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ABSTRACT

Text-to-video diffusion models enable the generation of high-quality videos that
follow text instructions, simplifying the process of producing diverse and individ-
ual content. Current methods excel in generating short videos (up to 16s), but
produce hard-cuts when naively extended to long video synthesis. To overcome
these limitations, we present StreamingT2V, an autoregressive method that gener-
ates long videos of up to 2 minutes or longer with seamless transitions. The key
components are: (i) a short-term memory block called conditional attention mod-
ule (CAM), which conditions the current generation on the features extracted from
the preceding chunk via an attentional mechanism, leading to consistent chunk
transitions, (ii) a long-term memory block called appearance preservation module
(APM), which extracts high-level scene and object features from the first video
chunk to prevent the model from forgetting the initial scene, and (iii) a random-
ized blending approach that allows for the autoregressive application of a video
enhancer on videos of indefinite length, ensuring consistency across chunks. Ex-
periments show that StreamingT2V produces high motion amount, while com-
peting methods suffer from video stagnation when applied naively in an autore-
gressive fashion. Thus, we propose with StreamingT2V a high-quality seamless
text-to-long video generator, surpassing competitors in both consistency and mo-
tion.

1 INTRODUCTION

The emergence of diffusion models Ho et al. (2020); Song et al. (2020); Rombach et al. (2022);
Ramesh et al. (2022) has sparked significant interest in text-guided image synthesis and manipula-
tion. Building on the success in image generation, they have been extended to text-guided video
generation Ho et al. (2022b); Wang et al. (2023b); Blattmann et al. (2023b); Chen et al. (2023b);
Singer et al. (2022); Girdhar et al. (2023); Blattmann et al. (2023a); Guo et al. (2023b); Li et al.
(2023); Zhang et al. (2023a); Guo et al. (2023a); Khachatryan et al. (2023); Villegas et al. (2022).

Despite the impressive generation quality and text alignment, the majority of existing approaches
such as Ho et al. (2022b); Wang et al. (2023b); Blattmann et al. (2023b;a); Zhang et al. (2023a);
Zheng et al. (2024); PKU-Yuan-Lab & Tuzhan-AI (2024) are mostly focused on generating short
frame sequences (typically of 16, 24, or recently 384 frame-length). However, short videos genera-
tors are limited in real-world use-cases such as ad making, storytelling, etc.

The naı̈ve approach of training video generators on long videos (e.g. ≥ 1200 frames) is usually
impractical. Even for generating short sequences, it typically requires expensive training (e.g. 260K
steps and 4.5K batch size in order to generate 16 frames Wang et al. (2023b)).

Some approaches Oh et al. (2023); Blattmann et al. (2023b); Ho et al. (2022b); Zheng et al. (2024)
thus extend the baselines to autoregressively generate short video chunks conditioned on the last
frame(s) of the preceding chunk. Yet, simply concatenating the noisy latents of a video chunk with
the last frame(s) of the preceding chunk leads to poor conditioning with inconsistent scene transi-
tions (see Sec. D). Some works Blattmann et al. (2023a); Zhang et al. (2023c); Wang et al. (2024);
Dai et al. (2023); Xing et al. (2023) integrate also CLIP Radford et al. (2021) image embeddings
of the last frame of the preceding chunk, which slightly improves consistency. However, they are
still prone to inconsistencies across chunks (see Fig. 12) due to the CLIP image encoder losing
crucial information necessary for accurately reconstructing the conditional frames. The concurrent
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Figure 1: StreamingT2V is an advanced autoregressive technique to create long videos featuring
rich motion dynamics, ensuring temporal consistency, alignment with descriptive text, high frame-
level image quality, and no stagnation. Demonstrations include videos up to 1200 frames, spanning
2 minutes, which can be extended further. The effectiveness of StreamingT2V is not limited by the
Text2Video model used, indicating potential for even higher-quality with improved base models.

work SparseCtrl Guo et al. (2023a) utilizes a more sophisticated conditioning mechanism by sparse
encoder. To match the size of the inputs, its architecture requires to concatenate additional zero-
filled frames to the conditioning frames before being plugged into sparse encoder. However, this
inconsistency in the input leads to inconsistencies in the output (see Sec. 5.3).

Our experiments (see Sec. 5.3) reveal that in fact all-image-to-video methods we assessed eventually
result in video stagnation or strong quality degradation when applied autoregressively by condition-
ing on the last frame of the preceding chunk.

To overcome the weaknesses and limitations of current works, we propose StreamingT2V, an au-
toregressive text-to-video method equipped with long/short-term memory blocks that generates long
videos without temporal inconsistencies.

To this end, we propose the Conditional Attention Module (CAM) which, due to its attentional
nature, effectively borrows the content information from the previous frames to generate new ones,
while not restricting their motion by the previous structures/shapes. Thanks to CAM, our results are
smooth and with artifact-free video chunk transitions.

Current methods not only exhibit temporal inconsistencies and video stagnation, but also experience
alterations in object appearance/characteristics (see e.g. SEINE Chen et al. (2023b) in Fig. 9) and
a decline in video quality over time (see e.g. SVD Blattmann et al. (2023a) in Fig. 5). This occurs
as only the last frame(s) of the preceding chunk are considered, thus overlooking long-term depen-
dencies in the autoregressive process. To address this issue we design an Appearance Preservation
Module (APM) that extracts object and global scene details from an initial image, to condition the
video generation with that information, ensuring consistency in object and scene features throughout
the autoregressive process.

To further enhance the quality and resolution of our long video generation, we adapt a video en-
hancement model for autoregressive generation. To this end, we select a high-resolution text-to-
video model and apply the SDEdit Meng et al. (2022) approach to enhance consecutive 24-frame
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chunks (overlapping with 8 frames) of our video. To make the chunk enhancement transitions
smooth, we design a randomized blending approach for seamless merging of overlapping chunks.

Experiments show that StreamingT2V successfully generates long and temporal consistent videos
from text without video stagnation. To summarize, our contributions are three-fold:

• We introduce StreamingT2V, an autoregressive approach for seamless synthesis of ex-
tended video content using short and long-term dependencies.

• Our Conditional Attention Module (CAM) and Appearance Preservation Module (APM)
ensure the natural continuity of the global scene and object characteristics of generated
videos.

• We seamlessly enhance generated long videos by introducing our randomized blending
approach of consecutive overlapping chunks.

