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Abstract

Multimodal Large Language Models (MLLMs)
have showcased exceptional Chain-of-Thought
(CoT) reasoning ability in complex textual in-
ference tasks including causal reasoning. How-
ever, will these causalities remain straightfor-
ward when crucial hints hide in visual de-
tails? If not, what factors might influence cross-
modal generalization? Whether we can effec-
tively enhance their capacity for robust causal
inference across both text and vision? Moti-
vated by these, we introduce MuCR - a novel
Multimodal Causal Reasoning benchmark that
leverages synthetic siamese images and text
pairs to challenge MLLMs. Additionally, we
develop tailored metrics from multiple per-
spectives, including image-level match, phrase-
level understanding, and sentence-level expla-
nation, to comprehensively assess MLLMs’
comprehension abilities. Our experiments re-
veal that current MLLMs fall short in multi-
modal causal reasoning compared to their per-
formance in purely textual settings. Addition-
ally, we find that identifying visual cues across
images is key to effective cross-modal gener-
alization. Finally, we propose a VeCoT strat-
egy that better highlights visual cues, and our
results confirm its efficacy in enhancing multi-
modal causal reasoning.

1 Introduction

Causal reasoning is the process of identifying
the relationship between a cause and its effect,
which is regarded as a fundamental capability of
artificial intelligence (Liu et al., 2024c). Recent
advancements in CoT reasoning capabilities of
MLLMs (OpenAl, 2024b; Guo et al., 2025) have
driven significant progress in complex analytical
tasks, including causal reasoning within the textual
modality (Jin et al., 2023; Bagheri et al., 2024;
Ashwani et al., 2024). These developments in-
volve enabling MLLMs to generate coherent ex-
planations (Kiciman et al., 2023), providing multi-
step chain-of-thought (CoT) (Bao et al., 2024), or
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Dark clouds in the sky suggest the woman might get caught in a rainstorm since
rainstorms typically follow dark skies.
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From the cause image, we see a woman gazing at dark clouds while hiking. The
most logical “effect” image is the first one, where the same woman is caught in a
heavy rainstorm (green jacket, same general setting)—it directly follows from
spotting ominous clouds in the sky.
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Figure 1: An example from MuCR challenges MLLMs
with weather-related causality across two modalities.

even analyzing complex causal relationships that
typically demand expert-level topological struc-
ture knowledge (Vashishtha et al., 2023). De-
spite these advancements, existing linguistic bench-
marks (Singh et al., 2021; Du et al., 2022; Jin
et al., 2023) are beginning to fall short in assess-
ing the more advanced visual capabilities of the
latest MLLMs such as GPT-o1 (OpenAl, 2024b),
Deepseek-R1 (Guo et al., 2025), Gemini-1.5 (Deep-
Mind, 2024), and Claude-3.5 (ClaudeAl, 2024b),
not to mention facilitating cross-modal comparison
and analysis (as shown in Figure 1).

Following this, we propose three key questions:
Can MLLMs achieve the same level of causal rea-
soning comprehension as they do in textual modal-
ity? If not, what factors might influence cross-
modal generalization? How can we enhance their
capacity for robust causal inference? We find
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Figure 2: (a) Comparison of our MuCR and related datasets on reasoning tasks. (b) Detailed illustration of our
dataset structure and corresponding cross-modal generalization exploration.

that most existing benchmarks fail to address such
comparisons or support further exploration in this
area. Especially, as shown in Figure 2 (a), we
identify two major drawbacks in previous bench-
marks: Absence of visual modality: Linguistic
causal reasoning benchmarks (Singh et al., 2021; Li
et al., 2021; Du et al., 2022; Frohberg and Binder,
2022; Jin et al., 2023, 2024) fail to assess visual
comprehension ability of MLLMs. Incomplete
of cross-modal analysis: Most causal reasoning
VQA tasks (Zellers et al., 2019a; Girdhar and Ra-
manan, 2020; Zhang et al., 2021; Hessel et al.,
2022) neglect cross-modal comparison. Recently,
some benchmarks (Bitton-Guetta et al., 2024; Fu
et al., 2024) have begun exploring this domain. For
instance, Blink (Fu et al., 2024) examines cross-
modal comparisons and conducts basic generaliza-
tion analyses involving factors like shape and size.
As illustrated in Figure 2(b), our proposed MuCR
comprehensively evaluates causal reasoning at the
image, phrase, and sentence levels and offers a
multi-faceted analysis of cross-modal generaliza-
tion that encompasses both visual form factors and
semantic elements. Moreover, we propose a novel
VcCoT strategy to further enhance cross-modal
generalization by improving visual cue perception.

We evaluate current state-of-the-art (SOTA)
MLLMs on our MuCR benchmark. Experiment
results indicate that all models fall short of human
performance, particularly in multimodal settings.
Moreover, they exhibit a pronounced cross-modal
gap when discerning causal links across modalities.
In addition, we conduct in-depth generalization
analysis and demonstrate that visual semantic fac-
tors, especially the ability to identify visual cues
across siamese images, play a pivotal role.

Our contributions are summarized as follows:

* We identify the limitations of current causal
reasoning benchmarks, including failing to
evaluate the advanced visual capabilities of

the latest MLLMs and offering incomplete
cross-modal analyses.

* We propose the MuCR benchmark, which can
comprehensively evaluate MLLMs’ causal
reasoning ability across two modalities.

* Our extensive experiments with SOTA
MLLMs reveal interesting insights and sug-
gest potential directions for future research.

2 Related Work

2.1 Causal Reasoning

The ability to perform causal reasoning is widely
considered a core feature of artificial intelligence.
With the development of Large Language Models
(LLMs), they have exhibited increasingly robust ca-
pabilities in causal reasoning tasks. Previous bench-
marks, such as Com2sense (Singh et al., 2021) and
CausalBank (Li et al., 2021), are becoming insuffi-
cient for evaluating linguistic abilities. To address
this, Romanou et al. (2023) introduced the CRAB
benchmark, which requires LLMs to capture ex-
plicit causal relationships in real-world scenarios.
However, these benchmarks focus solely on the
text modality, leaving the crucial question of multi-
modal reasoning unaddressed. Hessel et al. (2022)
introduced Sherlock to challenge MLLMs in iden-
tifying visual clues scattered throughout a scene
and making reasoning inferences combined with
commonsense and life experience. More recently,
Guetta et al. (2024) and Fu et al. (2024) presented
complex visual reasoning challenges to further ex-
plore MLLMSs’ capabilities. Although these bench-
marks have considered the visual modality, they
still fail to comprehensively analyze cross-modal
generalization capacity. In this paper, we make an
early attempt to extensively explore multimodal
causal reasoning tasks across modalities.
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Figure 3: The overview of our MuCR benchmark construction process. It follows synthesis in four core levels:
generating core caption pairs, producing contextual description pairs, creating siamese images, and generating

human annotations.

