
Multimodal Causal Reasoning Benchmark: Challenging Multimodal Large
Language Models to Discern Causal Links Across Modalities

Anonymous ACL submission

Abstract
Multimodal Large Language Models (MLLMs)001
have showcased exceptional Chain-of-Thought002
(CoT) reasoning ability in complex textual in-003
ference tasks including causal reasoning. How-004
ever, will these causalities remain straightfor-005
ward when crucial hints hide in visual de-006
tails? If not, what factors might influence cross-007
modal generalization? Whether we can effec-008
tively enhance their capacity for robust causal009
inference across both text and vision? Moti-010
vated by these, we introduce MuCR - a novel011
Multimodal Causal Reasoning benchmark that012
leverages synthetic siamese images and text013
pairs to challenge MLLMs. Additionally, we014
develop tailored metrics from multiple per-015
spectives, including image-level match, phrase-016
level understanding, and sentence-level expla-017
nation, to comprehensively assess MLLMs’018
comprehension abilities. Our experiments re-019
veal that current MLLMs fall short in multi-020
modal causal reasoning compared to their per-021
formance in purely textual settings. Addition-022
ally, we find that identifying visual cues across023
images is key to effective cross-modal gener-024
alization. Finally, we propose a VcCoT strat-025
egy that better highlights visual cues, and our026
results confirm its efficacy in enhancing multi-027
modal causal reasoning.028

1 Introduction029

Causal reasoning is the process of identifying030

the relationship between a cause and its effect,031

which is regarded as a fundamental capability of032

artificial intelligence (Liu et al., 2024c). Recent033

advancements in CoT reasoning capabilities of034

MLLMs (OpenAI, 2024b; Guo et al., 2025) have035

driven significant progress in complex analytical036

tasks, including causal reasoning within the textual037

modality (Jin et al., 2023; Bagheri et al., 2024;038

Ashwani et al., 2024). These developments in-039

volve enabling MLLMs to generate coherent ex-040

planations (Kiciman et al., 2023), providing multi-041

step chain-of-thought (CoT) (Bao et al., 2024), or042

Figure 1: An example from MuCR challenges MLLMs
with weather-related causality across two modalities.

even analyzing complex causal relationships that 043

typically demand expert-level topological struc- 044

ture knowledge (Vashishtha et al., 2023). De- 045

spite these advancements, existing linguistic bench- 046

marks (Singh et al., 2021; Du et al., 2022; Jin 047

et al., 2023) are beginning to fall short in assess- 048

ing the more advanced visual capabilities of the 049

latest MLLMs such as GPT-o1 (OpenAI, 2024b), 050

Deepseek-R1 (Guo et al., 2025), Gemini-1.5 (Deep- 051

Mind, 2024), and Claude-3.5 (ClaudeAI, 2024b), 052

not to mention facilitating cross-modal comparison 053

and analysis (as shown in Figure 1). 054

Following this, we propose three key questions: 055

Can MLLMs achieve the same level of causal rea- 056

soning comprehension as they do in textual modal- 057

ity? If not, what factors might influence cross- 058

modal generalization? How can we enhance their 059

capacity for robust causal inference? We find 060
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Figure 2: (a) Comparison of our MuCR and related datasets on reasoning tasks. (b) Detailed illustration of our
dataset structure and corresponding cross-modal generalization exploration.

that most existing benchmarks fail to address such061

comparisons or support further exploration in this062

area. Especially, as shown in Figure 2 (a), we063

identify two major drawbacks in previous bench-064

marks: Absence of visual modality: Linguistic065

causal reasoning benchmarks (Singh et al., 2021; Li066

et al., 2021; Du et al., 2022; Frohberg and Binder,067

2022; Jin et al., 2023, 2024) fail to assess visual068

comprehension ability of MLLMs. Incomplete069

of cross-modal analysis: Most causal reasoning070

VQA tasks (Zellers et al., 2019a; Girdhar and Ra-071

manan, 2020; Zhang et al., 2021; Hessel et al.,072

2022) neglect cross-modal comparison. Recently,073

some benchmarks (Bitton-Guetta et al., 2024; Fu074

et al., 2024) have begun exploring this domain. For075

instance, Blink (Fu et al., 2024) examines cross-076

modal comparisons and conducts basic generaliza-077

tion analyses involving factors like shape and size.078

As illustrated in Figure 2(b), our proposed MuCR079

comprehensively evaluates causal reasoning at the080

image, phrase, and sentence levels and offers a081

multi-faceted analysis of cross-modal generaliza-082

tion that encompasses both visual form factors and083

semantic elements. Moreover, we propose a novel084

VcCoT strategy to further enhance cross-modal085

generalization by improving visual cue perception.086

We evaluate current state-of-the-art (SOTA)087

MLLMs on our MuCR benchmark. Experiment088

results indicate that all models fall short of human089

performance, particularly in multimodal settings.090

Moreover, they exhibit a pronounced cross-modal091

gap when discerning causal links across modalities.092

In addition, we conduct in-depth generalization093

analysis and demonstrate that visual semantic fac-094

tors, especially the ability to identify visual cues095

across siamese images, play a pivotal role.096

Our contributions are summarized as follows:097

• We identify the limitations of current causal098

reasoning benchmarks, including failing to099

evaluate the advanced visual capabilities of100

the latest MLLMs and offering incomplete 101

cross-modal analyses. 102

• We propose the MuCR benchmark, which can 103

comprehensively evaluate MLLMs’ causal 104

reasoning ability across two modalities. 105

• Our extensive experiments with SOTA 106

MLLMs reveal interesting insights and sug- 107

gest potential directions for future research. 108

2 Related Work 109

2.1 Causal Reasoning 110

The ability to perform causal reasoning is widely 111

considered a core feature of artificial intelligence. 112

With the development of Large Language Models 113

(LLMs), they have exhibited increasingly robust ca- 114

pabilities in causal reasoning tasks. Previous bench- 115

marks, such as Com2sense (Singh et al., 2021) and 116

CausalBank (Li et al., 2021), are becoming insuffi- 117

cient for evaluating linguistic abilities. To address 118

this, Romanou et al. (2023) introduced the CRAB 119

benchmark, which requires LLMs to capture ex- 120

plicit causal relationships in real-world scenarios. 121

However, these benchmarks focus solely on the 122

text modality, leaving the crucial question of multi- 123

modal reasoning unaddressed. Hessel et al. (2022) 124

introduced Sherlock to challenge MLLMs in iden- 125

tifying visual clues scattered throughout a scene 126

and making reasoning inferences combined with 127

commonsense and life experience. More recently, 128

Guetta et al. (2024) and Fu et al. (2024) presented 129

complex visual reasoning challenges to further ex- 130

plore MLLMs’ capabilities. Although these bench- 131

marks have considered the visual modality, they 132

still fail to comprehensively analyze cross-modal 133

generalization capacity. In this paper, we make an 134

early attempt to extensively explore multimodal 135

causal reasoning tasks across modalities. 136
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Figure 3: The overview of our MuCR benchmark construction process. It follows synthesis in four core levels:
generating core caption pairs, producing contextual description pairs, creating siamese images, and generating
human annotations.

