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ABSTRACT

Federated learning (FL) enables collaborative model training with privacy preser-
vation. Data heterogeneity across edge devices (clients) can cause models to
converge to sharp minima, negatively impacting generalization and robustness.
Recent approaches use client-side sharpness-aware minimization (SAM) to en-
courage flatter minima, but the discrepancy between local and global loss land-
scapes often undermines their effectiveness, as optimizing for local sharpness does
not ensure global flatness. This work introduces FEDGLOSS (Federated Global
Server-side Sharpness), a novel FL approach that prioritizes the optimization of
global sharpness on the server, using SAM. To reduce communication overhead,
FEDGLOSS cleverly approximates sharpness using the previous global gradient,
eliminating the need for additional client communication. Our extensive evalua-
tions demonstrate that FEDGLOSS consistently reaches flatter minima and better
performance compared to state-of-the-art FL methods across various federated vi-
sion benchmarks.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) provides a powerful framework to collaboratively
train machine learning models on private data distributed across multiple endpoints. Unlike tradi-
tional methods, FL enables edge devices (clients), like smartphones or IoT (Internet of Things) hard-
ware, to train a shared model without compromising their sensitive information. This is achieved
through communication rounds, where clients independently train on their local data and then ex-
change updated model parameters with a central server, preserving data privacy. The optimization
on the server side relies on pseudo-gradients (Reddi et al., 2021), i.e., the average of the difference
between the global model and the client’s update, which serve as an estimate of the true global gradi-
ent on the overall dataset. This approach holds immense potential for privacy-sensitive applications,
proving its value in areas like healthcare (Liu et al., 2021; Antunes et al., 2022; Rauniyar et al., 2023;
Nevrataki et al., 2023), finance (Nevrataki et al., 2023), autonomous driving (Fantauzzo et al., 2022;
Shenaj et al., 2023; Miao et al., 2023), IoT (Zhang et al., 2022), and more (Li et al., 2020a; Wen
et al., 2023). However, the real-world deployment of FL presents unique challenges stemming from
data heterogeneity and communication costs (Li et al., 2020b). Clients gather their data influenced
by various factors such as personal habits or geographical locations, leading to inherent differences
across devices (Kairouz et al., 2021; Hsu et al., 2020; Shenaj et al., 2023). This results in the global
model suffering from degraded performance and slower convergence (Li et al., 2020d; Karimireddy
et al., 2020a;b; Caldarola et al., 2022), with instability emerging as client-specific optimization paths
diverge from the global one. This phenomenon, known as client drift (Karimireddy et al., 2020b),
limits the model’s ability to generalize to the overall underlying distribution.

While many FL approaches focus on mitigating client drift through client-side regularization (Li
et al., 2020c; Acar et al., 2021; Varno et al., 2022), a recent trend leverages the geometry of the
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Figure 1: Comparison of FEDAVG (solid) and FEDSAM (net) loss landscapes with varying degrees of data
heterogeneity (α) on the CIFAR datasets. FEDSAM’s effectiveness in converging to global flat minima is
highly influenced by the data heterogeneity, where higher heterogeneity (α → 0) leads to sharper minima,
and the complexity of the task, e.g., higher sharpness for the more complex CIFAR100. This highlights the
importance of optimizing global sharpness. Model: CNN.

loss landscape to improve generalization (Caldarola et al., 2022; Qu et al., 2022; Sun et al., 2023b;
Dai et al., 2023; Sun et al., 2023a). These methods build upon the notion that convergence to sharp
minima correlates with poor generalization (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017;
Jiang et al., 2019). FEDSAM (Caldarola et al., 2022; Qu et al., 2022) employs Sharpness-aware
Minimization (SAM) (Foret et al., 2021) in local training to guide clients toward flatter loss regions,
enhancing global performance. This comes at the cost of increased client-side computation, since
SAM requires two forward/backward passes for each local optimization step: a gradient ascent step
to compute the maximum sharpness and a descent step for sharpness and loss value minimization.
Although FEDSAM and its variants (Sun et al., 2023b; Dai et al., 2023) demonstrated their effec-
tiveness in various settings, they rely solely on local flatness, assuming that minimizing sharpness
locally leads to a globally flat minimum. However, in real-world scenarios with significant data
heterogeneity, there can be substantial discrepancies between local and global loss landscapes. As
a consequence, optimizing for local sharpness does not guarantee the global model will reside
in a flat region (Fig. 1). Addressing these limitations, FEDSMOO (Sun et al., 2023a) uses the al-
ternating direction method of multipliers (ADMM) (Boyd et al., 2011) to include global sharpness
information in SAM’s local training. While this approach reduces the inconsistency between local
and global geometries, it increases communication cost by requiring double the bandwidth in
each round. This hinders its real-world applicability, as FL relies on minimizing communication
overhead (i.e., both message size and exchange frequency) to avoid network congestion and account
for potential connection failures, that are common in practical deployments.

Given the limitations of existing methods, achieving convergence to global flat minima while main-
taining communication efficiency in heterogeneous FL remains a critical challenge. To address this,
we propose FEDGLOSS (Federated Global Server-side Sharpness) that directly optimizes global
sharpness by using SAM on the server side, avoiding additional exchanges over the network.
Such adaptation is not straightforward, as SAM would require dual exchanges with each client set
per round to solve its optimization problem. Instead, FEDGLOSS approximates the sharpness mea-
sure using available previous pseudo-gradients. As a result, FEDGLOSS facilitates faster training
and keeps communication efficiency. To summarize, our core contributions are the following:

• Empirical proof of local-global discrepancies: we provide the first empirical evidence
showing the limitations of approaches that focus solely on local sharpness. Our analysis
highlights the inconsistency between local and global loss geometries even when us-
ing sharpness-aware approaches like FEDSAM, demonstrating that local flatness does not
necessarily ensure a flat global minimum. While reaching flat global solutions in simpler
problems, we show that their effectiveness diminishes as data complexity and heterogeneity
increase (Fig. 1).

• To bridge this gap and motivated by communication efficiency, our FEDGLOSS algo-
rithm directly optimizes for global sharpness on the server using SAM, reducing the com-
munication overhead and the clients’ computational costs compared to previous works.
FEDGLOSS consistently achieves flatter minima and outperforms state-of-the-art methods
across various vision benchmarks.

• We show the importance of aligning global and local solutions and illustrate how SAM, es-
pecially on the server side, enables effective ADMM use in FL. While typically ADMM-
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based methods suffer from parameter explosion Varno et al. (2022), we show that by tar-
geting flat minima, SAM encourages smaller gradient steps and minimal weight updates,
leading to a significantly more stable algorithm.

2 RELATED WORKS

Federated framework. In the last few years, Federated Learning (FL) (McMahan et al., 2017)
garnered significant attention from both the machine learning and computer vision communities.
While the former has primarily focused on optimizing FL algorithms and guaranteeing their conver-
gence (Li et al., 2020d; Acar et al., 2021; Reddi et al., 2021), the latter has explored its applications
in real-world settings, spanning diverse domains like autonomous driving (Fantauzzo et al., 2022;
Shenaj et al., 2023; Miao et al., 2023) and healthcare (Liu et al., 2021). The key appeal of FL lies
in its ability to efficiently learn from privacy-protected, distributed data while complying with reg-
ulations and leveraging edge resources. Real-world deployments of FL range across both cross-silo
and cross-device settings (Kairouz et al., 2021). This work focuses on the latter, with up to millions
of individual devices at the network edge, with typically limited data and computational power,
and potential unavailability due to battery life or network connectivity issues. User-specific factors
like geographical location, capturing devices and daily habits introduce inherent bias and statisti-
cal heterogeneity into the local datasets. In this setting, FEDGLOSS aims to learn a global model
that generalizes to the overall data distribution under statistical heterogeneity without increasing
communication complexity, unlike other algorithms for local-global consistency in heterogeneous
FL.

Flatness search in FL. Recent research has explored the connection between loss landscape ge-
ometry and generalization in heterogeneous FL. Studies suggest that convergence to sharp minima
might hinder generalization performance (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017;
Petzka et al., 2021). SAM (Sharpness-Aware Minimization) (Foret et al., 2021) tackles this issue by
guiding the optimization toward flatter regions, seeking minima that exhibit both low loss and low
sharpness. FEDSAM (Caldarola et al., 2022; Qu et al., 2022) deploys SAM in local training, marking
the first step toward leveraging loss surface geometry in FL to reduce discrepancies between local
and global objectives, ultimately improving the global model’s generalization ability. Following its
success, FEDSPEED (Sun et al., 2023b) uses perturbed gradients as SAM to reduce local overfitting,
FEDGAMMA (Dai et al., 2023) combines the stochastic variance reduction of SCAFFOLD with SAM
and Shi et al. (2023) show FEDSAM’s effectiveness in mitigating the negative effects of differential
privacy. However, these approaches rely on local sharpness information, assuming its minimiza-
tion directly translates to a globally flat minimum. This may not always be true, as we hypothesize
discrepancies may exist between the geometries of local and global losses. Optimizing local sharp-
ness alone does not guarantee a server model residing in a flat region of the global loss landscape
(Fig. 1). Addressing these limitations, FEDSMOO (Sun et al., 2023a) applies ADMM (Boyd et al.,
2011) to the sharpness measure to enforce global and local consistency. This adds communica-
tion overhead, doubling the message size in each round and hindering its real-world practicality.
In contrast, our work focuses on minimizing global sharpness while maintaining communication
efficiency. Lastly, building on Stochastic Weight Averaging (Izmailov et al., 2018), other works
(Caldarola et al., 2022; 2023) use a window-based average of global models across rounds to reach
wider minima. Being agnostic to the underlying optimization algorithm, they remain orthogonal to
our approach.

