025]]. For retrieval-
augmented baselines, we include: (1) Vanilla RAG, which retrieves top-k documents once and
prepends them to the prompt; (2) IRCoT [Trivedi et al.l 2022al], alternating retrieval with chain-of-
thought reasoning; (3) RQRAG [Chan et al., 2024, which refines initial queries through rewriting
and decomposition to improve retrieval accuracy; (4) Self-RAG [Asai et al., 2023}, which introduces a
self-reflection mechanism allowing the model to critique and revise its own outputs based on retrieved
evidence; (5) Search-ol [Li et al., 2025], which enhances LLMs with an agentic retrieval module



and a Reason-in-Documents component for structured document reasoning; (6) Search-R1 [Jin et al.|
2025a]], which learns to generate multiple search queries during reasoning via reinforcement learning
to optimize multi-turn retrieval interactions.

Datasets: We evaluate on the following datasets: Natural Questions [Kwiatkowski et al.l [2019]],
TriviaQA [Joshi et al.| 2017]], PopQA [Mallen et al., 2022], HotpotQA [Yang et al.,|[2018]], 2WikiMul-
tihopQA [Ho et al2020], MuSiQue [Trivedi et al.|[2022b]], Bamboogle [Press et al., 2023, and a
self-constructed real-time web QA dataset. We report exact match (EM) as the primary metric.

3.2 Implementaion Details

We use Qwen-2.5 Instruct models (3B and 7B) as our foundation LLMs for InForage. For SFT, we
first sample 4,000 question—answer pairs from our self-constructed training datasets. To generate
corresponding reasoning trajectories, we condition Qwen-2.5-72B on each QA pair along with
its associated relevant claims. These model-generated trajectories are then used to fine-tune the
foundation models for two epochs using a learning rate of 1 x 10~°. Following SFT, we perform RL
with PPO over 300 steps, using a learning rate of 1 x 10~% and a warm-up ratio of 0.5. The RL training
corpus includes data from our self-constructed dataset, Natural Questions (NQ), and HotpotQA. For
NQ and HotpotQA, we use Wikipedia as the knowledge source; for the self-constructed dataset, we
use the cached web pages gathered during its creation. Structured rewards (Eq. [8) with v = 0.2 and
B = 0.95 are applied only to the self-constructed dataset, as the others lack intermediate traces.

During inference, we use the ES encoder [Wang et al. [2024]] and the Wikipedia dump from
FlashRAG [Jin et al.| 2025b] as the retrieval backend for open-domain and multi-hop QA tasks. For
complex, real-time web-based tasks, we cache Google Search results and scrape the full content of
retrieved pages. Retrieval over this corpus is performed using the BGE-M3 retriever, and we set the
maximum number of reasoning steps to 6.

Regarding baselines, we adopt reported results when available (e.g., Search-R1 [Jin et al.;[2025a]) and
reproduce results using official code and checkpoints when necessary. For RQRAG and Self-RAG,
we evaluate their official 7B checkpoints using FlashRAG. All other baselines use Qwen2.5-3B-
Instruct as the foundation model. For consistency, all retrieval-based methods use top-k = 3 retrieved
documents. All training and evaluation were conducted using 8 NVIDIA A800-80G GPUs. We
provide all source codes, datasets and prompts in this repository.

3.3 Training Dataset Construction

To effectively train InForage, we require structured supervision signals for intermediate information-
gathering steps. However, most existing QA datasets provide only QA pairs without detailed records
of the information-seeking process, making them unsuitable for this purpose. To address this gap,
we construct a large-scale dataset designed explicitly to capture comprehensive human information-
seeking trajectories, inspired by human information foraging behaviors.