2.2 LLMs’ Generalization137

The field of LLMs generalization has gained sig-138

nificant traction in recent years, with numerous139

tasks proposed to evaluate models’ ability to han-140

dle previously unseen contexts and domains. Ex-141

isting tasks can be broadly divided into composi-142

tional, cross-task, cross-lingual, cross-domain, and143

robustness-based categories. Compositional tasks,144

such as CFQ (Keysers et al., 2020) and COGS (Kim145

and Linzen, 2020), test whether models can system-146

atically combine smaller linguistic units to form147

novel expressions. Cross-task generalization often148

involves multi-task learning setups, such as De-149

caNLP (McCann et al., 2018) and BIG-Bench (Sri-150

vastava et al., 2022), where models must adapt151

to tasks with minimal guidance. Cross-lingual152

benchmarks, like XNLI (Conneau et al., 2018) and153

XTREME (Hu et al., 2020), measure performance154

across languages, while cross-domain tasks empha-155

size shifting between specialized fields (Li et al.,156

2023; Zhou et al., 2024). Meanwhile, robustness-157

oriented evaluations such as HellaSwag (Zellers158

et al., 2019b) and adversarial GLUE (Wang et al.,159

2021) assess how well models withstand noisy, am-160

biguous, or adversarial inputs. In this paper, we161

shift our focus to the generalization in multimodal162

causal reasoning tasks, conducting a concise but163

comprehensive analysis of the factors that hinder164

cross-modal generalization and exploring strategies165

to enhance it for robust causal reasoning.166

3 The MuCR Dataset167

In this section, we detail the construction of the168

MuCR dataset. Figure 3 illustrates the system-169

atic workflow of our multimodal cause-and-effect 170

benchmark generation including: generating core 171

caption pairs, producing contextual description 172

pairs, creating siamese images, and generating hu- 173

man annotations (see Appendix A.2 for further ex- 174

amples and details). 175

3.1 Dataset Creation 176

Generating Core Caption Pairs. The MuCR 177

benchmark is designed to assess MLLMs’ ability 178

to perform causal inference across modalities. To 179

achieve this, we begin by generating core caption 180

pairs that clearly illustrate cause-and-effect rela- 181

tionships. In order to minimize individual bias, we 182

employ twelve volunteers and group each two as a 183

team: one processes and refines the captions based 184

on initial ideas and iterative feedback, while the 185

other reviews them and offers suggestions for im- 186

provement (see Appendix A.3 for an explanation 187

of why we structure the generation process this 188

way, as well as illustrative examples). Through 189

these steps, we create 4,000 cause-and-effect cap- 190

tion pairs. 191

Producing Contextual Description Pairs. 192

While core caption pairs effectively depict the 193

cause-and-effect relationship, they often lack 194

contextual details such as appearance, clothing, 195

and environmental context that serve as crucial 196

visual cues for high-quality cause-and-effect image 197

synthesis. To address this issue, we leverage the 198

linguistic capabilities of LLMs to enhance core 199

caption pairs by enriching contextual details. By 200

maintaining these elements consistently across 201

images, our approach not only effectively depicts 202
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Figure 4: (a) Examples from our MuCR dataset featuring different categories and styles. The “Mixture" category
represents two or more tags involved in the causality. (b) Category distribution overview showing the proportions of
human, animal, character, plant, and mixture categories. (c) Style distribution overview illustrating the proportions
of comic, photographic, and black-white styles.

causality at a semantic level but also improves203

visual coherence (see Appendix A.4 for further204

explanation).205

Create Siamese Images. We employ diffusion206

models with contextual descriptions as prompts207

to generate cause-and-effect image pairs. Specif-208

ically, we utilize DALL-E (Ramesh et al., 2021),209

DeepAI (DeepAI, 2024), Stability-AI (Stability AI,210

2023), and Flux1 (FLUXAI, 2024) for image syn-211

thesis, aiming to minimize model bias and enhance212

the diversity of the generated images. We also213

incorporate three styles (photograph, comic, and214

black-white) when creating these images. Specif-215

ically, each sentence yields 10 images per style,216

resulting in 20 images for every cause-and-effect217

pair in one style (a total of 240k images). Then,218

volunteers manually select the two representations219

that best capture the semantic causality and main-220

tain visual consistency. This process produces 12k221

cause-and-effect image pairs spanning various cat-222

egories (humans, animals, plants, characters, and223

mixtures) and three styles (photograph, comic, and224

black-white). Figure 4 illustrates examples from225

our MuCR benchmark, showcasing multiple cate-226

gories and styles alongside an overview of their dis-227

tribution (see Appendix A.5 for more high-quality228

samples).229

Generate Human Annotation. We require vol-230

unteers to create text annotations for each cause-231

and-effect image pair. As shown in Figure 3, it232

consists of a phrase-level list (cue phrases) and233

sentence-level description (cause-and-effect expla-234

nations). The cue phrases comprise a list of four235

options, each being a word or phrase. Among these,236

only one phrase correctly explains or is highly rel-237

evant to the causality, while the other three are238

striking elements in the images but do not serve239

as proper cues. The sentence-level annotation is240

designed to verify whether the MLLMs truly under-241

stand multimodal causality and can select reason- 242

able explanations. To achieve this, we require vol- 243

unteers to structure the explanation by first describ- 244

ing the content of the cause, followed by the con- 245

tent of the effect, and concluding with the causal 246

link connecting between them. 247

3.2 Evaluation Metrics 248

Image-level Metric. The image-level metric is 249

call cause-to-effect (C2E) score. It is designed 250

to assess whether the MLLMs can identify cue 251

links and make the correct choice from four po- 252

tential effects according to the given cause. Given 253

the cause in the form G∗(c) (* can either be Gtext 254

representing text-based form or Gmulti represent- 255

ing multimodal-based form), the model is required 256

to select the optimal choice among four potential 257

effects {G∗(e)(i)}4i=1. The C2E score can be com- 258

puted as follows: 259

S∗
I = F (QI ,G∗(c), {G∗(e)(i)}4i=1), (1) 260

fI(S
∗
I ) =

{
1, S∗

I = S∗
I
′

0, otherwise
(2) 261

where S∗
I represents the MLLMs’ prediction. F 262

represents MLLM. QI represents corresponding 263

question for Image-level. fI represents the func- 264

tion to calculate the C2E score. S∗
I
′ represents the 265

correct answer. 266

Phrase-level Metric. The phrase-level metric 267

is called CP score (Cue Phrase), which tests 268

MLLMs’ capability to distinguish the correct cue 269

from a list of fraudulent phrases according to the 270

cause and effect. Given the cause-and-effect pairs 271

{G∗(c),G∗(e)}, the model is required to select the 272

optimal choice among four potential cue phrases 273

{T (i)
P }4i=1. The CP score can be computed as fol- 274
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lows:275

S∗
P = F (QP ,G∗(c),G∗(e), {T (i)

P }4i=1) (3)276

fP (S
∗
P ) =

{
1, S∗

P = S∗
P
′

0, otherwise
(4)277

where S∗
P represents the MLLMs’ prediction. F278

represents MLLM. QP represents corresponding279

question for Phrase-level. fP represents the func-280

tion to calculate the CP score. S∗
P
′ represents the281

correct answer.282

Sentence-level Metric. Our final metric is de-283

signed to evaluate MLLMs’ ability to identify the284

correct explanation according to the cause and285

effect. The sentence-level metric is called the286

explanation (EXP) score. Specifically, we col-287

lect four candidate explanations that share simi-288

lar causalities but differ in their cues. Only one289

explanation accurately captures the causal relation-290

ship and matches the detailed cues, while the other291

three do not. Given the condition {G∗(c),G∗(e)}292

with the corresponding question QS , the model is293

required to select the optimal choice among four294

potential explanations {T (i)
E }4i=1. The EXP score295

is then computed as follows:296

S∗
S = F (QS ,G∗(c),G∗(e), {T (i)