2.2 LLMs’ Generalization

The field of LLMs generalization has gained sig-
nificant traction in recent years, with numerous
tasks proposed to evaluate models’ ability to han-
dle previously unseen contexts and domains. Ex-
isting tasks can be broadly divided into composi-
tional, cross-task, cross-lingual, cross-domain, and
robustness-based categories. Compositional tasks,
such as CFQ (Keysers et al., 2020) and COGS (Kim
and Linzen, 2020), test whether models can system-
atically combine smaller linguistic units to form
novel expressions. Cross-task generalization often
involves multi-task learning setups, such as De-
caNLP (McCann et al., 2018) and BIG-Bench (Sri-
vastava et al., 2022), where models must adapt
to tasks with minimal guidance. Cross-lingual
benchmarks, like XNLI (Conneau et al., 2018) and
XTREME (Hu et al., 2020), measure performance
across languages, while cross-domain tasks empha-
size shifting between specialized fields (Li et al.,
2023; Zhou et al., 2024). Meanwhile, robustness-
oriented evaluations such as HellaSwag (Zellers
et al., 2019b) and adversarial GLUE (Wang et al.,
2021) assess how well models withstand noisy, am-
biguous, or adversarial inputs. In this paper, we
shift our focus to the generalization in multimodal
causal reasoning tasks, conducting a concise but
comprehensive analysis of the factors that hinder
cross-modal generalization and exploring strategies
to enhance it for robust causal reasoning.

3 The MuCR Dataset

In this section, we detail the construction of the
MuCR dataset. Figure 3 illustrates the system-

atic workflow of our multimodal cause-and-effect
benchmark generation including: generating core
caption pairs, producing contextual description
pairs, creating siamese images, and generating hu-
man annotations (see Appendix A.2 for further ex-
amples and details).

3.1 Dataset Creation

Generating Core Caption Pairs. The MuCR
benchmark is designed to assess MLLMSs’ ability
to perform causal inference across modalities. To
achieve this, we begin by generating core caption
pairs that clearly illustrate cause-and-effect rela-
tionships. In order to minimize individual bias, we
employ twelve volunteers and group each two as a
team: one processes and refines the captions based
on initial ideas and iterative feedback, while the
other reviews them and offers suggestions for im-
provement (see Appendix A.3 for an explanation
of why we structure the generation process this
way, as well as illustrative examples). Through
these steps, we create 4,000 cause-and-effect cap-
tion pairs.

Producing Contextual Description Pairs.
While core caption pairs effectively depict the
cause-and-effect relationship, they often lack
contextual details such as appearance, clothing,
and environmental context that serve as crucial
visual cues for high-quality cause-and-effect image
synthesis. To address this issue, we leverage the
linguistic capabilities of LLMs to enhance core
caption pairs by enriching contextual details. By
maintaining these elements consistently across
images, our approach not only effectively depicts
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Figure 4: (a) Examples from our MuCR dataset featuring different categories and styles. The “Mixture" category
represents two or more tags involved in the causality. (b) Category distribution overview showing the proportions of
human, animal, character, plant, and mixture categories. (c) Style distribution overview illustrating the proportions

of comic, photographic, and black-white styles.

causality at a semantic level but also improves
visual coherence (see Appendix A.4 for further
explanation).

Create Siamese Images. We employ diffusion
models with contextual descriptions as prompts
to generate cause-and-effect image pairs. Specif-
ically, we utilize DALL-E (Ramesh et al., 2021),
DeepAl (DeepAl, 2024), Stability-Al (Stability Al,
2023), and Flux1 (FLUXALI, 2024) for image syn-
thesis, aiming to minimize model bias and enhance
the diversity of the generated images. We also
incorporate three styles (photograph, comic, and
black-white) when creating these images. Specif-
ically, each sentence yields 10 images per style,
resulting in 20 images for every cause-and-effect
pair in one style (a total of 240k images). Then,
volunteers manually select the two representations
that best capture the semantic causality and main-
tain visual consistency. This process produces 12k
cause-and-effect image pairs spanning various cat-
egories (humans, animals, plants, characters, and
mixtures) and three styles (photograph, comic, and
black-white). Figure 4 illustrates examples from
our MuCR benchmark, showcasing multiple cate-
gories and styles alongside an overview of their dis-
tribution (see Appendix A.5 for more high-quality
samples).

Generate Human Annotation. We require vol-
unteers to create text annotations for each cause-
and-effect image pair. As shown in Figure 3, it
consists of a phrase-level list (cue phrases) and
sentence-level description (cause-and-effect expla-
nations). The cue phrases comprise a list of four
options, each being a word or phrase. Among these,
only one phrase correctly explains or is highly rel-
evant to the causality, while the other three are
striking elements in the images but do not serve
as proper cues. The sentence-level annotation is
designed to verify whether the MLLM:s truly under-

stand multimodal causality and can select reason-
able explanations. To achieve this, we require vol-
unteers to structure the explanation by first describ-
ing the content of the cause, followed by the con-
tent of the effect, and concluding with the causal
link connecting between them.

3.2 Evaluation Metrics

Image-level Metric. The image-level metric is
call cause-to-effect (C2E) score. It is designed
to assess whether the MLLMs can identify cue
links and make the correct choice from four po-
tential effects according to the given cause. Given
the cause in the form G*(c) (* can either be G¢*!
representing text-based form or G"™"* represent-
ing multimodal-based form), the model is required
to select the optimal choice among four potential
effects {G*(e)(W}1_,. The C2E score can be com-
puted as follows:

S = F(Qr.G*(e), {G"(@©P}L)), (1)
f1<s;‘>={1’ =57

. 2
0, otherwise

where ST represents the MLLMs’ prediction. F
represents MLLM. @ represents corresponding
question for Image-level. f; represents the func-
tion to calculate the C2E score. S}’ represents the
correct answer.

Phrase-level Metric. The phrase-level metric
is called CP score (Cue Phrase), which tests
MLLMs’ capability to distinguish the correct cue
from a list of fraudulent phrases according to the
cause and effect. Given the cause-and-effect pairs
{G*(¢),G*(e)}, the model is required to select the
optimal choice among four potential cue phrases
{Tl(gZ ) 4_,. The CP score can be computed as fol-



lows:
Sp = F(Qp,G*(c),G7(e), {TV}L )  (3)

1 sp=sy
fp(Sp) = { pr

. “4)
0, otherwise

where S, represents the MLLMSs’ prediction. F
represents MLLM. @) p represents corresponding
question for Phrase-level. fp represents the func-
tion to calculate the CP score. S}’ represents the
correct answer.

