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Abstract
Time series forecasting is a critical first step in generating demand
plans for supply chains. Experiments on time series models typi-
cally focus on demonstrating improvements in forecast accuracy
over existing/baseline solutions, quantified according to some accu-
racy metric. There is no doubt that forecast accuracy is important;
however in production systems, demand planners often value con-
sistency and stability over incremental accuracy improvements.
Assuming that the inputs have not changed significantly, forecasts
that vary drastically from one planning cycle to the next require
high amounts of human intervention, which frustrates demand
planners and can even cause them to lose trust in ML forecasting
models. We study model-induced stochasticity, which quantifies the
variance of a set of forecasts produced by a single model when the
set of inputs is fixed. Models with lower variance are more stable.

Recently the forecasting community has seen significant ad-
vances in forecast accuracy through the development of deep ma-
chine learning models for time series forecasting. We perform a
case study measuring the stability and accuracy of state-of-the-art
forecasting models (Chronos, DeepAR, PatchTST, Temporal Fusion
Transformer, TiDE, and the AutoGluon best quality ensemble) on
public data sets from the M5 competition and Favorita grocery
sales. We show that ensemble models improve stability without
significantly deteriorating (or even improving) forecast accuracy.
While these results may not be surprising, the main point of this
paper is to propose the need for further study of forecast stability
for models that are being deployed in production systems.
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1 Introduction
Forecasting future product demand is the first step in a supply chain
system. Planners require accurate forecasts so that they can meet
customer demand by delivering the right quantity of products to the
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right locations at the right time. When designing a forecasting sys-
tem, it is common to perform backtesting experiments, measuring
the performance of different models across test forecast windows.
For a chosen forecast start date, training and cross validation are
done over dates before the start date, and testing is done over the
window after the start date. One or more metrics may then be re-
ported on the test window(s) so that the performance of different
models can be compared.

The simplicity of reporting a single global accuracy metric is
convenient for comparing models, whether that experimentation
is done in the context of developing a new model or deciding on
which model to deploy in a production system, however it does not
tell the whole story. One issue comes from simple mathematics: if
multiple time series are forecast over a multi-week horizon, then
the same or similar values of a global metric (for example root
mean squared error) can be achieved by infinitely many different
combinations of individual forecasts.

Many local statistical models (e.g., ARIMA) are deterministic,
meaning the same set of inputs will yield the same set of forecast
outputs as long as the hyperparameters (number of lags, number of
differences, order of moving average) are kept constant. However
this is not always the case, especially for many of the new state-
of-the-art deep learning models. Potential sources of what we will
call model-induced stochasticity include randomized train/test split
methods or stochastic gradient descent methods in the optimization
engine. Coupled with non-convex loss functions, this means the
same set of forecast inputs can yield different outputs.

In practice, variance in demand forecasts presents a significant
challenge to demand planners. A signal whose global accuracy is
acceptable but highly variable frustrates planners who ultimately
make purchasing decisions across different planning horizons based
on different vendor lead times. We propose therefore that it is
important to consider model stability when deploying forecasting
models in production systems.

We quantify forecast stability by using the same model with the
same hyperparameter settings to perform training and inference on
a fixed data set. By repeating this process several times, changing
only the random seed, we obtain multiple forecasts drawn from
some unknown sample space, and we compute the variance of the
outputs over all items to be forecasted and across the forecast time
horizon. Precise details are outlined in Section 2.

We note also that there is a second dimension to this problem,
namely cycle-to-cycle change, which measures the extent to which
model outputs change from one forecast snapshot date to the next.
For the purposes of this paper we fix the set of inputs so that the
output variance can be attributed to the model alone. Cycle-to-cycle
change is undoubtedly important and worthy of additional study.

The fundamental question we wish to address in this paper is:
how much inherent stochasticity do different models introduce; or
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conversely, how stable are different forecasting models? We use
the AutoGluon-TimeSeries library [1, 12] to train multiple models
on publicly-available data sets that represent different forms of
consumer demand: the M5 data set [6, 8], which contains Walmart
product demand in North America; and the Favorita data set [4],
which contains grocery demand for a South American retail chain.

