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Abstract

Many policy optimization approaches in reinforcement learning incorporate a
Kullback-Leilbler (KL) divergence to the previous policy, to prevent the policy
from changing too quickly. This idea was initially proposed in a seminal paper
on Conservative Policy Iteration, with approximations given by algorithms like
TRPO and Munchausen Value Iteration (MVI). We continue this line of work
by investigating a generalized KL divergence—called the Tsallis KL divergence.
Tsallis KL defined by the g-logarithm is a strict generalization, as ¢ = 1 corre-
sponds to the standard KL divergence; ¢ > 1 provides a range of new options.
We characterize the types of policies learned under the Tsallis KL, and motivate
when ¢ > 1 could be beneficial. To obtain a practical algorithm that incorporates
Tsallis KL regularization, we extend M VI, which is one of the simplest approaches
to incorporate KL regularization. We show that this generalized MVI(q) obtains
significant improvements over the standard MVI(g = 1) across 35 Atari games.

1 Introduction

There is ample theoretical evidence that it is useful to incorporate KL regularization into policy
optimization in reinforcement learning. The most basic approach is to regularize towards a uniform
policy, resulting in entropy regularization. More effective, however, is to regularize towards the
previous policy. By choosing KL regularization between consecutively updated policies, the optimal
policy becomes a softmax over a uniform average of the full history of action value estimates
[Vieillard et al., 2020a]. This averaging smooths out noise, allowing for better theoretical results
[Azar et al., 2012, Kozuno et al., 2019, Vieillard et al., 2020a, Kozuno et al., 2022].

Despite these theoretical benefits, there are some issues with using KL regularization in practice.
It is well-known that the uniform average is susceptible to outliers; this issue is inherent to KL
divergence [Futami et al., 2018]. In practice, heuristics such as assigning vanishing regularization
coefficients to some estimates have been implemented widely to increase robustness and accelerate
learning [Grau-Moya et al., 2019, Haarnoja et al., 2018, Kitamura et al., 2021]. However, theoretical
guarantees no longer hold for those heuristics [Vieillard et al., 2020a, Kozuno et al., 2022]. A natural
question is what alternatives we can consider to this KL divergence regularization, that allows us
to overcome some of these disadvantages while maintaining the benefits associate with restricting
aggressive policy changes and smoothing errors.
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In this work, we explore one possible direction by generalizing to Tsallis KL divergences. Tsallis KL
divergences were introduced for physics [Tsallis, 1988, 2009] using a simple idea: replacing the use
of the logarithm with the deformed g-logarithm. The implications for policy optimization, however,
are that we get quite a different form for the resulting policy. Tsallis entropy with ¢ = 2 has actually
already been considered for policy optimization [Chow et al., 2018, Lee et al., 2018], by replacing
Shannon entropy with Tsallis entropy to maintain stochasticity in the policy. The resulting policies
are called sparsemax policies, because they concentrate the probability on higher-valued actions and
truncate the probability to zero for lower-valued actions. Intuitively, this should have the benefit of
maintaining stochasticity, but only amongst the most promising actions, unlike the Boltzmann policy
which maintains nonzero probability on all actions. Unfortunately, using only Tsallis entropy did
not provide significant benefits, and in fact often performed worse than existing methods. We find,
however, that using a Tsallis KL divergence to the previous policy does provide notable gains.

We first show how to incorporate Tsallis KL regularization into the standard value iteration updates,
and prove that we maintain convergence under this generalization from KL regularization to Tsallis
KL regularization. We then characterize the types of policies learned under Tsallis KL, highlighting
that there is now a more complex relationship to past action-values than a simple uniform average.
We then show how to extend Munchausen Value Iteration (MVI) [Vieillard et al., 2020b], to use
Tsallis KL regularization, which we call MVI(g). We use this naming convention to highlight that
this is a strict generalization of MVI: by setting ¢ = 1, we exactly recover MVI. We then compare
MVI(q = 2) with MVI (namely the standard choice where ¢ = 1), and find that we obtain significant
performance improvements in Atari.

Remark: There is a growing body of literature studying generalizations of KL. divergence in RL
[Nachum et al., 2019, Zhang et al., 2020]. Futami et al. [2018] discussed the inherent drawback
of KL divergence in generative modeling and proposed to use (- and ~y-divergence to allow for
weighted average of sample contribution. These divergences fall under the category known as the
f-divergence [Sason and Verdd, 2016], commonly used in other machine learning domains including
generative modeling [Nowozin et al., 2016, Wan et al., 2020, Yu et al., 2020] and imitation learning
[Ghasemipour et al., 2019, Ke et al., 2019]. In RL, Wang et al. [2018] discussed using tail adaptive
f-divergence to enforce the mass-covering property. Belousov and Peters [2019] discussed the use of
a-divergence. Tsallis KL divergence, however, has not yet been studied in RL.

2 Problem Setting

We focus on discrete-time discounted Markov Decision Processes (MDPs) expressed by the tuple
(S, A,d, P,r,~), where S and A denote state space and finite action space, respectively. Let A(X)
denote the set of probability distributions over X. d € A(S) denotes the initial state distribution.
P : S8 x A — A(S) denotes the transition probability function, and 7(s, a) defines the reward
associated with that transition. « € (0, 1) is the discount factor. A policy 7 : S — A(.A) is a mapping
from the state space to distributions over actions. We define the action value function following policy
7 and starting from sy ~ d(-) with action ag taken as Q(s,a) = Ex [0 v're|so = s,a0 = al. A
standard approach to find the optimal value function Q. is value iteration. To define the formulas for
value iteration, it will be convenient to write the action value function as a matrix Q. € RISI*IAl. For
notational convenience, we define the inner product for any two functions Fy, F» € RISIXI4l over
actions as (F, Fy) € RISI,

We are interested in the entropy-regularized MDPs where the recursion is augmented with Q(7):
{m+1 — arg max, ((m, Q) — 7)),
Qu+1 =1+ vP((Tr41, Qr) — TUT41))

This modified recursion is guaranteed to converge if €2 is concave in 7. For standard (Shannon)
entropy regularization, we use Q(7) = —H (w) = (m,In7). The resulting optimal policy has
Tp41 X €XP (T’le) , where o< indicates proportional to up to a constant not depending on actions.

ey

More generally, we can consider a broad class of regularizers known as f-divergences [Sason and
Verdd, 2016]: Q(m) = Dy(r||p) := (u, f (w/n)), where f is a convex function. For example, the
KL divergence Dgy, (7 | ) = (m,ln w—1In p) can be recovered by f(¢) = — In¢t. In this work, when
we say KL regularization, we mean the standard choice of setting ;1 = 7, the estimate from the
previous update. Therefore, Dgy serves as a penalty to penalize aggressive policy changes. The



Figure 1: In, z, exp, « and Tsallis entropy component —7?In, 7 for ¢ = 1 to 5. When ¢ = 1 they
respectively recover their standard counterpart. 7 is chosen to be Gaussian A/ (2,1). As g gets larger
Ing = (and hence Tsallis entropy) becomes more flat and exp, x more steep.

optimal policy in this case takes the form 711 o< 7 exp (Tﬁle). By induction, we can show this
KL-regularized optimal policy 741 is a softmax over a uniform average over the history of action

value estimates [Vieillard et al., 2020a]: 711 X 7 exp (Tﬁle) X -+ OC eXp (7*1 Z?:l Qj).

