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Abstract—We present ImVR, an immersive VR-based teleop-
eration system that places the operator in a fully 3D virtual
environment for intuitive and precise robot control. Designed
for general-purpose use, ImVR supports a wide range of robot
configurations—including single- and dual-arm setups, parallel
grippers and multi-fingered dexterous hands—while operating
seamlessly in both simulation and the real world. It ensures
absolute alignment between the operator’s hand and the robot’s
end-effector, offers adaptive viewpoints to enhance situational
awareness and precision, and enables easy deployment across
diverse robotic platforms. Experiments and user studies highlight
ImVR’s versatility, ease of use, and effectiveness in accelerating
data collection, making it a powerful tool for large-scale robot
learning and real-world manipulation tasks.

I. INTRODUCTION

The advancement of robotics increasingly relies on large-
scale, high-quality datasets to train and evaluate intelligent
systems. Teleoperation has emerged as a powerful solution
for efficiently collecting such data, particularly for complex
manipulation tasks. Recent works [14, 11] demonstrate that
even a small number of human teleoperation demonstrations
can seed the generation of extensive robot datasets through
simulation, enabling scalable data augmentation. Furthermore,
co-training with both simulated and real-world data has been
shown to substantially enhance robot performance [13, 15, 22],
underscoring the importance of a teleoperation system to be
adapted to both simulation and real-world effortlessly.

Over the past few years, a wide range of teleoperation
systems has been developed, including Virtual Reality (VR)
interfaces [10, 5, 9], wearable gloves [12], and exoskeleton-
based frameworks [7, 8, 21, 19]. Among these, VR-based
teleoperation offers distinct advantages in terms of intuitive-
ness, accessibility, and potential for generalization across
diverse robot platforms. VR systems enable human operators
to naturally control robotic agents in real time, making them
particularly suitable for collecting rich, task-relevant demon-
strations in complex scenarios [10, 5, 9].

However, existing VR teleoperation systems often suffer
from key limitations. Many lack precise spatial alignment
between the operator’s hand and the robot end-effector, leading
to drift and misalignment during fine manipulation. Addi-
tionally, most systems provide static or poorly calibrated
camera viewpoints, which can impair the operator’s situational
awareness and hinder task execution. These shortcomings limit
their effectiveness for large-scale data collection and reduce
applicability to tasks requiring high precision.
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To address these challenges, we present ImVR, an advanced
immersive VR teleoperation system designed to generalize
effectively across various robotic platforms and real-world
scenarios. ImVR features three key advantages:

1) Absolute alignment of the operator’s hand movements
with robot end-effector actions, significantly reducing
spatial misalignment;

2) Adaptive viewpoint adjustments, enabling operators to
intuitively inspect and manage tasks requiring precision;

3) Easy deployment in both simulation and real-world
environments, with built-in tools for quickly adapting
to different robot configurations with parallel grippers
and dexterous hands.

Comprehensive experiments demonstrate ImVR’s versatility
and utility, including challenging tasks in both simulation
and real-world setups. User studies highlighting improved
intuitiveness and effectiveness, and evaluations showing the
system’s ability of rapid data collection for imitation learning.

II. METHOD

A. System Overview

We introduce a versatile and immersive VR-based tele-
operation system designed to be general-purpose, supporting
multiple robots —both single- and dual-arm, parallel gripper
and dexterous hand, stationary and mobile configurations
(II-C)— through a unified interface for simulation and real
world (II-D). At its core, the system provides an immersive
experience by placing the operator in a 3D virtual world (II-B),
where real-time tracking of head pose and fast high-resolution
rendering (4K at 60 Hz) enables adaptive viewpoint changes
and seamless user experience. This immersive environment
allows precise control and intuitive manipulation, following
the principle of “where your hand is, where the end-effector
is,” ensuring tight spatial alignment between the operator’s
hand and the robot’s end-effector and reducing the need for
compensatory motion.