2 RELATED WORK

Text-Guided Video Diffusion Models. Generating videos from text instructions using Diffusion
Models Ho et al. (2020); Sohl-Dickstein et al. (2015) is a newly established and actively researched
field introduced by Video Diffusion Models (VDM) Ho et al. (2022b). The method can generate
only low-resolution videos (up to 128x128) with a maximum of 16 frames (without autoregression),
imposing significant limitations, while requiring massive training resources. Several methods thus
employ video enhancement in the form of spatial/temporal upsampling Ho et al. (2022a); Singer
et al. (2022); Ho et al. (2022b); Blattmann et al. (2023b), using cascades with up to 7 enhancer
modules Ho et al. (2022a). While this leads to high-resolution and long videos, the generated content
is still limited by the content depicted in the key frames.

Towards generating longer videos (i.e. more keyframes), Text-To-Video-Zero (T2V0) Khachatryan
et al. (2023) and ART-V Weng et al. (2023) utilize a text-to-image diffusion model. Therefore,
they can generate only simple motions. T2V0 conditions on its first frame via cross-frame atten-
tion and ART-V on an anchor frame. Due to the lack of global reasoning, it leads to unnatural or
repetitive motions. MTVG Oh et al. (2023) transforms a text-to-video model into an autoregressive
method through a training-free approach. As it uses strong consistency priors within and between
chunks, it results in very low motion amount, and mostly near-static background. FreeNoise Qiu
et al. (2024) samples a small set of noise vectors, re-uses them for the generation of all frames,
while temporal attention is performed on local windows. As temporal attention is invariant to such
frame shuffling, it leads to high similarity between frames, almost always static global motion and
near-constant videos. Gen-L Wang et al. (2023a) generates overlapping short videos and combines
them via temporal co-denoising, which can lead to quality degradation with video stagnation. Re-
cent transformed-based diffusion models Zheng et al. (2024); PKU-Yuan-Lab & Tuzhan-AI (2024)
operate in the latent space of a 3D autoencoder, enabling the generation of up to 384 frames. Despite
extensive training, these models produce videos with limited motion, often resulting in near-constant
videos.

Image-Guided Video Diffusion Models as Long Video Generators. Several works condition the
video generation by a driving image or video Xing et al. (2023); Chen et al. (2023b); Blattmann et al.
(2023a); Guo et al. (2023a); Esser et al. (2023); Zhang et al. (2023c); Chen et al. (2023a); Zeng et al.
(2023); Dai et al. (2023); Wang et al. (2024); Long et al. (2024); Ren et al. (2024). They can thus be
turned into an autoregressive method by conditioning on the frame(s) of the preceding chunk.

VideoDrafter Long et al. (2024) uses a text-to-image diffusion model to obtain an anchor frame.
A video diffusion model is conditioned on the driving anchor to generate independently multiple
videos that share the same high-level context. However, this leads to drastic scene cuts as no consis-
tency among video chunks is enforced. StoryDiffusion Zhou et al. (2024) conditions on video frames
that have been linearly propagated from key frames, which leads to severe quality degradation. Sev-
eral works Chen et al. (2023b); Zeng et al. (2023); Dai et al. (2023) concatenate the (encoded)
conditionings (e.g. input frame(s)) with an additional mask (indicating the provided frame(s)) to the
input of the video diffusion model.

In addition to concatenating the conditioning to the input of the diffusion model, several works
Blattmann et al. (2023a); Zhang et al. (2023c); Wang et al. (2024) replace the text embeddings in
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Figure 2: The overall pipeline of StreamingT2V involves three stages: (i) Initialization Stage: The
first 16-frame chunk is synthesized by an off-the-shelf text-to-video model. (ii) Streaming T2V
Stage: New content for subsequent frames is autoregressively generated. (iii) Streaming Refinement
Stage: The long video (e.g. 240, 1200 frames or more) is autoregressively enhanced using a high-
resolution text-to-short-video model with a randomized blending approach.

the cross-attentions of the diffusion model by CLIP Radford et al. (2021) image embeddings of
the conditional frames. However, according to our experiments, their applicability for long video
generation is limited. SVD Blattmann et al. (2023a) shows severe quality degradation over time (see
Fig. 5), and both, I2VGen-XL Zhang et al. (2023c) and SVD Blattmann et al. (2023a) generate often
inconsistencies between chunks, still indicating that the conditioning mechanism is too weak.

Some works Xing et al. (2023); Chen et al. (2023a) such as DynamiCrafter-XL Xing et al. (2023)
thus add to each text cross-attention an image cross-attention, which leads to better quality, but still
to frequent inconsistencies between chunks.

The concurrent work SparseCtrl Guo et al. (2023a) adds a ControlNet Zhang et al. (2023b)-like
branch to the model, taking the conditional frames and a frame-mask as input. It requires by design
to append additional frames consisting of black pixels to the conditional frames. This inconsistency
is difficult to compensate for the model, leading to frequent and severe scene cuts between frames.

Overall, only a small number of keyframes can currently be generated at once with high quality.
While in-between frames can be interpolated, it does not lead to new content. Also, while image-
to-video methods can be used autoregressively, their used conditional mechanisms lead either to
inconsistencies, or the method suffers from video stagnation. We conclude that existing works are
not suitable for high-quality and consistent long video generation without video stagnation.

3 PRELIMINARIES

Diffusion Models. Our text-to-video model, which we term StreamingT2V, is a diffusion model
that operates in the latent space of the VQ-GAN Esser et al. (2021); Van Den Oord et al. (2017) au-
toencoder D(E(·)), where E and D are the corresponding encoder and decoder, respectively. Given
a video V ∈ RF×H×W×3, composed of F frames with spatial resolution H × W , its latent code
x0 ∈ RF×h×w×c is obtained through frame-wise application of the encoder. More precisely, by
identifying each tensor x ∈ RF×ĥ×ŵ×ĉ as a sequence (xf )Ff=1 with xf ∈ Rĥ×ŵ×ĉ, we obtain the
latent code via xf

0 := E(Vf ), for all f = 1, . . . , F . The diffusion forward process gradually adds
Gaussian noise ϵ ∼ N (0, I) to the signal x0:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), t = 1, . . . , T (1)

where q(xt|xt−1) is the conditional density of xt given xt−1, and {βt}Tt=1 are hyperparameters. A
high value for T is chosen such that the forward process completely destroys the initial signal x0

resulting in xT ∼ N (0, I). The goal of a diffusion model is then to learn a backward process

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

for t = T, . . . , 1 (see DDPM Ho et al. (2020)), which allows to generate a valid signal x0 from
standard Gaussian noise xT . Once x0 is obtained from xT , the generated video is obtained by
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Figure 3: Method overview: StreamingT2V enhances a video diffusion model (VDM) with the
conditional attention module (CAM) for short-term memory, and with the appearance preservation
module (APM) for long-term memory. CAM conditions a VDM on the preceding chunk using a
frame encoder Econd. CAM’s attentional mechanism enables smooth transitions between chunks
and high motion. APM extracts high-level image features from an anchor frame and injects them
into the text cross-attentions of the VDM, preserving object/scene features during the autoregression.

applying the decoder frame-wise: Ṽf := D(xf
0 ), for all f = 1, . . . , F . Yet, instead of learning a

predictor for mean and variance in Eq. 2, we learn a model ϵθ(xt, t) to predict the Gaussian noise ϵ
that was used to form xt from input signal x0 (a common reparametrization Ho et al. (2020)).