Using KL regularization has been shown to be theoretically superior to entropy regularization in
terms of error tolerance [Azar et al., 2012, Vieillard et al., 2020a, Kozuno et al., 2022, Chan et al.,
2022].

The definitions of () and Dy (||-) rely on the standard logarithm and both induce softmax policies
as an exponential (inverse function) over (weighted) action-values [Hiriart-Urruty and Lemaréchal,
2004, Nachum and Dai, 2020]. Convergence properties of the resulting regularized algorithms have
been well studied [Kozuno et al., 2019, Geist et al., 2019, Vieillard et al., 2020a]. In this paper, we
investigate Tsallis entropy and Tsallis KL divergence as the regularizer, which generalize Shannon
entropy and KL divergence respectively.

3 Generalizing to Tsallis Regularization

We can easily incorporate other regularizers in to the value iteration recursion, and maintain conver-
gence as long as those regularizers are strongly convex in 7. We characterize the types of policies
that arise from using this regularizer, and prove the convergence of resulting regularized recursion.

3.1 Tsallis Entropy Regularization

Tsallis entropy was first proposed by Tsallis [1988] and is defined by the g-logarithm. The g-logarithm
and its unique inverse function, the g-exponential, are defined as:
=9 -1 1

expyx = [1+ (1 —qa] ", forqgeR\{1} 2

where [-]; := max{-,0}. We define In; = In, exp; = exp, as in the limit ¢ — 1, the formulas in
Eq. (2) approach these functions. Tsallis entropy can be defined by Sq(7) = p (—7?,Ingm) ,p € R
[Suyari and Tsukada, 2005]. We visualize the g-logarithm, g-exponential and Tsallis entropy for
different ¢ in Figure 1. As g gets larger, g-logarithm (and hence Tsallis entropy) becomes more flat
and g-exponential more steep'. Note that exp, is only invertible for x > 1;_1(1.

Tsallis policies have a similar form to softmax, but using the g-exponential instead. Let us provide

some intuition for these policies. When p = 1,¢ = 2, Sy(w) = 1 (7,1 — ), the optimization

problem arg max, ¢ o (4 (7, @) + S2(7) = argmin ¢ x (4) |7 — Q|3 is known to be the Euclidean
projection onto the probability simplex. Its solution [Q — 1] . is called the sparsemax [Martins and
Astudillo, 2016, Lee et al., 2018] and has sparse support [Duchi et al., 2008, Condat, 2016, Blondel
etal., 2020]. ¢ : S x A — S is the unique function satisfying (1,[Q — ¢] ) = 1.

As our first result, we unify the Tsallis entropy regularized policies for all ¢ € Ry with the ¢-
exponential, and show that ¢ and 7 are interchangeable for controlling the truncation.

'The ¢-logarithm defined here is consistent with the physics literature and different from prior RL works
[Lee et al., 2020], where a change of variable ¢* = 2 — ¢ is made. We analyze both cases in Appendix A.
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Figure 2: (Left) Tsallis KL component —mqIn, :—f between two Gaussian policies m =

N(2.75,1),m0 = N(3.25,1) for ¢ = 1to 5. When ¢ = 1 TKL recovers KL. For ¢ > 1, TKL
is more mode-covering than KL. (Mid) The sparsemax operator acting on a Boltzmann policy when
q = 2. (Right) The sparsemax when ¢ = 50. Truncation gets stronger as ¢ gets larger. The same
effect can be also controlled by 7.

Theorem 1. Let Q(w) = —Sy(7) in Eq. (1). Then the regularized optimal policies can be expressed:

m(als) = \/[Q(ja) — g (%)L(l—q) = exp, (Q(‘j” — g (Cg(j)» 3)

where 1, = 1;,1 + l—iq. Additionally, for an arbitrary (q,T) pair with q¢ > 1, the same truncation

effect (support) can be achieved using (q = 2, ﬁ)

Proof. See Appendix B for the full proof. O

Theorem 1 characterizes the role played by g: controlling the degree of truncation. We show the
truncation effect when ¢ = 2 and ¢ = 50 in Figure 2, confirming that Tsallis policies tend to truncate
more as g gets larger. The theorem also highlights that we can set ¢ = 2 and still get more or less
truncation using different 7, helping to explain why in our experiments ¢ = 2 is a generally effective
choice.

Unfortunately, the threshold iq (and 1),) does not have a closed-form solution for g # 1,2, co. Note
that ¢ = 1 corresponds to Shannon entropy and ¢ = oo to no regularization. However, we can resort
to Taylor’s expansion to obtain approximate sparsemax policies.

Theorem 2. For q # 1,00, we can obtain approximate threshold dA)q ~ 14 using Taylor’s expansion,
and therefore an approximate policy:

K (s) is the set of highest-valued actions, satisfying the relation 1 + ZM > Z;Zl Q(s,Ta(j))

where a;y indicates the action with jth largest action value. The sparsemax policy sets the prob-
abilities of lowest-valued actions to zero: (ay|s) = 0,i = z+1,...,|A| where Q(s,a(.)) >

T_ll/;q (%) > Q(s,a(;41)). Whenq =2, iq recovers 1.

»

Proof. See Appendix B for the full proof. O

Lee et al. [2020] also used exp,, to represent policies but they consider the continuous action setting

and do not give any computable threshold. By contrast, Theorem 2 presents an easily computable ﬂq
forall ¢ ¢ {1, 00}.