For each data set and each forecasting model, we measure fore-
cast stability through the coefficient of variation (CV) across ten
forecast runs with different random seeds but otherwise the same
sets of inputs and model hyperparameters. We then demonstrate
trade-off between overall model accuracy and forecast stability. Our
main results demonstrate that, perhaps unsurprisingly, ensembled
models are more stable than individual deep learning models while
also achieving comparable or better accuracy.

The rest of the paper is structured as follows. In Section 2, we
provide an overview of ourmethodology. In Section 3we summarize
our results on forecast stability and forecast accuracy. Details on
hyperparameters and the AutoGluon ensemble model are included
in the Appendices.

2 Methodology
2.1 Measuring model stability
Given 𝑁 samples drawn from a distribution, the coefficient of vari-
ation is defined as 𝐶𝑉 = 𝜎

𝜇 , where 𝜎 and 𝜇 are, respectively, the
sample standard deviation and mean. The 𝐶𝑉 is a normalized mea-
sure of dispersion of the sample about the mean. When the sample
is a set of model outputs, lower values of 𝐶𝑉 correspond to higher
model stability.

In the domain of time series forecasting, suppose we have 𝑀
time series with histories of length 𝑇 and values {𝑥𝑖,𝑡 }𝑀𝑖=1

𝑇
𝑡=1. A

forecasting model predicts future values {𝑦𝑖,𝑡 }𝑀𝑖=1
𝑇+𝐻
𝑡=𝑇+1, where𝐻 is

the length of the forecast horizon. If a model outputs a distributional
forecast, we take𝑦𝑖,𝑡 to be the center (mean) of the forecast distribu-
tion. Re-training and performing inference 𝑅 times yields multiple
forecasts {𝑦𝑖,𝑡,𝑟 }𝑀𝑖=1

𝑇+𝐻
𝑡=𝑇+1

𝑅
𝑟=1. Treating the set of forecasted values

for each time series and timestamp as a sample drawn from an
unknown distribution gives 𝑀 · 𝐻 different coefficients of varia-
tion 𝐶𝑉 (𝑖, 𝑡), computed over the sample of 𝑅 different forecasts
{𝑦𝑖,𝑡,𝑟 }𝑅𝑟=1.

The𝐶𝑉 metric has a few drawbacks. After stating the drawbacks
wewill describe how they can bemitigated in the context of demand
forecasting.

(1) If 𝜇 is negative, then so is 𝐶𝑉 , which does not make sense
as a measure of dispersion.

(2) If 𝜇 is zero, 𝐶𝑉 is undefined.
(3) The𝐶𝑉 value can be skewed if 𝜇 and𝜎 are small. For example,

if 𝜎 = 10−3 and 𝜇 = 10−8, then 𝐶𝑉 = 105.

Most time series forecasting libraries do not safeguard against
negative forecasts because there may be use cases where negative
forecasts are valid (e.g., weather forecasts). Even in the context of
demand forecasting, small or zero forecast values may be expected,
especially when working with intermittent/sparse demand. To over-
come these issues, we apply the following forecast post-processing
logic before computing 𝐶𝑉 (𝑖, 𝑡):

Figure 1: Model outputs across multiple runs for an item
from the Favorita catalog. Higher 𝐶𝑉 values (top) indicate a
less stable forecast with a wider range of predicted outputs.
Lower 𝐶𝑉 values (bottom) indicate a more stable forecast.
Dashed lines are actual values; solid lines are the outputs of
10 forecast runs.

(1) Replace negative forecasted values with zeros. This is a com-
mon approach in demand forecasting to overcome the issue
of negative forecasted values.

(2) Round each forecasted value to the nearest integer. This
overcomes the issue of small values of 𝜇 which can arise
when the values of 𝑦𝑖,𝑡,𝑟 are near zero; and once again we
argue it is sensible in the context of forecasting physical
units of demand, which must be integers.

(3) If 𝜇 = 0 and 𝜎 = 0, declare 𝐶𝑉 = 0. This happens only in the
case of constant zero forecasts. If 𝜎 = 0 it makes sense to
also say 𝐶𝑉 = 0 independent of the mean because the data
are unchanging.