For text-guided video generation, we use a neural network with learnable weights θ as noise predic-
tor ϵθ(xt, t, τ) that is conditioned on the textual prompt τ . We train it on the denoising task:

min
θ

Et,(x0,τ)∼pdata,ϵ∼N (0,I)||ϵ− ϵθ(xt, t, τ)||22, (3)

using the data distribution pdata. To simplify notation, we will denote by xr:s
t := (xj

t )
s
j=r the latent

sequence of xt from frame r to frame s, for all r, t, s ∈ N.

Text-To-Video Models. Text-to-video models Girdhar et al. (2023); Singer et al. (2022); Wang
et al. (2023b); Ho et al. (2022a); Blattmann et al. (2023b) typically expand pre-trained text-to-image
models Rombach et al. (2022); Ramesh et al. (2022) by adding new layers that operate on the tem-
poral axis. Modelscope (MS) Wang et al. (2023b) follows this approach by extending the UNet-like
Ronneberger et al. (2015) architecture of Stable Diffusion Rombach et al. (2022) with temporal
convolutional and attentional layers. It was trained in a large-scale setup to generate videos with
3 FPS@256x256 and 16 frames. The quadratic growth in memory and compute of the temporal
attention layers (as used in recent text-to-video models) together with very high training costs lim-
its current text-to-video models in generating long sequences. In this paper, we demonstrate our
StreamingT2V method by taking MS as a basis and turn it into an autoregressive model suitable for
long video generation with high motion dynamics and consistency.
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4 METHOD

In this section, we introduce our method for high-resolution text-to-long video generation. We first
generate 256 × 256 resolution long videos (240 frames, or 1200 frames), then enhance them to
higher resolution (720 × 720). The overview of the whole pipeline is provided in Fig. 2. The long
video generation process comprises three stages: the Initialization Stage, where the first 16-frame
chunk is synthesized by a pre-trained text-to-video model (e.g. Modelscope Wang et al. (2023b)),
the Streaming T2V Stage where new content for subsequent frames is generated autoregressively.
To ensure seamless transitions between chunks, we introduce (see Fig. 3) our conditional attention
module (CAM), which utilizes short-term information from the last Fcond = 8 frames and our ap-
pearance preservation module (APM), which extracts long-term information from an anchor frame
to maintain object appearance and scene details during the autoregressive process. After generat-
ing a long video (e.g. 240, 1200 frames or more), the Streaming Refinement Stage enhances the
video using a high-resolution text-to-short-video model (e.g. MS-Vid2Vid-XL Zhang et al. (2023c))
autoregressively with our randomized blending approach for seamless chunk processing. This step
does not require additional training, making our approach cost-effective.

4.1 CONDITIONAL ATTENTION MODULE

For training a conditional network in our Streaming T2V stage, we leverage the capabilities of a pre-
trained text-to-video model (e.g. Modelscope Wang et al. (2023b)) as a prior for autoregressive long
video generation. Subsequently, we will denote this pre-trained text-to-(short)video model as Video-
LDM. To condition Video-LDM autoregressively with short-term information from the preceding
chunk (see Fig. 2, mid), we introduce the Conditional Attention Module (CAM). CAM consists of
a feature extractor and a feature injector into the Video-LDM UNet, inspired by ControlNet Zhang
et al. (2023b). The feature extractor utilizes a frame-wise image encoder Econd, followed by the same
encoder layers that the Video-LDM UNet uses up to its middle layer (initialized with the UNet’s
weights). For the feature injection, we let each long-range skip connection in the UNet attend to
corresponding features generated by CAM via cross-attention.

Let x denote the output of Econd after zero-convolution. We use addition to fuse x with the output
of the first temporal transformer block of CAM. For the injection of CAM’s features into the Video-
LDM Unet, we consider the UNet’s skip-connection features xSC ∈ Rb×F×h×w×c (see Fig. 3)
with batch size b. We apply spatio-temporal group norm, and a linear projection Pin on xSC. Let
x′
SC ∈ R(b·w·h)×F×c be the resulting tensor after reshaping. We condition x′

SC on the corresponding
CAM feature xCAM ∈ R(b·w·h)×Fcond×c (see Fig. 3), where Fcond is the number of conditioning
frames, via temporal multi-head attention (T-MHA) Vaswani et al. (2017), i.e. independently for
each spatial position (and batch). Using learnable linear maps PQ, PK , PV , for queries, keys, and
values, we apply T-MHA using keys and values from xCAM and queries from x′

SC, i.e.

x′′
SC = T-MHA

(
Q = PQ(x

′
SC),K = PK(xCAM), V = PV (xCAM)

)
. (4)

Finally, we use a linear projection Pout. Using a suitable reshaping operation R, the output of CAM
is added to the skip connection (as in ControlNet Zhang et al. (2023b)):

x′′′
SC = xSC +R(Pout(x

′′
SC)), (5)

so that x′′′
SC is used in the decoder layers of the UNet. We use zero-initialized projection Pout, so that

CAM initially does not affect the base model’s output, which improves convergence.

The design of CAM enables conditioning the F frames of the base model on the Fcond frames of
the preceding chunk. In contrast, sparse encoder Guo et al. (2023a) employs convolution for feature
injection, thus needs additional F − Fcond zero-valued frames (and a mask) as input, in order to
add the output to the F frames of the base model. These inconsistencies in the input lead to severe
inconsistencies in the output (see Sec. D.1 and Sec. 5.3).

4.2 APPEARANCE PRESERVATION MODULE

Autoregressive video generators typically suffer from forgetting initial object and scene features,
leading to severe appearance changes. To tackle this issue, we incorporate long-term memory by
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leveraging the information contained in a fixed anchor frame of the very first chunk using our pro-
posed Appearance Preservation Module (APM). This helps to maintain scene and object features
across video chunk generations (see Fig. 13).