3.2 Tsallis KL Regularization and Convergence Results

The Tsallis KL divergence is defined as D, (7 | p) := (7, — Ing £) [Furuichi et al., 2004]. It is a
member of f-divergence and can be recovered by choosing f(¢) = —In, ¢. As a divergence penalty,



it is required that ¢ > 0 since f(t) should be convex. We further assume that ¢ > 1 to align with
standard divergences; i.e. penalize large value of l%, since for 0 < ¢ < 1 the regularization would

penalize £ instead. In practice, we find that 0 < ¢ < 1 tend to perform poorly. In contrast to KL,
Tsallis KL is more mass-covering; i.e. its value is proportional to the g-th power of the ratio . When
q is big, large values of % are strongly penalized [Wang et al., 2018]. This behavior of Tsallis KL
divergence can also be found in other well-known divergences: the a-divergence [Wang et al., 2018,
Belousov and Peters, 2019] coincides with Tsallis KL when o = 2; Rényi’s divergence also penalizes
large policy ratio by raising it to the power g, but inside the logarithm, which is therefore an additive
extension of KL [Li and Turner, 2016]. In the limit of ¢ — 1, Tsallis entropy recovers Shannon
entropy and the Tsallis KL divergence recovers the KL divergence. We plot the Tsallis KL divergence
behavior in Figure 2.

Now let us turn to formalizing when value iteration under Tsallis regularization converges. The
g-logarithm has the following properties: Convexity: In,m is convex for ¢ < 0, concave for ¢ > 0.
When ¢ = 0, both Ing, exp, become linear. Monotonicity: In,m is monotonically increasing
with respect to . These two properties can be simply verified by checking the first and second
order derivative. We prove in Appendix A the following similarity between Shannon entropy (reps.
KL) and Tsallis entropy (resp. Tsallis KL). Bounded entropy: we have 0 < H (w) < In|Al; and
Vg, 0 < Sy(m) < Ing |A|. Generalized KL property: ¥q, DL, (7| i) > 0. D, (7| 1) = 0 if and
only if 7 = 41 almost everywhere, and D}, (7 | ) — oo whenever 7(a|s) > 0 and p(als) = 0.

However, despite their similarity, a crucial difference is that In, is non-extensive, which means it is
not additive [Tsallis, 1988]. In fact, In, is only pseudo-additive:
Ingmp=Ingm+1ng p+ (1 —¢) Ing 7ln, . 5)

Pseudo-additivity complicates obtaining convergence results for Eq. (1) with g-logarithm regularizers,
since the techniques used for Shannon entropy and KL divergence are generally not applicable to
their In, counterparts. Moreover, deriving the optimal policy may be nontrivial. Convergence results
have only been established for Tsallis entropy [Lee et al., 2018, Chow et al., 2018].

We know that Eq. (1) with Q(7) = DL, (7| u), for any y, converges for ¢ that make Dy, (7 | i)
strictly convex [Geist et al., 2019]. When ¢ = 2, it is strongly convex, and so also strictly convex,
guaranteeing convergence.

Theorem 3. The regularized recursion Eq. (1) with Q(7) = D, (7 | -) when q = 2 converges to the
unique regularized optimal policy.

Proof. See Appendix C. It simply involves proving that this regularizer is strongly convex. O

3.3 TKL Regularized Policies Do More Than Averaging

We next show that the optimal regularized policy under Tsallis KL regularization does more than
uniform averaging. It can be seen as performing a weighted average where the degree of weighting is
controlled by ¢. Consider the recursion

(6)

{ml — argmax, {r, Qx — Dy (v 70)) .
Qi1 =1+ vP(Th11, Qr — Dy (Th1||7mr))
where we dropped the regularization coefficient 7 for convenience.
Theorem 4. The greedy policy w1 in Equation (6) satisfies

_1_
q—1

1

k k

D=1 > Qi Qi | . (D
j=2

i1:1<"'<ij

q
k

i1 < (exp,Q1 - exp,Qr) = |exp, ZQJ' +
=1

When q = 1, Eq. (6) reduces to KL regularized recursion and hence Eq. (7) reduces to the KL-
regularized policy. When q=2, Eq. (7) becomes:

k k
eXpy Q1 - - - €xpy Qk = €xpy ZQ;’ + ZQMQH
j=1 j=2
’i1:1<~~'<ij



i.e., Tsallis KL regularized policies average over the history of value estimates as well as computing
the interaction between them 2?22 Z§1<--A<ij Qi -+ Q-

Proof. See Appendix D for the full proof. The proof comprises two parts: the first part shows
Tr+1 X exp,Q1 . .. exp,Qk, and the second part establishes the more-than-averaging property by
two-point equation [ Yamano, 2002] and the 2 — ¢ duality [Naudts, 2002, Suyari and Tsukada, 2005]

to conclude (exp,z - exp,y) (- exp, (v + T (g —1)2ay. O

The form of this policy is harder to intuit, but we can try to understand each component. The first
component actually corresponds to a weighted averaging by the property of the exp,:

k
N\ @ Qr
exp, (2 Ql>_ xPy Q1 XP, (1 T q)Q1> B (1 +(1-g) S Qi) W

Eq. (8) is a possible way to expand the summation: the left-hand side of the equation is what one
might expect from conventional KL regularization; while the right-hand side shows a weighted
scheme such that any estimate (; is weighted by the summation of estimates before @); times 1 — ¢
(Note that we can exchange 1 and ¢, see Appendix A). Weighting down numerator by the sum of
components in the demoninator has been analyzed before in the literature of weighted average by
robust divergences, e.g., the y-divergence [Futami et al., 2018, Table 1]. Therefore, we conjecture
this functional form helps weighting down the magnitude of excessively large Qx, which can also be
controlled by choosing ¢. In fact, obtaining a weighted average has been an important topic in RL,
where many proposed heuristics coincide with weighted averaging [Grau-Moya et al., 2019, Haarnoja
et al., 2018, Kitamura et al., 2021].

Now let us consider the second term with ¢ = 2, therefore the leading (¢ — 1)7 vanishes. The
action-value cross-product term can be intuitively understood as further increasing the probability
for any actions that have had consistently larger values across iterations. This observation agrees
with the mode-covering property of Tsallis KL. However, there is no concrete evidence yet how the
average inside g-exponential and the cross-product action values may work jointly to benefit the
policy, and their benefits may depend on the task and environments, requiring further categorization
and discussion. Empirically, we find that the nonlinearity of Tsallis KL policies bring superior
performance to the uniform averaging KL policies on the testbed considered.