S }4i=1) (5)297

fS(S
∗
S) =

{
1, S∗

S = S∗
S
′

0, otherwise
(6)298

where S∗
S represents the MLLMs’ prediction. F299

represents MLLM. fS represents the function to300

calculate the EXP score. S∗
S
′ represents the correct301

answer.302

4 Experiments303

4.1 Experimental Setup304

We evaluated several popular MLLMs on our305

MuCR benchmark, including GPT-o1 (Ope-306

nAI, 2024b), GPT-4o (OpenAI, 2024a), Claude-307

3.5 (ClaudeAI, 2024b), Claude-3.0 (ClaudeAI,308

2024a), Gemini-2.0 (DeepMind, 2025), Gemini-309

1.5 (DeepMind, 2024), Qwen2.5-VL (Yang et al.,310

2024), and Llama3.2-Vision (Meta, 2024). For the311

currently popular models, DeepSeek-R1 (Guo et al.,312

2025) and DeepSeek-V3 (Liu et al., 2024a), we did313

not fully evaluate their performance since their im-314

age readers currently only support extracting text315

from images without additional functionality (see316

Appendix B.1 for a comparison of their text-based317

performance). Additionally, we also considered 318

some lightweight open-source models, including 319

LLaVA-NeXT (Li et al., 2024), OpenFlamingo- 320

v2 (Awadalla et al., 2023), LLaVA-v1.6 (Liu et al., 321

2024b), MiniGPT4-v2 (Zhu et al., 2023), and In- 322

structBLIP (Dai et al., 2023). Since some models 323

only accept a single image input, we provided all of 324

them with a composite image composed of multiple 325

smaller images, as shown in Figure 9 (a). Finally, 326

we established a human performance baseline on 327

the MuCR benchmark using crowd workers for 328

comparison. 329

4.2 Experimental Results 330

Figure 5 presents the main results of popular 331

MLLMs and human performance on the MuCR 332

benchmark, leading to the following observations: 333

(1) All models on MuCR lag behind human per- 334

formance in both settings. Among these mod- 335

els, GPT-o1 (OpenAI, 2024b) achieves the highest 336

scores, with 94% on C2E score, 75% on CP score, 337

and 93% on EXP score in the text condition, while 338

87% on C2E, 62% on CP, and 78% on EXP in the 339

multimodal condition. Nevertheless, these results 340

still fall short of human performance, suggesting 341

substantial room for improvement. (2) All models 342

exhibit a significant cross-modal performance 343

gap. All models show a noticeable drop in perfor- 344

mance when handling multimodal causal inference, 345

whereas humans do not. This discrepancy indicates 346

potential factors restricting cross-modal generaliza- 347

tion in MLLMs, likely stemming from the visual 348

component, given that these models already demon- 349

strate robust causal reasoning in text-based cases. 350

Figure 6 presents the multimodal performance of 351

various lightweight open-source models, revealing 352

that they lag significantly behind GPT-o1. Among 353

these, LLaVA-Next achieves the best results, with 354

29% on C2E, 17% on CP, and 21% on EXP, which 355

are only around the random selection baseline of 356

25%. Compared to models like Llama3.2-Vision 357

and Qwen2.5-VL, there is still considerable room 358

for improvement for these models. 359

5 Cross-modal Generalization Analysis 360

and Enhancement 361

In this section, we examine the factors that may 362

affect cross-modal generalization. Building on pre- 363

vious findings that attribute these gaps primarily to 364

the visual component, we focus on two main cat- 365

egories: visual format factors and visual semantic 366
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Figure 5: Main experimental results of several popular MLLMs on our MuCR benchmark. “Human” performance
is represented by the average accuracy of ten attempts by volunteers.

Figure 6: Experimental results of lightweight open-
source models on the multimodal-based form. For de-
tailed numbers see Table 6. Best viewed by zooming in.

factors.367

• Visual Format Factors. These involve cases368

that share the same underlying semantics but369

differ in how they are visually presented, such370

as variations in picture style or the form of the371

visual input.372

• Visual Semantic Factors. These involve373

cases with consistent visual formats but slight374

semantic differences, such as contextual vari-375

ations in image details or the inclusion of ad-376

ditional text hints, resulting in richer semantic377

content.378

In addition to investigating these cross-modal gen-379

eralization factors, we also explore potential en-380

hancement strategies based on our findings.381

5.1 Visual Format Factors382

Picture Style. We investigate how different pic-383

ture styles may affect causal reasoning. Figure 7384

Figure 7: An example of cause and effect showing in
three picture styles with the same semantic meanings.

Figure 8: The C2E score of different models tested on
three different picture styles.

shows an example of the same cause-and-effect 385

scenario presented in three styles. As indicated by 386

the results in Figure 8, MLLMs perform similarly 387

when presented with photographs and comic im- 388

ages, but with a slight drop for black-white images. 389

Overall, altering the picture style while keeping the 390
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Figure 9: The illustration of three different visual input
forms we examined.

Visual Input Style C2E CP EXP
GPT-o1 (OpenAI, 2024b)

Form-1 87.50 62.00 78.00
Form-2 Mixture 84.25 60.50 79.00
Form-3 89.00 67.50 86.25

Claude-3.5 (ClaudeAI, 2024b)
Form-1 83.50 59.75 77.50
Form-2 Mixture 53.50 36.00 68.50
Form-3 85.00 66.75 82.25

Gemini-1.5 (DeepMind, 2024)
Form-1 66.50 58.50 70.50
Form-2 Mixture 69.50 57.25 63.00
Form-3 83.50 65.25 84.00

Table 1: The performance of different visual input forms
on our MuCR benchmark. The mixture means we test
on mixture picture style.

same semantic content has only a minimal effect391

on MLLMs’ performance (see Appendix C.1 for392

detailed comparison).393

Form of Visual Input. We also explore whether394

the structure of visual inputs affects the final out-395

put. Figure 9 illustrates the three types of visual396

input forms we examined. Table 1 presents the397

performance of three models on MuCR using these398

different formats. It indicates that all models get399

marked performance improvements. Our case anal-400

ysis suggests that, compared to Form-3, Forms-1401

and Form-2 restrict MLLMs’ ability to perceive402

certain details that could serve as crucial visual403

cues for enhancing multimodal causal reasoning404

(see Appendix C.2 for case studies).405

Figure 10: Two image pairs illustrate the same cause-
and-effect relationship but exhibit different contextual
correlations.

Figure 11: Using human selection as the standard, the
models exhibit varying levels of selection accuracy.

5.2 Visual Semantic Factors 406

Contextual Variation. In addition to examining 407

visual format factors, we also explore whether vi- 408

sual semantics influence MLLMs’ final output. As 409

shown in Figure 1, MLLMs, particularly GPT-o1, 410

can identify visual cues such as action, appearance, 411

and environment, and integrate these details into 412

their causal inference process. Additionally, the 413

case study in the above paragraph also confirms 414

that visual cues are essential for accurate multi- 415

modal causal inference. To further investigate, we 416

assess whether the ability to identify visual cues 417

correlates with multimodal causal reasoning per- 418

formance. For this purpose, we use manually se- 419

lected siamese image pairs that best capture seman- 420

tic causality and maintain visual consistency, along 421

with some pairs that exhibit minor contextual vari- 422

ations (see Figure 10). Our challenge is as follows: 423

given a human-selected cause image, the models 424

must identify the corresponding effect image from 425

random 3 samples and 1 correct one. Figure 11 426

shows that among the four models tested, GPT-o1 427

excels at identifying visual cues, while Claude-3.0 428

performs the worst, with GPT-4.0 and Claude-3.5 429

falling in between (see Appendix C.3 for case stud- 430
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Figure 12: Does adding text hints compensate for short-
comings in visual cue perception?

Add Hints Style C2E CP EXP
GPT-o1 (OpenAI, 2024b)

Before
Mixture

87.50 62.00 78.00
After 91.25 69.50 88.50

GPT-4o (OpenAI, 2024a)
Before

Mixture
81.25 57.25 72.50

After 89.00 66.50 87.50
Claude-3.5 (ClaudeAI, 2024b)

Before
Mixture

83.50 59.75 77.50
After 87.50 68.50 86.00

Claude-3.0 (ClaudeAI, 2024a)
Before

Mixture
58.00 50.25 57.00

After 73.00 59.50 77.00

Table 2: The impact of adding text hints on different
models.

ies). This finding confirms a positive correlation431

between an MLLM’s ability to identify visual cues,432

distinguish contextual variations, and its overall433

multimodal causal reasoning performance.434

Text Hints. Since we verified a positive corre-435

lation between multimodal causal reasoning and436

visual cue perception, the next question is whether437

text hints can compensate for shortcomings in vi-438

sual cue perception. To explore this, we use the439

contextual descriptions generated during dataset440

creation as dense captions, as they provide detailed441

raw information while preserving correct semantic442

meanings. Table 2 shows that adding text hints443

significantly improves MLLMs’ performance, sug-444

gesting that enhancing visual cue identification is a445

promising avenue for improving cross-modal gen-446

eralization.447

5.3 Generalization Enhancement448

Based on our above analysis, the most crucial449

factor affecting MLLMs’ cross-modal generaliza-450

tion is the ability to identify visual cues. In re-451

sponse, we propose VcCoT, a method designed to452

enhance visual cue identification for causal infer-453

ence. Inspired by MMCoT (Zhang et al., 2023)454

Figure 13: The structure of our VcCoT. Best viewed by
zooming in.