To enable APM to balance guidance from the anchor frame and the text instructions, we propose
(see Fig. 3): (i) We combine the CLIP Radford et al. (2021) image token of the anchor frame with
the CLIP text tokens from the textual instruction by expanding the clip image token to k = 16
tokens using an MLP layer, concatenating the text and image encodings at the token dimension,
and utilizing a projection block, leading to xmixed ∈ Rb×77×1024; (ii) For each cross-attention layer
l, we introduce a weight αl ∈ R (initialized as 0) to perform cross-attention using keys and values
derived from a weighted sum xmixed, and the usual CLIP text encoding of the text instructions xtext:

xcross = SiLU(αl)xmixed + xtext. (6)

The experiments in Sec. D.2 show that the light-weight APM module helps to keep scene and iden-
tity features across the autoregressive process (see Fig. 13).

4.3 AUTO-REGRESSIVE VIDEO ENHANCEMENT

To further enhance the quality and resolution of our text-to-video results, we use a high-resolution
(1280 × 720) text-to-(short)video model (Refiner Video-LDM, see Fig. 2), e.g. MS-Vid2Vid-XL
Wang et al. (2024); Zhang et al. (2023c), to autoregressively improve 24-frame video chunks. To
this end, we add noise to each video chunk and then denoise it using Refiner Video-LDM (SDEdit
approach Meng et al. (2022)). Specifically, we upscale each low-resolution 24-frame video chunk to
720× 720 using bilinear interpolation Amidror (2002), zero-pad to 1280× 720, encode the frames
with the image encoder E to get a latent code x0, apply T ′ < T forward diffusion steps (see Eq. 1)
so that xT ′ still contains signal information, and denoise it with Refiner Video-LDM.

Naively enhancing each chunk independently leads to inconsistent transitions (see Fig. 4 (a)). To
overcome this shortcoming, we introduce shared noise and a randomized blending technique. We
divide a low-resolution long video into m chunks V1, . . . ,Vm of F = 24 frames, each with an
O = 8 frames overlap between consecutive chunks. For each denoising step, we must sample
noise (compare Eq. 2). We combine that noise with the noise already sampled for the overlapping
frames of the preceding chunk to form shared noise. Specifically, for chunk Vi, i = 1, we sample
noise ϵ1 ∼ N (0, I) with ϵ1 ∈ RF×h×w×c. For i > 1, we sample noise ϵ̂i ∼ N (0, I) with
ϵ̂i ∈ R(F−O)×h×w×c and concatenate it with ϵ

(F−O):F
i−1 (already sampled for the preceding chunk)

along the frame dimension to obtain ϵi i.e.:

ϵi := concat([ϵ
(F−O):F
i−1 , ϵ̂i],dim = 0). (7)

At diffusion step t (starting from T ′), we perform one denoising step using ϵi and obtain for chunk
Vi the latent code xt−1(i). Despite these efforts, transition misalignment persists (see Fig. 4 (b)).

To significantly improve consistency, we introduce randomized blending. Consider the latent codes
xL := xt−1(i−1) and xR := xt−1(i) of two consecutive chunks Vi−1,Vi at denoising step t−1. The
latent code xL of chunk Vi−1 possesses a smooth transition from its first frames to the overlapping
frames, while the latent code xR possesses a smooth transition from the overlapping frames to the
subsequent frames. Thus, we combine the two latent codes via concatenation at a randomly chosen
overlap position, by randomly sampling a frame index fthr from {0, . . . ,O} according to which we
merge the two latents xL and xR:

xLR := concat([x1:F−fthr
L , xfthr+1:F

R ],dim = 0). (8)
Then, we update the latent code of the entire long video xt−1 on the overlapping frames and perform
the next denoising step. Accordingly, for a frame f ∈ {1, . . . ,O} of the overlap, the latent code of
chunk Vi−1 is used with probability 1 − f

O+1 . This probabilistic mixture of latents in overlapping
regions effectively diminishes inconsistencies between chunks (see Fig. 4(c)). The importance of
randomized blending is further assessed in an ablation study in the appendix (see Sec. D).

5 EXPERIMENTS

We elaborate on our implementation, and present qualitative and quantitative evaluations. The im-
portance of our contributions are supported by ablation studies in the appendix (Sec. D).
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(a) Naive Concatenation (b) Shared Noise (c) Randomized Blending

Figure 4: Ablation study on our video enhancer improvements. The X-T slice visualization shows
that randomized blending leads to smooth chunk transitions, while both baselines have clearly visi-
ble, severe inconsistencies between chunks.

5.1 IMPLEMENTATION DETAILS

We generate F = 16 frames, condition on Fcond = 8 frames, and display the video with 10 FPS.
Training is conducted using a dataset collected from publicly available sources. We sample with
3FPS@256x256 16 frames (during CAM training) and 32 frames (during CAM+APM training).

CAM training: we freeze the weights of the pre-trained Video-LDM and train the new layers of
CAM with batch size 8 and learning rate 5 · 10−5 for 400K steps.
CAM+APM training: After the CAM training, we freeze the CLIP encoder and the temporal layers
of the main branch, and train the remaining layers for 1K steps.

The image encoder Econd used in CAM is composed of stacked 2D convolutions, layer norms and
SiLU activations. For the video enhancer, we diffuse an input video using T ′ = 600 steps. Further
training and implementation details are provided in the appendix (see Sec. E).

5.2 METRICS

For quantitative evaluation we employ metrics that measure temporal consistency, text-alignment,
and per-frame quality of our method.

For temporal consistency, we introduce SCuts, which counts the number of detected scene cuts in
a video using the AdaptiveDetector PyS with default parameters. In addition, we propose a new
metric called motion aware warp error (MAWE), which coherently assesses motion amount and
warp error, and yields a low value when a video exhibits both consistency and a substantial amount
of motion. To this end, we measure the motion amount using OFS (optical flow score), which
computes for a video the mean of the squared magnitudes of all optical flow vectors between any
two consecutive frames. Furthermore, for a video V , we consider the mean warp error Lai et al.
(2018) W (V), which measures the average squared L2 pixel distance from a frame to its warped
subsequent frame, excluding occluded regions. Finally, MAWE is defined as:

MAWE(V) := W (V)
OFS(V)

, (9)

which we found to be well-aligned with human perception. For the metrics involving optical flow,
computations are conducted by resizing all videos to 720× 720 resolution.

For video textual alignment, we employ the CLIP Radford et al. (2021) text image similarity score
(CLIP), which is applied to all frames of a video. CLIP computes for a video sequence the cosine
similarity from the CLIP text encoding to the CLIP image encodings.

For per-frame quality we incorporate the Aesthetic Score Schuhmann et al. (2022), which is com-
puted on top of CLIP image embeddings of all frames of a video.

All metrics are computed per video first and then averaged over all videos, all videos are generated
with 240 frames for quantitative analysis.