4 A Practical Algorithm for Tsallis K. Regularization

In this section we provide a practical algorithm for implementing Tsallis regularization. We first
explain why this is not straightforward to simply implement KL-regularized value iteration, and
how Munchausen Value Iteration (MVI) overcomes this issue with a clever implicit regularization
trick. We then extend this algorithm to ¢ > 1 using a similar approach, though now with some
approximation due once again to the difficulties of pseudo-additivity.

4.1 Implicit Regularization With MVI

Even for the standard KL, it is difficult to implement KL-regularized value iteration with function
approximation. The difficulty arises from the fact that we cannot exactly obtain 71 o 7 exp (Q).
This policy might not be representable by our function approximator. For ¢ = 1, one needs to store
all past (Q which is computationally infeasible.

An alternative direction has been to construct a different value function iteration scheme, which is
equivalent to the original KL regularized value iteration [Azar et al., 2012, Kozuno et al., 2019].
A recent method of this family is Munchausen VI (MVI) [Vieillard et al., 2020b]. MVI implicitly
enforces KL regularization using the recursion

{Wk+1 = argmax, (7,Qr — 7lnm) ©)
Qr+1=r+arnmy +vP (Tpy1, Qp—7TIn gy 1)

We see that Eq. (9) is Eq. (1) with Q(7) = —H (7) (blue) plus an additional red Munchausen term,
with coefficient . Vieillard et al. [2020b] showed that implicit KL regularization was performed
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Figure 3: MVI(q) on CartPole-v1 for ¢ = 2, 3, 4,5, averaged over 50 seeds, with 7 = 0.03, « = 0.9.
(Left) The difference between the proposed action gap (), — M, Q) and the general Munchausen
term Ing 751 converges to a constant. (Right) The residual Rq(ﬁk+1, ) becomes larger as ¢
increases. For ¢ = 2, it remains negligible throughout the learning.

under the hood, even though we still have tractable 741 < exp (Tﬁle)Z

Qk:+1 =r+arlnmgy +’7P<7Tk+1,Qk —Tln’ﬂ'k+1> == Qk+1—a7'ln7l'k+1:
r+yP((Trt1, Qr — atInmy) — (M1, ar(In o —Inmg) — (1 — )7 Inmgy1))
& Qhpy =7+ vP({Thg1, Qk) — a7 D (g ||mi) + (1 — &)TH (Tht1) ) (10)

where Q. 41 =Qkt+1 — arInmgyq is the generalized action value function.

The implementation of this idea uses the fact that a7 In 741 = a(Qr — M, Qy), where M. Qy, :=
Z% <exp (T’le) ,Qk> AR <1,exp (T*IQ;@» is the Boltzmann softmax operator.” In the
original work, computing this advantage term was found to be more stable than directly using the log

of the policy. In our extension, we use the same form.

4.2 MVI(q) For General ¢

The MVI(q) algorithm is a simple extension of MVI: it replaces the standard exponential in the
definition of the advantage with the g-exponential. We can express this action gap as Qi — Mg - Qx,

where M, Qi = <equ (% — Yq (Q)) ,Qk>. When g = 1, it recovers Qp — M,Qr. We

T T

summarize this MVI(g) algorithm in Algorithm B in the Appendix. When ¢ = 1, we recover MVL.
For ¢ = oo, we get that M, - Qy, is max,, Q (s, a)—no regularization—and we recover advantage
learning [Baird and Moore, 1999]. Similar to the original MVI algorithm, MVI(¢) enjoys tractable
policy expression with 741 o exp, (77 Qx).

Unlike MVI, however, MVI(g) no longer exactly implements the implicit regularization shown in
Eq. (10). Below, we go through a similar derivation as MVI, show why there is an approximation and
motivate why the above advantage term is a reasonable approximation. In addition to this reasoning,
our primary motivation for this extension of MVI to use ¢ > 1 was to inherit the same simple form as
MVI as well as because empirically we found it to be effective.

Let us similarly define a generalized action value function @}, | = Q1 — a7 Ingmsy ;. Using the

relationship Ingmy = Ing 7 —Ing 1= — (1 — q) Ingmy, Ing . we get

Qk+1 — QT 1Ilq7Tk+1 =r+P <71'}<;+1, Qr + ar lnqwk — QT lnqwk + TSq (7Tk+1)>
© Qpyr =7+ VP (Thy1, Qp + 7S (Try1)) +

~P <7Tk+17a7 (lnq o —(1—q)ln,

1 1
T . lnqﬁk>> (11)
Thk+1 Tk+1 Tk+1

=7+ YP (Tpt1, Q) + (1 — )7Sq(mt1)) — VP (Thg1, o Dy (T ||mr) — a7 Ry (M1, mr))

2Using M, Q is equivalent to the log-sum-exp operator up to a constant shift [Azar et al., 2012].
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Figure 4: Learning curves of MVI(q) and M-VI on the selected Atari games, averaged over 3 inde-
pendent runs, with ribbon denoting the standard error. On some environments MVI(q) significantly
improve upon M-VI. Quantitative improvements over M-VI and Tsallis-VI are shown in Figures 5.

where we leveraged the fact that —ar <7rk+1, lnqﬁ> = —a78(m+1) and defined the residual

term Ry(mpq1, %) == (1 —q) lnqﬁ+1 Ingm,. When g = 2, it is expected that the residual term
remains negligible, but can become larger as g increases. We visualize the trend of the residual
Ry (41, m) for ¢ = 2,3, 4,5 on the CartPole-v1 environment [Brockman et al., 2016] in Figure
3. Learning consists of 2.5 x 10° steps, evaluated every 2500 steps (one iteration), averaged over 50
independent runs. It is visible that the magnitude of residual jumps from ¢ = 4 to 5, while ¢ = 2

remains negligible throughout.

A reasonable approximation, therefore, is to use Ing 7,41 and omit this residual term. Even this
approximation, however, has an issue. When the actions are in the support, In, is the unique inverse
Qr

T

function of exp, and In, 41 yields % — g ( ) However, for actions outside the support,

we cannot get the inverse, because many inputs to exp, can result in zero. We could still use

% — 1y (%) as a sensible choice, and it appropriately does use negative values for the Munchausen

term for these zero-probability actions. Empirically, however, we found this to be less effective than
using the action gap.

Though the action gap is yet another approximation, there are clear similarities between using

% — Yy (%) and the action gap @), — M, Q. The primary difference is in how the values

are centered. We can see 1), as using a uniform average value of the actions in the support, as
characterized in Theorem 2. M, -Q, on the other hand, is a weighted average of action-values.