Open-Ended Information Browsing and Annotation: To ensure that each example genuinely
requires multi-step reasoning and cannot be answered via simple direct search, we adopt an open-
ended information browsing paradigm inspired by realistic human behavior. Annotators begin with a
seed factoid claim and use the Google Search API to retrieve a search engine results page (SERP).
They then iteratively select relevant web pages, extract new “bridge” claims, and expand the context
around the original claim through a retrieval-and-extraction loop. This process is manually performed
for 500 samples. To enforce reasoning complexity, we require that each example integrates at least
three non-redundant claims or conditions that must be jointly considered to identify the correct
answer—ensuring that the final query cannot be resolved by any single piece of information alone.
Once a sufficient set of intermediate claims is collected, we use GPT-4o0 to synthesize a coherent
question—answer pair that reflects embedded multi-step reasoning. Human annotators further verify
each generated example to ensure there is no information leakage or ambiguity, guaranteeing high-
quality supervision signals that reflect realistic, layered information-seeking behavior. An overview
of our annotation interface is provided in Figure [3]and Figure[d]

Scaling via Automated Annotation: Analysis of the initial 500 manually annotated samples reveals
that maintaining consistency and logical coherence within the browsing trajectories is critical for
high-quality data. To enable scalability while preserving trajectory quality, we distill effective
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Table 1: Main experimental results. The best results are highlighted in bold, and second-best results
are underlined. For RQRAG and Self-RAG, we use their official 7B checkpoints. All other baselines,
including InForage, are built on Qwen-2.5-3B-Instruct. All RAG-based methods apply top-k = 3.
InForage is trained on the training sets of datasets denoted with *.

Method NQ* TQA PopQA HQA* 2Wiki Mus Bamb Self* Ave.
Non-RAG Methods
Vanilla 12.1 2838 13.0 15.9 24.8 2.1 2.4 4.0 12.9
SFT 24.2 26.3 12.0 20.1 25.2 6.1 13.2 8.1 16.9
Reasoning 240 402 15.2 20.8 28.0 8.1 16.5 6.7 19.9
RAG Methods
RAG 348 544 38.7 25.5 22.6 4.7 8.0 234 265
IRCoT 11.1 31.2 20.0 16.4 17.1 6.7 24.0 0.8 15.9
RQRAG 326 525 394 28.5 30.7 10.1 12.9 282 294
Self-RAG 36.4 38.2 23.2 15.7 11.3 3.9 5.6 24.0 19.8
Search-ol 238 472 26.2 22.1 21.8 54 320 367 269

Search-R1-PPO 323 537 36.4 30.8 33.6 16.5 31.5 256 318
Search-R1-GRPO  40.9 552 40.5 34.5 369 154 320 292  35.6

InForage (Ours) 421 59.7 45.2 40.9 428 172 360 441 41.0

prompting strategies from these manually annotated examples. We then leverage GPT-40 as an
autonomous agent to automate and scale up the annotation process, systematically generating 20,000
coherent reasoning trajectories, each culminating in a complex question—answer pair. The final
dataset comprises a structured split of 19,500 training examples and 500 evaluation examples. The
500 evaluation samples—denoted as the Self dataset—comprise real-time, open-ended web tasks that
demand multi-hop reasoning, offering a challenging benchmark for search-enhanced reasoning.

Diverse Web Corpus for Knowledge Freshness: To mitigate the risk of prior knowledge memoriza-
tion within the language model, we exclusively crawl web pages published between January 1, 2025,
and March 31, 2025. The resulting corpus spans diverse domains—including science, technology,
health, culture, and general knowledge—to ensure comprehensive topical coverage. After rigorous
filtering for quality and relevance, we retain approximately 80,000 high-quality web pages. We
employ Qwen2.5-72B, a strong open-source language model, to systematically extract structured
factoid claims from each page, resulting in a total of 172,000 validated claims used as seed inputs
and intermediate annotations.

Golden Evidence for Structured Supervision: Crucially, each annotated example includes explicit
records of the golden web URLs that serve as the verified factual basis for the final question—answer
pairs. This meticulous documentation facilitates precise evaluation of retrieval performance during
training. Retrieval actions that successfully identify evidence from these golden URLs are rewarded
accordingly, directly incentivizing effective intermediate retrieval behaviors alongside accurate
final-answer generation and overall reasoning efficiency.