As an example, Figure 1 shows two distribution outputs from an
item in the Favorita data set. The TiDE model output has a high
𝐶𝑉 , with the median value of𝐶𝑉 (𝑖, 𝑡) near 80% as the time variable
ranges over the forecast horizon. In comparison, the AutoGluon
ensemble produces a more stable forecast, with a median 𝐶𝑉 value
of 6.5%. We see this reflected in the plot as the range of values
output by the TiDE model have more uncertainty over the 10 model
runs. Again, to reiterate the methodology, each visualization of a
run output shown in this plot is the mean forecast value produced
by retraining at TiDE/AutoGluon model with the same set of inputs
and only changing the random seed.

2.2 Measuring forecast accuracy
In addition tomeasuring forecast stability wemust also demonstrate
a trade-off with forecast accuracy. For each data set we measure
forecast accuracy using root mean squared error (RMSE) over the
test window. For each forecast run, RMSE is computed as

𝑅𝑀𝑆𝐸 (𝑟 ) =

√√√
1

𝑀 · 𝐻

𝑀∑︁
𝑖=1

𝑇+𝐻∑︁
𝑡=𝑇+1

(
𝑦𝑖,𝑡,𝑟 − 𝑥𝑖,𝑡

)2
It is important to note that RMSE is measured in the same units

of demand as 𝑥 and 𝑦. Because it is not normalized it cannot be
used to make comparisons across data sets with different demand
volumes. This could be overcome with proportional metrics such
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as MAPE, but that leads to a multitude of other issues, especially
for intermittent/sparse demand patterns with many zeros.

2.3 Summary of data sets
We use two public data sets of retail demand data in our analysis.

• The M5 data set contains sales data for retail products sold
by Walmart in North America [6, 8]. It was used in the 2020
M5 accuracy competition hosted through Kaggle. The M5
data are given at a very low level of granularity (product +
geographical region). To mitigate some of the effects of data
sparsity, we aggregate to the product level. This was a com-
mon approach in the M5 contest as well, where aggregation-
disaggregation methods were used to forecast lower levels
of the hierarchy.

• The Favorita data set contains sales data for Corporación
Favorita, a large Ecuadorian-based grocery retailer. The data
were used in a 2017 forecast accuracy competition, also
hosted through Kaggle [4]. Once again we aggregate to
product-level granularity.

The properties of these data are summarized in Table 1.

2.4 Summary of models used
Table 2 summarizes the time series forecasting models that will
be used for measuring stability and accuracy. This includes some
models that do not introduce stochasticity but are nonetheless im-
portant for accuracy comparisons. For deep learning models which
are used in a standalone fashion, we performed hyperparameter
tuning using grid search. Those models are DeepAR [11], Temporal
Fusion Transformer (TFT) [7], Patch TST [9], and TiDE [3].

In addition, we include the Chronos model [2] as zero shot and
with fine tuning, along with the AutoGluon time series ensemble
(AG ensemble) [1, 12] with “best quality" presets. The AutoGluon
ensemble is a stacked ensemble comprised of 12 individual models.
It includes some of the above deep learning models; however we
do not perform hyperparameter tuning for those models, instead
relying on the default settings determined by AutoGluon as an
AutoML solution. Further details on the ensemble are outlined in
Table 4 of Appendix A.

All model training and execution is done through the AutoGluon
TimeSeries Library (AutoGluon release 1.2.0). In Table 2 below we
indicate whether hyperparameter tuning was performed in the
“HPO" column. The “is stochastic" column indicates whether the
model outputs change based on setting a random seed. The chosen
hyperparameter configurations, which were found by grid search,
are listed in Table 5 of Appendix B.

2.5 Related work
Problems around forecast variance have been studied in the work
of Godahewa et al. [5] and Pritularga and Kourentzes [10]. Go-
dahewa et al. [5] consider consider multiple perspectives on this.
The first, which they call horizontal stability, is the variance of a
forecast made on a single snapshot date over the time horizon. The
second, which they call vertical stability, is the variance across a
set of forecasts made on different snapshot dates, but for a fixed
future timestamp. Pritularga and Kourentzes [10] take a similar

perspective, measuring variance in the time domain across multiple
forecast snapshot dates.