Overview of the control loop is shown in Figure 2. The
teleoperation modules receive the operator’s motion data and
translate it into robot commands. These commands are ex-
ecuted either in simulation or in the real world, with stereo
video feedback streamed back to the operator for an immersive
experience. In a simulation setup, the stereo video is ren-
dered based on simulated environments. For real-world robot
teleoperation, the stereo video is generated from point clouds
captured by depth cameras.



Fig. 1: One System, Two World, Multiple Robots. Our system places the operator in a fully 3D virtual world for an intuitive and
immersive teleoperation experience. It is designed for general-purpose use, supporting a variety of robot setups, including single- and dual-
arm configurations, grippers, three-fingered hands, dexterous hands, and both simulation and real-world environments.

B. Placing Human in 3D Virtual World

A key feature of our system is enabling immersive tele-
operation by placing human operator directly inside a fully
3D virtual world. Previous work [10, 6] relies on see-through
mixed reality that overlays panels for visualization and does
not provide direct access to the complete 3D scene information
in simulation setups. Our method places the operator directly
inside a fully rendered 3D virtual world, providing direct
and complete access to spatial informatoin. This immersive
design enhances intuitiveness and engagement while reducing
the need for compensatory motion by operator.

We achieve this by implementing the OpenVR client pro-
tocol designed by Steam, which is compatible with all main-
stream VR devices, including Meta Quest3 and Apple Vision
Pro. Specifically, our system receives camera intrinsic and ex-
trinsic parameters of the head-mounted display’s stereoscopic
lens, poses of controllers, and the operator’s hand and wrist
poses (if available), while sending stereo video streams at
4K resolution for OpenVR to display in the headset. Under
the hood, OpenVR communicates with SteamVR and ALVR,
which translate hardware-dependent VR implementations into
the unified OpenVR client protocol. To simplify the complex
SteamVR setup, we provide a Docker image for a smoother
and faster setup process for users.

C. Flexible Control for Multiple Robots

We utilize a mix of control modules to provide general-
purpose robot support. By modularizing control into dis-
tinct components, we ensure flexibility, extensibility and fine-
grained control over diverse robots.

1) Arm Control Module: converts human wrist poses
into robot arm joint positions. However, directly mapping the
absolute orientation and position of wrist poses to robot’s end-
effector poses can lead to strange behaviors for a mismatch
between the coordinate frames of human wrist poses and the
robot’s end-effector frame as illustrated in Figure 3. To address
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Fig. 2: Overview of our VR teleoperation system. The operator
controls the robot’s arm and hand through real-time tracking of wrist
and hand poses, while receiving stereo video feedback. The VR
devices stream human pose data to a server, which retargets and
sends joint commands to the robot.this, we provide coordinate conventors out-of-the-box for the
most common robotics arms and offer a GUI and tools to assist
users in quickly computing the transformation matrix for their
customized robots.

Our system utilizes Closed-loop Inverse Kinematics (CLIK)
algorithm, implemented with the Pinocchio library [1, 2]. To
ensure smooth arm motions, we apply an SE(3) group filter
to the input end-effector poses before the IK computations.

2) Hand Control Module: translates human finger poses
into corresponding robot hand joint positions. Following
[16, 4, 6], we formulate the hand motion retargeting process
as an optimization problem. The objective function for this
optimization is defined as follows:

min
qt

N∑
i=0

∥αivit − fi(qt)∥2 + β∥qt − qt−1∥, (1)

where qt denotes the robot hand joint positions at time t, vit
is the i-th keypoint vector of human hand, and fi(qt) gives



Fig. 3: Illustration of frame mismatch between human wrist poses and
robot’s end-effector frame. Left: human wrist frame, Right: Inspire
hand frame.

the corresponding i-th keypoint vector of robot hand using
forward kinematics with joint positions qt. The scaling factor
αi compensates for the differences in hand size between the
human and robot hands and treat each i-th keypoint differently
as thumb finger size and pinky finger size can vary a lot, β
weights the regularization term to ensure temporal consistency
between consecutive joint positions. The optimization is im-
plemented by NLopt solver [16].