Sentence-level Metric. Our final metric is de-
signed to evaluate MLLMs’ ability to identify the
correct explanation according to the cause and
effect. The sentence-level metric is called the
explanation (EXP) score. Specifically, we col-
lect four candidate explanations that share simi-
lar causalities but differ in their cues. Only one
explanation accurately captures the causal relation-
ship and matches the detailed cues, while the other
three do not. Given the condition {G*(c),G*(e)}
with the corresponding question (g, the model is
required to select the optimal choice among four
potential explanations {T]SEZ ) ?:1- The EXP score
is then computed as follows:

S5 =F(Qs.G"(0).6"(e) {TS}) )

1, S%t=g5%
fs(5§)={ 5 S (6)

0, otherwise

where S§ represents the MLLMs’ prediction. F
represents MLLM. fg represents the function to
calculate the EXP score. S%' represents the correct
answer.

4 Experiments

4.1 Experimental Setup

We evaluated several popular MLLMs on our
MuCR benchmark, including GPT-ol (Ope-
nAl, 2024b), GPT-40 (OpenAl, 2024a), Claude-
3.5 (ClaudeAl, 2024b), Claude-3.0 (ClaudeAl,
2024a), Gemini-2.0 (DeepMind, 2025), Gemini-
1.5 (DeepMind, 2024), Qwen2.5-VL (Yang et al.,
2024), and Llama3.2-Vision (Meta, 2024). For the
currently popular models, DeepSeek-R1 (Guo et al.,
2025) and DeepSeek-V3 (Liu et al., 2024a), we did
not fully evaluate their performance since their im-
age readers currently only support extracting text
from images without additional functionality (see
Appendix B.1 for a comparison of their text-based

performance). Additionally, we also considered
some lightweight open-source models, including
LLaVA-NeXT (Li et al., 2024), OpenFlamingo-
v2 (Awadalla et al., 2023), LLaVA-v1.6 (Liu et al.,
2024b), MiniGPT4-v2 (Zhu et al., 2023), and In-
structBLIP (Dai et al., 2023). Since some models
only accept a single image input, we provided all of
them with a composite image composed of multiple
smaller images, as shown in Figure 9 (a). Finally,
we established a human performance baseline on
the MuCR benchmark using crowd workers for
comparison.

4.2 Experimental Results

Figure 5 presents the main results of popular
MLLMs and human performance on the MuCR
benchmark, leading to the following observations:
(1) All models on MuCR lag behind human per-
formance in both settings. Among these mod-
els, GPT-o1 (OpenAl, 2024b) achieves the highest
scores, with 94% on C2E score, 75% on CP score,
and 93% on EXP score in the text condition, while
87% on C2E, 62% on CP, and 78% on EXP in the
multimodal condition. Nevertheless, these results
still fall short of human performance, suggesting
substantial room for improvement. (2) All models
exhibit a significant cross-modal performance
gap. All models show a noticeable drop in perfor-
mance when handling multimodal causal inference,
whereas humans do not. This discrepancy indicates
potential factors restricting cross-modal generaliza-
tion in MLLMs, likely stemming from the visual
component, given that these models already demon-
strate robust causal reasoning in text-based cases.

Figure 6 presents the multimodal performance of
various lightweight open-source models, revealing
that they lag significantly behind GPT-o1. Among
these, LLaVA-Next achieves the best results, with
29% on C2E, 17% on CP, and 21% on EXP, which
are only around the random selection baseline of
25%. Compared to models like Llama3.2-Vision
and Qwen2.5-VL, there is still considerable room
for improvement for these models.

5 Cross-modal Generalization Analysis
and Enhancement

In this section, we examine the factors that may
affect cross-modal generalization. Building on pre-
vious findings that attribute these gaps primarily to
the visual component, we focus on two main cat-
egories: visual format factors and visual semantic
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factors.

* Visual Format Factors. These involve cases
that share the same underlying semantics but
differ in how they are visually presented, such
as variations in picture style or the form of the
visual input.

* Visual Semantic Factors. These involve
cases with consistent visual formats but slight
semantic differences, such as contextual vari-
ations in image details or the inclusion of ad-
ditional text hints, resulting in richer semantic
content.

In addition to investigating these cross-modal gen-
eralization factors, we also explore potential en-
hancement strategies based on our findings.

5.1 Visual Format Factors

Picture Style. We investigate how different pic-
ture styles may affect causal reasoning. Figure 7

E "The eagle E
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= 388
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! "The little
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E born.”

Figure 7: An example of cause and effect showing in
three picture styles with the same semantic meanings.
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Figure 8: The C2E score of different models tested on
three different picture styles.

shows an example of the same cause-and-effect
scenario presented in three styles. As indicated by
the results in Figure 8, MLLMs perform similarly
when presented with photographs and comic im-
ages, but with a slight drop for black-white images.
Overall, altering the picture style while keeping the



(a) Visual Input Form-1

MLLM

MLLM

MLLM

Figure 9: The illustration of three different visual input
forms we examined.

Visual Input Style C2E CP EXP
GPT-01 (OpenAl, 2024b)

Form-1 87.50 62.00 78.00

Form-2 Mixture 84.25 60.50 79.00

Form-3 89.00 67.50 86.25
Claude-3.5 (ClaudeAl, 2024b)

Form-1 83.50 59.75 77.50

Form-2 Mixture 53.50 36.00 68.50

Form-3 85.00 66.75 82.25
Gemini-1.5 (DeepMind, 2024)

Form-1 66.50 58.50 70.50

Form-2 Mixture 69.50 57.25 63.00

Form-3 83.50 65.25 84.00

Table 1: The performance of different visual input forms
on our MuCR benchmark. The mixture means we test
on mixture picture style.

same semantic content has only a minimal effect
on MLLMs’ performance (see Appendix C.1 for
detailed comparison).

Form of Visual Input. We also explore whether
the structure of visual inputs affects the final out-
put. Figure 9 illustrates the three types of visual
input forms we examined. Table 1 presents the
performance of three models on MuCR using these
different formats. It indicates that all models get
marked performance improvements. Our case anal-
ysis suggests that, compared to Form-3, Forms-1
and Form-2 restrict MLLMs’ ability to perceive
certain details that could serve as crucial visual
cues for enhancing multimodal causal reasoning
(see Appendix C.2 for case studies).
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Figure 10: Two image pairs illustrate the same cause-
and-effect relationship but exhibit different contextual
correlations.
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Figure 11: Using human selection as the standard, the
models exhibit varying levels of selection accuracy.