3.4 Main Experiment

In Table |1} we present the main experimental results, from which we have several key findings:
(1) InForage consistently outperforms all baselines across both in-domain and out-of-domain datasets,
demonstrating strong robustness and generalizability. This includes superior performance not only on
standard QA benchmarks like NQ and TriviaQA but also on more challenging settings such our self-
constructed web QA set, which require real-time, multi-step reasoning over open-ended knowledge
sources. (2) Search-enhanced reasoning methods (e.g., Search-R1 and InForage) show particular
strength on multi-hop tasks such as 2Wiki and MuSiQue. Their ability to iteratively decompose
queries, formulate subgoals, and retrieve contextually relevant information mirrors human-like
problem-solving behavior and leads to consistently stronger results compared to static, one-shot
retrieval pipelines. InForage further benefits from reward-guided reasoning, which encourages the
generation of effective subqueries and efficient trajectories. (3) While prior retrieval-augmented
methods (e.g., Self-RAG, RQRAG) often perform well on narrow tasks with clearly stated queries,
their performance degrades under ambiguity or evolving information needs. In contrast, InForage
demonstrates greater resilience across task types, confirming our hypothesis that adaptive, reasoning-



w/o SFT w/o Self w/o EP w/o IGR w/ GRPO w/ PPO w/ Qwen-2.5-7B
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Figure 2: Ablation study of InForage. w/o SFT and w/o Self denote the removal of the supervised
fine-tuning stage and the exclusion of the self-constructed dataset, respectively. w/o EP and w/o
IGR indicate the ablation of the efficiency penalty and information gain reward. w/ GRPO and w/
PPO compare the use of two different reinforcement learning algorithms. w/ Qwen-2.5-7B refers to
replacing the foundation model with Qwen-2.5-7B.

Table 2: Case study using InForage. For clarity, we present only the key content extracted from each
retrieved document within the <info> blocks.
Query: Which tennis player with more than ten major titles has excelled at a recent top Florida tournament

and achieved a significant ranking milestone?
Ground-truth target: Novak Djokovic RAG: Sofia Kenin ~ Gemini 2.5 Pro (search): Novak Djokovic

<think> First, identify players who have won more than ten major (Grand Slam) titles. </think>
<search> Which tennis players have more than ten Grand Slam titles? </search>

<info> Novak Djokovic, Rafael Nadal, and ... have each won more than ten Grand Slam titles. </info>
<think> Next, determine a top-tier tennis tournament held in Florida that could serve as a basis for evaluating
recent performance. </think>

<search> What is a major tennis tournament held in Florida? </search>

<info> The Miami Open is a high-profile annual tennis tournament held in Florida. </info>

<think> Check which of the shortlisted players (Djokovic, Nadal ...) has recently performed well at the
Miami Open. </think>

<search> Who among Djokovic, Nadal... has recently recorded wins at the Miami Open? </search>
<info> Novak Djokovic has recently won matches at the Miami Open. </info>

<think> Finally, confirm whether this player has achieved a notable long-term ranking milestone that sets
them apart in ATP history. </think>

<search> Has Novak Djokovic reached any major career ranking longevity milestones? </search>
<info> Novak Djokovic has surpassed 1000 weeks ranked within the top 100. </info>

<answer> Novak Djokovic </answer> <—InForage’s Answer.

aware retrieval is crucial for complex tasks. Its principled integration of retrieval into the reasoning
loop, guided by outcome, information gain, and efficiency signals, enables the model to dynamically
navigate complex knowledge spaces more effectively than static or manually designed strategies.