8
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(a) A squirrel in Antarctica, on a pile of
hazelnuts.

(b) A tiger eating raw meat on the street.

Figure 5: Visual comparisons of StreamingT2V with state-of-the-art methods on 240 frame-length,
autoregressively generated videos. In contrast to other methods, StreamingT2V generates long
videos without suffering from motion stagnation.

5.3 COMPARISON WITH BASELINES

Benchmark. To assess the effectiveness of StreamingT2V, we created a test set composed of 50
prompts covering different actions, objects and scenes (prompts are listed in Sec. F). We compare
against recent methods that have code available, namely the image-to-video methods I2VGen-XL
Zhang et al. (2023c), SVD Blattmann et al. (2023a), DynamiCrafter-XL Xing et al. (2023), OpenSo-
raPlan v1.2 PKU-Yuan-Lab & Tuzhan-AI (2024) and SEINE Chen et al. (2023b) used autoregres-
sively, the video-to-video methods SparseControl Guo et al. (2023a), OpenSora v1.2 Zheng et al.
(2024), and FreeNoise Qiu et al. (2024).

For all methods, we use their released model weights and hyperparameters. To have a fair compar-
ison and insightful analysis on the performance of the methods for the autoregressive generation,
and make the analysis independent on the employed initial frame generator, we use the same Video-
LDM model to generate the first chunk consisting of 16 frames, given a text prompt and enhance
it to 720x720 resolution using the same Refiner Video-LDM. Then, we generate the videos, while
we start all autoregressive methods by conditioning on the last frame(s) of that chunk. For methods
working on different spatial resolution, we apply zero padding to the initial frame(s). All evaluations
are conducted on 240-frames video generations.

Automatic Evaluation. Our quantitative evaluation on the test set shows that StreamingT2V clearly
performs best in terms of seamless chunk transitions and motion consistency (see Tab. 6). Our
MAWE score significantly excels all competing methods (e.g. nearly 30% lower than the second

9
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Table 6: Quantitative comparison to state-of-the-art open-source text-to-long-video generators. Best
performing metrics are highlighted in red, second best in blue. Our method performs best in MAWE
and CLIP score. Only in SCuts, StreamingT2V scores second best, as FreeNoise generates near-
constant videos.

Method ↓MAWE ↓SCuts ↑CLIP
More motion / less stagnation Better consistency / less scene change Better text alignment

SparseCtrl Guo et al. (2023a) 6069.7 5.48 29.32
I2VGenXL Zhang et al. (2023c) 2846.4 0.4 27.28
DynamiCrafterXL Xing et al. (2023) 176.7 1.3 27.79
SEINE Chen et al. (2023b) 718.9 0.28 30.13
SVD Blattmann et al. (2023a) 857.2 1.1 23.95
FreeNoise Qiu et al. (2024) 1298.4 0 31.55
OpenSora Zheng et al. (2024) 1165.7 0.16 31.54
OpenSoraPlan PKU-Yuan-Lab & Tuzhan-AI (2024) 72.9 0.24 29.34

StreamingT2V (Ours) 52.3 0.04 31.73

best score by OpenSoraPlan). Likewise, our method achieves the second lowest SCuts score among
all competitors. Only the methods FreeNoise achieves a slightly lower, perfect score. However,
FreeNoise produces near-static videos (see also Fig. 5), leading automatically to low SCuts scores.
OpenSoraPlan frequently produces scene cuts, leading to a 6 times higher SCuts score than our
method. While SparseControl also follows a ControlNet approach, it leads to 100 times more scene
cuts compared to StreamingT2V. This shows the advantage of our attentional CAM block over Spar-
seControl, where the conditional frames need to be pad with zeros, so that inconsistency in the input
lead to severe scene cuts.

Interestingly, all competing methods that incorporate CLIP image encodings are prone to misalign-
ment (measured in low CLIP scores), i.e. SVD and DynamiCrafterXL and I2VGen-XL. We hypoth-
esize that this is due to a domain shift; the CLIP image encoder is trained on natural images, but in
an autoregressive setup, it is applied on generated images. With the help of our long-term memory,
APM reminds the network about the domain of real images, as we use a fixed anchor frame, so that
it does not degrade, and remains well-aligned to the textual prompt. Accordingly, StreamingT2V
achieves the highest CLIP score among all evaluated methods.

Qualitative Evaluation. Finally, we present corresponding visual results on the test set in Fig. 5
(and in Sec. C). The high similarity of the frames depicted for competitors shows that all competing
methods suffer from video stagnation, where the background and the camera is frozen, and nearly no
object motion is generated. Our method is generating smooth and consistent videos without leading
to standstill. I2VG, SVD, SparseCtrl, SEINE, OpenSoraPlan and DynamiCrafter-XL are prone to
severe quality degradation, e.g. wrong colors and distorted frames, and inconsistencies, showing
that their conditioning via CLIP image encoder and concatenation is too weak and heavily amplifies
errors. In contrast, thanks to the more powerful CAM mechanism, StreamingT2V leads to smooth
chunk transitions. APM conditions on a fixed anchor frame, so that StreamingT2V does not suffer
from error accumulation.

6 CONCLUSION

In this paper, we tackled the challenge of generating long videos from textual prompts. We ob-
served that all existing methods produce long videos either with temporal inconsistencies or severe
stagnation up to standstill. To overcome these limitations, we carefully analysed an autoregressive
pipeline build on top of a vanilla video diffusion model and proposed StreamingT2V, which in-
corporates short- and long-term dependency blocks to ensure smooth continuation of video chunks
with high motion amount while maintaining scene and object features. We proposed a randomized
blending approach that enables to use a video enhancer within the autoregressive process without
temporal inconsistencies. Experimental results demonstrate that StreamingT2V outperforms com-
petitors in terms of motion amount and temporal consistency, enabling the generation of long videos
from text prompts without content stagnation.
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A APPENDIX

APPENDIX

This appendix complements our main paper with experiments, in which we further investigate the
text-to-video generation quality of StreamingT2V, demonstrate even longer sequences than those
assessed in the main paper, and provide additional information on the implementation of Stream-
ingT2V and the experiments carried out.

In Sec. B, a user study is conducted on the test set, in which all text-to-video methods under consid-
eration are evaluated by humans to determine the user preferences.

Sec. C supplements our main paper by additional qualitative results of StreamingT2V for very long
video generation, and qualitative comparisons with competing methods.

In Sec. D, we present ablation studies to show the effectiveness of our proposed components CAM,
APM and randomized blending.

In Sec. E, further training details, including hyperparameters used in StreamingT2V, and implemen-
tation details of our ablated models are provided.