We plot the difference between Q@ — M, Q) and In, ;1 in Figure 3, again in Cartpole. The
difference stabilizes around -0.5 for most of learning—in other words primarily just shifting by a
constant—but in early learning In, 73,11 is larger, across all ¢g. This difference in magnitude might
explain why using the action gap results in more stable learning, though more investigation is needed
to truly understand the difference. For the purposes of this initial work, we pursue the use of the
action gap, both as itself a natural extension of the current implementation of MVI and from our own
experiments suggesting improved stability with this form.

5 Experiments

In this section we investigate the utility of MVI(g) in the Atari 2600 benchmark [Bellemare et al.,
2013]. We test whether this result holds in more challenging environments. Specifically, we compare
to standard MVI (¢ = 1), which was already shown to have competitive performance on Atari
[Vieillard et al., 2020b]. We restrict our attention to ¢ = 2, which was generally effective in other
settings and also allows us to contrast to previous work [Lee et al., 2020] that only used entropy
regularization with KL regularization. For MVI(¢ = 2), we take the exact same learning setup—
hyperparameters and architecture—as MVI(¢ = 1) and simply modify the term added to the VI
update, as in Algorithm 1.
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Figure 5: (Left) The percent improvement of MVI(q) with ¢ = 2 over standard MVI (where ¢ = 1) on
select Atari games. The improvement is computed by subtracting the scores from MVI(g) and MVI
and normalizing by the M VI scores. (Right) Improvement over Tsallis-VI on Atari environments,
normalized with Tsallis- VI scores.

For the Atari games we implemented MVI(g), Tsallis-VI and M-VI based on the Quantile Regression
DQN [Dabney et al., 2018]. We leverage the optimized Stable-Baselines3 architecture [Raffin et al.,
2021] for best performance and average over 3 independent runs following [Vieillard et al., 2020b],
though we run 50 million frames instead of 200 million. From Figure 4 it is visible that MVI(q)
is stable with no wild variance shown, suggesting 3 seeds might be sufficient. We perform grid
searches for the algorithmic hyperparameters on two environments Asterix and Seaquest: the latter
environment is regarded as a hard exploration environment. MVI(g) « : {0.01,0.1,0.5,0.9,0.99};
7:4{0.01,0.1,1.0,10, 100}. Tsallis-VI 7 : {0.01,0.1,1.0,10,100}. For MVI we use the reported
hyperparameters in [Vieillard et al., 2020b]. Hyperparameters can be seen from Table 2 and full
results are provided in Appendix E.

5.1 Comparing MVI(q) withg =1toq =2

We provide the overall performance of MVI versus MVI(g = 2) in Figure 5. Using ¢ = 2 provides a
large improvement in about 5 games, about double the performance in the next 5 games, comparable
performance in the next 7 games and then slightly worse performance in 3 games (PrivateEye,
Chopper and Seaquest). Both PrivateEye and Seaquest are considered harder exploration
games, which might explain this discrepancy. The Tsallis policy with ¢ = 2 reduces the support
on actions, truncating some probabilities to zero. In general, with a higher ¢, the resulting policy
is greedier, with ¢ = oo corresponding to exactly the greedy policy. It is possible that for these
harder exploration games, the higher stochasticity in the softmax policy from MVI whre ¢ = 1
promoted more exploration. A natural next step is to consider incorporating more directed exploration
approaches, into MVI(qg = 2), to benefit from the fact that lower-value actions are removed (avoiding
taking poor actions) while exploring in a more directed way when needed.

We examine the learning curves for the games where MVI(g) had the most significant improvement,
in Figure 4. Particularly notable is how much more quickly MVI(g) learned with ¢ = 2, in addition
to plateauing at a higher point. In Hero, MVI(q) learned a stably across the runs, whereas standard
MVI with ¢ = 1 clearly has some failures.

These results are quite surprising. The algorithms are otherwise very similar, with the seemingly small
change of using Munchausen term Qy (s, @) — M=z, Q instead of Qx(s,a) — My=1 Q) and
using the g-logarithm and g-exponential for the entropy regularization and policy parameterization.
Previous work using ¢ = 2 to get the sparsemax with entropy regularization generally harmed
performance [Lee et al., 2018, 2020]. It seems that to get the benefits of the generalization to ¢ > 1,
the addition of the KL regularization might be key. We validate this in the next section.

5.2 The Importance of Including KL. Regularization

In the policy evaluation step of Eq. (11), if we set @ = 0 then we recover Tsallis-VI which uses
regularization Q(m) = —S,(m) in Eq. (1). In other words, we recover the algorithm that incorporates
entropy regularization using the g-logarithm and the resulting sparsemax policy. Unlike M VI, Tsallis-



VI has not been comprehensively evaluated on Atari games, so we include results for the larger
benchmark set comprising 35 Atari games. We plot the percentage improvement of MVI(g) over
Tsallis-VI in Figure 5.

The improvement from including the Munchausen term (o« > 0) is stark. For more than half of
the games, MVI(q) resulted in more than 100% improvement. For the remaining games it was
comparable. For 10 games, it provided more than 400% improvement. Looking more specifically
at which games there was notable improvement, it seems that exploration may again have played
arole. MVI(q) performs much better on Seaquest and PrivateEye. Both MVI(g) and Tsallis-VI
have policy parameterizations that truncate action support, setting probabilities to zero for some
actions. The KL regularization term, however, likely slows this down. It is possible the Tsallis-VI is
concentrating too quickly, resulting in insufficient exploration.

6 Conclusion and Discussion

We investigated the use of the more general g-logarithm for entropy regularization and KL regular-
ization, instead of the standard logarithm (¢ = 1), which gave rise to Tsallis entropy and Tsallis KL
regularization. We extended several results previously shown for ¢ = 1, namely we proved (a) the
form of the Tsallis policy can be expressed by g-exponential function; (b) Tsallis KL-regularized
policies are weighted average of past action-values; (c) the convergence of value iteration for ¢ = 2
and (d) a relationship between adding a g-logarithm of policy to the action-value update, to provide
implicit Tsallis KL regularization and entropy regularization, generalizing the original Munchausen
Value Iteration (MVI). We used these results to propose a generalization to MVI, which we call
MVI(g), because for ¢ = 1 we exactly recover MVI. We showed empirically that the generalization
to ¢ > 1 can be beneficial, providing notable improvements in the Atari 2600 benchmark.
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A Basic facts of Tsallis KL divergence

We present some basic facts about g-logarithm and Tsallis KL divergence.