3.5 Discussion

Ablation Study To evaluate the contributions of InForage’s key design components, we conduct
comprehensive ablation studies, as summarized in Figure[2] Our findings are as follows: (1) Training
Settings: Leveraging our self-constructed dataset for both supervised fine-tuning (SFT) and reinforce-
ment learning (RL) yields consistent performance improvements. This confirms that high-quality,
reasoning-aligned training data is essential for search-enhanced reasoning methods—particularly,
SFT provides a strong initialization that benefits subsequent RL optimization. (2) Reward Design:
Ablating the information gain reward (IGR) leads to a consistent performance drop across datasets,
validating its effectiveness in promoting meaningful intermediate retrievals. Removing the efficiency
penalty (EP) also degrades performance, except on our self-constructed dataset. This suggests that



complex, real-world information-seeking tasks may inherently require longer reasoning chains, mak-
ing the balance between step efficiency and answer completeness task-dependent. (3) RL Algorithms:
Comparing PPO and GRPO, we observe that PPO generally yields better results. While GRPO
occasionally outperforms PPO on specific datasets, PPO’s use of learned reward signals (rather than
rule-based estimates) appears better suited for evaluating nuanced reasoning quality in complex tasks.
(4) Model Scaling: Replacing the 3B foundation model with Qwen2.5-7B leads to further gains
across most benchmarks, demonstrating that InForage effectively scales with model capacity and can
harness larger LLMs for improved performance.

Case Study To concretely illustrate the reasoning process of InForage, we conduct a case study on
a test example from our self-constructed dataset. As shown in Table 2] the input query asks about a
tennis player who satisfies multiple overlapping conditions, each corresponding to several potential
candidates. Only by combining all the constraints can the correct answer be uniquely identified. This
type of embedded information-seeking task poses a significant challenge for traditional RAG methods,
which rely on one-pass retrieval and often miss critical evidence. As a result, vanilla RAG fails to
find the correct answer. In contrast, InForage accurately decomposes the layered intent of the query,
iteratively retrieves relevant evidence, and successfully identifies the correct answer—demonstrating
its strong search-enhanced reasoning capability. For comparison, Gemini 2.5 Pro, a state-of-the-art
LLM with built-in search tools, also produces the correct answer. However, InForage achieves this
using a much smaller 3B model, highlighting its efficiency and effectiveness.

4 Related Work

Retrieval-Augmented LLMs: Despite the rapid progress of LLMs [OpenAl} [2023| |Group) [2025],
their inherent limitations—such as hallucination and outdated knowledge—remain obstacles to real-
world deployment[Gao et al.,[2024, |[Zhao et al.,|2024a]. Retrieval-Augmented Generation (RAG),
first proposed by [Lewis et al.|[2020b]], addresses these challenges by equipping LL.Ms with external
retrieval capabilities to provide contextually relevant, up-to-date information [Izacard and Grave)
2021},|Gao et al.}[2024]). This paradigm not only improves factual accuracy but also enhances temporal
relevance. Subsequent research has focused on two fronts: improving retrieval quality to raise the
generation ceiling [Qian et al.| 20244, [Gao et al., 2024]], and optimizing the integration of retrieved
content into the generative process [Jiang et al.,[2023| Zhao et al.| | 2024b|]. However, traditional RAG
methods typically assume well-defined queries and structured knowledge, limiting their scope to
simple factoid QA [Nogueira and Cho, 2020, |[Lewis et al.l 2020b]. Recent work has emphasized
the inadequacy of this static setup for real-world tasks, where information needs are often implicit,
ambiguous, or evolving [Qian et al.| [2024b]. These settings demand adaptive, multi-step retrieval
guided by iterative reasoning. To this end, retrieval-augmented reasoning has emerged, with recent
innovations embracing more dynamic and structured approaches: GraphRAG [Edge et al., 2024]]
and HippoRAG [Jimenez Gutierrez et al.,|2024]] enhance global awareness through graph-based
representations, while agent-driven systems like ActiveRAG [Xu et al.||2024] integrate planning and
evidence aggregation. Together, these advances highlight a growing need for RAG systems that move
beyond static retrieval—toward reasoning-aware, goal-driven interaction with external knowledge to
meet the demands of complex, open-ended tasks.