Finally, Sec. F provides the prompts that compose our testset.

B USER STUDY

We conduct a user study comparing our StreamingT2V method with prior work using the video
results generated for the benchmark of Sec. 5.3. To remove potential biases, we resize and crop
all videos to align them. The user study is structured as a one vs one comparison between our
StreamingT2V method and competitors where participants are asked to answer three questions for
each pair of videos:

• Which model has better motion?

• Which model has better text alignment?

• Which model has better overall quality?

We accept exactly one of the following three answers for each question: preference for the left
model, preference for the right model, or results are considered equal. To ensure fairness, we ran-
domize the order of the videos presented in each comparison, and the sequence of comparisons.
Fig. 6 shows the preference score obtained from the user study as the percentage of votes devoted to
the respective answer.

Across all comparisons to competing methods, StreamingT2V is significantly more often preferred
than the competing method, which demonstrates that StreamingT2V clearly improves upon state-of-
the-art for long video generation. For instance in motion quality, as the results of StreamingT2V are
non-stagnating videos, temporal consistent and possess seamless transitions between chunks, 65%
of the votes were preferring StreamingT2V, compared to 17% of the votes preferring SEINE.

Competing methods are much more affected by quality degradation over time, which is reflected in
the preference for StreamingT2V in terms of text alignment and overall quality.

C QUALITATIVE RESULTS

Complementing our visual results shown in the main paper (see Fig. 5), we present additional quali-
tative results of StreamingsT2V on our test set on very long video generation, and further qualitative
comparisons to prior works on 240 frames.
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Figure 6: We conduct a user study, asking humans to assess the test set results of Sec. 5.3 in a
one-to-one evaluation, where for any prompt of the test set and any competing method, the results
of the competing method have to be compared with the corresponding results of our StreamingT2V
method. For each comparison of our method to a competing method, we report the relative of
number votes that prefer StreamingT2V (i.e. wins), that prefer the competing method (i.e. losses),
and that consider results from both methods as equal (i.e. draws).

C.1 VERY LONG VIDEO GENERATION

Supplementing our main paper, we show that StreamingT2V can be used for very long video gener-
ation. To this end, we generate and show videos consisting of 1200 frames, thus spanning 2 minutes,
which is 5 times longer than the ones produced for the experiments in our main paper. Fig. 7 show
these text-to-video results of StreamingT2V for different actions, e.g. dancing, running, or camera
moving, and different characters like bees or jellyfish. We can observe that scene and object features
are kept across each video generation (see e.g. Fig. 7(a)&(e)), thanks to our proposed APM module.
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Our proposed CAM module ensures that generated videos are temporally smooth, with seamless
transitions between video chunks, and not stagnating (see e.g. Fig. 7(f)&(k)).

(a) People dancing in room filled with fog and colorful lights

(b) Camera moving in a wide bright ice cave

(c) Marvel at the diversity of bee species

(d) Dive into the depths of the ocean: explore vibrant coral reefs

(e) Venture into the kelp forests: weave through towering underwater forests

(f) Experience the dance of jellyfish: float through mesmerizing swarms of jellyfish

(g) Enter the realm of ice caves: venture into frozen landscapes

(h) Wide shot of battlefield, stormtroopers running at night, smoke, fires and smokes

(i) Witness the wonders of sea caves

(j) Camera moving around vast deserts, where dunes stretch endlessly into the horizon

(k) Enter the fascinating world of bees: explore the intricate workings of a beehive

Figure 7: Qualitative results of StreamingT2V for different prompts. Each video has 1200 frames.
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C.2 MORE QUALITATIVE EVALUATIONS.

The visual comparisons shown in Fig. 8, 9, 10, 11 demonstrate that StreamingT2V significantly ex-
cels the generation quality of all competing methods. StreamingT2V shows non-stagnating videos
with good motion quality, in particular seamless transitions between chunks and temporal consis-
tency.

Videos generated by DynamiCrafter-XL eventually possess severe image quality degradation. For
instance, we observe in Fig. 8 eventually wrong colors at the beagle’s face and the background
pattern heavily deteriorates. The quality degradation also heavily deteriorates the textual alignment
(see the result of DynamiCrafter-XL in Fig. 10). Across all visual results, the method SVD is even
more susceptible to these issues.

The methods SparseControl and FreeNoise eventually lead to almost stand-still, and are thus not
able to perform the action described in a prompt, e.g. ”zooming out” in Fig. 11. Likewise, also
SEINE is not following this camera instructions (see Fig. 11).

OpenSora is mostly not generating any motion, leading either to complete static results (Fig. 8),
or some image warping without motion (Fig. 10). OpenSoraPlan is loosing initial object details
and suffers heavily from quality degradation through the autoregressive process, e.g. the dog is
hardly recognizable at the of the video generation (see Fig. 8), showing again that a sophisticated
conditioning mechanism is necessary.

I2VGen-XL shows low motion amount, and eventually quality degradation, leading eventually to
frames that are weakly aligned to the textual instructions.

We further analyse visually the chunk transitions using an X-T slice visualization in Fig. 12. We can
observe that StreamingT2V leads to smooth transitions. In contrast, we observe that conditioning
via CLIP or concatenation may lead to strong inconsistencies between chunks.

D ABLATION STUDIES

To assess the importance of our proposed components, we conduct several ablation studies on a
randomly sampled set of 75 prompts from our validation set that we used during training.

Specifically, we compare CAM against established conditioning approaches in Sec. D.1, analyse the
impact of our long-term memory APM in Sec. D.2, and ablate on our modifications for the video
enhancer in Sec. D.3.

D.1 CONDITIONAL ATTENTION MODULE.

To analyse the importance of CAM, we compare CAM (w/o APM) with two baselines (baseline
details in Sec. D.1.1): (i) Connect the features of CAM with the skip-connection of the UNet via
zero convolution, followed by addition. We zero-pad the condition frame and concatenate it with
a frame-indicating mask to form the input for the modified CAM, which we denote as Add-Cond.
(ii) We append the conditional frames and a frame-indicating mask to input of Video-LDM’s Unet
along the channel dimension, but do not use CAM, which we denote as Conc-Cond. We train our
method with CAM and the baselines on the same dataset. Architectural details (including training)
of these baselines are provided in the appendix.

We obtain an SCuts score of 0.24, 0.284 and 0.03 for Conc-Cond, Add-Cond and Ours (w/o APM),
respectively. This shows that the inconsistencies in the input caused by the masking leads to frequent
inconsistencies in the generated videos and that concatenation to the Unet’s input is a too weak
conditioning. In contrast, our CAM generates consistent videos with a SCuts score that is 88%
lower than the baselines.