We begin by introducing the 2 — ¢ duality for Tsallis statistics. Recall that the ¢g-logarithm and Tsallis
entropy defined in the main paper are:
21— 1
1—¢q
In the RL literature, another definition ¢* = 2 — ¢ is more often used [Lee et al., 2020]. This is called

the 2 — ¢ duality [Naudts, 2002, Suyari and Tsukada, 2005], which refers to that the Tsallis entropy
can be equivalently defined as:

, Sg(z) =— (2% Ing z) .

Ingz =

D |
-1
By the duality we can show [Suyari and Tsukada, 2005, Eq.(12)]:
1-q _q 1,z4) —1 ({(1,29°)—1 -1 _q
Sy(z) == — (29, x = (L,21) = { ) =—{(ux, A G Sy (2),
l—q l—q l—q g —1

i.e. the duality between logarithms In,+ x and In, x allows us to define Tsallis entropy by an
alternative notation ¢* that eventually reaches to the same functional form.

Sq(2) = = (z,Ing- x) ,

Ing-z =

We now come to examine Tsallis KL divergence (or Tsallis relative entropy) defined in another
form: D, (7| p) = <7r7 Ing- %> [Prehl et al., 2012]. In the main paper we used the definition
D}y (7| ) = (m,—Ing £) [Furuichi et al., 2004]. We show they are equivalent by the same logic:

_ T a1 o
<7r,—lnq %> - <w,—(ﬁ)11_qq_1> - <7r, (”1_11> - <7T,lnq* Z> (12)

The equivalence allows us to work with whichever of In, and In,« that makes the proof easier to
work out the following useful properties of Tsallis KL divergence:

— Nonnegativity D, (7 | 1) > 0: since the function — In, 7 is convex, by Jensen’s inequality

<7T,—lnq ﬁ> > —In, <7T,H> =0,
m m

— Conditions of D}, (7 | ) = 0: directly from the above, in Jensen’s inequality the equality holds
only when £ = 1 almost everywhere, i.e. D, (7 | 1) = 0 implies 4 = 7 almost everywhere.

— Conditions of D}, (m | 1) = oo: To better align with the standard KL divergence, let us work with
Ing+, following [Cover and Thomas, 2006], let us define

0 0
01lng- 0 =0, Olng—=0, mlng % = 00.

We conclude that D, (7 | 1) = co whenever 7 > 0 and p = 0.

— Bounded entropy Vg, 0 < Sy(m) < Ing|Al: let p = ﬁ by the nonnegativity of Tsallis KL

divergence:
! I |
D) = (r o 37 - <”(|qﬂ)—1>

R
=|A7! <<177T )—1 _ 1A > 0.
q—1 q—1

1

q —q ——1
Notice that <1’;T_>171 = <7rq, 1_1’11(1 > = (m,Ingm) = —Sy(7) and % =1In,|A

, we conclude

Sq(m) < Ing [Al.

13



B Proof of Theorem 1 and 2

We structure this section as the following three parts:
1. Tsallis entropy regularized policy has general expression for all g. Moreover, ¢ and 7 are
interchangeable for controlling the truncation (Theorem 1).
2. The policies can be expressed by g-exponential (Theorem 1).

3. We present a computable approximate threshold ﬁq (Theorem 2).

General expression for Tsallis entropy regularized policy. The original definition of Tsallis

entropy is Sy-(7(+[s)) = &4 (1 - 32, 7 (als)),q* € R, p € Ry. Note that similar to Appendix

A, we can choose whichever convenient of ¢ and ¢*, since the domain of the entropic index is R.

To obtain the Tsallis entropy-regularized policies we follow [Chen et al., 2018]. The derivation
begins with assuming an actor-critic framework where the policy network is parametrized by w. It
is well-known that the parameters should be updated towards the direction specified by the policy
gradient theorem:

Aw x E, [Q,r a;;r + 787;57)] — Z )\(s)a <6111)7T> =: f(w), (13)

Recall that H (7) denotes the Shannon entropy and 7 is the coefficient. A(s) are the Lagrange
multipliers for the constraint gl, 7) = 1. In the Tsallis entropy framework, we replace H () with

Sq+ (7). We can assume p = ;- toease derivation, which is the case for sparsemax.

We can now explicitly write the optimal condition for the policy network parameters:

Fw) =0 =&, | Q2T 4722 57 2

Olnm 1 «Olnm ~ Olnm
_ _ q _ -z 14
E, [Q,r D Tq*_1<].,ﬂ' B > Yq(s) B } (14)
1 x - Olnw
_ _ q -1 _
e GO K |
85(1*(77) _ 1

where we leveraged

o = -1 (1, T agﬁ;ﬂ in the second step and absorbed terms into the

expectation in the last step. ﬂq(s) denotes the adjusted Lagrange multipliers by taking A(s) inside
the expectation and modifying it according to the discounted stationary distribution.

Now it suffices to verify either % =0or
Qr(s,a) =T * 1_ 17rq*71(a‘3) - 12’(1(5) =0
ot — | @alsa) ()]
& (als) = [ £ ] (¢" =), s
+
or 71'*(&|S) — - [waaa) _ qu(S)] (1 _ q)7
+

where we changed the entropic index from ¢* to gq. Clearly, the root does not affect truncation.
Consider the pair (¢* = 50,7), then the same truncation effect can be achieved by choosing
(¢* = 2, 55— ). The same goes for q. Therefore, we conclude that ¢ and 7 are interchangeable for
the truncation, and we should stick to the analytic choice ¢* = 2(¢ = 0).

Tsallis policies can be expressed by ¢g-exponential. Given Eq. (15), by adding and subtracting 1,
we have:

o (B (B o (24 (045

T T 1-g¢ T

14

T

)



where we defined 1/3q = 1/~Jq + 1%(1. Note that this expression is general for all ¢, but whether 7* has

closed-form expression depends on the solvability of iq.

Let us consider the extreme case ¢ = oo. It is clear that lim,_, o 1

1—q
we must have xl%q — 1; i.e., there is only one action with probability 1, with all others being 0. This
conclusion agrees with the fact that S (7) — 0 as ¢ — oco: hence the regularized policy degenerates
to arg max.

— 0. Therefore, for any x > 0

A computable Normalization Function. The constraint 3, () 7" (als) = 1 is exploited to
obtain the threshold ¢ for the sparsemax [Lee et al., 2018, Chow et al., 2018]. Unfortunately,
this is only possible when the root vanishes, since otherwise the constraint yields a summation of
radicals. Nonetheless, we can resort to first-order Taylor’s expansion for deriving an approximate
policy. Following [Chen et al., 2018], let us expand Eq. (15) by the first order Taylor’s expansion

f(z)+ f'(z)(x — z), where we let z = 1, z = [M — 1y (%)}+ (1—9q), f(z) = rTa,

fl(z) = %_qa:ﬁ So that the unnormalized approximate policy has
7 (als) = f(2) + F'()z - 2)
_ 1 Qr(s,a) - (Qx(s,) (16)
_1+1_q (( = —z/)q< - ))(1—q)—1>.