Strategy Style C2E CP EXP
GPT-o1 (OpenAI, 2024b)

Direct

Mixture

87.50 62.00 78.00
CoT 86.25 61.50 76.00
CCoT 88.00 64.00 79.50
MMCoT 84.25 60.5 86.50
VcCoT 89.75 66.5 83.00

Table 3: The performance of different CoT strategies on
MuCR benchmark.

and CCoT (Mitra et al., 2024), our approach first 455

converts images into dense captions, then extracts 456

visual details categorized as Character and Back- 457

ground. Finally, these cues guide the MLLMs’ rea- 458

soning process, as illustrated in Figure 13. Table 3 459

demonstrates that VcCoT achieves superior perfor- 460

mance than others. We also show some qualitative 461

results in Appendix C.4. 462

6 Conclusion 463

In this paper, we introduce MuCR, a novel multi- 464

modal causal reasoning benchmark that challenges 465

MLLMs to discern causal links across different 466

modalities by leveraging synthetic siamese images 467

and text pairs. We also propose comprehensive met- 468

rics to assess MLLMs’ understanding from multi- 469

ple perspectives, including image-level alignment, 470

phrase comprehension, and sentence-level explana- 471

tion. Our experimental results reveal that current 472

MLLMs exhibit a cross-modal gap in causal rea- 473

soning compared to their strong performance in 474

purely textual settings. In-depth analysis highlights 475

that effective visual cue identification is key to en- 476

hancing generalization, as MLLMs often struggle 477

with implicit causal dependencies hidden in visual 478

details. In response, we propose VcCoT, a method 479

designed to improve visual cue identification for 480

causal inference, with experimental results demon- 481

strating its effectiveness. 482
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7 Limitation483

Although our research provides a comprehensive484

analysis of the potential factors affecting gener-485

alization from visual components, it has two no-486

table limitations. First, as noted by Wang et al.487

(2024a), cross-linguistic variations can influence488

performance and may require transfer learning. Fig-489

ure 14 presents a simple comparison of transferring490

the question language from English to Chinese us-491

ing the C2E score, indicating that cross-linguistic492

factors affect the final output of the models. How-493

ever, due to human resource constraints, we did494

not extend this study to the CP and EXP scores, as495

these metrics require human reannotation of cue496

phrases and sentence explanations.497

Figure 14: A comparison of different models on the
C2E score with cross-linguistic setting.

Fine-tune Style C2E CP EXP
LLaVA-v1.6 (Liu et al., 2024b)

Before
Mixture

23.50 11.00 16.50
After 20.00 13.75 15.25

MiniGPT4-v2 (Zhu et al., 2023)
Before

Mixture
17.75 11.50 15.25

After 19.00 13.50 16.00
InstructBLIP (Dai et al., 2023)

Before
Mixture

12.25 6.50 9.50
After 7.50 3.25 4.75

Table 4: The impact of direct fine-tuning on different
models.

Additionally, we explored fine-tuning a few498

lightweight open-source models. As shown in Ta-499

ble 4, direct fine-tuning with the correct choices500

did not improve and in some cases even decreased501

the performance of these models. Our observa-502

tions indicate that these models fail to capture503

the causal links between cause-and-effect images504

through fine-tuning. Notably, InstructBLIP even505

lost its ability to caption images accurately, ex-506

hibiting severe hallucinations. Due to limited re-507

sources, we did not investigate whether reinforce-508

ment learning (Guo et al., 2025) or alternative509

strategies (Niklas et al., 2025) could further address510

the generalization problem on larger models such 511

as Qwen2.5-VL (Yang et al., 2024) or LLama3.2- 512

Vision (Meta, 2024). 513

References 514

Swagata Ashwani, Kshiteesh Hegde, Nishith Reddy 515
Mannuru, Mayank Jindal, Dushyant Singh Sengar, 516
Krishna Chaitanya Rao Kathala, Dishant Banga, 517
Vinija Jain, and Aman Chadha. 2024. Cause and 518
effect: Can large language models truly understand 519
causality? In In Proceedings of the AAAI Symposium 520
Series, pages 2–9. 521

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hes- 522
sel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe, 523
Yonatan Bitton, Samir Gadre, Shiori Sagawa, Je- 524
nia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel 525
Ilharco, Mitchell Wortsman, and Ludwig Schmidt. 526
2023. Openflamingo: An open-source framework for 527
training large autoregressive vision-language models. 528
arXiv preprint arXiv:2308.01390. 529

Abdolmahdi Bagheri, Matin Alinejad, Kevin Bello, and 530
Alireza Akhondi-Asl. 2024. C2p: Featuring large lan- 531
guage models with causal reasoning. arXiv preprint 532
arXiv:2407.18069. 533

Guangsheng Bao, Hongbo Zhang, Linyi Yang, Cunxi- 534
ang Wang, and Yue Zhang. 2024. Llms with chain- 535
of-thought are non-causal reasoners. arXiv preprint 536
arXiv:2402.16048. 537

Nitzan Bitton-Guetta, Aviv Slobodkin, Aviya Maimon, 538
Eliya Habba, Royi Rassin, Yonatan Bitton, Idan 539
Szpektor, Amir Globerson, and Yuval Elovici. 2024. 540
Visual riddles: a commonsense and world knowl- 541
edge challenge for large vision and language models. 542
arXiv preprint arXiv:2407.19474. 543

ClaudeAI. 2024a. Claude 3: Anthropic’s large language 544
model. https://www.anthropic.com/claude. 545

ClaudeAI. 2024b. Claude 3.5 sonnet. https://www.anthr 546
opic.com/news/claude-3-5-sonnet. 547

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina 548
Williams, Samuel Bowman, Holger Schwenk, and 549
Veselin Stoyanov. 2018. XNLI: Evaluating cross- 550
lingual sentence representations. In Proceedings of 551
the 2018 Conference on Empirical Methods in Nat- 552
ural Language Processing, pages 2475–2485, Brus- 553
sels, Belgium. Association for Computational Lin- 554
guistics. 555

Wenliang Dai, Junnan Li, Dongxu Li, Anthony 556
Meng Huat Tiong, Junqi Zhao, Weisheng Wang, 557
Boyang Li, Pascale Fung, and Steven C. H. Hoi. 558
2023. Instructblip: Towards general-purpose vision- 559
language models with instruction tuning. In Ad- 560
vances in Neural Information Processing Systems 561
36: Annual Conference on Neural Information Pro- 562
cessing Systems 2023, NeurIPS 2023, New Orleans, 563
LA, USA, December 10 - 16, 2023. 564

9

https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
http://papers.nips.cc/paper_files/paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html


DeepAI. 2024. Deepai: Image genera-565
tion. https://deepai .org/machine-learning-566
model/text2img.567

DeepMind. 2024. Gemini 1.5 models.568
https://deepmind.goo gle/technologies/gemini/.569

DeepMind. 2025. Gemini 2.0 models.570
https://deepmind.goo gle/technologies/gemini/.571