D.1.1 ABLATION MODELS

For the ablation of CAM, we considered two baselines that we compare with CAM. Here we provide
additional implementation details of these baselines.
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(c) SparseControl

Figure 12: Visual comparison of SparseControl, DynamiCrafter-XL and StreamingT2V. All text-
to-video results are generated using the same prompt. The X-T slice visualization shows that
DynamiCrafter-XL and SparseControl suffer from severe chunk inconsistencies and repetitive mo-
tions. In contrast, our method shows seamless transitions and evolving content.
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Figure 8: Video generation for the prompt ”A beagle reading a paper”, using StreamingT2V and
competing methods. For each method, the image sequence of its first row is continued by the image
in the leftmost column of the following row.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

O
ur

s
O

ur
s

SV
D

SV
D

SE
IN

E
SE

IN
E

Fr
ee

N
se

Fr
ee

N
se

I2
V

G
I2

V
G

Figure 9: Video generation for the prompt ”A beagle reading a paper”, using StreamingT2V and
competing methods. For each method, the image sequence of its first row is continued by the image
in the leftmost column of the following row.
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Figure 10: Video generation for the prompt ”Camera is zooming out and the baby starts to cry”,
using StreamingT2V and competing methods. For each method, the image sequence of its first row
is continued by the image in the leftmost column of the following row.
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Figure 11: Video generation for the prompt ”Camera is zooming out and the baby starts to cry”,
using StreamingT2V and competing methods. For each method, the image sequence of its first row
is continued by the image in the leftmost column of the following row.
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(a) Young caucasian female couple drinking cocktails and smiling on terrace in havana, cuba. girls, teens,
teenagers, women

Figure 13: Top row: CAM+APM, Bottom row: CAM. The figure shows that using long-term infor-
mation via APM helps to keep identities (e.g. the face of the left woman) and scene features, e.g.
the dresses or arm clock.

Figure 14: Ablation study on the APM module. Top row is generated from StreamingT2V, bottom
row is generated from StreamingT2V w/o APM.

The ablated model Add-Cond applies to the features of CAM (i.e. the outputs of the encoder and
middle layer of the ControlNet part in Fig. 3) zero-convolution, and uses addition to fuse it with
the features of the skip-connection of the UNet (similar to ControlNet Zhang et al. (2023b)) (see
Fig. 16). We provide here additional details to construct this model. Given a video sample V ∈
RF×H×W×3 with F = 16 frames, we construct a mask M ∈ {0, 1}F×H×W×3 that indicates which
frame we use for conditioning, i.e. Mf [i, j, k] = Mf [i′, j′, k′] for all frames f = 1, . . . , F and for
all i, j, k, i′, j′, k′. We require that exactly F − Fcond frames are masked, i.e.

F∑
f=1

Mf [i, j, k] = F − Fcond, for all i, j, k. (10)

We concatenate [V ⊙M,M ] along the channel dimension and use it as input for the image encoder
Econd, where ⊙ denotes element-wise multiplication.

During training, we randomly set the mask M . During inference, we set the mask for the first 8
frames to zero, and for the last 8 frames to one, so that the model conditions on the last 8 frames of
the previous chunk.

For the ablated model Conc-Cond, we start from our Video-LDM’s UNet, and modify its first con-
volution. Like for Add-Cond, we consider a video V of length F = 16 and a mask M that encodes
which frames are overwritten by zeros. Now the Unet takes [zt, E(V) ⊙M,M ] as input, where we
concatenate along the channel dimension. As with Add-Cond, we randomly set M during training
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so that the information of 8 frames is used, while during inference, we set it such that the last 8
frames of the previous chunk are used. Here E denotes the VQ-GAN encoder (see Sec. 3).

D.2 APPEARANCE PRESERVATION MODULE

We analyse the impact of utilizing long-term memory in the context of long video generation.

Fig. 13 and Fig. 14 show that long-term memory greatly helps keeping the object and scene features
across autoregressive generations. Thanks to the usage of long-term information via our proposed
APM module, identity and scene features are preserved throughout the video. For instance, the face
of the woman in Fig. 14 (including all its tiny details) are consistent1 across the video generation.
Also, the style of the jacket and the bag are correctly generated throughout the video. Without
having access to a long-term memory, these object and scene features are changing over time.

This is also supported quantitatively. We utilize a person re-identification score to measure feature
preservation (definition in Sec. D.2.1), and obtain scores of 93.42 and 94.95 for Ours w/o APM,
and Ours, respectively. Our APM module thus improves the identity/appearance preservation. Also
the scene information is better kept, as we observe an image distance score in terms of LPIPS
Zhang et al. (2018) of 0.192 and 0.151 for Ours w/o APM and Ours, respectively. We thus have an
improvement in terms of scene preservation of more than 20% when APM is used.

D.2.1 MEASURING FEATURE PRESERVATION.

We employ a person re-identification score as a proxy to measure feature preservation. To this end,
let Pn = {pni } be all face patches extracted from frame n using an off-the-shelf head detector
Schroff et al. (2015) and let Fn

i be the corresponding facial feature of pni , which we obtain from
an off-the-shelf face recognition network Schroff et al. (2015). Then, for frame n, n1 := |Pn|,
n2 := |Pn+1|, we define the re-id score re-id(n) for frame n as

re-id(n) :=
{
maxi,j cosΘ(Fn

i , F
n+1
j ), n1 > 0 & n2 > 0.

0 otherwise.
(11)

where cosΘ is the cosine similarity. Finally, we obtain the re-ID score of a video by averaging over
all frames, where the two consecutive frames have face detections, i.e. with m := |{n ∈ {1, .., N} :
|Pn| > 0}|, we compute the weighted sum:

re-id :=
1

m

N−1∑
n=1

re-id(n), (12)

where N denotes the number of frames.

D.3 RANDOMIZED BLENDING.

We assess our randomized blending approach by comparing against two baselines. (B) enhances
each video chunk independently, and (B+S) uses shared noise for consecutive chunks, with an over-
lap of 8 frames, but not randomized blending. We compute per sequence the standard deviation of
the optical flow magnitudes between consecutive frames and average over all frames and sequences,
which indicates temporal smoothness. We obtain the scores 8.72, 6.01 and 3.32 for B, B+S, and
StreamingT2V, respectively. Thus, noise sharing improves chunk consistency (by 31% vs B), but it
is significantly further improved by randomized blending (by 62% vs B).

These findings are supported visually. Fig. 15 shows ablated results on our randomized blending
approach. From the X-T slice visualizations we can see that the randomized blending leads to
smooth chunk transitions, confirming our observations and quantitative evaluations. In contrast,
when naively concatenating enhanced video chunks, or using shared noise, the resulting videos
possess visible inconsistencies between chunks.