Heterogeneity in FL. The de-facto standard algorithm for FL is FEDAVG (McMahan et al., 2017),
which updates the global model with a weighted average of the clients’ parameters. However, FE-
DAVG struggles when faced with heterogeneous data distributions, leading to performance degra-
dation and slow convergence due to the local optimization paths diverging from the global one
(Karimireddy et al., 2020b). Reddi et al. (2021) shows FEDAVG is equivalent to applying Stochastic
Gradient Descent (SGD) (Ruder, 2016) with a unitary learning rate on the server side, using the
difference between the initial global model parameters and the clients’ updates as pseudo-gradient,
opening the door to alternative optimizers beyond SGD to improve performance and convergence
speed. Building on this intuition, this work proposes SAM (Foret et al., 2021) as a server-side op-
timizer to enhance generalization by converging toward global flat minima. Since SAM requires
two optimization steps per iteration, a direct adaptation to the FL setting would double communi-
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cation exchanges between clients and server; FEDGLOSS overcomes this limitation and maintains
communication efficiency through the use of the latest pseudo-gradient as sharpness approximation.

Several approaches address client drift by adding regularization during local training. FedProx (Li
et al., 2020c) introduces a term to keep local parameters close to the global model, FEDDYN (Acar
et al., 2021) employs ADMM to align local and global convergence points, ADABEST (Varno et al.,
2022) adjusts local updates with an adaptive bias estimate, and SCAFFOLD (Karimireddy et al.,
2020b) applies stochastic variance reduction. Momentum-based techniques (Sutskever et al., 2013)
are also employed to maintain a consistent global trajectory, either on the server side (e.g., FE-
DAVGM (Hsu et al., 2019)) or by incorporating global information into local training (Karimireddy
et al., 2020a; Kim et al., 2022; Gao et al., 2022; Zaccone et al., 2023). Unlike FEDDYN, where
ADMM can lead to parameter explosion (Varno et al., 2022), our FEDGLOSS successfully lever-
ages ADMM to align global and local solutions, even under extreme heterogeneity, aided by SAM
on server.

Centralized SAM. To avoid doubling client-server exchanges caused by SAM’s two-step process,
FEDGLOSS draws on insights from the literature on SAM in centralized settings. Several strategies
have been proposed to minimize computational overhead, including reducing the number of param-
eters needed to compute the sharpness-aware components (Du et al., 2022a), or approximating them
(Liu et al., 2022; Du et al., 2022b; Park et al., 2023). DP-SAT (Park et al., 2023) approximates the
ascent step with the gradient from the previous iteration, and SAF (Du et al., 2022b) replaces SAM’s
sharpness approximation with the trajectory of weights learned during training. Aiming to the same
goal, FEDGLOSS approximates the sharpness measure with the pseudo-gradient from the pre-
vious round on the server side, without incurring in unnecessary exchanges with the clients and
effectively guiding the optimization toward globally flat minima.

3 BACKGROUND

This section introduces the FL problem setting and preliminary notations on SAM (Foret et al., 2021)
and FEDSAM (Caldarola et al., 2022; Qu et al., 2022).

3.1 PROBLEM SETTING

In FL, a central server communicates with a set of clients C for T rounds. The goal is to learn a
global model f(www) : X → Y parametrized by www ∈ Rd, where X and Y are the input and the output
spaces respectively. In image classification, X contains the images and Y their corresponding labels.
Each client k ∈ C has access to a local dataset Dk of Nk pairs {(xi, yi), xi ∈ X , yi ∈ Y}Nk

i=1. In
realistic heterogeneous settings, clients usually hold different data distributions and quantity, i.e.,
Di ̸= Dj and Ni ̸= Nj ∀i ̸= j ∈ C. The global FL objective is:

min
www

{
f(www) =

1

C

∑

k∈C

fk(www)

}
, fk(www) ≜ Efk(www, ξk), (1)

where C ≜ | C | is the total number of clients, fk is the empirical loss on the k-th client (e.g.,
cross-entropy loss) and ξk is the data sample randomly drawn from the local data distribution Dk.
The training process is a two-phase optimization approach within each round t ∈ [T ]. First, due to
potential client unavailability, a subset of selected clients Ct ⊂ C trains the received global model
using their local optimizer CLIENTOPT (e.g., SGD, SAM). Then, the server aggregates their updates
with a server optimizer, SERVEROPT. FEDOPT (Reddi et al., 2021) solves Eq. (1) as

∆t
www ≜

∑

k∈Ct

Nk

N
(wwwt−wwwt

k) and (2)

wwwt+1 ← wwwt−SERVEROPT(wwwt,∆t
www, ηs), (3)

where ∆t
www is the global pseudo-gradient at round t, N =

∑
k∈Ct Nk the total number of im-

ages seen during the current round, ηs the server learning rate, wwwt the global model and wwwt
k the

local update resulting from training on client k’s data with CLIENTOPT for E epochs. FEDAVG
(McMahan et al., 2017) computes wwwt+1 as

∑
k∈Ct

Nk/Nwwwt
k, corresponding to one SGD step on the

pseudo-gradient ∆t
www with ηs = 1 (Reddi et al., 2021).
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Figure 2: Global vs. local perspective on FEDSAM. CIFAR100 α = 0 @ 20k rounds on CNN. Local models
trained on one class, tested on the local (bottom landscape) or global dataset (top landscape). Models
trained with FEDSAM present significant differences between local and global behaviors.

3.2 SHARPNESS-AWARE MINIMIZATION

SAM (Foret et al., 2021) jointly minimizes the loss value and the sharpness of the loss landscape by
solving the min-max problem

min
www

{
F (www) ≜ max

∥ ϵϵϵ ∥≤ρ
f(www+ ϵϵϵ)

}
, (4)

where ϵϵϵ is the perturbation to estimate the sharpness, f the loss function, ρ the neighborhood size
and ∥ · ∥ the ℓ2 norm. Using the first-order Taylor expansion of f , SAM efficiently solves the inner
maximization as

argmax
∥ ϵϵϵ ∥≤ρ

f(www) + ϵϵϵ⊤∇wwwf(www) = ρ
∇wwwf(www)

∥∇wwwf(www)∥
≜ ϵ̂ϵϵ(www). (5)

ϵ̂ϵϵ is the scaled gradient of the loss w.r.t. the current parameters www. The sharpness-aware gradient is
∇wwwf(www)|www+ ϵ̂ϵϵ(www). Eq. (4) is solved with a first gradient ascent step to compute ϵ̂ϵϵ and a descent step
with the sharpness-aware gradient, updating the model as www ← www−η∇wwwf(www)|www+ ϵ̂ϵϵ(www).

3.3 SAM IN FEDERATED LEARNING

FEDSAM (Caldarola et al., 2022; Qu et al., 2022) aims to improve the clients’ models general-
ization through convergence to flatter regions by using SAM in the local training. From Eqs. (1)
and (4), the global objective becomes minwww

{
f SAM(www) = 1/C

∑
k∈C f

SAM
k (www)

}
, with f SAM

k (www) ≜
max∥ ϵϵϵk ∥≤ρ fk(www+ ϵϵϵk) with local perturbation ϵϵϵk. The intuition behind this approach is that the im-
proved local models’ generalization positively reflects on the global model performance. However,
by independently applying Eq. (4) in the local optimization, FEDSAM does not explicitly address
global flatness, potentially leading to discrepancies between local and global loss geometries.

4 LOCAL-GLOBAL SHARPNESS INCONSISTENCY

This section empirically investigates the hypothesis that discrepancies between local and global
loss landscapes impact FEDSAM’s performance, using a CNN model on CIFAR10 and CIFAR100
datasets — further details in Section 6.

Fig. 1 compares the loss surfaces of CNNs trained with FEDAVG and FEDSAM. On the easier CI-
FAR10, FEDSAM exhibits noticeably flatter minima w.r.t. FEDAVG, effectively navigating simpler
landscapes. However, their performance difference diminishes with increasing dataset complexity
(CIFAR100) and heterogeneity (α → 0). This suggests that larger discrepancies between local
and global geometries arise as tasks become more complex and data distributions more di-
verse.

To highlight the existing difference between local and global behavior, Fig. 2 investigates the behav-
ior of client models at the end of local training when tested on their own dataDk (bottom landscape),
prior to server-side aggregation, w.r.t. the overall dataset D (top landscape). Each plot shows the
behavior of one of the randomly selected clients during the last round with FEDSAM, distinguished
by the locally seen class (results for all 5 clients in Appendix B). The inconsistency between local
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Table 1: Maximum Hessian eigenvalues of local models, computed on global (λ1,g) and local datasets (λ1,l).
CIFAR10 and CIFAR100, α = 0. Each client is identified via its local class. The lowest λ1,g in bold. FEDDYN
does not converge on CIFAR100 with α = 0 (Caldarola et al., 2022; Varno et al., 2022), hence the lack of
results (✗).

Local FEDAVG FEDSAM FEDDYN FEDDYN + SAM FEDSMOO FEDGLOSS
Class λ1,l λ1,g λ1,l λ1,g λ1,l λ1,g λ1,l λ1,g λ1,l λ1,g λ1,l λ1,g

C
IF

A
R

10
airplane 9.1 239.1 100.6 36.4 752.5 347.8 199.6 12.0 122.1 26.5 190.1 4.3
cat 424.2 273.6 28.8 16.5 59.9 242.3 122.0 11.1 82.4 26.9 106.9 3.9
bird 18.4 237.0 106.4 35.7 894.0 371.2 200.2 12.0 134.2 25.7 200.1 4.1
airplane 483.5 269.5 103.2 30.6 761.6 348.9 206.9 12.3 122.8 25.2 207.8 4.0
frog 263.2 259.6 68.1 32.9 528.9 286.0 155.6 11.7 79.3 33.5 84.8 4.1

C
IF

A
R

10
0 sea 251.0 224.5 0.1 238.5

✗ ✗ ✗ ✗

33.2 31.4 28.3 19.6
snail 91.2 267.0 0.2 149.1 331.2 102.2 260.8 40.7
bear 108.4 215.2 6.7 129.3 428.6 121.0 220.3 49.6
skyscraper 613.3 300.1 1.3 194.6 143.5 40.2 269.2 22.2
possum 37.9 259.6 15.3 142.6 455.5 90.9 392.4 39.0

and global behavior can be easily appreciated: locally, each model lands in a flat region; differ-
ently, the same model is close to saddle points (Fig. 2a) or sharp minima (Figs. 2b and 2c) in the
global landscape. These findings are further corroborated by the Hessian eigenvalues presented in
Table 1. FEDSAM’s local maximum Hessian eigenvalue, denoted by λ1,l and computed on each
client’s individual dataset, is significantly lower than the global eigenvalue λ1,g , calculated on the
overall dataset, on the more complex CIFAR100. This suggests that FEDSAM effectively achieves
local convergence to flatter regions of the loss landscape on individual devices. However, the higher
global eigenvalue indicates limitations in reaching a globally flat minimum. The challenge of achiev-
ing flat regions under high heterogeneity and the gap between local and global flatness support the
introduction of FEDGLOSS.