Li Du, Xiao Ding, Kai Xiong, Ting Liu, and Bing Qin.572
2022. e-care: a new dataset for exploring explainable573
causal reasoning. In Proceedings of the 60th Annual574
Meeting of the Association for Computational Lin-575
guistics (Volume 1: Long Papers), ACL 2022, Dublin,576
Ireland, May 22-27, 2022, pages 432–446. Associa-577
tion for Computational Linguistics.578

FLUXAI. 2024. Introducing flux.1 tools.579
https://blackforestlabs.ai/flux-1-tools/.580

Jörg Frohberg and Frank Binder. 2022. CRASS: A581
novel data set and benchmark to test counterfactual582
reasoning of large language models. In Proceedings583
of the Thirteenth Language Resources and Evalua-584
tion Conference, pages 2126–2140, Marseille, France.585
European Language Resources Association.586

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu587
Wang, Xudong Lin, Dan Roth, Noah A Smith, Wei-588
Chiu Ma, and Ranjay Krishna. 2024. Blink: Multi-589
modal large language models can see but not perceive.590
In European Conference on Computer Vision, pages591
148–166. Springer.592

Rinon Gal, Or Lichter, Elad Richardson, Or Patashnik,593
Amit H Bermano, Gal Chechik, and Daniel Cohen-594
Or. 2024. Lcm-lookahead for encoder-based text-to-595
image personalization. In European Conference on596
Computer Vision, pages 322–340. Springer.597

Rohit Girdhar and Deva Ramanan. 2020. CATER: A598
diagnostic dataset for Compositional Actions and599
TEmporal Reasoning. In ICLR.600

Nitzan Bitton Guetta, Aviv Slobodkin, Aviya Maimon,601
Eliya Habba, Royi Rassin, Yonatan Bitton, Idan602
Szpektor, Amir Globerson, and Yuval Elovici. 2024.603
Visual riddles: a commonsense and world knowledge604
challenge for large vision and language models. In605
The Thirty-eight Conference on Neural Information606
Processing Systems Datasets and Benchmarks Track.607

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,608
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,609
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-610
centivizing reasoning capability in llms via reinforce-611
ment learning. arXiv preprint arXiv:2501.12948.612

Jack Hessel, Jena D Hwang, Jae Sung Park, Rowan613
Zellers, Chandra Bhagavatula, Anna Rohrbach, Kate614
Saenko, and Yejin Choi. 2022. The abduction of615
sherlock holmes: A dataset for visual abductive rea-616
soning. In European Conference on Computer Vision,617
pages 558–575. Springer.618

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra- 619
ham Neubig, Orhan Firat, and Melvin Johnson. 620
2020. Xtreme: A massively multilingual multi-task 621
benchmark for evaluating cross-lingual generalisa- 622
tion. In International Conference on Machine Learn- 623
ing, pages 4411–4421. PMLR. 624

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, 625
Ojasv Kamal, LYU Zhiheng, Kevin Blin, Fer- 626
nando Gonzalez Adauto, Max Kleiman-Weiner, 627
Mrinmaya Sachan, et al. 2023. Cladder: Assess- 628
ing causal reasoning in language models. In Thirty- 629
seventh conference on neural information processing 630
systems. 631

Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrin- 632
maya Sachan, Rada Mihalcea, Mona Diab, and Bern- 633
hard Schölkopf. 2024. Can large language models 634
infer causation from correlation? In ICLR 2024. 635

Daniel Keysers, Nathanael Schärli, Nathan Scales, 636
Hylke Buisman, Daniel Furrer, Sergii Kashubin, 637
Nikola Momchev, Danila Sinopalnikov, Lukasz 638
Stafiniak, Tibor Tihon, et al. 2020. Measuring com- 639
positional generalization: A comprehensive method 640
on realistic data. In 8th International Conference on 641
Learning Representations, ICLR 2020. 642

Emre Kiciman, Robert Ness, Amit Sharma, and Chen- 643
hao Tan. 2023. Causal reasoning and large language 644
models: Opening a new frontier for causality. arXiv 645
preprint arXiv:2305.00050. 646

Najoung Kim and Tal Linzen. 2020. COGS: A compo- 647
sitional generalization challenge based on semantic 648
interpretation. In Proceedings of the 2020 Confer- 649
ence on Empirical Methods in Natural Language 650
Processing (EMNLP), pages 9087–9105, Online. As- 651
sociation for Computational Linguistics. 652

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, 653
Bo Li, Wei Li, Zejun Ma, and Chunyuan Li. 2024. 654
Llava-next-interleave: Tackling multi-image, video, 655
and 3d in large multimodal models. arXiv preprint 656
arXiv:2407.07895. 657

Jianling Li, Meishan Zhang, Peiming Guo, Min Zhang, 658
and Yue Zhang. 2023. LLM-enhanced self-training 659
for cross-domain constituency parsing. In Proceed- 660
ings of the 2023 Conference on Empirical Methods 661
in Natural Language Processing, pages 8174–8185, 662
Singapore. Association for Computational Linguis- 663
tics. 664

Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. 665
2014. Deepreid: Deep filter pairing neural network 666
for person re-identification. In CVPR. 667

Zhongyang Li, Xiao Ding, Ting Liu, J. Edward Hu, 668
and Benjamin Van Durme. 2021. Guided generation 669
of cause and effect. In Proceedings of the Twenty- 670
Ninth International Joint Conference on Artificial 671
Intelligence, IJCAI’20. 672

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, 673
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi 674

10

https://doi.org/10.18653/V1/2022.ACL-LONG.33
https://doi.org/10.18653/V1/2022.ACL-LONG.33
https://doi.org/10.18653/V1/2022.ACL-LONG.33
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2023.emnlp-main.508
https://doi.org/10.18653/v1/2023.emnlp-main.508
https://doi.org/10.18653/v1/2023.emnlp-main.508


Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.675
Deepseek-v3 technical report. arXiv preprint676
arXiv:2412.19437.677

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae678
Lee. 2024b. Visual instruction tuning. Advances in679
neural information processing systems, 36.680

Xiaoyu Liu, Paiheng Xu, Junda Wu, Jiaxin Yuan, Yifan681
Yang, Yuhang Zhou, Fuxiao Liu, Tianrui Guan, Hao-682
liang Wang, Tong Yu, et al. 2024c. Large language683
models and causal inference in collaboration: A com-684
prehensive survey. arXiv preprint arXiv:2403.09606.685

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,686
and Richard Socher. 2018. The natural language687
decathlon: Multitask learning as question answering.688
arXiv preprint arXiv:1806.08730.689

Meta. 2024. Llama 3.2: Revolutionizing edge690
ai and vision with open, customizable mod-691
els. https://ai.meta.com/blog/llama-3-2-connect-692
2024-vision-edge-mobile-devices/.693

Chancharik Mitra, Brandon Huang, Trevor Darrell, and694
Roei Herzig. 2024. Compositional chain-of-thought695
prompting for large multimodal models. In Proceed-696
ings of the IEEE/CVF Conference on Computer Vi-697
sion and Pattern Recognition, pages 14420–14431.698

Muennighoff Niklas, Yang Zitong, Shi Weijia, Li Xi-699
ang Lisa, Fei-Fei Li, Hajishirzi Hannaneh, Zettle-700
moyer Luke, Liang Percy, Candès Emmanuel, and701
Hashimoto Tatsunori. 2025. s1: Simple test-time702
scaling. arXiv preprint arXiv:2501.19393.703

OpenAI. 2024a. Hello gpt-4o. https://openai.com/index704
/hello-gpt-4o/.705

OpenAI. 2024b. Introducing openai o1-preview.706
https://openai.com/index/introducing-openai-o1-707
preview.708

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott709
Gray, Chelsea Voss, Alec Radford, Mark Chen, and710
Ilya Sutskever. 2021. Dall·e: Creating images from711
text. https://www.openai.com/blog/dall-e.712