1The background appears to have changed. However, please note that the camera is rotating so that a
different area behind the two woman becomes visible, so that the background change is correct.
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(a) Naive Concatenation (b) Shared Noise (c) Randomized Blending

Figure 15: Ablation study on our video enhancer improvements. The X-T slice visualization shows
that randomized blending leads to smooth chunk transitions, while both baselines have clearly visi-
ble, severe inconsistencies between chunks.

E IMPLEMENTATION DETAILS

We provide additional details regarding the training of StreamingT2V and further implementation
details.

E.1 TRAINING DETAILS

In order to train the APM module, we randomly sample an anchor frame out of the first 16 frames.
For the conditioning and denoising, we use the frames 17 − 24 and 17 − 32, respectively. This
aligns training with inference, where there is a large time gap between the conditional frames and
the anchor frame. In addition, by randomly sampling an anchor frame, the model can leverage the
CLIP information only for the extraction of high-level semantic information, as we do not provide a
frame index to the model.

E.2 STREAMING T2V STAGE

For the StreamingT2V stage, we use classifier free guidance Ho & Salimans (2021); Esser et al.
(2023) from text and the anchor frame. More precisely, let ϵθ(xt, t, τ, a) denote the noise prediction
in the StreamingT2V stage for latent code xt at diffusion step t, text τ and anchor frame a. For text
guidance and guidance by the anchor frame, we introduce weights ωtext and ωanchor, respectively.
Let τnull and anull denote the empty string, and the image with all pixel values set to zero, respec-
tively. Then, we obtain the multi-conditioned classifier-free-guided noise prediction ϵ̂θ (similar to
DynamiCrafter-XL Xing et al. (2023)) from the noise predictor ϵ via

ϵ̂θ(xt, t, τ, a) = ϵθ(xt, t, τnull, anull) + ωtext

(
ϵθ(xt, t, τ, anull)− ϵθ(xt, t, τnull, anull)

)
+ ωanchor

(
ϵθ(xt, t, τ, a)− ϵθ(xt, t, τ, anull)

)
. (13)

We then use ϵ̂θ for denoising. In our experiments, we set ωtext = ωanchor = 7.5. During training, we
randomly replace τ with τnull with 5% likelihood, the anchor frame a with anull with 5% likelihood,
and we replace at the same time τ with τnull and a with anull with 5% likelihood.

Additional hyperparameters for the architecture, training and inference of the Streaming T2V stage
are presented in Tab. 12, where Per-Pixel Temporal Attention refers to the attention module used in
CAM (see Fig. 3).

F TEST SET PROMPTS

1. A camel resting on the snow field.
2. Camera following a pack of crows flying in the sky.
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Table 12: Hyperparameters of Streaming T2V Stage. Additional architectural hyperparameters are
provided by the Modelsope report Wang et al. (2023b).

Per-Pixel Temporal Attention
Sequence length Q 16
Sequence length K,V 8
Token dimensions 320, 640, 1280
Appearance Preservation Module
CLIP Image Embedding Dim 1024
CLIP Image Embedding Tokens 1
MLP hidden layers 1
MLP inner dim 1280
MLP output tokens 16
MLP output dim 1024
1D Conv input tokens 93
1D Conv output tokens 77
1D Conv output dim 1024
Cross attention sequence length 77
Training
Parametrization ϵ
Diffusion Setup
Diffusion steps 1000
Noise scheduler Linear
β0 0.0085
βT 0.0120
Sampling Parameters
Sampler DDIM
Steps 50
η 1.0
ωtext 7.5
ωanchor 7.5

Figure 16: Illustration of the Add-Cond baseline, which is used in Sec. D.1.

3. A knight riding on a horse through the countryside.

4. A gorilla eats a banana in Central Park.

5. Men walking in the rain.

6. Ants, beetles and centipede nest.

7. A squirrel on a table full of big nuts.
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8. Close flyover over a large wheat field in the early morning sunlight.

9. A squirrel watches with sweet eyes into the camera.

10. Santa Claus is dancing.

11. Chemical reaction.

12. Camera moving in a wide bright ice cave, cyan.

13. Prague, Czech Republic. Heavy rain on the street.

14. Time-lapse of stormclouds during thunderstorm.

15. People dancing in room filled with fog and colorful lights.

16. Big celebration with fireworks.

17. Aerial view of a large city.

18. Wide shot of battlefield, stormtroopers running at night, fires and smokes and explosions
in background.

19. Explosion.

20. Drone flythrough of a tropical jungle with many birds.

21. A camel running on the snow field.

22. Fishes swimming in ocean camera moving.

23. A squirrel in Antarctica, on a pile of hazelnuts cinematic.

24. Fluids mixing and changing colors, closeup.

25. A horse eating grass on a lawn.

26. The fire in the car is extinguished by heavy rain.

27. Camera is zooming out and the baby starts to cry.

28. Flying through nebulas and stars.

29. A kitten resting on a ball of wool.

30. A musk ox grazing on beautiful wildflowers.

31. A hummingbird flutters among colorful flowers, its wings beating rapidly.

32. A knight riding a horse, pointing with his lance to the sky.

33. steampunk robot looking at the camera.

34. Drone fly to a mansion in a tropical forest.

35. Top-down footage of a dirt road in forest.

36. Camera moving closely over beautiful roses blooming time-lapse.

37. A tiger eating raw meat on the street.

38. A beagle looking in the Louvre at a painting.

39. A beagle reading a paper.

40. A panda playing guitar on Times Square.

41. A young girl making selfies with her phone in a crowded street.

42. Aerial: flying above a breathtaking limestone structure on a serene and exotic island.

43. Aerial: Hovering above a picturesque mountain range on a peaceful and idyllic island
getaway.

44. A time-lapse sequence illustrating the stages of growth in a flourishing field of corn.

45. Documenting the growth cycle of vibrant lavender flowers in a mesmerizing time-lapse.

46. Around the lively streets of Corso Como, a fearless urban rabbit hopped playfully, seem-
ingly unfazed by the fashionable surroundings.

47. Beside the Duomo’s majestic spires, a fearless falcon soared, riding the currents of air
above the iconic cathedral.
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48. A graceful heron stood poised near the reflecting pools of the Duomo, adding a touch of
tranquility to the vibrant surroundings.

49. A woman with a camera in hand joyfully skipped along the perimeter of the Duomo, cap-
turing the essence of the moment.

50. Beside the ancient amphitheater of Taormina, a group of friends enjoyed a leisurely picnic,
taking in the breathtaking views.
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