Therefore it is clear as ¢ — 0o, 7*(a|s) — 1. This concords well with the limit case where 7*(a|s)
degenerates to arg max. With Eq. (16), we can solve for the approximate normalization by the
constraint ), () 7" (als) = 1:

1= 3 [ (-0 (F2) -0 -)]
KO- kel 3 [ g, ()

a€K(s) T
Qnr (s,
@7/; (Qﬂ(&’))_ZaEK(s) 7(— )71+17 1
o [K ()| 1—q
Qr(s)
In order for an action to be in K (s), it has to satisfy Q”is") > Z“’GKH'}(S)" SN =

Therefore, the condition of K (s) satisfies:

i

1+i¢%<&w>z%<&w+i(l_1>.
T = T ]-_q

Therefore, we see the approximate threshold 1ﬁq = ﬁq + 1. Whenq =0 or ¢* = 2, zﬁq recovers
and hence 7* recovers the exact sparsemax policy.

C Proof of convergence of Q(7) = D, (7| -) when g = 2

Let us work with Ing- from Appendix A and define |-|,, as the I,,-norm. The convergence proof for
Q(m) = Dj; (7| -) when g = 2 comes from that () is strongly convex in 7:

) = DL (rll) = (mme T) = <7r, (T);:ll_ 1> x ”sz ~1. (17)

Similarly, the negative Tsallis sparse entropy —Sa(7) is also strongly convex. Then the propositions
of [Geist et al., 2019] can be applied, which we restate in the following:

Lemma 1 ([Geist et al., 2019]). Define regularized value functions as:

Qrao=1r+vPV q, Veo = (m,Qr0) — Q).

If Q(m) is strongly convex, let Q*(Q) = max, (7, Q) — Q(w) denote the Legendre-Fenchel transform
of Q(r), then
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Algorithm 1: MVI(q)

Input: number of iterations 7', entropy coefficient 7, TKL coefficient cv
Initialize Qg, 7o arbitrarily
Let {|JA[} = {1,2,...,]A[}
fork=1,2,...,T do
#Policy Improvement
for (s,a) € (S, A) do
Sort Qk(s, a(l)) > > Qk(s, a(‘AD)
Find K (s) = max{i € {lA]} |1+ 2L@) 5 v Dlag) 4y (1 - 1%)}
A~ Qp(s.a)
Compute 'll)q (Qk‘(rs,v)> _ PacKk(s) T 1 +1
# Normalize when ¢ # 2

mre1(als) oc exp, (M _ q[)q (%))

end for
#Policy Evaluation
for (s,a,s’) € (S,.A) do
Qr+1(s,a) =
r(s,0) + 7 (Qi(s,0) — MqrQu(8)) +7 Cpen mhr1 (0]3) (Qi(S'.5) — 7l min (B]3))
end for
end for

o VQ* is Lipschitz and is the unique maximizer of arg max, (7, Q) — Q(m).

* Ty q is a y-contraction in the supremum norm, i.e. |Tr oVi — Tr oVa| <7 [Vi — V2| .
Further, it has a unique fixed point V. .

* The policy 7, o = arg max, (m, Q« o) — () is the unique optimal regularized policy.

Note that in the main paper we dropped the subscript {2 for both the regularized optimal policy and
action value function to lighten notations. It is now clear that Eq. (6) indeed converges for entropic
indices that make D7, (7 | -) strongly convex. But we mostly consider the case g = 2.

D Derivation of the Tsallis KL Policy

This section contains the proof for the Tsallis KL-regularized policy (7). Section D.1 shows that a
Tsallis KL policy can also be expressed by a series of multiplications of exp, (Q); while Section D.2
shows its more-than-averaging property.

D.1 Tsallis KL Policies are Similar to KL

We extend the proof and use the same notations from [Lee et al., 2020, Appendix D] to derive the
Tsallis KL regularized policy. Again let us work with In,- from Appendix A. Define state visitation as
p=(s) = Ex [>-;o, L(s¢ = s)] and state-action visitaion pr(s,a) = Er >, 1(s; = s,a; = a)].
The core of the proof resides in establishing the one-to-one correspondence between the policy and
the induced state-action visitation p,. For example, Tsallis entropy is written as

= = - s,a n*ipﬂ(s,a)
SQ*(W) *Sq*(pﬂ')* ;p‘rr( , )l q Zapﬂ(sﬁa)'

This unique correspondence allows us to replace the optimization variable from 7 to p,. Indeed, one

can always restore the policy by 7(als) := %.

*

Let wus write Tsallis KL divergence as Dp, (7| p) = qu;L(p |v) =

Y s P(8,a) Ing %‘m by replacing the policies 7, with their state-action visita-
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tion p, v. One can then convert the Tsallis MDP problem into the following problem:

P(s ~ D%
mgx;p(s,a) ;r(s,a) (s'ls,a) — Dy (pv)

subject to Vs,a, p(s,a) >0, (18)
Zp (s,a) =d(s) + Z P(s|s',a") a'),
s’,a’

where d(s) is the initial state distribution. Eq. (18) is known as the Bellman Flow Constraints [Lee
et al., 2020, Prop. 5] and is concave in p since the first term is linear and the second term is concave in
p. Then the primal and dual solutions satisfy KKT conditions sufficiently and necessarily. Following
[Lee et al., 2020, Appendix D.2], we define the Lagrangian objective as

L= pls,a) > r(s,0)P(s'|s,a) — D (p|v) + > Als, a)p(s, )

s,a

+Y C(s) [ dls)+ D Psls’,a)p(s'sa') = Y p(s,a)

where A(s,a) and ((s) are dual variables for nonnegativity and Bellman flow constraints. The KKT
conditions are:

VS7CL, p*(87a) 207

(5)+ Y Plsls’,a")p"(s,a') = Y p(s,0) =0,

s’,a’

A(s,a) <0, X(s,a)p™(s,a) =0,

OZZ( a)P(s'|s,a) +’yZC (s'|s,a) — C*(s)+)\*(5,a)fw

= dp(s,a)
wher _6DK2<p lv) _ . p e, vsd) (psa) Sy v(sa)\"T
R ) R I ,,)*<s ) (u(w) > p*(s,a'>>

q" -1
() ()
Za/ P ( v(s,a)
The dual variable (*(s) can be shown to equal to the optimal state value function V*(s) following
[Lee et al., 2020], and A\*(s,a) = 0 whenever p*(s,a) > 0.