Angelika Romanou, Syrielle Montariol, Debjit Paul,713
Leo Laugier, Karl Aberer, and Antoine Bosselut.714
2023. Crab: Assessing the strength of causal rela-715
tionships between real-world events. arXiv preprint716
arXiv:2311.04284.717

Shikhar Singh, Nuan Wen, Yu Hou, Pegah Alipoor-718
molabashi, Te-Lin Wu, Xuezhe Ma, and Nanyun719
Peng. 2021. COM2SENSE: A commonsense reason-720
ing benchmark with complementary sentences. In721
Findings of the Association for Computational Lin-722
guistics: ACL/IJCNLP 2021, Online Event, August723
1-6, 2021, volume ACL/IJCNLP 2021 of Findings of724
ACL, pages 883–898. Association for Computational725
Linguistics.726

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 727
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, 728
Adam R Brown, Adam Santoro, Aditya Gupta, 729
Adrià Garriga-Alonso, et al. 2022. Beyond the 730
imitation game: Quantifying and extrapolating the 731
capabilities of language models. arXiv preprint 732
arXiv:2206.04615. 733

Stability AI. 2023. Stability ai: Image generation. 734
https:// stability.ai. 735

Aniket Vashishtha, Abbavaram Gowtham Reddy, Ab- 736
hinav Kumar, Saketh Bachu, Vineeth N Balasub- 737
ramanian, and Amit Sharma. 2023. Causal infer- 738
ence using llm-guided discovery. arXiv preprint 739
arXiv:2310.15117. 740

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, 741
Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadal- 742
lah, and Bo Li. 2021. Adversarial glue: A multi- 743
task benchmark for robustness evaluation of language 744
models. arXiv preprint arXiv:2111.02840. 745

Jiaan Wang, Yunlong Liang, Zengkui Sun, Yuxuan 746
Cao, Jiarong Xu, and Fandong Meng. 2024a. Cross- 747
lingual knowledge editing in large language models. 748
In Proceedings of the 62nd Annual Meeting of the 749
Association for Computational Linguistics (Volume 1: 750
Long Papers), pages 11676–11686, Bangkok, Thai- 751
land. Association for Computational Linguistics. 752

Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and 753
Anthony Chen. 2024b. Instantid: Zero-shot identity- 754
preserving generation in seconds. arXiv preprint 755
arXiv:2401.07519. 756

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 757
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 758
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 759
nical report. arXiv preprint arXiv:2412.15115. 760

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. 761
2023. Ip-adapter: Text compatible image prompt 762
adapter for text-to-image diffusion models. arXiv 763
preprint arXiv:2308.06721. 764

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin 765
Choi. 2019a. From recognition to cognition: Vi- 766
sual commonsense reasoning. In Proceedings of the 767
IEEE/CVF conference on computer vision and pat- 768
tern recognition, pages 6720–6731. 769

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 770
Farhadi, and Yejin Choi. 2019b. Hellaswag: Can a 771
machine really finish your sentence? arXiv preprint 772
arXiv:1905.07830. 773

Chi Zhang, Baoxiong Jia, Mark Edmonds, Song-Chun 774
Zhu, and Yixin Zhu. 2021. Acre: Abstract causal 775
reasoning beyond covariation. In Proceedings of the 776
ieee/cvf conference on computer vision and pattern 777
recognition, pages 10643–10653. 778

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, 779
George Karypis, and Alex Smola. 2023. Multi- 780
modal chain-of-thought reasoning in language mod- 781
els. arXiv preprint arXiv:2302.00923. 782

11

https://doi.org/10.18653/V1/2021.FINDINGS-ACL.78
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.78
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.78
https://doi.org/10.18653/v1/2024.acl-long.627
https://doi.org/10.18653/v1/2024.acl-long.627
https://doi.org/10.18653/v1/2024.acl-long.627


Xiaomao Zhou, Qingmin Jia, Yujiao Hu, Renchao Xie,783
Tao Huang, and F Richard Yu. 2024. Geng: An llm-784
based generic time series data generation approach785
for edge intelligence via cross-domain collaboration.786
In IEEE INFOCOM 2024-IEEE Conference on Com-787
puter Communications Workshops (INFOCOM WK-788
SHPS), pages 1–6. IEEE.789

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and790
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing791
vision-language understanding with advanced large792
language models. arXiv preprint arXiv:2304.10592.793

12



Appendix794

A The MuCR Dataset795

A.1 Task Formulation796

As shown in Figure 2 (b), our dataset D :=797

{(Q,G∗(A), {B(i)}4i=1)
(k)}Nk=1 consisting of N798

triples, each contains a question Q, a input G∗(A)799

(where ∗ represents input form), and four poten-800

tial choices {B(i)}4i=1. The MLLMs are required801

to according to the question Q and a input G∗(A)802

to select the correct answer from four potential803

choices {B(i)}4i=1. The goal of this benchmark804

is to determine whether the input form (∗) affects805

the MLLMs’ prediction accuracy. To this end, the806

biggest challenge is defined as follows:807

Gtext(A)
semantic
≈ Gmulti(A) (7)808

where
semantic
≈ means G∗(A) retains identical or809

closely aligned semantic meaning across different810

modalities. To address this, we propose a novel811

transfer strategy that harnesses the linguistic capa-812

bilities of LLMs alongside the image generation813

abilities of diffusion models, effectively preserving814

semantic content while altering the input form.815

A.2 Overall structure816

Section 3 only illustrates the simplified process of817

our MuCR benchmark generation. Here, we delve818

into more details about the generation process and819

the corresponding prompts. Figure 15 showcases820

the detailed generation process of a weather-related821

causal case in our MuCR dataset. Our process be-822

gins with generating core caption pairs, each con-823

sisting of one caption describing the cause and the824

other stating the effect. We then leverage the lan-825

guage capabilities of LLMs to entail these paired826

captions into contextually relevant descriptions, en-827

hancing the consistency of sentences to facilitate828

the creation of cause-and-effect image pairs. Then,829

we employ diffusion models to generate numer-830

ous Siamese images based on these descriptions.831

Finally, we annotate cue phrases and causality ex-832

planations for each pair.833

A.3 Generating Core Caption Pairs834

Our MuCR benchmark begins with the creation835

of core caption pairs, where one caption outlines836

the cause and the other describes the effect. These837

pairs maintain semantic causality and serve two838

roles. First, they function as textual causal infer-839

ence cases to challenge MLLMs’ textual reasoning840

Figure 15: A detailed example of generating our MuCR
dataset. Best viewed by zooming in.