5.2 Visual Semantic Factors

Contextual Variation. In addition to examining
visual format factors, we also explore whether vi-
sual semantics influence MLLMs’ final output. As
shown in Figure 1, MLLMs, particularly GPT-ol,
can identify visual cues such as action, appearance,
and environment, and integrate these details into
their causal inference process. Additionally, the
case study in the above paragraph also confirms
that visual cues are essential for accurate multi-
modal causal inference. To further investigate, we
assess whether the ability to identify visual cues
correlates with multimodal causal reasoning per-
formance. For this purpose, we use manually se-
lected siamese image pairs that best capture seman-
tic causality and maintain visual consistency, along
with some pairs that exhibit minor contextual vari-
ations (see Figure 10). Our challenge is as follows:
given a human-selected cause image, the models
must identify the corresponding effect image from
random 3 samples and 1 correct one. Figure 11
shows that among the four models tested, GPT-01
excels at identifying visual cues, while Claude-3.0
performs the worst, with GPT-4.0 and Claude-3.5
falling in between (see Appendix C.3 for case stud-
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Before ' 5800 50.25 57.00 Table 3: The performance of different CoT strategies on
After Mixture 5300 5950  77.00 MuCR benchmark.

Table 2: The impact of adding text hints on different
models.

ies). This finding confirms a positive correlation
between an MLLM’s ability to identify visual cues,
distinguish contextual variations, and its overall
multimodal causal reasoning performance.

Text Hints. Since we verified a positive corre-
lation between multimodal causal reasoning and
visual cue perception, the next question is whether
text hints can compensate for shortcomings in vi-
sual cue perception. To explore this, we use the
contextual descriptions generated during dataset
creation as dense captions, as they provide detailed
raw information while preserving correct semantic
meanings. Table 2 shows that adding text hints
significantly improves MLLMs’ performance, sug-
gesting that enhancing visual cue identification is a
promising avenue for improving cross-modal gen-
eralization.

5.3 Generalization Enhancement

Based on our above analysis, the most crucial
factor affecting MLLMs’ cross-modal generaliza-
tion is the ability to identify visual cues. In re-
sponse, we propose VcCoT, a method designed to
enhance visual cue identification for causal infer-
ence. Inspired by MMCoT (Zhang et al., 2023)

and CCoT (Mitra et al., 2024), our approach first
converts images into dense captions, then extracts
visual details categorized as Character and Back-
ground. Finally, these cues guide the MLLMs’ rea-
soning process, as illustrated in Figure 13. Table 3
demonstrates that VcCoT achieves superior perfor-
mance than others. We also show some qualitative
results in Appendix C.4.

6 Conclusion

In this paper, we introduce MuCR, a novel multi-
modal causal reasoning benchmark that challenges
MLLMs to discern causal links across different
modalities by leveraging synthetic siamese images
and text pairs. We also propose comprehensive met-
rics to assess MLLMs’ understanding from multi-
ple perspectives, including image-level alignment,
phrase comprehension, and sentence-level explana-
tion. Our experimental results reveal that current
MLLMs exhibit a cross-modal gap in causal rea-
soning compared to their strong performance in
purely textual settings. In-depth analysis highlights
that effective visual cue identification is key to en-
hancing generalization, as MLLMs often struggle
with implicit causal dependencies hidden in visual
details. In response, we propose VcCoT, a method
designed to improve visual cue identification for
causal inference, with experimental results demon-
strating its effectiveness.



7 Limitation

Although our research provides a comprehensive
analysis of the potential factors affecting gener-
alization from visual components, it has two no-
table limitations. First, as noted by Wang et al.
(2024a), cross-linguistic variations can influence
performance and may require transfer learning. Fig-
ure 14 presents a simple comparison of transferring
the question language from English to Chinese us-
ing the C2E score, indicating that cross-linguistic
factors affect the final output of the models. How-
ever, due to human resource constraints, we did
not extend this study to the CP and EXP scores, as
these metrics require human reannotation of cue
phrases and sentence explanations.

| O English Chine.se|
100
2 o1 92 91 89
L 85
B -
?75
5 2]
Q
Q
<50
25 —
GPT-o1 Claude-3.5 Gemini-1.5

Figure 14: A comparison of different models on the
C2E score with cross-linguistic setting.

Fine-tune Style C2E CP EXP
LLaVA-v1.6 (Liu et al., 2024b)

Before . 2350 1100 16.50
After Mixture 5500 1375 1525
MiniGPT4-v2 (Zhu et al., 2023)

Before . 17.75 1150 1525
After Mixture 19.00 13.50 16.00
InstructBLIP (Dai et al., 2023)

Before ‘ 12.25 6.50 9.50
After Mixtre - 5, 325 475

Table 4: The impact of direct fine-tuning on different
models.

Additionally, we explored fine-tuning a few
lightweight open-source models. As shown in Ta-
ble 4, direct fine-tuning with the correct choices
did not improve and in some cases even decreased
the performance of these models. Our observa-
tions indicate that these models fail to capture
the causal links between cause-and-effect images
through fine-tuning. Notably, InstructBLIP even
lost its ability to caption images accurately, ex-
hibiting severe hallucinations. Due to limited re-
sources, we did not investigate whether reinforce-
ment learning (Guo et al., 2025) or alternative
strategies (Niklas et al., 2025) could further address

the generalization problem on larger models such
as Qwen2.5-VL (Yang et al., 2024) or LLama3.2-
Vision (Meta, 2024).
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Appendix
A The MuCR Dataset

A.1 Task Formulation

As shown in Figure 2 (b), our dataset D
{(Q,G*(A),{BW}L_ )N consisting of N
triples, each contains a question @, a input G*(A)
(where * represents input form), and four poten-
tial choices { B(")}%_,. The MLLMs are required
to according to the question @ and a input G*(A)
to select the correct answer from four potential
choices {B(®1}4 . The goal of this benchmark
is to determine whether the input form (x) affects
the MLLMs’ prediction accuracy. To this end, the
biggest challenge is defined as follows:

semantic
~

gtext (A) ~ gmulti (A) (7)

semantic
~

where means G*(A) retains identical or
closely aligned semantic meaning across different
modalities. To address this, we propose a novel
transfer strategy that harnesses the linguistic capa-
bilities of LLLMs alongside the image generation
abilities of diffusion models, effectively preserving

semantic content while altering the input form.

A.2 Opverall structure

Section 3 only illustrates the simplified process of
our MuCR benchmark generation. Here, we delve
into more details about the generation process and
the corresponding prompts. Figure 15 showcases
the detailed generation process of a weather-related
causal case in our MuCR dataset. Our process be-
gins with generating core caption pairs, each con-
sisting of one caption describing the cause and the
other stating the effect. We then leverage the lan-
guage capabilities of LLMs to entail these paired
captions into contextually relevant descriptions, en-
hancing the consistency of sentences to facilitate
the creation of cause-and-effect image pairs. Then,
we employ diffusion models to generate numer-
ous Siamese images based on these descriptions.
Finally, we annotate cue phrases and causality ex-
planations for each pair.