5 FL WITH GLOBAL SERVER-SIDE SHARPNESS

FEDGLOSS (Federated Global Server-side Sharpness) overcomes FEDSAM’s limitations by effi-
ciently optimizing both global flatness and consistency.

5.1 RETHINKING SAM IN FEDERATED LEARNING

Aiming to optimize SAM’s objective (Eq. (4)) on the global function, FEDGLOSS solves
minwww

{
F(www) = 1

C

∑
k∈C Fk(www)

}
, with Fk(www) ≜ max∥ ϵϵϵ ∥≤ρ fk(www+ ϵϵϵ), where ϵϵϵ is the global per-

turbation. Calculating the true ϵϵϵ value requires the global gradient ∇wwwf (Eq. (5)) computed on the
entire dataset D ≜ ∪k∈C Dk, which is not available in FL due to data privacy and communication
constraints. While FEDSMOO (Sun et al., 2023a) tackles this issue by using ADMM on the sharp-
ness with the constraint ϵϵϵ = ϵϵϵk, it necessitates transmitting ϵϵϵ alongside the model parameters www to
both clients and server in each round, hindering its practicality in real-world scenarios with limited
communication budgets. This observation motivates the question: how to minimize global sharpness
while maintaining communication efficiency?

5.1.1 CHALLENGES OF SERVER-SIDE SAM

We address this question by applying SAM on the server side, directly optimizing for global sharp-
ness and eliminating the need to align local sharpness on the clients. The global model has to be
updated as wwwt+1 ← wwwt−ηs∇www F(www)|wwwt + ϵ̂ϵϵt(www), where ϵ̂ϵϵt is the global perturbation at each round
t. However, a key challenge arises: the computation of both ϵ̂ϵϵt and the sharpness-aware gradi-
ent necessitates two transmissions with the clients, making its direct application in server-side FL
non-trivial. A straightforward solution is to emulate SAM’s double computation step through two
communication exchanges ∀t ∈ [T ].

• Step 1: the server sends the global model wwwt to a subset Ct of clients, which update it
using their local data. With the resulting pseudo-gradient ∆t

www, ϵ̂ϵϵt(www) = ρ(∆
t
www/∥∆t

www∥) and
the perturbed model w̃wwt = wwwt + ϵ̂ϵϵt(www).
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Figure 3: Illustration of FEDGLOSS. The model wwwt is perturbed using ∆̃t−1
www . The sharpness-aware direction

(dashed) is used to compute wwwt+1 (solid), which lands in a flat region. Compared to FEDAVG.

Table 2: Overview of FL methods using SAM. Differently from previous works, FEDGLOSS uses SAM as
server optimizer and allows any local optimizer.

Method SERVEROPT CLIENTOPT
Global Communication Local Computation

Flatness Cost Cost

FEDSAM (Caldarola et al., 2022; Qu et al., 2022) SGD SAM ✗ 1× 2×
FEDDYN (Acar et al., 2021) + SAM SGD SAM ✗ 1× 2×
FEDSPEED (Sun et al., 2023b) SGD Similar to SAM ✗ 1× 2×
FEDGAMMA (Dai et al., 2023) SGD SAM ✓ 2× 2×
FEDSMOO (Sun et al., 2023a) SGD SAM ✓ 2× 2×
FEDGLOSS SAM Any optimizer ✓ 1× 1× or 2×

• Step 2: the server transmits w̃wwt to the same Ct, which compute their update w̃wwt
k ∀k.

The resulting global pseudo-gradient ∆̃t
www ≜

∑
k∈Ct

Nk/N(w̃wwt− w̃wwt
k) is an estimate of

∇www F(www)|wwwt + ϵ̂ϵϵt(www).

This two-step approach, referred to as NAIVEFEDGLOSS, is conceptually simple but suffers from
communication inefficiency, doubling the communication cost w.r.t. FedAvg, while requiring the
same set of clients Ct to remain active for two consecutive exchanges. This may be unrealistic in
real-world settings often characterized by network failures. These limitations highlight the need for
an efficient alternative that accounts for practical real-world FL factors.

5.2 FEDGLOSS

To overcome the challenges posed by NAIVEFEDGLOSS, following (Park et al., 2023), FEDGLOSS
estimates ϵ̂ϵϵt using the perturbed global pseudo-gradient from the previous round ∆̃t−1

www at each
round t. This approach leverages available information without incurring extra communications and
avoiding unnecessary computations. Intuitively, the use of the previous pseudo-gradient to minimize
the sharpness allows FEDGLOSS to access information on the global loss landscape geometry, thus
guiding the global optimization towards flatter minima. From Eqs. (3) and (5), FEDGLOSS
updates the global model wwwt as

1⃝ ϵ̃ϵϵt(www) ≜ ρ
∆̃t−1

www

∥∆̃t−1
www ∥

2⃝ w̃wwt ← wwwt + ϵ̃ϵϵt(www)

3⃝Obtain w̃wwt
k from clients and ∆̃t

www =
∑

k∈Ct

Nk

N
(w̃wwt− w̃wwt

k)

4⃝wwwt+1 ← wwwt−FEDGLOSS(wwwt, ∆̃t
www, ηs) = wwwt−ηs∆̃t

www,

where with a slight abuse of notation SERVEROPT from Eq. (3) is substituted with the server-side
strategy proposed by FEDGLOSS. The notation follows the colors of Fig. 3, which depicts our
approach. Notably, as summarized in Table 2, FEDGLOSS enables SAM on the server side while al-
lowing any CLIENTOPT for local training, with computational costs varying based on the chosen
optimizer. This differs from previous methods constrained to the more computationally expensive
SAM. In addition, differently from FEDSMOO, FEDGLOSS maintains FEDAVG’s communication
complexity while optimizing for global flatness.
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5.2.1 PROMOTING GLOBAL CONSISTENCY WITH ADMM

The difference in using the approximation ϵ̃ϵϵt (FEDGLOSS) and the true ϵ̂ϵϵt (NAIVEFEDGLOSS) is

δtϵ ≜ ∥ ϵ̃ϵϵt(www)− ϵ̂ϵϵt(www)∥ = ρ

∥∥∥∥∥
∆̃t−1

www

∥∆̃t−1
www ∥

− ∆t
www

∥∆t
www∥

∥∥∥∥∥ , (6)

where ∆̃t−1
www is computed using the updates of the clients in Ct−1 and ∆̃t

www with Ct. Eq. (6) suggests
δtϵ is minimized when ∆̃t−1

www and ∆̃t
www are aligned. However, in real-world heterogeneous FL, i) to

due clients’ unavailability, only a subset of them participates in training at each round, with Ct likely
differing from Ct−1, and ii) clients hold different data distributions, i.e., local optimization paths
likely converge towards different local minima, leading to unstable global updates (Karimireddy
et al., 2020b). As a consequence, δtϵ ̸→ 0 necessarily.

To align local and global objectives - ensuring client and server gradient alignment and minimizing
Eq. (6) - FEDGLOSS leverages the Alternating Direction Method of Multipliers (ADMM) (Boyd
et al., 2011) on wwwt (Acar et al., 2021; Sun et al., 2023a;b). While alternative approaches could
be used, they either lack full immunity to data heterogeneity or have shown poor performance on
realistic scenarios (e.g., variance reduction Karimireddy et al. (2020b); Dai et al. (2023)). In contrast,
ADMM has been proved to converge under arbitrary heterogeneity Acar et al. (2021) and can thus
be leveraged as a base algorithm for FEDGLOSS, as shown in Algorithm 1 in Appendix A. ADMM
makes use of the augmented Lagrangian function L(www,WWW,σ) =

∑
k∈C L(www,wwwk, σk) where WWW =

{www1, · · · ,wwwC} and σ is the Lagrangian multiplier. The problem solved by L is

1

C

∑
k∈C

(fk + σ⊤
k (wwwt−wwwt

k) +
1

2β
∥wwwt−wwwt

k ∥2) s.t. www = wwwk (7)
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w/ ADMM

w/o ADMM

Figure 4: Trend of the difference δtϵϵϵ (Eq. (6)), which
decreases as ADMM is used and over training rounds.
CIFAR datasets, CNN.

with β > 0 being an hyperparameter. Eq. (7)
is split into C sub-problems of the form
wwwk,E = argminwwwk

{fk − σ⊤
k (www

t−wwwk) +
1
2β ∥wwwt−wwwt

k ∥2}. The local dual variable is
updated as σk ← σk − 1

β (www
t
k,E −wwwt

k,0). The
global one σ is updated by adding the averaged
wwwk −wwwt ∀k ∈ C.

Figure 4 confirms the effect of ADMM on gra-
dient alignment: the difference between the true
and approximated perturbation, δtϵ (Eq. (6)), de-
creases over training rounds and with the use of
Lagrangian multipliers.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTING

Appendix C details implementation and hyperparameter settings.

Federated datasets. We leverage established FL benchmarks (Caldas et al., 2019; Hsu et al., 2020;
2019). Small-scale image classification: following (Hsu et al., 2020; Caldarola et al., 2022), the
federated versions of CIFAR10 (10 classes) and CIFAR100 (100 classes) (Krizhevsky, 2009) split
the respective 50k training images in 100 clients with 500 images each. The data distribution is
controlled by the Dirichlet’s parameter α ∈ {0, 0.05} for CIFAR10 and {0, 0.5} for CIFAR100
(Hsu et al., 2019). Lower α signifies increased heterogeneity, with α = 0 being the most chal-
lenging scenario where each client holds samples from one class. Large-scale image classification:
LANDMARKS-USER-160K (2, 028 classes) (Hsu et al., 2020) is the federated Google Landmarks
v2 (Weyand et al., 2020) with 164, 172 pictures of worldwide locations, split among 1, 262 realistic
clients.