ability. Second, they guide the subsequent synthe- 841

sis of Siamese images. As shown in Figure 16, 842

we employ a structured refinement loop that trans- 843

forms initial brainstorming ideas into precise cap- 844

tion pairs, clearly depicting the cause-and-effect 845

relationships. This process is guided by the princi- 846

ple: “Whether the expression is concrete and can 847

be effectively represented through visual means". 848

Here, we discuss the rationale behind this rule and 849

explain why volunteers are instructed to create core 850

caption pairs in accordance with it. 851

Figure 17 compares the initial spark and core 852

caption pairs in image synthesis. The comparison 853

reveals that the initial spark often contains semanti- 854

cally ambiguous elements, leading to visual gaps 855

in the generated images. For instance, the phrase 856

“the baker left the cake in the oven" might result 857

in an image depicting only a cake in the oven, as 858

the diffusion model may struggle to interpret or 859

visually represent the action “left". Another issue 860

is subject conflict. For example, the phrase “the 861

food became inedible" might simply produce an 862

image of unappealing food on a plate. However, 863

within a cause-and-effect scenario, a human would 864

easily infer that “food" refers specifically to the 865

“cake." In contrast, our core caption pairs resolve 866

these ambiguities by translating them into more 867

concrete actions, such as replacing “careless" with 868

“played his phone." This refinement significantly 869

improves the quality of the generated images and 870

the semantic causality between the pairs. 871

We ask the volunteers to design four paired cap- 872

tions as a group, each sharing similar causalities but 873

containing different visual cues. These groups are 874

intended to explore the capability of distinguishing 875
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Cause Effect Category
The man drove his car at an excessive speed. The man got a speeding ticket. Person
The woman drove her car at at an excessive speed. The woman was pulled over by the policeman. Person
The old man drave his car at an excessive speed. The old man was pulled over by the policeman. Person
The old woman drave her car at an excessive speed. The old woman got a speeding ticket. Person
The shark is attacking the fish. The fish got wounded on its back. Animal
The shark is attacking the seal. The seal got wounded on its back. Animal
The shark is attacking the manta ray. The manta ray got wounded and bleeding. Animal
The shark is attacking the penguin. The penguin got wounded and bleeding. Animal
The chrysanthemum is blooming. The chrysanthemum attracting bees to collect nectar. Plant
The tulip is blooming. The tulip attracting bees to collect nectar. Plant
The rose is blooming. The rose attracting bees to collect nectar. Plant
The jasmine is blooming. The jasmine attracting bees to collect nectar. Plant
The rabbit worked hard. The rabbit earn much money. Character
The monkey worked hard. The monkey earn much money. Character
The bear worked hard. The bear earn much money. Character
The fox worked hard. The fox earn much money. Character
The gardener planted a tree. The tree grew tall. Mixture
The farmer planted seeds. The seeds sprouted into crops. Mixture
The child planted flowers. The flowers bloomed in the garden. Mixture
The woman planted herbs. The herbs grew in the pot. Mixture

Table 5: Case studies for the paired caption generation process.

Figure 16: The process of generating paired captions
through refinement loops, ensuring the final captions
are precise and can be effectively represented through
visual means.

similar causalities occurring in different subjects876

across various scenarios. Furthermore, to maintain877

the diversity of our dataset, we include a portion of878

non-human cases. While many causality scenarios879

feature humans as subjects, we also incorporate880

cases involving animals, plants, comic characters,881

and their interactions. Table 5 shows generated882

paired-caption examples (i.e., four captions shar-883

ing similar causalities but involving different vi-884

sual cues are paired as a group) for various scenar-885

ios (i.e., cases involving humans, animals, plants,886

comic characters, and mixtures). Abstract expres-887

sions are concretized during the paired-caption gen-888

eration process according to the causality. For in-889

stance, the scenario “driving at excessive speed"890

Figure 17: A comparison of directly using initial spark
and our core caption pairs to generate cause-and-effect
images through diffusion model.

is rephrased in terms of its potential outcomes, 891

such as “getting a speeding ticket" or “being pulled 892

over by a police officer". Similarly, the concept of 893

“blooming" is illustrated through its possible conse- 894

quence, “attracting bees to gather nectar". This pro- 895

cess leverages causal reasoning to ground abstract 896

ideas in real-world outcomes, thereby enhancing 897

the intelligibility and reproducibility of the gener- 898

ated captions. 899
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Figure 18: An example of core captions vs contextual
descriptions in cause-and-effect image synthesis.

A.4 Producing Contextual Description Pairs900

The absence of crucial visual cues could introduce901

randomness in image creation, which may lead to902

inconsistencies and potentially undermine the per-903

ceived causality between the siamese images. Fig-904

ure 18 highlights the drawbacks of missing context905

and the advantages of incorporating context. As906

shown in Figure 18 (a), although the two columns907

of images accurately represent the core caption,908

mismatched clothing disrupts the sense of causal-909

ity, making it difficult to form coherent pairs. In910

contrast, the example in Figure 18 (b) demonstrates911

that incorporating contextual information and trans-912

forming core captions into contextual descriptions913

effectively resolves this issue and reduces random-914

ness in image synthesis. To achieve this, we lever-915

age the linguistic capabilities of LLMs to enhance916

core caption pairs by enriching contextual details917

such as appearance, clothing, environment, and918

atmosphere. Additionally, we introduce subtle919

changes, such as variations in facial expressions,920

within the contextual description pairs to reflect the921

passage of time. These detailed variations empha-922

size the impact of causality over time, making the923

connection between siamese images more natural924

and coherent.925

we also compare identity-preserving techniques926

with our prompt-guidance method (Figure 19).927

Traditional identity-preserving image synthesis928

methods (e.g., LCM (Gal et al., 2024) and IP-929

Figure 19: A comparison of identity-preserving tech-
nique and our prompt-driven technique on image syn-
thesis.

Adapter (Ye et al., 2023)) focus on image personal- 930

ization by retaining identity details through a region 931

encoder during the generation process (Wang et al., 932

2024b). However, this approach leads to two ma- 933

jor issues. First, most existing identity-preserving 934

techniques rely heavily on guided images, which 935

limits their capacity for semantically-driven im- 936

age generation and requires finding a suitable ID 937

image for each causal scenario. Second, as the 938

name suggests, identity-preserving methods focus 939

primarily on maintaining facial identity (appear- 940

ance) but struggle to incorporate cause-and-effect 941

relationships across images. In contrast, our causal- 942

and-effect image synthesis approach leverages the 943

linguistic capabilities of large language models 944

(LLMs) to integrate a richer spectrum of contex- 945

tual information. Not only does it preserve human 946

facial identity (appearance), but it also accounts 947

for additional details (e.g., clothing, environment, 948

and overall atmosphere). This ensures that images 949

remain coherent even when modifications are intro- 950

duced through causal reasoning. 951

A.5 Siamese Images and Annotations 952

In this section, we show some high-quality exam- 953

ples as follows: 954

In the plant category, as shown in Figure 20, take 955

the jasmine flower pair: the cause image shows a 956

blooming jasmine flower, while the effect image 957

15



Figure 20: Example 1 - Plant
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Figure 21: Example 2 - Character
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Figure 22: Example 3 - Mixture
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Model
Text-based Form Multimodal-based Form

C2E CP Exp C2E CP Exp
Popular MLLMs

GPT-o1 (OpenAI, 2024b) 94.00 75.50 93.00 87.50 62.00 78.00
GPT-4o (OpenAI, 2024a) 92.75 71.75 91.50 81.25 57.25 72.50
Claude-3.5 (ClaudeAI, 2024b) 92.50 77.00 92.75 83.50 59.75 77.5
Claude-3.0 (ClaudeAI, 2024a) 88.25 66.75 82.00 58.00 50.25 57.00
Gemini-2.0 (DeepMind, 2025) 93.00 76.00 90.50 75.50 60.75 70.25
Gemini-1.5 (DeepMind, 2024) 89.00 73.25 91.50 66.50 58.50 70.75
Qwen2.5-VL (Yang et al., 2024) 89.00 66.00 90.00 77.00 54.50 72.00
Llama3.2-Vision (Meta, 2024) 83.50 62.50 86.00 54.00 48.25 53.25

Lightweight Open-source Models
LLaVA-NeXT (Li et al., 2024) 54.50 37.50 48.00 29.00 17.00 21.00
OpenFlamingo-v2 (Awadalla et al., 2023) 23.00 16.00 17.25 20.00 9.75 18.00
LLaVA-v1.6 (Liu et al., 2024b) 25.25 17.25 18.00 23.50 11.00 16.50
MiniGPT4-v2 (Zhu et al., 2023) 13.50 18.50 16.75 17.75 11.50 15.25
InstructBLIP (Dai et al., 2023) 14.50 10.00 8.50 12.25 6.50 9.50
Human 96.75 91.00 98.50 95.50 89.50 98.50

Table 6: Main experimental results of different models on our MuCR benchmark.

features a group of bees swarming around it. For958

this pair, we select “bloom" as the positive cue959

phrase and “bee", “flower", and “sunshine" as the960

negative ones, aligning with the visual information.961

The annotation emphasizes the connection between962

the flower’s blooming and the attraction of bees.963

In the character category, as shown in Figure 21,964

consider the cat pair: the first image shows a cat965

lifting weights at the gym, while the second image966

depicts the cat gaining strength and muscle. For967

this, “fitness" is used as the positive cue phrase,968

with “gym", “muscle", and “dumbbells" as the neg-969

ative ones, matching the visual content. The annota-970

tion focuses on the connection between consistent971

workouts and muscle gains.972

In the mixture category, as shown in Figure 22,973

take the female planting pair: the cause image974

shows a woman planting seedlings in a garden,975

while the effect image displays the same woman976

smiling and holding a large pot of flourishing plants.977

Here, “plant" is the positive cue phrase, and “grow",978

“green", and “land" are the negative ones, aligning979

with the visual information. The annotation empha-980

sizes the relationship between her nurturing care981

and the plant’s growth, along with her pride.982

Input Form Style C2E CP EXP
GPT-o1 (OpenAI, 2024b)

Text \ 94.00 75.50 93.00
Image Mixture 87.50 62.00 78.00

DeepSeek-R1 (Guo et al., 2025)
Text \ 96.00 73.50 95.00

DeepSeek-V3 (Li et al., 2014)
Text \ 91.50 72.25 92.00

Table 7: The performance comparison between GPT-o1
and DeepSeek models in text domain on MuCR.