A.3 Generating Core Caption Pairs

Our MuCR benchmark begins with the creation
of core caption pairs, where one caption outlines
the cause and the other describes the effect. These
pairs maintain semantic causality and serve two
roles. First, they function as textual causal infer-
ence cases to challenge MLLMs’ textual reasoning
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Core Caption Pairs (_Contextual Description Pairs )
Cause:

"The woman found the
dark clouds in the sky."

&

Descriptions:Cause: .
"natural photograph, a woman, green :
jacket, brown pants, long hair, trek up |

a wooded trail, dark clouds in the sky" |
LLM :

Effect: :
"natural photograph, a woman, green :

jacket, brown pants, long hair, catch in'
heavy rainstorm, hair plastered to face,’
worried" :

Effect:
"The woman got caught
in a heavy rainstorm."

Annotations:Cue Phrases:

[bad weather, go hiking,
wild, mountain]

Cause-and-Effect Explanations:
"Cause: the woman is hiking on the: : r
trail under a cloudy sky. Effect: she <}, C
is caught in a heavy rainstorm. The ' O
causal link between them is that the :
approaching bad weather resulted '
in the woman getting caught in a
rainstorm."

Human Annotations ( siameselmages )

Figure 15: A detailed example of generating our MuCR
dataset. Best viewed by zooming in.

ability. Second, they guide the subsequent synthe-
sis of Siamese images. As shown in Figure 16,
we employ a structured refinement loop that trans-
forms initial brainstorming ideas into precise cap-
tion pairs, clearly depicting the cause-and-effect
relationships. This process is guided by the princi-
ple: “Whether the expression is concrete and can
be effectively represented through visual means".
Here, we discuss the rationale behind this rule and
explain why volunteers are instructed to create core
caption pairs in accordance with it.

Figure 17 compares the initial spark and core
caption pairs in image synthesis. The comparison
reveals that the initial spark often contains semanti-
cally ambiguous elements, leading to visual gaps
in the generated images. For instance, the phrase
“the baker left the cake in the oven" might result
in an image depicting only a cake in the oven, as
the diffusion model may struggle to interpret or
visually represent the action “left". Another issue
is subject conflict. For example, the phrase “the
food became inedible" might simply produce an
image of unappealing food on a plate. However,
within a cause-and-effect scenario, a human would
easily infer that “food" refers specifically to the
“cake." In contrast, our core caption pairs resolve
these ambiguities by translating them into more
concrete actions, such as replacing “careless" with
“played his phone." This refinement significantly
improves the quality of the generated images and
the semantic causality between the pairs.

We ask the volunteers to design four paired cap-
tions as a group, each sharing similar causalities but
containing different visual cues. These groups are
intended to explore the capability of distinguishing



Cause Effect Category
The man drove his car at an excessive speed. The man got a speeding ticket. Person
The woman drove her car at at an excessive speed. = The woman was pulled over by the policeman. Person
The old man drave his car at an excessive speed. The old man was pulled over by the policeman. Person
The old woman drave her car at an excessive speed. The old woman got a speeding ticket. Person
The shark is attacking the fish. The fish got wounded on its back. Animal
The shark is attacking the seal. The seal got wounded on its back. Animal
The shark is attacking the manta ray. The manta ray got wounded and bleeding. Animal
The shark is attacking the penguin. The penguin got wounded and bleeding. Animal
The chrysanthemum is blooming. The chrysanthemum attracting bees to collect nectar. Plant
The tulip is blooming. The tulip attracting bees to collect nectar. Plant
The rose is blooming. The rose attracting bees to collect nectar. Plant
The jasmine is blooming. The jasmine attracting bees to collect nectar. Plant
The rabbit worked hard. The rabbit earn much money. Character
The monkey worked hard. The monkey earn much money. Character
The bear worked hard. The bear earn much money. Character
The fox worked hard. The fox earn much money. Character
The gardener planted a tree. The tree grew tall. Mixture
The farmer planted seeds. The seeds sprouted into crops. Mixture
The child planted flowers. The flowers bloomed in the garden. Mixture
The woman planted herbs. The herbs grew in the pot. Mixture

Table 5: Case studies for the paired caption generation process.

Core Caption Pairs

the oven careless."

Lffect: "The food became inedible.

4

Cause: "The baker left the cake in J Generation

inedible. "

the cake and played his phone."

Cause: "The baker forgot to set a timer fol
Effect: "The cake burned became

Initial Spark
"The baker left the cake: "The food became '
in the oven careless.” ! inedible.”

Whether the expression is concrete
and can be effectively represented
through visual means?

Which part is ambiguous

or difficult to express >
through visual means?

refine captions

"left the cake
in the oven”
"careless"

"food"
"inedible”  =>

=> "cake"

Initial Spark:===» Iterative Loop: ==

Figure 16: The process of generating paired captions
through refinement loops, ensuring the final captions
are precise and can be effectively represented through

visual means.

"forgot to set a
timer for the cake"
=> "played his phone’

"burned and
became inedible”

[ Core Caption Pairs

Effect:_

nd became
I inedible."

similar causalities occurring in different subjects
across various scenarios. Furthermore, to maintain
the diversity of our dataset, we include a portion of
non-human cases. While many causality scenarios
feature humans as subjects, we also incorporate
cases involving animals, plants, comic characters,
and their interactions. Table 5 shows generated
paired-caption examples (i.e., four captions shar-
ing similar causalities but involving different vi-
sual cues are paired as a group) for various scenar-
ios (i.e., cases involving humans, animals, plants,
comic characters, and mixtures). Abstract expres-
sions are concretized during the paired-caption gen-
eration process according to the causality. For in-
stance, the scenario “driving at excessive speed"
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Figure 17: A comparison of directly using initial spark
and our core caption pairs to generate cause-and-effect
images through diffusion model.

is rephrased in terms of its potential outcomes,
such as “getting a speeding ticket" or “being pulled
over by a police officer". Similarly, the concept of
“blooming" is illustrated through its possible conse-
quence, “attracting bees to gather nectar". This pro-
cess leverages causal reasoning to ground abstract
ideas in real-world outcomes, thereby enhancing
the intelligibility and reproducibility of the gener-
ated captions.



(a) The drawback of missing context
Caption_2:
"The completed picture
was colorful.”
v

Caption_1:
"The child was drawing a
picture in the room."

Select two images that
best represent the
cause-and-effect
captions?