Models. The effectiveness of FEDGLOSS is shown using multiple model architectures. As in
(Hsu et al., 2020; Caldarola et al., 2022), we use a Convolutional Neural Network (CNN) similar to
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(a) Local model on class sea
w/ FEDGLOSS

(b) Local model on class
snail w/ FEDGLOSS

(c) Local model on class sea
w/ FEDSMOO

(d) Local model on class
snail w/ FEDSMOO

Figure 5: Global vs. local perspective of FEDGLOSS and FEDSMOO. Loss landscapes of clients models
trained on one class, tested on the local (“Local loss”) or global dataset (“Global loss”). CIFAR100 α = 0
with SAM as local optimizer @ t = 20k, CNN. (a)-(b): Models trained with FEDGLOSS. Global loss of
FEDSAM’s local model (net) as reference. (c)-(d): Models trained with FEDSMOO. Global loss of FEDGLOSS’
local model (net) as reference. FEDGLOSS achieves better consistency w.r.t. FEDSMOO.

LeNet5 (LeCun et al., 1998) on both CIFAR10 (T = 10k) and CIFAR100 (T = 20k). Experiments
with ResNet18 (He et al., 2015) run for 10k rounds. For LANDMARKS-USER-160K, we train
MobileNetv2 (Sandler et al., 2018; Hsu et al., 2020) (T = 1.3k), considering the limited resources
at the edge.

Baselines. To study real-world settings with varying participation, a small fraction of clients is
sampled at each round, with participation rate set to 5% with the CNN and 10% with ResNet18
on both CIFARs, and to 50 clients per round in LANDMARKS-USER-160K (≈ 4%). FEDGLOSS
is compatible with any local optimizer (Section 5). We choose SGD and SAM to comply with
previous works and compare it with state-of-the-art (SOTA) methods for statistical heterogeneity in
FL, distinguishing the results by optimizer type to highlight performance differences. SGD-based
approaches are FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020c), FedDyn (Acar et al.,
2021) and Scaffold (Karimireddy et al., 2020b), while use SAM FedSAM (Caldarola et al., 2022;
Qu et al., 2022), FedDyn + SAM, FedSpeed (Sun et al., 2023b), FedGamma (Dai et al., 2023) and
FedSmoo (Sun et al., 2023a).

6.2 ACHIEVING LOCAL-GLOBAL SHARPNESS CONSISTENCY

To assess the effectiveness of FEDGLOSS in promoting consistency between local and global loss
landscapes, Fig. 5 replicates the analysis previously conducted on FEDSAM (Fig. 2) for direct com-
parison. The behavior of local models is shown from both local and global perspectives (“Local
loss” and “Global loss”, respectively). Appendix B.1 offers visualizations for the remaining clients.
Compared to FEDSAM, the gap between local and global loss landscapes in FEDGLOSS is signifi-
cantly smaller, and both global and local loss surfaces are found in flat and low-loss regions (Figs. 5a
and 5b). This suggests our method effectively promotes convergence toward aligned low-loss flat
regions, minimizing the discrepancy between local and global geometries. This results in a global
model residing in a flat minimum in the global landscape (Figs. 6a and 6c). Figs. 5c and 5d instead
compare FEDGLOSS with the best-performing SOTA FEDSMOO, where the position in the global
landscape of FEDGLOSS’ local models is added for reference. While FEDSMOO improves con-
sistency between local and global sharpness compared to FEDSAM, it falls short of FEDGLOSS in
reaching a flatter global minimum.

Table 1 confirms these claims. By combining ADMM for consistency and server-side SAM for
global flatness, FEDGLOSS prioritizes achieving a flatter global region during training, as proven
by the lowest global maximum eigenvalue λ1,g and larger λ1,l, across all clients and methods.

6.3 BENCHMARKING FEDGLOSS AGAINST SOTA

This section compares FEDGLOSS with SOTA methods (Section 6.1) on vision tasks in heteroge-
neous federated settings. Appendix B.4 discusses results in homogeneous FL.
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Figure 6: Loss landscapes of models trained with FEDGLOSS (net) vs. FEDSAM and FEDSMOO (solid) on
CIFAR10/100. (a) - (c) - (e): The flatter regions reached by FEDGLOSS w.r.t. FEDSAM prove the effectiveness
of optimizing for global flatness. (b) - (d) - (f): FEDGLOSS achieves flatter minima and lower loss values w.r.t.
FEDSMOO.

Table 3: FEDGLOSS vs. the state of the art on CIFAR datasets, distinguished by local optimizer, SGD (top)
and SAM (bottom), in terms of communication cost and accuracy (%). Best results in bold.

CNN ResNet18

Method Comm. CIFAR10 CIFAR100 CIFAR10 CIFAR100
Cost α = 0 α = 0.05 α = 0 α = 0.5 α = 0.05 α = 0.5

C
lie

nt
SG

D FEDAVG 1× 59.9±0.4 65.7±1.0 28.6±0.7 38.5±0.5 72.6±0.1 37.4±0.2

FEDPROX 1× 59.8±0.5 65.6±1.0 28.8±0.7 38.7±0.4 72.2±0.2 37.6±0.1

FEDDYN 1× 65.5±0.3 70.1±1.2 ✗ ✗ 70.2±0.6 38.8±0.6

SCAFFOLD 2× 25.1±3.7 54.0±2.6 ✗ 30.0±1.1 70.8±0.6 38.6±0.1

FEDGLOSS 1× 69.5±0.4 75.5±0.3 42.5±0.6 47.9±0.5 79.1±0.5 46.7±0.6

C
lie

nt
SA

M

FEDSAM 1× 70.2±0.9 71.5±1.08 28.7±0.5 39.6±0.5 72.8±0.1 38.5±0.1

FEDDYN 1× 79.3±3.1 81.5±0.6 ✗ ✗ 72.6±0.2 39.6±0.8

FEDSPEED 1× 70.9±0.4 72.3±1.1 28.9±0.5 39.7±0.5 72.6±0.1 38.8±0.6

FEDGAMMA 2× 58.9±1.8 61.9±1.8 ✗ 29.4±1.4 72.2±0.1 38.8±0.3

FEDSMOO 2× 81.3±0.5 82.8±0.6 47.8±0.5 51.7±0.46 75.3±0.6 44.8±0.5

FEDGLOSS 1× 83.9±0.4 84.4±0.5 50.6±0.6 53.4±0.5 80.0±0.3 47.2±0.2

6.3.1 FEDGLOSS ON STANDARD FEDERATED BENCHMARKS

Table 3 presents results on CIFAR100 and CIFAR10 with varying levels of heterogeneity on the CNN
model. Several observations highlight the advantages of FEDGLOSS. It is straightforward to no-
tice how FEDGLOSS achieves the best results among both SGD and SAM-based approaches while
maintaining communication efficiency. FEDGLOSS with local SAM consistently outperforms the
best-performing SOTA FEDSMOO by ≈ 2.5 percentage points in accuracy across all dataset con-
figurations with half the communication cost. FEDGLOSS also reaches the flattest global minima
(e.g., λFEDGLOSS

1 = 2.03 vs. λFEDSMOO
1 = 15.37 on CIFAR10 with α = 0), as shown in Figs. 6

and 7, achieving the best overall performance. FEDGLOSS with local SGD overcomes by ≈ 4
percentage points all SGD-based approaches. As studied in (Varno et al., 2022), FEDDYN suffers
from parameter explosion in highly heterogeneous settings, failing to converge on CIFAR100. Dif-
ferently, FEDGLOSS successfully employs ADMM to align global and local solutions, with the best
results under extreme heterogeneity. Similarly, studies showed SCAFFOLD performs poorly in com-
plex heterogeneous environments (Li et al., 2022; Caldarola et al., 2022), resulting in its inability to
converge on CIFAR100 alongside FEDGAMMA. Lastly, the last two columns of Table 3 further con-
firm FEDGLOSS’ effectiveness, consistently outperforming SOTA methods with the more complex
ResNet18 architecture, with ≈ 8 points higher accuracy w.r.t. FEDAVG with both SGD and SAM,
and +5 w.r.t. FEDSMOO, with the flattest solutions (Figs. 6e and 6f).

FedAVG

FedProx

FedDyn

SCAFFOLD

FedSAM

FedDyn +
SAM

FedSpeed

FedGamma

FedSMOO

FedGloSS
100

101

102

λ
1

α = 0

α = 0.05

(a) CIFAR10

FedAVG

FedProx

SCAFFOLD

FedSAM

FedSpeed

FedGamma

FedSMOO

FedGloSS
100

101

102

λ
1

α = 0

α = 0.5

(b) CIFAR100

Figure 7: Maximum Hessian eigenvalues (λ1), CNN. Values shown only if algorithm converged. FEDGLOSS
reaches the flattest global minima.
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Figure 8: Trend of model parameters norm, ∥wwwt ∥2, on SAM-based methods with ResNet18 on CIFAR datasets.
SAM reduces the norm and the risk of parameters explosion, successfully enabling ADMM in heteroge-
neous FL.

6.3.2 FEDGLOSS ON REAL-WORLD LARGE-SCALE DATASETS

To further highlight FEDGLOSS’s effectiveness, we
evaluate it on large-scale image classification using
the challenging LANDMARKS-USER-160K dataset.
Table 4 compares FEDGLOSS with local SAM
against the best-performing baselines. FEDGLOSS
is among the few methods, alongside FEDSAM and
FEDSMOO, outperforming FEDAVG. Similarly to
the CIFAR100 results (Section 6.3.1), both SCAF-
FOLD and FEDGAMMA fail to converge. Importantly,
FEDGLOSS achieves the best overall performance
(+3.4% w.r.t. FEDAVG) with reduced communication
overhead.