For dexterous robot hands, we map vectors from human
hand fingertips to palm base to corresponding vectors on
the robot hand, and add extra vectors (e.g., from the thumb
metacarpophalangeal joint) for improved motion accuracy. For
simple grippers, we reduce to a single vector optimization
between the thumb and index fingertips, enabling intuitive
pinch-based gripper control. Our system includes fine-tuned
configurations for common robots and calibration tools for
customizing retargeting to other robots.

3) Controller Control Module: enables simple and effec-
tive control of gripper and wheel-based mobile robot move-
ment. It leverages the same arm control module, but replaces
input human wrist pose with VR controller’s pose. By clipping
the VR controller, users can intuitively trigger the closing
action of the gripper for responsive grasping and release.
For wheel-based mobile manipulators, we extend the module
to support robot base motion by mapping button presses to
forward/backward speed control and using the controller’s
joystick (or axis input) to control the robot’s turning motion.

D. Unified Sim-to-Real Interface

Our system employs a unified interface for both simulation
and real-world setups by aligning the robot’s end-effector with
the absolute position of human hand. A key challenge arises
when attempting to align the human hand with the robot hand
inside a VR headset, especially since the real robot may be
spatially displaced in the physical world. To solve this, we
project the point clouds captured by depth cameras positioned
around the real robot into the VR headset. The camera poses
are calibrated using EasyHec [3].

This setup ensures that both the simulation environment
and the real-world point cloud are aligned in a ”digital twin”
manner as illustrated in Figure 4. Though we do not require
the visual textures to match the real world, critical elements
such as the robot’s position, forward and inverse kinematics,
and control interface must be aligned. This alignment allows
the same human control signals to produce identical robot
actions in both the simulator and the real-world environment.
Consequently, teleoperation in the real world becomes as
intuitive and consistent as it is in simulation.

Fig. 4: Illustration of spatial alignment of simulation and real-world
environments. Left: simulation environment, where robot control are
tested, Middle: real-world teleoperation setup, Right: point cloud
captured from the depth cameras accurately aligned with the virtual
robot in the simulation, demonstrating a ”digital twin” setup.

Fig. 5: Simulation Teleportation Examples. For columns left to
right: (1) peg insertion and plug charger with Franka arm; (2)
assemble kit and stack cube with xArm6; (3) rotate cube and open a
book with Allegro hand; (4) put flower in vase and put off an alcohol
burner with Ability hand; (5) open a box and pour water with the
Inspire hand.

III. EXPERIMENTS

In this section, we evaluate our system’s versatility, data
usefulness for policy learning, and the impact of two key
design choices through a user study.

A. Experiment Setup

Our experiments span both simulation and real-world
settings. In simulation, our implementation is based on
the SAPIEN[20] engine and natively integrated within the
ManiSkill3[18] framework, enabling seamless compatibility
with a wide range of robots and tasks. For real-world tele-
operation, we use three calibrated Intel RealSense cameras to
capture point cloud data visual for VR rendering. One of these
cameras is used for policy demonstration data. Our real-world
robot platform consists of an xArm7 robotic arm equipped
with an Ability Hand for dexterous manipulation tasks.

(d)
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Fig. 6: Real World Teleoperation Examples with an Ability Hand
mounted on an XArm7. (a) Rotating the nozzle of a watering bottle,
(b) Pouring earplugs from a bottle into a tray, (c) Lifting a cooking
pot lid, (d) Opening a cardboard case. (e) Pick-n-Place cube. (f) Place
bottle onto a slotted rack.



Metric Method PickCube PushCube PlaceSphere PullCubeTool Avg.

SR (%) ↑ Keyboard 46 100 45 23 53.4
Ours 100 100 95 98 98.3

Time (s) ↓ Keyboard 395 167 413 327 325
Ours 29 27 36 51 36

TABLE I: Success rates (SR) of RFCL policies and data collection
times of our system vs. keyboard control.

B. How Versatile is Our System?

Figures 5 and 6 show examples of teleoperation results in
both simulation and the real world. Our system supports a
wide range of embodiments, including grippers, robot hands
and bimanual setups.