(b) The advantage incorporating context

Do the two images
illustrate the core

Description_1:
"natural photograph, a
child, yellow shirt, blonde

hair, draw a picture..." causality?
Description_2:
"natural photograph, a child, Ag_es j
yellow shirt, blonde hair, the CIOtT\%Isr: %
completed picture..."” BackgroundE 7

Figure 18: An example of core captions vs contextual
descriptions in cause-and-effect image synthesis.

A.4 Producing Contextual Description Pairs

The absence of crucial visual cues could introduce
randomness in image creation, which may lead to
inconsistencies and potentially undermine the per-
ceived causality between the siamese images. Fig-
ure 18 highlights the drawbacks of missing context
and the advantages of incorporating context. As
shown in Figure 18 (a), although the two columns
of images accurately represent the core caption,
mismatched clothing disrupts the sense of causal-
ity, making it difficult to form coherent pairs. In
contrast, the example in Figure 18 (b) demonstrates
that incorporating contextual information and trans-
forming core captions into contextual descriptions
effectively resolves this issue and reduces random-
ness in image synthesis. To achieve this, we lever-
age the linguistic capabilities of LLMs to enhance
core caption pairs by enriching contextual details
such as appearance, clothing, environment, and
atmosphere. Additionally, we introduce subtle
changes, such as variations in facial expressions,
within the contextual description pairs to reflect the
passage of time. These detailed variations empha-
size the impact of causality over time, making the
connection between siamese images more natural
and coherent.

we also compare identity-preserving techniques
with our prompt-guidance method (Figure 19).
Traditional identity-preserving image synthesis
methods (e.g., LCM (Gal et al., 2024) and IP-
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ID Preserving Technique

(

(" Our Prompt-Driven Technique )

Output:\

Effect:

A natural photograph of
the beachgoer, with
long blonde hair, now
drenched and sitting on
the wet yellow towel as
rain pours down heavily.
Her red bikini clings to
her wet skin, and her
face shows a mix of
surprise and discomfort
as she shields her eyes
from the downpour. The y
beach setting remains
consistent, with dark,
turbulent skies above.

Cause:

"A natural photograph of
a beachgoer, a woman
with long blonde hair,
wearing a red bikini and
lying on a large yellow
towel on a sandy beach.
She appears relaxed
and carefree, her eyes
closed, enjoying the
moment despite the
foreboding dark clouds
gathering in the sky. The
expansive ocean and the
horizon under the dark,
brooding clouds

enhance the image's
K contrast.” /

Figure 19: A comparison of identity-preserving tech-
nique and our prompt-driven technique on image syn-
thesis.

Adapter (Ye et al., 2023)) focus on image personal-
ization by retaining identity details through a region
encoder during the generation process (Wang et al.,
2024b). However, this approach leads to two ma-
jor issues. First, most existing identity-preserving
techniques rely heavily on guided images, which
limits their capacity for semantically-driven im-
age generation and requires finding a suitable ID
image for each causal scenario. Second, as the
name suggests, identity-preserving methods focus
primarily on maintaining facial identity (appear-
ance) but struggle to incorporate cause-and-effect
relationships across images. In contrast, our causal-
and-effect image synthesis approach leverages the
linguistic capabilities of large language models
(LLMs) to integrate a richer spectrum of contex-
tual information. Not only does it preserve human
facial identity (appearance), but it also accounts
for additional details (e.g., clothing, environment,
and overall atmosphere). This ensures that images
remain coherent even when modifications are intro-
duced through causal reasoning.

A.5 Siamese Images and Annotations

In this section, we show some high-quality exam-
ples as follows:

In the plant category, as shown in Figure 20, take
the jasmine flower pair: the cause image shows a
blooming jasmine flower, while the effect image



Cue Phrases

bloom “Cause: the flower is in full bloom.
Effect: the flower attracts numerous
bee bees. The causal link between them is
that the flower's blooming attracts bees
flower for pollination.”
sunshine
Cue Phrases
bloom

“Cause: the red tulips are shown in full
bloom. Effect: the tulips attract

bee
numerous bees. The causal link between
them is that the blooming tulips draw
flower -
the bees.
sunshine
Cuc Phrases
bloom

“Cause: the red rose is blooming in the
garden. Effect: the red rose is altracting

b
© bees that are gathering around it. The
a causal link between them is that the
ower rose’s blooming has attracted the bees.”
sunshine
Cue Phrases
bloom “Cause: the jasmine flower is in full
bloom. Effect: the bees are seen
bee gathering around the blooming jasmine
flowers. The causal link between them
flower is that the flower's blooming has
attracted the bees.”
sunshine

Flanmt Photograph

Figure 20: Example 1 - Plant
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Cue Phrases

fitness

gym

muscle

dumbbells

Cue Phrases

fitness

gym

muscle

dumbbells

Cue Phrases

fitness

gym

muscle

dumbbells

Cue Phrases

fitness

gym

muscle

dumbbells

“Cause: the rabbit is lifiing dumbbells
in a gym. Effect: the rabbit gaining
strength. The causal link between them
is that the rabbit s workout in the gym
leads to it gaining strength and showing
off its muscles.”

“Cause: the cat is lifting weights at the
gvm. Effect: the cat gains strength and
muscle. The causal link between them is
that the cat’s consistent weightlifting and
workout routine at the gym resulted in
gaining muscle strength.”

“Cause: the dog is at the gym, preparing
for a workout. Effect: the dog is shown with
well-developed muscles. The causal link
between them is that the dog's consistent
workout routine at thegym resulted in
significant muscle growth and increased
strength.”

“Cause: the eagle is lifting a dumbbell at
the gym. Effect: the eagle is flexing its
muscles. The causal link between them is
that the eagle's consistent weightlifiing
and workout routine at the gym resulted
in gaining significant muscle strength and
mass. "

Figure 21: Example 2 - Character
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Cue Phrases

plant “Cause: the man is planting a tree in a
garden. Effect: the tree is fully grown with

grow vibrant pink flowers. The causal link between
them is that the man's efforts in planting and

green nuriuring the tree led o its growth and
blossoming.

land

Mixture  Photograph
Cue Phrases

plant
“Cause: the farmer planting seeds in a field.

row Effect: the crops fill the lush, green field with

& rows of growth. The causal link between them
is that the farmer's planting efforts resulted in

green the successful growth of the crops.”

land

Mixtre Photograph
Cue Phrases

plant ,‘ . .