Table 4: MobileNetv2 on LANDMARKS-
USER-160K.

Method Comm. cost Accuracy

FEDAVG 1× 56.3±0.2

FEDPROX 1× 55.0±0.2

FEDDYN 1× 55.2±0.6

SCAFFOLD 2× ✗
FEDSAM 1× 56.7±0.1

FEDDYN + SAM 1× 56.0±1.3

FEDGAMMA 2× ✗
FEDSMOO 2× 59.5±0.1

FEDGLOSS 1× 59.7±1.2

6.3.3 ADMM AND SAM INTERACTION IN FEDGLOSS

ADMM-based methods are often prone to parameter explosion in highly heterogeneous FL settings
with many clients Varno et al. (2022). This occurs as multiple gradients accumulate in the global
dual variable σ (Section 5), causing the parameter norms to grow uncontrollably. However, em-
pirical results indicate that this issue is mitigated with SAM (e.g., see FEDDYN vs. FEDGLOSS in
Table 3). We hypothesize this is due to SAM ’s nature: by targeting flat minima, it promotes smaller
gradient steps and minimal weight updates, resulting in a more stable algorithm. Fig. 8 confirms our
hypothesis by showing SAM’s stability effectively lowers parameter norms and the consequent risk
of explosion, particularly when SAM is applied directly to the global model, as in FEDGLOSS.

6.3.4 COMMUNICATION EFFICIENCY WITH FEDGLOSS

Table 5: Communication costs comparison w.r.t. FEDAVG. “-” for not reached accuracy, “ ✗” for non-
convergence. GLDV2 is LANDMARKS-USER-160K.

Method

CNN ResNet18 MobileNetv2
CIFAR10 α = 0 CIFAR100 α = 0 CIFAR10 α = 0.05 CIFAR100 α = 0.5 GLDV2
Rounds Cost Rounds Cost Rounds Cost Rounds Cost Rounds Cost

C
lie

nt
SG

D FEDAVG 10k 1B 20k 1B 10k 1B 10k 1B 1.3k 1B
FEDPROX 7.6k 0.8B 18.7k 0.9B 8.8k 0.9B 8.3k 0.8B - -
FEDDYN 2.0k 0.2B ✗ - - 3.5k 0.4B - -
SCAFFOLD - - - - - - 8.9k 1.8B ✗
FEDGLOSS 3.4k 0.3B 5k 0.3B 2.4k 0.2B 1.9k 0.2B 1.3k 1B

C
lie

nt
SA

M

FEDSAM 6.3k 0.6B 18.3k 0.9B 9.2k 0.9B 7.8k 0.8B 1.3k 1B
FEDDYN 3.0k 0.3B ✗ 4.1k 0.4B 3.5k 0.4B - -
FEDSPEED 6.3k 0.6B 18.3k 0.9B 8.3k 0.8B 8.3k 0.8B 1.3k 1B
FEDGAMMA - - - - 9.3k 1.9B 8.1k 1.6B ✗
FEDSMOO 1.9k 0.4B 4.5k 0.5B 2.4k 0.5B 2.3k 0.5B 200 0.4B
FEDGLOSS 2.2k 0.2B 6.3k 0.3B 2.4k 0.2B 1.9k 0.2B 200 0.2B

Communication cost is the main bottleneck in FL (Li et al., 2020a), making its optimization a rele-
vant challenge. As already previously highlighted, FEDGLOSS considers communication efficiency
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Figure 9: Loss barriers resulting from interpolating NAIVEFEDGLOSS and FEDGLOSS’ models, which are
found in the same basin. CIFAR datasets, CNN.

Table 6: FEDGLOSS vs. NAIVEFEDGLOSS in terms of communication cost, accuracy (50% and 100% of
training) and maximum Hessian eigenvalue λ1. SAM as CLIENTOPT. CIFAR datasets with α = 0 (top) and
α = 0.05/0.5 (bottom). S̃AM is SAM with the sharpness approximation of FEDGLOSS, using the previous
gradient.

Method Comm. CIFAR10 CIFAR100
Cost Acc@50% Acc@100% λ1 (↓) Acc@50% Acc@100% λ1 (↓)

NAIVEFEDGLOSS 2× 77.6±0.3 83.9±0.2 2.78±0.13 42.6±0.8 50.8±0.1 16.93±0.27

FEDGLOSS 1× 78.9±0.5 83.9±0.4 2.03±0.05 39.5±0.9 50.6±0.6 17.18±0.97

NAIVEFEDGLOSS 2× 78.7±0.1 84.4±0.2 2.75±0.09 49.4±0.5 53.7±0.3 15.84±0.52

FEDGLOSS 1× 79.7±0.4 84.4±0.5 1.93±0.03 47.2±1.1 53.4±0.5 16.22±0.35

Centralized 87.1 SAM 86.3 S̃AM 58.4 SAM 57.6 S̃AM

its primacy concern. Defined B the number of bits exchanged by FEDAVG in T training rounds,
Table 5 studies FEDGLOSS’s communication cost against the SOTA baselines in terms of rounds
necessary to reach FEDAVG’s performance and quantity of exchanged bits. The ADMM-based
methods are usually faster, with FEDGLOSS being the fastest with ResNet18 and MobileNetv2.
While FEDSMOO is faster when using the CNN model, the transmitted bits double due to its in-
creased communication cost, making FEDGLOSS the most efficient method in all cases. Analyses
on left-out settings in Appendix B.5.

6.4 ABLATION STUDIES

6.4.1 COMMUNICATION-EFFICIENT SHARPNESS

This section studies the efficacy of using the pseudo-gradient from the previous round ∆̃t−1
www (Eq. (6))

as an estimate of the sharpness measure. FEDGLOSS uses past gradients as a reliable indication on
the global loss landscape and, by aligning global and local optimization paths through ADMM,
enables consistent trajectories across rounds.

Table 6 compares FEDGLOSS with its baseline, NAIVEFEDGLOSS (Section 5), which computes
the true perturbation ϵ̂ϵϵt at the expense of doubled communication costs. FEDGLOSS achieves accu-
racy comparable to NAIVEFEDGLOSS while maintaining communication efficiency, with minimal
or negligible gap in performance. This aligns with the observed sharpness of the achieved minima
(λ1). To ensure a fair comparison in communication cost, Table 6 also compares FEDGLOSS’ final
accuracy with NAIVEFEDGLOSS’ performance at 50% training progress, showing that FEDGLOSS
achieves higher accuracy with the same number of exchanges, benefiting from the additional global
optimization steps deriving from its communication-efficient strategy. This shows our approxima-
tion does not slow convergence. In addition, our strategy in centralized settings lowers the perfor-
mance w.r.t. SAM, thus reducing our centralized upper bound w.r.t. NAIVEFEDGLOSS. At equal
performance, FEDGLOSS narrows the gap to the upper bound: −2.4% on CIFAR10 with α = 0 and
−1.9% with α = 0.05 vs. respectively −3.2% and −2.7% of NAIVEFEDGLOSS w.r.t. SAM. In
CIFAR100 instead, −7% on α = 0 and −4.2% on α = 0.5 of FEDGLOSS vs. −8.1% and −5.2%
of its baseline. Lastly, our sharpness approximation does not steer the optimization path: models
trained with FEDGLOSS and NAIVEFEDGLOSS end up in the same basin (no loss barrier), with
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Table 7: Efficacy of global sharpness minimization in FEDGLOSS: ADMM for global consistency and server-
side SAM for global sharpness minimization lead to the best performance. CIFARS, CNN with α = 0 and
ResNet18 with α ∈ {0.05, 0.5}.

CLIENT Method Global Global CNN ResNet18
OPT Consistency Flatness CIFAR10 CIFAR100 CIFAR10 CIFAR100

SAM
FEDSAM ✗ ✗ 70.2±0.9 28.7±0.5 72.8±0.1 38.5±0.1

FEDDYN ✓ ✗ 79.3±3.1 ✗ 72.6±0.2 39.6±0.8

FEDGLOSS ✓ ✓ 83.9±0.4 50.6±0.6 80.0±0.3 47.2±0.2

SGD
FEDAVG ✗ ✗ 59.9±0.4 28.6±0.7 72.6±0.1 37.4±0.2

FEDDYN ✓ ✗ 65.5±0.3 ✗ 70.2±0.6 38.8±0.6

FEDGLOSS ✓ ✓ 69.5±0.4 42.5±0.6 79.1±0.5 46.7±0.6

similar flatness (Fig. 9). Aiming to reduce the communication bottleneck while achieving superior
performance, these results confirm our choice of FEDGLOSS over NAIVEFEDGLOSS.

6.4.2 THE ROLE OF GLOBAL CONSISTENCY AND FLATNESS

Table 7 isolates the impact of global consistency and global sharpness minimization in FEDGLOSS.
We recall FEDAVG with client-side SAM is FEDSAM and using ADMM only for aligning local and
global convergence points is FEDDYN. Both components significantly impact performance, with
their combination leading FEDGLOSS to the best overall results. FEDGLOSS is not prone to
parameter explosion, achieving the best results even where FEDDYN fails to converge (✗). The
flatness of FEDGLOSS’ solutions w.r.t. FEDSAM in Fig. 6 confirms the efficacy of its strategy.

7 DISCUSSION

This work tackled the challenge of limited generalization in heterogeneous Federated Learning (FL),
prioritizing communication efficiency for real-world use. Building on research linking poor general-
ization to sharp minima in the loss landscape, we showed data heterogeneity worsens discrepancies
between local and global loss surfaces, a problem not resolved by methods focusing only on local
sharpness.

To address this issue, we introduced Federated Global Server-side Sharpness (FEDGLOSS), which
finds flat minima in the global loss landscape using server-side Sharpness-Aware Minimiza-
tion (SAM). FEDGLOSS achieves communication efficiency by approximating SAM’s sharpness
through past global pseudo-gradients, distinguishing it from prior approaches. In addition, by not
constraining the clients to use SAM as local optimizer, FEDGLOSS’ required computational cost
can be adapted depending on the local available resources.