Reasoning LLLMs: Enhancing the reasoning capabilities of LLMs has become a central focus
in advancing their ability to tackle complex, real-world tasks. Progress has been made across the
entire training pipeline: pretraining on code and mathematical data fosters structured thinking [[Wei
et al., |2022]; supervised fine-tuning on reasoning-rich datasets improves response fidelity; and
alignment through reinforcement learning and preference modeling refines multistep reasoning
behavior [Gulcehre et al.l 2023 | Kumar et al.| 2024, Zhang et al., [2024]]. In parallel, prompting
strategies—such as chain-of-thought [Wei et al.| [2022], tree-of-thought [Yao et al., 2024]], and
ReAct [Yao et al.| |2023]—guide models to explicitly decompose problems and explore multiple
solution paths. Notably, reasoning-centric models like OpenAI’s ol and DeepSeek R1 have achieved
impressive performance on challenging domains such as mathematical problem-solving and coding,
where iterative reflection and progressive refinement are key [OpenAl, 2024, DeepSeek-AlL [2025]].

However, these models typically operate on static internal knowledge, limiting their adaptability
in knowledge-sparse or dynamic contexts. To overcome this constraint, recent research has shifted
toward search-augmented reasoning, which equips LLMs with the ability to issue subqueries and



iteratively gather external evidence during inference. For instance, Search-R1 [Jin et al.| 2025a]
introduces a reinforcement learning framework that teaches LLMs when and how to interact with
search engines. Search-ol [Li et al.,[2025] integrates retrieval directly into the ol reasoning loop and
introduces a Reason-in-Documents module to filter noisy content before reintegration. Extending
further into open-world settings, DeepResearcher [Zheng et al.| 2025]] applies end-to-end RL to train
agents that can navigate unstructured web environments, demonstrating emergent behaviors such as
planning, evidence synthesis, and self-correction.

Building on this evolving landscape, we propose InForage, a framework that models search-enhanced
reasoning as an information foraging process. Unlike prior methods that reward only final answers,
InForage optimizes the full reasoning trajectory—encouraging effective subqueries, relevant retrievals,
and efficient solutions. By bridging cognitive theory and reinforcement learning, it offers a more
adaptive and holistic approach to retrieval-augmented reasoning.

5 Conclusion

This paper presents InForage, a reinforcement learning framework that advances search-augmented
reasoning in LLMs by drawing on principles from Information Foraging Theory. Rather than
treating retrieval as a static, pre-inference step, InForage integrates it dynamically into the reasoning
process, rewarding not only correct final answers but also informative intermediate retrievals and
concise solution paths. This structured optimization encourages models to emulate human-like
information-seeking behaviors by formulating subqueries, evaluating partial evidence, and refining
reasoning trajectories. Empirical results across a broad range of benchmarks show that InForage
consistently surpasses all baselines. Its iterative reasoning capabilities prove especially effective on
complex queries requiring layered evidence integration, demonstrating robust generalization across
task types. Moreover, InForage exhibits strong scalability with larger model sizes and comprehensive
analyses validate the effectiveness of InForage’s method design. Together, these findings highlight
the importance of coupling reasoning with retrieval in a learning-driven, context-sensitive manner.
InForage offers a unified and principled solution that closes the gap between static retrieval pipelines
and the dynamic, adaptive reasoning needed for real-world knowledge-intensive applications.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: In Section 3, including the main experiments and discussions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]
Justification: In Appendix, we have a Limitation section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not contain theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:[Yes]
Justification: We have disclosed necessary details for our result reproducibility.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:[Yes]

Justification: In Appendix, we have a section to discuss the implementation details of our
paper. We also provide source codes and training script in the supplement material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]
Justification: In Appendix, we have a implementaion details section to disclose these details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[Yes]
Justification: We did t-test for the main experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: We disclose the required computing resources in the implementation details
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]
Justification: We discuss the impact of this paper in Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA]

Justification: the models in this paper are trained for specific search scenarios, which does
not pose such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]
Justification: We credited all used resources in this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[Yes]

Justification: We introduced the details about our constructed training data in the main
content.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:[NA |
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:[NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:[Yes]

Justification: We have described the usage of LLMs as a core component of our method in
the paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Prompts

Below we present the core prompts used in this paper. The first prompt is designed for search-
enhanced reasoning, guiding the model to perform step-by-step retrieval and inference. The second
prompt is used to generate question—answer pairs from a batch of extracted factual claims. For
completeness, additional prompts—such as those used for claim extraction—are provided in the
source code included in the supplementary materials.