Cause: the young child carefully planting
flowers in a garden. Effect: this child
grow

standing proudly among a vibrant array of
blooming fowers. The causal link between
green them is that the child'’s planting efforts
resulted in the beautiful, blossoming garden.”

land
Cue Phrases

plant “Cause: the woman carefully planting seedlings
in a garden. Effect: this woman smiling and

grow holding a large pot with flourishing plants. The
causal link between them is that the woman's

green diligent planting and care for the seedlings led to
their healthy growth, resulting in the fourishing

land plants she holds with pride.”

Figure 22: Example 3 - Mixture

18



Text-based Form Multimodal-based Form

Model C2E  CP  Exp C2E CP  Exp
Popular MLLMs
GPT-o01 (OpenAl, 2024b) 94.00 75.50 93.00 87.50 62.00 78.00
GPT-40 (OpenAl, 2024a) 9275 71775 91.50 81.25 57.25 72.50
Claude-3.5 (ClaudeAl, 2024b) 92.50 77.00 9275 83.50 59.75 77.5
Claude-3.0 (ClaudeAl, 2024a) 88.25 66.75 82.00 58.00 50.25 57.00
Gemini-2.0 (DeepMind, 2025) 93.00 76.00 90.50 75.50 60.75 70.25
Gemini-1.5 (DeepMind, 2024) 89.00 73.25 91.50 66.50 58.50 70.75
Qwen2.5-VL (Yang et al., 2024) 89.00 66.00 90.00 77.00 54.50 72.00
Llama3.2-Vision (Meta, 2024) 83.50 62.50 86.00 54.00 48.25 53.25
Lightweight Open-source Models
LLaVA-NeXT (Li et al., 2024) 5450 37.50 48.00 29.00 17.00 21.00
OpenFlamingo-v2 (Awadalla et al., 2023) 23.00 16.00 17.25 20.00 9.75 18.00
LLaVA-v1.6 (Liu et al., 2024b) 2525 17.25 18.00 23.50 11.00 16.50
MiniGPT4-v2 (Zhu et al., 2023) 13.50 1850 16.75 17.75 11.50 15.25
InstructBLIP (Dai et al., 2023) 14.50 10.00 8.50 12.25 6.50 9.50
Human 96.75 91.00 98.50 95.50 89.50 98.50
Table 6: Main experimental results of different models on our MuCR benchmark.
features a group of bees swarming around it. For Input Form Style C2E CcP EXP
this pair, we select “bloom" as the positive cue GiEol (Cyonell, 20710)
phrase and “bee", “flower", and “sunshine" as the ;rri);tge Mix\ture g§:28 g:gg 3;:88
negative ones, aligning with the visual information. DeepSeek-R1 (Guo et al., 2025)
The annotation emphasizes the connection between Text \ 96.00 7350  95.00
the flower’s blooming and the attraction of bees. DeepSeck-V3 (Li et al., 2014)
Text \ 91.50 7225  92.00

In the character category, as shown in Figure 21,
consider the cat pair: the first image shows a cat
lifting weights at the gym, while the second image
depicts the cat gaining strength and muscle. For
this, “fitness" is used as the positive cue phrase,
with “gym", “muscle”, and “dumbbells" as the neg-
ative ones, matching the visual content. The annota-
tion focuses on the connection between consistent

workouts and muscle gains.

In the mixture category, as shown in Figure 22,
take the female planting pair: the cause image
shows a woman planting seedlings in a garden,
while the effect image displays the same woman
smiling and holding a large pot of flourishing plants.
Here, “plant” is the positive cue phrase, and “grow",
“green", and “land" are the negative ones, aligning
with the visual information. The annotation empha-
sizes the relationship between her nurturing care
and the plant’s growth, along with her pride.
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Table 7: The performance comparison between GPT-01
and DeepSeek models in text domain on MuCR.

B Experiments

In this section, we delve into extended experiments
and provide supplementary details that were not
included in the main paper for the sake of clarity
and brevity.

B.1 Experimental Results

As discussed in Section 4.1, we did not include the
currently popular models DeepSeek-R1 (Guo et al.,
2025) and DeepSeek-V3 (Liu et al., 2024a) in the
main paper. Here, we provide a brief comparison of
their text-based performance against GPT-ol (Ope-
nAl, 2024b). Table 7 shows that DeepSeek-R1
achieves results comparable to GPT-o01 in the text
domain, while DeepSeek-V3 performs slightly less
effectively.

In addition, we provide a detailed breakdown of
each model’s performance on our MuCR bench-



mark. Table 6 presents these results. We observe
that all popular MLLMs significantly outperform
random chance, whereas most lightweight open-
source models perform below the random baseline
of 25%. This indicates that the latter group lacks
robust causal reasoning capabilities.

C Cross-modal Generalization Analysis
and Enhancement

C.1 Picture Style

Here, we present a detailed case analysis compar-
ing the influence of picture style on Claude-3.5’s
predictions, as illustrated in Figure 23.

In the black-white images, Image 1 shows a
warthog bending down to drink water, placing it
in a vulnerable position. The cause is clear—the
warthog’s need to drink compels it to lower its head,
thus reducing its awareness of potential threats.
Among the follow-up images, Image 5 best repre-
sents the effect: it shows a crocodile emerging from
the water, poised to attack a drinking animal, main-
taining consistent compositional elements such as
the animal at the water’s edge and the predator’s
emergence. While Images 2, 3, and 4 depict simi-
lar scenarios with different animals, Image 5 most
directly mirrors the cause-and-effect relationship
suggested by Image 1. However, the analysis in
this style tends to lack detail in some of the incor-
rect answers, which could potentially influence the
model’s predictive accuracy in nuanced cases.

In contrast, the comic style analysis also begins
with Image 1, where a warthog is depicted looking
down at ripples in the water, seemingly unaware
of any lurking danger. The potential effects are
illustrated across multiple images: Image 2 shows
a wildebeest encountering a crocodile, Image 3 de-
picts a zebra facing a crocodile, Image 4 features a
gazelle or antelope in a similar scenario, and Image
5 shows another warthog confronting a crocodile.
Here, Image 5 stands out as the best representation
of the effect because it features the same animal as
in the cause image in a comparable setting, now fac-
ing the implied threat signaled by the ripples. The
consistent composition and environmental context
reinforce the direct cause-and-effect relationship.

The comic style analysis provides a richer con-
text and more detailed narrative for the causal re-
lationship, whereas the balck-white analysis, al-
though accurate in identifying the correct image,
offers less detailed reasoning for some incorrect
options.
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C.2 Form of Visual Input

Our case analysis demonstrates that, compared
to Form-3, Forms 1 and 2 impose limitations on
MLLMSs’ ability to recognize and leverage critical
visual cues necessary for multimodal causal rea-
soning. As shown in Figure 24, Form-3 provides
GPT-40 with direct visual information, enabling
it to successfully identify essential details, such
as the continuity in a person’s appearance across
cause-and-effect images. This was evident in GPT-
40’s output, where it correctly determined that the
woman in the cause image, overwhelmed by paper-
work, was the same individual in the effect image,
now engaged in a serious discussion about work.
This recognition of visual consistency is crucial for
establishing causal relationships. However, when
using Form-1, GPT-40 was unable to incorporate
this specific visual cue and instead selected a dif-
ferent effect image (a generic team meeting) based
on a more abstract textual interpretation rather than
a direct visual correlation.