Importantly, this work revealed SAM prevents ADMM-related parameter explosion by guiding op-
timization along flat directions, which reflects in reduced model parameters’ norm, enabling stable
updates in heterogeneous FL. A promising future direction could involve exploring alternative ap-
proaches to ADMM to align local and global solutions, with the goal of avoiding stateful clients.

Extensive evaluations showed FEDGLOSS outperforms state-of-the-art methods in accuracy, flat-
ness of the solution and communication efficiency, making it a strong candidate for real-world FL
applications.

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. ICLR, 2021. 1,
3, 4, 7, 8, 9, 25
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APPENDIX

This appendix is organized as follows:

A Algorithm: details on FEDGLOSS’ procedure.

B The benefits of FEDGLOSS.

C Implementation details.

D Flatness analysis.

A ALGORITHM

Algorithm 1 summarizes FEDGLOSS, using as an example SGD or SAM as local optimizers, differ-
ently highlighted. The comment colors replicate those of Fig. 3.

Algorithm 1 FEDGLOSS with SAM or SGD as local optimizers

1: Input: Global model www, clients C, rounds T , local iterations E, clients’ learning rate η, clients’ SAM
neighborhood size ρl, FEDGLOSS neighborhood size ρ, Lagrangian hyperparameter β.

2: Initialize: www0, σ0 = σk = 0, ∆0
www = 0.

3: for each round t ∈ [1, T ] do
4: ϵ̃ϵϵt(www) = ρ

∆t−1
www

∥∆t−1
www ∥2

▷ Global perturbation with previous pseudo-grad

5: w̃wwt = wwwt + ϵ̃ϵϵt(www) ▷ Server-side approximated FEDGLOSS ascent step
6: Randomly select a subset of clients Ct ⊂ C
7: for each client k ∈ Ct in parallel do
8: wwwk,0 = w̃wwt ▷ Initialize local model with perturbed global model w̃wwt

9: Set iteration counter i = 1
10: for each epoch e ∈ [1, E] do
11: for each batch B ∈ Dk do
12: gk,i = ∇fB(wwwk,i−1) ▷ Local SGD gradient

13: ϵ̂k,i = ρl
gk,i

∥gk,i∥2
▷ SAM local perturbation

14: gk,i = ∇fB(wwwk,i−1 +ϵ̂k,i) ▷ Local sharpness-aware gradient
15: wwwk,i ← wwwk,i−1−η[gk,i − σk + (wwwk,i−1−wwwk,0)/β] ▷ Local update with ADMM
16: i← i+ 1
17: end for
18: end for
19: σk ← σk − (wwwk,E −w̃wwt)/β ▷ Update local dual variable
20: Send back to the server the local updated model wwwt

k = wwwk,E

21: end for
22: σt+1 = σt − 1

β|C|
∑

k∈C(www
t
k −wwwt) ▷ Update global dual variable

23: ∆̃t
www =

∑
k∈Ct

Nk
N

(w̃wwt −wwwt
k) ▷ Global pseudo-gradient

24: wwwt+1 = wwwt−∆̃t
www − βσt+1 ▷ FEDGLOSS descent step w/ pseudo-grad using ADMM

25: end for

B THE BENEFITS OF FEDGLOSS

B.1 ACHIEVING CONSISTENCY ON LOCAL AND GLOBAL SHARPNESS WITH FEDGLOSS

This section completes the analyses presented in Sections 4 and 6.2, showing how FEDGLOSS
guides towards consistent local and global flat loss landscapes. Fig. 10 extends Figs. 5a and 5b
from the main paper with the 3 remaining clients (out of 5) selected in the last round, comparing
the behavior of clients’ models trained with FEDGLOSS from the local and global perspectives.
These results highlight the effectiveness of FEDGLOSS in achieving local models with consistent
local-global behavior. Indeed, these models end up in flat regions both in local and global loss
landscapes. The comparison with FEDSAM (net surface) further demonstrates the effectiveness of
using our global flatness-aware approach.
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(a) Local model trained
on class bear with FEDGLOSS

(b) Local model trained on
class skyscraper with FEDGLOSS

(c) Local model trained
on class possum with FEDGLOSS

Figure 10: Global vs. local perspective on FEDGLOSS. CIFAR100 α = 0 with SAM as local optimizer @
20k rounds on CNN. (a) - (c): Local models trained on one class, tested on the local (“Local loss”) or global
dataset (“Global loss”). Corresponding global perspective of local model trained with FEDSAM (net) added as
reference.

(a) Local model trained
on class bear with FEDGLOSS

(b) Local model trained on
class skyscraper with FEDGLOSS

(c) Local model trained
on class possum with FEDGLOSS

Figure 11: Global vs. local perspective on FEDSMOO. CIFAR100 α = 0 with SAM as local optimizer @
20k rounds on CNN. (a) - (c): Local models trained on one class, tested on the local (“Local loss”) or global
dataset (“Global loss”). Corresponding global perspective of local model trained with FEDGLOSS (net) added
as reference.

Fig. 11 instead extends Figs. 5c and 5d, offering a comparative analysis of FEDSMOO’s clients’
models w.r.t. FEDGLOSS (net landscape). The local solutions found by FEDGLOSS achieve flatter,
better (i.e., lower loss) and more consistent convergence points in the global loss landscape w.r.t.
our main competitor FEDSMOO.

B.2 ACHIEVING FLATTER GLOBAL MINIMA
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Figure 12: Visualization of the loss landscapes of the CNN trained with FEDGLOSS (net) and the de-facto
standard optimization algorithm in FL FEDAVG (solid). Comparison with varying degrees of heterogeneity
on CIFAR10 (left) and CIFAR100 (right). FEDGLOSS consistently achieves flatter minima and lower loss
values in the global loss landscape.

FEDGLOSS vs. FEDAVG, FEDSAM, FEDSMOO. Fig. 12 compares the loss landscapes of global
models trained with FEDGLOSS and FEDAVG, showing how the former consistently achieves flat-
ter minima and lower loss values in the global loss landscapes. This confirms the behaviors already
appreciated in Fig. 6. In addition, Fig. 13 shows the global loss surfaces of FEDGLOSS’ solutions
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Figure 13: Visualization of the loss landscapes of the CNN trained with FEDGLOSS (net) and FEDSAM
or FEDSMOO (solid). Comparison with α = 0.05 CIFAR10 (left) and α = 0.5 CIFAR100 (right) extending
Fig. 6. FEDGLOSS consistently achieves flatter minima and lower loss values in the global loss landscape.
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Figure 14: Visualization of loss landscapes of the ResNet18 trained with FEDGLOSS (net) and FEDAVG, or
FEDSAM or FEDSMOO (solid). Comparison with CIFAR10 α = 0.05 (a-c) and CIFAR100 α = 0.5 (d-f ).
FEDGLOSS achieves flatter and lower-loss regions in the global landscape.

against models trained with FEDSAM and FEDSMOO. These plots extend Fig. 6 with the less hetero-
geneous scenarios α = 0.05 for CIFAR10 and α = 0.5 on CIFAR100. They confirm FEDGLOSS’
effectiveness in reaching flatter and lower-loss solutions with respect to its main direct competitors.

FEDGLOSS on ResNet18. Fig. 14 extends Fig. 6 from the main paper and shows the flatter loss
landscapes reached by FEDGLOSS when using ResNet18 on CIFAR10 and CIFAR100.

Hessian Eigenvalues. Table 8 reports the values of the maximum Hessian eigenvalues, as already
shown in Fig. 7 in the main paper. First, as expected, we note that SAM-based methods achieve flatter
minima w.r.t. the counterpart. Notably, our main competitor FEDSMOO presents higher sharpness
than FEDSAM in the simpler CIFAR10, regardless of the data distribution. In addition, FEDGLOSS
with local SAM achieves the lowest sharpness (i.e., lowest λ1) on all configurations, outperforming
the state of the art and, specifically, all sharpness-aware methods.

Table 8: FEDGLOSS vs. the state of the art, distinguished by local optimizer - SGD (top) and SAM (bottom).
Comparison in terms of communication cost and maximum Hessian eigenvalue λ1. Best results in bold. Model:
CNN.

Method
CIFAR10 CIFAR100

Comm. α = 0 α = 0.05 α = 0 α = 0.5
Cost λ1(↓) λ1(↓) λ1(↓) λ1(↓)

C
lie

nt
SG

D FEDAVG 1× 66.23 ± 0.50 71.14 ± 4.07 66.30 ± 3.08 68.77 ± 0.96
FEDPROX 1× 66.19 ± 0.52 71.41 ± 4.40 66.34 ± 3.75 68.63 ± 1.37
FEDDYN 1× 63.94 ± 4.41 71.44 ± 8.73 - -
SCAFFOLD 2× 166.54 ± 6.93 180.51 ± 30.08 - 120.01 ± 0.76
FEDGLOSS 1× 58.26 ± 3.49 56.28 ± 4.19 96.01 ± 9.00 107.35 ± 7.5

C
lie

nt
SA

M

FEDSAM 1× 10.35 ± 0.07 9.43 ± 0.28 58.38 ± 2.93 57.54 ± 1.21
FEDDYN 1× 10.04 ± 5.38 6.58 ± 0.20 - -
FEDSPEED 1× 10.92 ± 0.17 9.97 ± 0.12 58.23 ± 3.18 58.00 ± 1.86
FEDGAMMA 2× 4.79 ± 0.20 4.55 ± 0.20 - 99.86 ± 6.74
FEDSMOO 2× 15.37 ± 1.67 12.57 ± 0.56 28.43 ± 1.97 29.23 ± 0.17
FEDGLOSS 1× 2.03 ± 0.05 1.93 ± 0.03 17.18 ± 0.97 16.22 ± 0.35
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(c) α = 0.05 SAM
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Figure 15: CIFAR10 with varying degrees of heterogeneity (α ∈ {0, 0.05}). Results of centralized runs (dashed
lines) added as reference. Comparison of FEDGLOSS with state-of-the-art approaches, distinguished in SAM-
based methods (a, c) and SGD-based ones (b, d). FEDGLOSS consistently achieves the best performance.
Model: CNN.
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(c) α = 0.5 SAM
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Figure 16: CIFAR100 with varying degrees of heterogeneity (α ∈ {0, 0.5}) with CNN. Results of centralized
runs (dashed lines) added as reference. Comparison of FEDGLOSS with state-of-the-art approaches, distin-
guished in SAM-based methods (a, c) and SGD-based ones (b, d). FEDGLOSS consistently achieves the best
performance.
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(a) CIFAR100 α = 0.5 SAM
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(b) CIFAR100 α = 0.5 SGD
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Figure 17: Accuracy trends with ResNet18 on CIFAR100 (left) and CIFAR10 (right). Comparison of FED-
GLOSS with state-of-the-art approaches, distinguished in SAM-based methods (a, c) and SGD-based ones (b,
d). FEDGLOSS consistently achieves the best performance, both in terms of final accuracy and convergence
speed.