Prompt for Search-Enhanced Reasoning

You are an intelligent agent designed to solve complex queries or tasks by retrieving external
knowledge and reasoning step by step.

Please follow these instructions carefully:

1. For each piece of information you receive:

- Think step by step and explain your reasoning inside <think> and </think> tags.
2. If you need more information to proceed:

- Issue a search by writing your subquery inside <search> and </search> tags.

- Retrieved results will appear between <evidence> and </evidence> tags.

- You can conduct multiple searches as needed.

3. When you have collected enough information:

- Provide your final answer using the <answer> and </answer> tags.

- Do not include explanations or reasoning in the answer block.

- Keep your answer concise.

Now, solve the following task:

Task: {question}

Prompt for Query-Answer Pair Generation

Based on the following evidence, generate a complex multi-hop query that requires connecting
multiple pieces of information to answer.

Create a challenging question that requires reasoning across multiple facts. The question
should be specific enough that it can only be answered by connecting several pieces of
evidence together.

For example, given the evidence list: {Example Evidence List}

The multi-hop query could be: {Example Query}

Requirement:

1. Ensure Coherence: Make sure the question flows logically from the combined information
and is clear and unambiguous

2. Formulate the Question: Create a question that cannot be answered by relying on just one
of the sentences but instead requires understanding and linking the information from all of
the sources.

3. Ensure Multi-hop: The question should require at least 3 logical steps to answer.

4. The answer should be specific and short.

Now, based on the following evidence, generate a multi-hop query that requires at least 3
logical steps to answer:

{evidence_str}

Generate a multi-hop query that requires at least 3 logical steps to answer. Output in the

non non noon

following format: {"query": "multi-hop query", "answer": "answer"

B Limitations and Broader Impact

Limitations. In this work, we introduce InForage, a reinforcement learning framework that en-
hances search-augmented reasoning by aligning retrieval actions with evolving reasoning goals,
inspired by Information Foraging Theory. While our results demonstrate strong performance across a
range of QA tasks, several limitations remain.
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First, due to computational constraints, our experiments primarily focus on Qwen2.5-3B and 7B
models. We do not explore larger foundation models or alternative model families (e.g., LLaMA,
Mixtral), which could further enhance performance. Future work will expand evaluation across more
model scales and architectures to validate generalizability.

Second, while InForage shares high-level goals with emerging search-enhanced reasoning models,
many of these works are still in progress or unpublished at the time of our submission. As such, we do
not include all of them in our experimental comparisons, though we provide design-level discussions
to highlight conceptual differences.

Third, our self-constructed dataset focuses on QA tasks with short-form answers to ensure verifiabil-
ity—crucial for rule-based reward assignment. While we believe the InForage framework is extensible
to complex tasks such as long-form synthesis, report writing, and multi-document summarization,
these applications are not explored in this paper.

Broader Impact. The central contribution of this paper is the shift of retrieval from a static,
pre-inference step to a dynamic, reasoning-integrated process. This mirrors how humans seek infor-
mation—thinking, searching, and composing in parallel—and offers a more flexible and cognitively
aligned paradigm for knowledge-intensive tasks. We believe this capability can generalize to domains
where adaptive reasoning is essential, including scientific writing, investigative journalism, legal
analysis, and knowledge curation.

Moreover, while we focus on retrieval as the primary external tool, the proposed framework and
dataset pipeline are tool-agnostic. Our methodology can be extended to optimize interactions
with other tools such as code compilers, search APIs, or structured databases. By offering a com-
plete pipeline—from dataset construction to multi-stage reward design and reinforcement learn-
ing—InForage lays the groundwork for building general-purpose tool-augmented reasoning agents
that are better aligned with real-world human workflows.
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