B Experiments 983

In this section, we delve into extended experiments 984

and provide supplementary details that were not 985

included in the main paper for the sake of clarity 986

and brevity. 987

B.1 Experimental Results 988

As discussed in Section 4.1, we did not include the 989

currently popular models DeepSeek-R1 (Guo et al., 990

2025) and DeepSeek-V3 (Liu et al., 2024a) in the 991

main paper. Here, we provide a brief comparison of 992

their text-based performance against GPT-o1 (Ope- 993

nAI, 2024b). Table 7 shows that DeepSeek-R1 994

achieves results comparable to GPT-o1 in the text 995

domain, while DeepSeek-V3 performs slightly less 996

effectively. 997

In addition, we provide a detailed breakdown of 998

each model’s performance on our MuCR bench- 999
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mark. Table 6 presents these results. We observe1000

that all popular MLLMs significantly outperform1001

random chance, whereas most lightweight open-1002

source models perform below the random baseline1003

of 25%. This indicates that the latter group lacks1004

robust causal reasoning capabilities.1005

C Cross-modal Generalization Analysis1006

and Enhancement1007

C.1 Picture Style1008

Here, we present a detailed case analysis compar-1009

ing the influence of picture style on Claude-3.5’s1010

predictions, as illustrated in Figure 23.1011

In the black-white images, Image 1 shows a1012

warthog bending down to drink water, placing it1013

in a vulnerable position. The cause is clear—the1014

warthog’s need to drink compels it to lower its head,1015

thus reducing its awareness of potential threats.1016

Among the follow-up images, Image 5 best repre-1017

sents the effect: it shows a crocodile emerging from1018

the water, poised to attack a drinking animal, main-1019

taining consistent compositional elements such as1020

the animal at the water’s edge and the predator’s1021

emergence. While Images 2, 3, and 4 depict simi-1022

lar scenarios with different animals, Image 5 most1023

directly mirrors the cause-and-effect relationship1024

suggested by Image 1. However, the analysis in1025

this style tends to lack detail in some of the incor-1026

rect answers, which could potentially influence the1027

model’s predictive accuracy in nuanced cases.1028

In contrast, the comic style analysis also begins1029

with Image 1, where a warthog is depicted looking1030

down at ripples in the water, seemingly unaware1031

of any lurking danger. The potential effects are1032

illustrated across multiple images: Image 2 shows1033

a wildebeest encountering a crocodile, Image 3 de-1034

picts a zebra facing a crocodile, Image 4 features a1035

gazelle or antelope in a similar scenario, and Image1036

5 shows another warthog confronting a crocodile.1037

Here, Image 5 stands out as the best representation1038

of the effect because it features the same animal as1039

in the cause image in a comparable setting, now fac-1040

ing the implied threat signaled by the ripples. The1041

consistent composition and environmental context1042

reinforce the direct cause-and-effect relationship.1043

The comic style analysis provides a richer con-1044

text and more detailed narrative for the causal re-1045

lationship, whereas the balck-white analysis, al-1046

though accurate in identifying the correct image,1047

offers less detailed reasoning for some incorrect1048

options.1049

C.2 Form of Visual Input 1050

Our case analysis demonstrates that, compared 1051

to Form-3, Forms 1 and 2 impose limitations on 1052

MLLMs’ ability to recognize and leverage critical 1053

visual cues necessary for multimodal causal rea- 1054

soning. As shown in Figure 24, Form-3 provides 1055

GPT-4o with direct visual information, enabling 1056

it to successfully identify essential details, such 1057

as the continuity in a person’s appearance across 1058

cause-and-effect images. This was evident in GPT- 1059

4o’s output, where it correctly determined that the 1060

woman in the cause image, overwhelmed by paper- 1061

work, was the same individual in the effect image, 1062

now engaged in a serious discussion about work. 1063

This recognition of visual consistency is crucial for 1064

establishing causal relationships. However, when 1065

using Form-1, GPT-4o was unable to incorporate 1066

this specific visual cue and instead selected a dif- 1067

ferent effect image (a generic team meeting) based 1068

on a more abstract textual interpretation rather than 1069

a direct visual correlation. 1070

The key issue with Forms 1 and 2 is that they rely 1071

on structured textual descriptions that predefine cat- 1072

egories of reasoning, which may inadvertently filter 1073

out implicit but important visual details. These for- 1074

mats encourage MLLMs to focus on generalized 1075

textual patterns rather than independently deriving 1076

causal relationships from visual features like facial 1077

expressions, body language, and scene continuity. 1078

By contrast, Form-3 allows GPT-4o to analyze raw 1079

visual inputs more freely, enhancing its ability to 1080

establish causal links based on direct visual obser- 1081

vation rather than abstracted textual hints. This 1082

distinction highlights the potential shortcomings of 1083

rigid textual input structures in multimodal causal 1084

reasoning tasks. While textual guidance can be 1085

helpful, it may also constrain the model’s reasoning 1086

process, making it less sensitive to nuanced visual 1087

cues. Ensuring that MLLMs receive input formats 1088

that preserve rich visual information is therefore es- 1089

sential for improving their ability to perform causal 1090

inference in multimodal settings. 1091

C.3 Contextual Variation 1092

Visual cues are crucial for accurate multimodal 1093

causal inference because they provide a consistent 1094

framework for linking cause and effect. Taking 1095

Figure 25 as an example: 1096

• Consistency: Shared elements like the hiking 1097

setting, outfit, and subject positioning help the 1098

model recognize that the images belong to the 1099
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same sequence.1100

• Clear Transitions: Changes in lighting, per-1101

spective, and mood signal the progression1102

from cause (a clear, well-lit forest) to effect1103

(a foggy, atmospheric scene), reinforcing the1104

narrative flow.1105

• Disambiguation: Detailed cues identify Im-1106

age 2 as the best continuation among similar1107

options, ensuring the causal relationship is1108

accurately maintained.1109

The analysis shows that visual cues—ranging from1110

consistent environmental context and subject de-1111

tails to nuanced transitions in lighting, perspective,1112

and mood—are crucial for establishing a clear and1113

coherent narrative. These cues allow the model1114

to accurately determine the causal links between1115

images, ensuring that the inferred relationships are1116

both logical and contextually grounded. Without1117

such detailed visual information, the model would1118

face challenges in differentiating between similar1119

scenarios, potentially leading to inaccurate or in-1120

complete causal inferences.1121

C.4 Qualitative Results of VcCOT1122

To prove the efficiency of our VcCoT, we provide1123

some qualitative results, as shown in Figure 26.1124
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Figure 23: Case study for picture style influence. Best viewed by zooming in.
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Figure 24: Case study for visual input form influence.
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Figure 25: Case study for Contextual Variation.
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Figure 26: Qualitative result for VcCoT.
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