B.3 INCREASING CONVERGENCE SPEED

Figs. 15 and 16 show the accuracy trends of FEDGLOSS compared to state-of-the-art methods for
heterogeneous FL on CIFAR10 and CIFAR100 respectively. For a clearer understanding, we dis-
tinguish between SAM-based and SGD-based methods depending on the used local optimizer. For
a fair comparison, we report FEDSMOO with and without the scheduling of ρ (+wp in the figure).
For additional details on the scheduling, refer to Appendix C. FEDGLOSS consistently achieves
the best performances and convergence speedup in each group. In addition, we remind that FED-
GLOSS communicates half the number of bits at each round w.r.t. FEDSMOO. Fig. 17 reports the
results obtained with ResNet18 on both datasets: FEDGLOSS consistently achieves the best speed
of convergence and final accuracy, with both SAM and SGD as CLIENTOPT.

B.4 EFFECTIVENESS IN MULTIPLE SCENARIOS AND WITH SEVERAL MODEL
ARCHITECTURES

As already shown in Section 6, FEDGLOSS outperforms the state of the art in terms of speed of
convergence, final performance in accuracy, flatness of the solution and communication efficiency.
This remains true across multiple datasets (CIFAR100, CIFAR10, LANDMARKS-USER-160K) and
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Table 9: FEDGLOSS against SOTA FL methods on homogeneous CIFAR settings, compared in terms of com-
munication costs, accuracy (%) and maximum Hessian eigenvalue λ1. Best result in bold and second best
underlined. Model: CNN.

Method Comm. ADMM CIFAR10 α = 100 CIFAR100 α = 1000
Cost Accuracy λ1 Accuracy λ1

FEDAVG 1× ✗ 84.0 68.4 50.1 49.4
FEDSAM 1× ✗ 84.7 36.2 53.4 32.6
FEDDYN (SGD) 1× ✓ 83.8 47.8 51.9 91.7
FEDDYN (SAM) 1× ✓ 84.5 27.9 52.5 46.0
FEDSMOO 2× ✓ 85.1 6.4 53.9 24.6

FEDGLOSS (SGD) 1× ✗ 84.0 67.7 50.5 50.8
1× ✓ 83.1 7.1 51.7 47.9

FEDGLOSS (SAM) 1× ✗ 84.8 36.2 55.8 13.9
1× ✓ 84.8 2.8 55.7 11.8

model architectures (CNN, ResNet18, MobileNetv2). The main paper focuses on results in more
challenging heterogeneous FL scenarios. The next paragraph discusses the behavior of FEDGLOSS
in homogeneous settings.

FEDGLOSS in Homogeneous Settings. Table 9 evaluates FEDGLOSS against the main methods
FEDAVG, FEDSAM, FEDDYN and FEDSMOO in homogeneous FL settings. Here, client gradients
are naturally more aligned due to reduced client drift (Karimireddy et al., 2020b). We thus test FED-
GLOSS with and without ADMM for global consistency. As expected, FEDGLOSS achieves similar
accuracy with or without ADMM, particularly when using SAM as the local optimizer. However,
ADMM facilitates convergence to flatter minima (evidenced by lower λ1 values) by aligning local
and global convergence points. Notably, FEDGLOSS achieves the flattest minima (lowest λ1) across
both datasets, and the best accuracy on the more complex CIFAR100. While FEDSMOO achieves
slightly higher accuracy on CIFAR10, FEDGLOSS finds a flatter minimum and achieves competitive
accuracy with significantly lower communication costs (halved).

B.5 REDUCING COMMUNICATION COSTS

Analysis on communication cost. Table 10 extends the analysis presented in Section 6.3.4 by
evaluating the communication costs across all scenarios considered in this work. Notably, since
FEDGLOSS maintains the per-round communication cost of FEDAVG, it remains advantageous even
when matching the convergence speed of the best-performing algorithm (FEDSMOO), due to its
halved communication costs.

Table 10: Communication costs comparison w.r.t. FEDAVG. “-” for not reached accuracy, “✗” for non-
convergence.

Method

CNN ResNet18 MobileNetv2
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 LANDMARKS-USER-160K

α = 0 α = 0.05 α = 0 α = 0.5 α = 0.05 α = 0.5
Rounds Cost Rounds Cost Rounds Cost Rounds Cost Rounds Cost Rounds Cost Rounds Cost

SG
D

-b
as

ed

FEDAVG 10k (1×) 1B 10k (1×) 1B 20k (1×) 1B 20k (1×) 1B 10k (1×) 1B 10k (1×) 1B 1.3k (1×) 1B
FEDPROX 7.6k (1.3×) 0.8B 7.9k (1.3×) 0.8B 18.7k (1.1×) 0.9B 18.6k (1.1×) 0.9B 8.8k (1.1×) 0.9B 8.3k(1.2×) 0.8B - -
FEDDYN 2k (5×) 0.2B 1.9k (5×) 0.2B ✗ ✗ - - 3.5k (2.9×) 0.4B - -
SCAFFOLD - - - - - - - - - - 8.9k (1.1×) 1.8B ✗
FEDGLOSS 3.4k (2.9×) 0.3B 3.8k (2.6×) 0.4B 5k (4×) 0.3B 4.7k (4.3×) 0.2B 2.4k (4.2×) 0.2B 1.9k (5.3×) 0.2B - -

SA
M

-b
as

ed

FEDSAM 6.3k (1.6×) 0.6B 7.8k (1.3×) 0.8B 18.3k (1.1×) 0.9B 16.3k (1.2×) 0.8B 9.2k (1.1×) 0.9B 7.8k (1.3×) 0.8B 1.3k (1×) 1B
FEDDYN 3k (3.3×) 0.3B 4.2k (2.4×) 0.4B ✗ ✗ 4.1k (2.4×) 0.4B 3.5k (2.9×) 0.4B - -
FEDSPEED 6.3k (1.6×) 0.6B 6.9k (1.4×) 0.7B 18.3k (1.1×) 0.9B 15.7k (1.3×) 0.8B 8.3k (1.2×) 0.8B 8.3k (1.2×) 0.8B 1.3k (1×) 1B
FEDGAMMA - - - - - - - - 9.3k (1.1×) 1.9B 8.1k (1.2×) 1.6B ✗
FEDSMOO 1.9k (5.3×) 0.4B 2.2k (4.5×) 0.4B 4.5k (4.4×) 0.5B 6.5k (3.1×) 0.7B 2.4k (4.2×) 0.5B 2.3k (4.3×) 0.5B 200 (6.5×) 0.3B
FEDGLOSS 2.2k (4.5×) 0.2B 2.2k (4.5×) 0.2B 6.3k (3.2×) 0.3B 5.2k (3.8×) 0.3B 2.4k (4.2×) 0.2B 1.9k (5.3×) 0.2B 200 (6.5×) 0.2B

FEDGLOSS vs. NAIVEFEDGLOSS. Fig. 18 deepens the comparison between FEDGLOSS and
its baseline NAIVEFEDGLOSS, discussed in Section 6.4. In particular, this plot reports the accuracy
trends of the two methods, showing that NAIVEFEDGLOSS is slightly faster (≈ 1.1×) than FED-
GLOSS in CIFAR100, while FEDGLOSS surpasses the speed of the baseline after≈ 25% of training
in CIFAR10. However, both methods reach the same accuracy at the of training. In addition, it is to
be noted that FEDGLOSS halves the communication cost w.r.t. NAIVEFEDGLOSS by transmitting
half the number of bits at each round. Additionally, it also reduces the communication cost by half,
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Figure 18: Accuracy trends of FEDGLOSS vs. NAIVEFEDGLOSS. The comparison includes the centralized
upper bounds of SAM and S̃AM (the adaptation of FEDGLOSS’ strategy to the centralized scenario). CNN
on CIFAR10 and CIFAR100 with varying heterogeneity degree (α). NAIVEFEDGLOSS is ≈ 1.1× faster than
its efficient alternative FEDGLOSS in CIFAR100, while FEDGLOSS shows increased convergence speed after
≈ 25% of training rounds in CIFAR10. However, both methods reach the same accuracy at the of training.
These results motivate the choice of FEDGLOSS over NAIVEFEDGLOSS.

as it eliminates the need to invoke the clients twice to compute the updates. These insights further
support our choice of the efficient strategy of FEDGLOSS over NAIVEFEDGLOSS.

Convergence speed. Since all methods are compared over a fixed amount of communication
rounds, higher final accuracy implies faster convergence. Since FEDGLOSS consistently out-
performs the other state-of-the-art algorithms taken into account, it is guaranteed to converge faster,
as also shown in the accuracy trends (Figs. 15 to 17).