By noticing that 7 ! = (¢ — 1)Ingx + 1, we can show that —% =
q q -1

0" Inge R -1+ 8, (s ) (BE®) " Substiating C1(s) =

V*(s), m*(a|s) = %, *(als) = % into the above KKT condition and lever-

age the equality Q*(s,a) = r(s,a) + Ey . p[y(*(s')] we have:
oa) Ve o1 Tals) ey (TN
@0 =Vl - ng S -1+ Tt () =0

Q*(s,a) V*(s)+1—=>, m(als) (:EZ};;)Q _

& 1" (als) = p(als) exp,. e =

By comparing it to the maximum Tsallis entropy policy [Lee et al., 2020, Eq.(49)] we see the only
difference lies in the baseline term ,u(a|s)_(Q*_1), which is expected since we are exploiting Tsallis
KL regularization. Let us define the normalization function as

v (%, .)> Vi) +1 - By lale) (el

qr qr
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then we can write the policy as
Q*(s,a) Q" (s,)
7 (als) = utals)exp,. (L -y (L))
q q
In a way similar to KL regularized policies, at k + 1-th update, take 7* = 741, 4 = 7 and
Q* = Qp, we write T4 X Tk equQ & since the normalization function does not depend on actions.

We ignored the scaling constant ¢* and regularization coefficient. Hence one can now expand Tsallis
KL policies as:

Tht1 X Tk €XPye (Qr) X Th—16xXpye (Qr—1) expye (Qr) X -+ o< expy« Q1 -+ -exp . Qy,

which proved the first part of Eq. (7).

D.2 Tsallis KL Policies Do More than Average

We now show the second part of Eq. (7), which stated that the Tsallis KL policies do more than
average. This follows from the following lemma:

Lemma 2 (Eq. (25) of [Yamano, 2002]).

1—gq
k k k
1_ .
(equ T1...exp, xn) 1= exp, E Z; +>» 1—-g¢g) E Ty coexyy. (19)
j=1 j=2 =1< <

However, the mismatch between the base ¢ and the exponent 1 — ¢ is inconvenient. We exploit the
q = 2 — q* duality to show this property holds for ¢* as well:

(expye @+ expyy)” =1+ (¢" = Dal, [+ (a" = 1)yl
=[1+(¢" =Dz +(¢" =Dy +(¢" = D?wy]
= expy(z+ )" "+ (¢ — 1)’y

Now since we proved the two-point property for ¢*, by the same induction steps in [ Yamano, 2002,
Eq. (25)] we conclude the proof. The weighted average part Eq. (8) comes immediately from [Suyari
et al., 2020, Eq.(18)].

E Implementation Details

We list the hyperparameters for Gym environments in Table 1. The epsilon threshold is fixed at 0.01
from the beginning of learning. FC n refers to the fully connected layer with n activation units.

The Q-network uses 3 convolutional layers. The epsilon greedy threshold is initialized at 1.0 and
gradually decays to 0.01 at the end of first 10% of learning. We run the algorithms with the swept
hyperparameters for full 5 x 107 steps on the selected two Atari environments to pick the best
hyperparameters.

We show in Figure 6 the performance of MVI(q) on Cartpole-v1 and Acrobot-v1, and the full learning
curves of MVI(g) on the Atari games in Figure 7. Figures 8 and 9 show the full learning curves of
Tsallis-VI.
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Figure 6: (Left) MVI(q) and MVI with logarithm In 7 simply replaced to In, 7 on Cartpole-v1, when
q = 2. The results are averaged over 50 independent runs. The flat learning curve is due to the
pseudo-additivity. (Right) MVI(q) on Acrobot-v1 with different g choices. Each ¢ is independently
fine-tuned. The black bar stands for 95% confidence interval, averaged over 50 independent runs.
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Figure 7: Learning curves of MVI(q) and M-VI on the selected Atari games.
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Figure 8: Learning curves of MVI(q) and Tsallis-VI on the selected Atari games.
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Figure 9: (cont’d) MVI(g) and Tsallis-VI on the selected Atari games.



Table 1: Parameters used for Gym.

Network Parameter Value Algorithm Parameter Value
T (total steps) 5 x 10° ~ (discount rate) 0.99
C (interaction period) 4 € (epsilon greedy threshold) 0.01
| B| (buffer size) 5 x 104 7 (Tsallis entropy coefficient)  0.03
By (batch size) 128 « (advantage coefficient) 0.9
I (update period) 100 (Car.) / 2500 (Acro.)
Q-network architecture FC512 - FC512
activation units ReLU
optimizer Adam
optimizer learning rate 1073

Table 2: Parameters used for Atari games.
Network Parameter Value Algorithmic Parameter Value
T (total steps) 5x 107 ~ (discount rate) 0.99
C (interaction period) 4 Twicg) ( MVI(g) entropy coefficient) 10
| B| (buffer size) 1 x 106 vy (MVI(g) advantage coefficient) 0.9
By (batch size) 32 Trsa11is (Tsallis-VI entropy coef.) 10
I (update period) 8000 ayn-yt (M-VI advantage coefficient) 0.9
activation units RelLU Tu-v (M-VI entropy coefficient) 0.03
optimizer Adam ¢ (epsilon greedy threshold) 1.0 — 0.01|10%
optimizer learning rate 1074

Q-network architecture
Conv 32 - Conv; 464 - Convj 464 - FC512 - FC

21



	Introduction
	Problem Setting
	Generalizing to Tsallis Regularization
	Tsallis Entropy Regularization
	Tsallis KL Regularization and Convergence Results
	TKL Regularized Policies Do More Than Averaging

	A Practical Algorithm for Tsallis KL Regularization
	Implicit Regularization With MVI
	MVI(q) For General q

	Experiments
	Comparing MVI(q) with q=1 to q=2
	The Importance of Including KL Regularization

	Conclusion and Discussion
	Basic facts of Tsallis KL divergence
	Proof of Theorem 1 and 2
	Proof of convergence of () = DqKL( |  |  ) when q=2
	Derivation of the Tsallis KL Policy
	Tsallis KL Policies are Similar to KL
	Tsallis KL Policies Do More than Average

	Implementation Details