Notably, it handles particularly challenging tasks such as
plugging in a charger or putting off an alcohol burner,
demonstrating the robustness and versatility of our system.
Our system provides out-of-the-box support for over 10 dif-
ferent robots, including various arms, robot hands. Users
can teleoperate these robots directly without any additional
setup. In addition, our system includes built-in visualization
and calibration tools, enabling minimal-effort teleoperation of
customized robots as well.

C. How Useful is our Teleoperation Data in Simulation
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Fig. 7: Learning curve comparison of RFCL policies trained with ours
vs. keyboard-collected demonstrations. The shaded area represents
the standard deviation across three different seeds.

We conduct imitation learning experiments on four Man-
iSkill3 tabletop task, covering a diverse range of manipulation
scenarios, from tool use to high-precision place sphere. To
demonstrate the ability of simulation to generate scaled-up
data, we employ reverse forward curriculum learning (RFCL)
[17], a fast imitation learning algorthim from sparse rewards
and with very few demonstrations in simulation. We collect
five demonstrations using our system or the keyboard baseline.

We report the final success rate (SR) of the learned policies
and total data collection time for each task, demonstrating
the effectiveness of our teleoperation system in quickly col-
lecting high-quality demonstration data for simulation-based
learning. Though PushCube-v1 achieves 100 % success with
either ours or keyboard-collected demonstrations, our system
significantly improves sample efficiency, as illustrated in Fig.
7. When combined with RFCL, our system offers a fast and
effective approach for solving tasks and generating unlimited
demonstrations.

D. How Useful is Our Teleportation Data in Real World

To evaluate the real-world applicability of demonstration
data collected by our ImVR teleoperation system, we con-
ducted experiments on a Pick and Place Cube and Place
Bottle onto a Slotted Rack tasks. We utilized the system

to gather 50 trajectories for these 2 tasks. These collected
trajectories then served as the training dataset for an ACT
[21] imitation learning policy.

Upon training the policy, we performed an evaluation con-
sisting of 20 trials on our physical robotic setup. The policy
demonstrated a 65% success rate in completing the Pick and
Place Cube task (Fig. 6 (e)) and 85% success rate in the
Place Bottle onto a Slotted Rack task (Fig. 6 (f)). These
result indicates that our teleoperation system is effective in
generating data that can be successfully leveraged for training
robotic policies for real-world applications.

E. How Intuitive is Our System for Users?

We invited five untrained operators for a user study eval-
uating two key design choices in our system: (i) absolute
alignment of human hands with robotic end-effectors, and (ii)
adaptive viewpoint change. Each operator was given 5 minutes
for practice and collected 10 successful trials for three different
setups on two tasks: peg insertion using the Franka arm and
Panda gripper, and put flower in vase using Ability dex-hand.
We report task success rate, total completion time, and average
episode length. For variants without absolute alignment, the
robot end-effector moved relatively to the human hand, instead
of directly mirroring it. For the non-adaptive viewpoint setup,
operators were instructed to keep their heads still and avoid
any movement during data collection.

As shown in Fig. 8, absolute alignment reduces peg in-
sertion completion time by nearly half, thanks to a more
intuitive user interface and the elimination of parallax errors.
Additionally, the adaptive viewpoint significantly improves
success rates, as fixed viewpoints often restrict visibility and
prevent close inspection of the task area. Users emphasized
that adaptive viewpoint control is essential for high-precision
tasks, allowing them to dynamically focus on areas requiring
fine-grained manipulation—such as moving closer to specific
regions for better control.
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Fig. 8: User Study. It evaluates the impact of absolute position
alignment and adaptive viewpoint changes on task success rates and
time efficiency.

IV. CONCLUSION

We presented ImVR, a versatile and immersive VR teleop-
eration system that enhances the intuitiveness, precision, and
adaptability. Experiments highlight its versatility, improved
intuitiveness, and effectiveness for both complex manipulation
and rapid data collection for imitation learning.
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