B.6 THE IMPACT OF SERVER-SIDE ρs

Fig. 19 analyzes the impact of ρs on the performance of the global model, both in terms of accuracy
(Fig. 19a) and flatness of the solution (Fig. 19b). In details, Fig. 19a compares the accuracy of the
global model trained on CIFAR100 when varying the model architecture (CNN vs. ResNet18) and
the data heterogeneity (α = 0 vs. α = 0.5). In all the configurations, we note that a smaller value of
ρs usually leads to the best results. Fig. 19b instead focuses on the CNN in the most heterogeneous
setting (α = 0) and compares the reached accuracy with the corresponding maximum Hessian
eigenvalue λ1 when varying ρs. A larger server-side ρs corresponds to a smaller λ1, i.e., a flatter
region in the global loss landscape.
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Figure 19: CIFAR100. (a): Accuracy (%) of FEDGLOSS when varying the server-side SAM ρs, with different
heterogeneity and architecture (CNN with α = 0 and ResNet18 with α = 0.5). Smaller values of ρs lead to
better performances. (b): FEDGLOSS ρs vs. maximum Hessian eigenvalue λ1 on CNN with α = 0. Larger
values of ρs lead to lower eigenvalues with minimum loss in accuracy.
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Figure 20: CIFAR10 (left) and CIFAR100 (right) data distribution across clients with the heterogeneity levels
tested in the experiments. On top of each chart we report the average number of classes seen by each client.

C IMPLEMENTATION DETAILS

This section delves into a comprehensive description of the datasets and models utilized throughout
this paper, specifying the Deep Learning framework and the hardware employed (Appendix C.1).
Additionally, we present the area of the hyper-parameters’ space explored during the fine-tuning
process in order to yield optimal results (Appendix C.2).

C.1 DATASETS AND MODELS

Table 11 provides a comprehensive overview of each dataset’s general statistics. This includes the
number of training clients participating in the process and the total number of samples used to
construct both the training and test sets.

C.1.1 CIFAR10 AND CIFAR100

We adapted these two well-known image classification datasets to the FL scenario by replicating
the splits among clients proposed by (Hsu et al., 2019). Both datasets are split evenly among 100
clients, thus each of them has access to 500 data samples. This partitioning is performed accord-
ing to a Latent Dirichlet Allocation (LDA) on the labels. In practice, each local dataset follows a
multinomial distribution drawn according to a symmetric Dirichlet distribution with concentration
parameter α. The higher the value of this parameter is, the more the local datasets resemble a ho-
mogeneous scenario, in the limit case α = 0 each client has access to one only class of images. In
our experiments we tested α ∈ {0, 0.05, 100} and α ∈ {0, 0.5, 1000} for CIFAR10 and CIFAR100,
respectively. Figs. 20a and 20b show how data is distributed across clients in all the experimen-
tal settings for these two datasets. Both datasets are pre-processed by applying random crops and
random horizontal flips.

Models. We trained a Convolutional Neural Network (CNN) inspired by the LeNet-5 architecture
(LeCun et al., 1998), as proposed by (Hsu et al., 2020). The network comprises two 64-channels
convolutional layers, both using 5 × 5 kernels and followed by 2 × 2 max-pooling layers. This is
succeeded by two fully-connected layers with 384 and 192 units, respectively. The final output layer
is adapted to the specific number of classes in the dataset.

To explore deeper and more expressive architectures, we also trained a ResNet18 (He et al., 2015)
on CIFAR100 with α = 0.5 and CIFAR10 with α = 0.05. We replaced the standard Batch Nor-
malization layers (Ioffe & Szegedy, 2015) with Group Normalization layers (Wu & He, 2018) due
to their demonstrated effectiveness in handling skewed data distributions in FL (Hsieh et al., 2020).
We carried out the experiments with the CNN model using PyTorch (Paszke et al., 2019) and the
ResNet18 ones using FedJAX (Ro et al., 2021).

Table 11: Datasets’ description with their general statistics on the size and number of clients.

Dataset Train clients Train samples Test samples

CIFAR10 100 50,000 10,000
CIFAR100 100 50,000 10,000
LANDMARKS-USER-160K 1262 164,172 19,526
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Table 12: General training hyper-parameters common to all methods, distinguished by dataset and model ar-
chitecture. Symbols: local epochs E, local learning rate η, weight decay wd, client-side momentum βl, batch
size B.

Dataset Model Rounds Clients Client optimization
per round E η wd βl B

CIFAR10 CNN 10000 5 1 10−2 4 · 10−4 0 64

CIFAR100 CNN 20000 5 1 10−2 4 · 10−4 0 64
ResNet18-GN 10000 10 1 10−2 10−5 0.7 64

LANDMARKS-USER-160K MobileNetv2 1300 50 5 0.1 4 · 10−5 0 64

Table 13: Search grid used to find optimal hyper-parameters for each combination of method, dataset and
model. We highlight the best performing values in bold.

Method HParam CIFAR10 CIFAR100 LANDMARKS-USER-160KCNN ResNet18 CNN ResNet18

FEDSAM ρ [0.05, 0.1, 0.15, 0.2] [0.01, 0.02, 0.05] [0.005, 0.01, 0.02, 0.05] [0.01, 0.02, 0.05] [0.05]

FEDPROX µ [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1]

FEDDYN
α [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.01] [0.001, 0.01]

ρ (SAM-based only) [0.15] [0.01] [0.01, 0.02] [0.01] [0.05]

FEDSPEED
ρ [0.05, 0.1, 0.15, 0.2] [0.01] [0.005, 0.01, 0.02, 0.05] [0.01] [0.05]
α [0.9, 0.95, 0.99] [0.9, 0.95] [0.9, 0.95, 0.99] [0.9, 0.95] [0.95]
λ [10, 100, 1000] [10, 100, 1000] [10, 100, 1000] [10, 100, 1000] [100, 1000]

FEDGAMMA ρ [0.15] [0.01] [0.01] [0.01] [0.05]

FEDSMOO
ρ [0.05, 0.1, 0.15, 0.2] [0.01] [0.005, 0.01, 0.05, 0.1, 0.2] [0.01] [0.05, 0.1, 0.2, 0.3]
β [5, 10, 100] [1, 2, 5, 10] [10, 100] [5, 10, 100] [10, 50, 100, 1000]

FEDGLOSS (ours)

ρs [0.01, 0.1, 0.15] [0.01, 0.05, 0.1, 0.5] [0.01, 0.05, 0.1, 0.2] [0.01, 0.05, 0.1, 0.5] [0.005, 0.01, 0.02]
ρ [0.05, 0.1, 0.15, 0.2] [0.01] [0.05, 0.1, 0.2] [0.01] [0.05, 0.1, 0.2, 0.3]
β [5, 10, 100] [1, 2, 5, 10] [10, 100] [5, 10, 100] [10, 50, 100]
Ts [1000, 2000, 4000] [0] [1000, 2000, 5000, 10000, 15000] [0] [0]

C.1.2 LANDMARKS-USER-160K

To achieve a comprehensive understanding of the efficacy of the proposed method, a thorough anal-
ysis was undertaken utilizing large-scale real-world datasets. Specifically, we use the LANDMARKS-
USER-160K dataset (Hsu et al., 2020), a repository encompassing 164,172 images depicting 2028
distinct landmarks, distributed among 1262 clients.

Models. The model employed for training is a MobileNetV2 (Sandler et al., 2018; Hsu et al.,
2020), replacing batch normalization with group normalization layers and pre-trained on ImageNet
(Deng et al., 2009). The tests on this dataset were carried out on a cluster of NVIDIA A100 40GB,
using our FedJAX codebase.

C.2 HYPERPARAMETERS

In Table 12 we report the training hyperparameters associated to each dataset and model pairing.
While Table 13 summarizes the hyper-parameters search grid tested for each method (in bold the
chosen ones). All runs are averaged over 3 seeds. In addition, following previous works (Acar et al.,
2021; Caldarola et al., 2022; 2023), we report the averaged accuracy of the last 100 rounds to reduce
the noise typical of heterogeneous FL settings.

While running our experiments on FEDGLOSS, we noticed that a larger value of local ρ allowed
to reach the best final accuracy, while a smaller ρ achieved faster convergence in the initial training
stages. Following this insight, we schedule the value of ρ for Ts rounds as

ρ(t) =

{
ρ0 + (ρ−ρ0)/Ts · t if t ≤ Ts

ρ otherwise,

starting from the value ρ0 = 0.001.

D FLATNESS ANALYSIS

This section describes the procedure to compute the visualization of the loss landscapes and the
Hessian eigenvalues.

25



Preprint

D.1 VISUALIZING 1D LOSS LANDSCAPES

Fig. 9 in the main paper shows the interpolation of FEDGLOSS and NAIVEFEDGLOSS’s models.
Given their respective weights wwwFEDGLOSS and wwwNAIVEFEDGLOSS, the interpolation is computed using
a coefficient γ as

www = γ ·wwwFEDGLOSS +(1− γ) ·wwwNAIVEFEDGLOSS . (8)
For each γ ∈ [−1, 2], www is tested on the training or test sets, and the plot reports the computed loss.
The resulting interpolation indicates that there is no loss barrier between the two models, suggesting
they lie within the same basin. Additionally, the 1D geometry of the emerging loss landscape reveals
that both models converge to a flat minimum when evaluated on both CIFAR100 and CIFAR10.

D.2 VISUALIZING 3D LOSS LANDSCAPES

We leverage techniques from (Li et al., 2018) to visualize the loss landscapes of our models. We
adapt their code to work with our specific datasets and network architectures. The process involves
calculating the loss function along random directions in the parameter space. This is achieved by
perturbing the model’s parameters within a defined range. In our visualizations, we constrain these
perturbations to occur within the range of [−1, 1] for both the x and y axes. To ensure consistent
comparisons across models (e.g., as seen in Fig. 6), we utilize the same set of random directions for
all models.

D.3 HESSIAN EIGENVALUES FOR FLATNESS MEASURE

Following prior work (Foret et al., 2021; Garipov et al., 2018; Li et al., 2018; Caldarola et al., 2022),
we use the spectrum of the Hessian matrix to quantify the flatness of the loss landscape. Here, lower
maximum eigenvalues correspond to flatter landscapes, implying less sharpness. To compute these
eigenvalues (denoted by λ1 in the main paper), we employ the stochastic power iteration method
(Xu et al., 2018) with a maximum of 20 iterations, referring to the code of Golmant et al. (2018).
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