The key issue with Forms 1 and 2 is that they rely
on structured textual descriptions that predefine cat-
egories of reasoning, which may inadvertently filter
out implicit but important visual details. These for-
mats encourage MLLMs to focus on generalized
textual patterns rather than independently deriving
causal relationships from visual features like facial
expressions, body language, and scene continuity.
By contrast, Form-3 allows GPT-4o to analyze raw
visual inputs more freely, enhancing its ability to
establish causal links based on direct visual obser-
vation rather than abstracted textual hints. This
distinction highlights the potential shortcomings of
rigid textual input structures in multimodal causal
reasoning tasks. While textual guidance can be
helpful, it may also constrain the model’s reasoning
process, making it less sensitive to nuanced visual
cues. Ensuring that MLLMs receive input formats
that preserve rich visual information is therefore es-
sential for improving their ability to perform causal
inference in multimodal settings.

C.3 Contextual Variation

Visual cues are crucial for accurate multimodal
causal inference because they provide a consistent
framework for linking cause and effect. Taking
Figure 25 as an example:

* Consistency: Shared elements like the hiking
setting, outfit, and subject positioning help the
model recognize that the images belong to the



same sequence.

* Clear Transitions: Changes in lighting, per-
spective, and mood signal the progression
from cause (a clear, well-lit forest) to effect
(a foggy, atmospheric scene), reinforcing the
narrative flow.

* Disambiguation: Detailed cues identify Im-
age 2 as the best continuation among similar
options, ensuring the causal relationship is
accurately maintained.

The analysis shows that visual cues—ranging from
consistent environmental context and subject de-
tails to nuanced transitions in lighting, perspective,
and mood—are crucial for establishing a clear and
coherent narrative. These cues allow the model
to accurately determine the causal links between
images, ensuring that the inferred relationships are
both logical and contextually grounded. Without
such detailed visual information, the model would
face challenges in differentiating between similar
scenarios, potentially leading to inaccurate or in-
complete causal inferences.

C.4 Qualitative Results of VcCOT

To prove the efficiency of our VcCoT, we provide
some qualitative results, as shown in Figure 26.
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Case study for picture style influence. Best viewed by zoomi

Figure 23
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e ™

Question: Case:

Based on the cause image, which of the below four
images best represents the effect?

Effects:

(2):

(2):

/GPT-4o

Visual Input Form-1

Gom the provided image, the cause is represented by a woman in an office Setting\

appearing overwhelmed with paperwork. This suggests a scenario of being
overworked, stressed, or under pressure at work.

Now, let's analyze the possible effects depicted in the four images:

1. Image 1: A woman having a discussion with a colleague, possibly about work-
related matters.

2. Image 2: A group meeting with individuals in conversation, possibly discussing
workload or solutions.

3. Image 3: Two people talking, one appearing to provide guidance or support.

4. Image 4: Two people holding a certificate, which could indicate recognition,
achievement, or resolution.

Best Choice: Image 2

Reason: If the cause is an overwhelmed employee, a likely effect is a team meeting
or discussion to address workload issues, making Image 2 the most logical
representation of the effect. /

Visual Input Form-3

~

Let's analyze the best causal match.

« Cause: Awoman looking exhausted at her desk, overwhelmed by paperwork.

« Effect 1: The same woman (with same appearance) in a serious discussion with
another woman, possibly about work.

Effect 2: A tense discussion or argument between men in a work setting.

Effect 3: A positive business handshake.

Effect 4: A certificate being awarded, symbolizing success.

Best Answer:

Effect 1 seems to be the best match because it directly follows from the overwhelmed
state in the cause image. It suggests she is now addressing work-related issues,
possibly discussing a problem that arose due to the workload.

\ J
. )

Figure 24: Case study for visual input form influence.
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/Question: Case: \

Based on the cause image, which of the below four
images best represents the effect while maintaining
visual consistency?

Effects:
(2): (3):
(2): @):

AN

-
@ude-:ﬁﬁ

(oking at the visual sequence, Image 2 best represents the effect while mainta@

visual consistency with Image 1. Here's why

1. Image 2 maintains the same:

« Hiking setting

« Qutfit (gray beanie, same jacket, blue backpack)

* Subject positioning (clear view of the backpack)

» Professional photo quality and composition

2. It creates a clear cause-and-effect relationship:

* Image 1 shows the hiker starting their journey in a clear, well-lit forest

« Image 2 shows them continuing into foggy, atmospheric conditions, suggesting
progression deeper into the trail

3. Visual Transition:
« The lighting changes naturally from clear to misty
* The perspective shifts from frontal to profile view, creating a narrative flow
» The mood transitions from preparation to contemplation
While Images 3, 4, and 5 are similar, they either show different clothing (Image 4 with

an orange jacket), different compositions, or don't flow as naturally from the initial
image. Image 2 provides the most seamless visual continuation from Image 1 while

Qintaining all key visual elements. /

Figure 25: Case study for Contextual Variation.
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/Question: Case: \

Based on the cause image, which of the below four
images best represents the effect?

Effects:

(3):

(@):

VcCoT

Consider the following visual hint

Character: Background:
1. chef 1. gardern

2. white hat

3. white coat

4. wear glass

5. watering plants
- J

Results

G\sed on the given visual hints and character consistency, the best effect image \
should maintain the following elements from the cause image:

« Character: A chef wearing a white hat, white coat, and glasses, who was previously
watering plants.
« Background: A garden setting.

Analysis of the Images:

1. The second image (chef picking herbs in the garden) closely aligns with the cause
image. It maintains:

o The same character (chef).

o Consistency in attire (white hat, white coat, and glasses).

o The same garden environment.

o Alogical cause-and-effect sequence: after watering plants, the chef is now picking
herbs, likely for cooking.

2. Other images do not align as well:

o The third and fourth images depict scientists or researchers in lab coats, working in a
controlled indoor environment, which does not match the chef’s attire or setting.

o The fifth image shows elderly gardeners in an outdoor setting, but they are not chefs
and do not maintain the white uniform or glasses.

Conclusion:

The second image (chef picking herbs in the garden) best represents the effect, as it

wintains character consistency and follows a logical cause-and-effect progression. /

Figure 26: Qualitative result for VcCoT.
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