In contrast, the focus of this paper is neither horizontal nor
vertical stability, but rather model-induced stability/instability. We
measure the extent to which a forecasting model can be viewed as
a random process where the variance comes only from changing
a random seed, when the snapshot date, input data, and forecast
horizon are fixed. Godahewa et al. [5] call this forecast replicability
but do not study this aspect because the focus of their work is
mitigation strategies against such forecast variance, which they
note can be mitigated through ensembling in this case. This is
consistent with our observations, however they do not attempt
to quantify forecast replicability, or what we call model-induced
stochasticity.

3 Results
Figure 2 shows histograms of CV scores over each data set for
each stochastic model. The tails of the distributions are clipped
for visualization purposes, but as we see in the summary statistics
of Table 3 the histograms contain over 90% of the data. Note the
vertical axes are on a logarithmic scale. In each plot, the dashed red
line shows the median of the distribution. As noted in Section 2,
for each data set we compute 𝐶𝑉 for𝑀 · 𝐻 different combinations
of item and forecast horizon. To simplify the visualizations, we
show only the global distributions of all𝑀 ·𝐻 values of𝐶𝑉 without
separating the time component from the individual items.

From this we see that the AG ensemble consistently minimizes
𝐶𝑉 , meaning its outputs are more stable than individual deep learn-
ing models. This is not surprising given that several of the con-
stituent models in the ensemble (especially Chronos) do not in-
troduce stochasticity. From a business perspective, the following
interpretation of the results in Table 3 can be made: at least 10% of
the time series forecast by deep learning models can see at least
10%, and in some cases nearly 20%, normalized variance, even when
trained on the same set of inputs. In contrast, the AutoGluon en-
semble mitigates that variance to less than 5%. From a planning
perspective, this is a stark difference; 20% changes in output which
can be attributed only to stochasticity are likely to be unacceptable
for demand planners.

Figure 3 shows the distribution of forecast errors as measured
by RMSE for each data set and model. For the M5 data we see that
the AG ensemble consistently produces more accurate forecasts
with tighter distribution of forecast error. The results on Favorita
are different. In that case, the AG ensemble is out-performed by
both Chronos and the deep learning forecast models. This result is
somewhat surprising. On the one hand, the hyperparameter tuning
for the deep learning models was not passed into the AG ensemble.
Therefore it is conceivable that the tuned models could outperform
their counterparts in the AG ensemble. On the other hand, the
Chronos models were selected as part of the AG ensemble, and so
it is still unexpected that the ensemble would be outperformed by
the Chronos models by such a wide margin. At this point, busi-
ness planners would need to understand their tolerance for risk
and variance in forecast outputs as a trade-off against accuracy
improvements.
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Table 1: Summary of data sets

Data set Granularity # time series (𝑀) History length (𝑇 ) Forecast horizon (𝐻 )

M5 daily 3049 1913 28
Favorita daily 4036 1672 16

Table 2: Models used in experiments

Model is stochastic HPO

Chronos (zero shot) no no
Chronos (fine tuned) no no

DeepAR yes yes
TFT yes yes

Patch TST yes yes
TiDE yes yes

AG ensemble yes no

Figure 2: Distribution of CV scores across data sets and sto-
chastic models.

4 Conclusion
This study investigated the stability of various time series fore-
casting models through multiple runs, specifically examining Au-
toGluon Ensemble, Chronos, TFT, DeepAR, TiDE, and PatchTST.
Stability was assessed using both coefficient of variation (CV) of raw

Table 3: Quantiles of the distribution of CV values over data
sets and stochastic models

Data set Model 25% 50% 75% 90%

M5 AG ensemble 0.000 0.000 0.012 0.048
DeepAR 0.036 0.061 0.102 0.192
PatchTST 0.000 0.033 0.057 0.111
TFT 0.000 0.041 0.077 0.152
TiDE 0.000 0.039 0.065 0.112

Favorita AG ensemble 0.007 0.011 0.022 0.043
DeepAR 0.028 0.039 0.069 0.150
PatchTST 0.039 0.052 0.069 0.106
TFT 0.034 0.050 0.077 0.141
TiDE 0.024 0.032 0.044 0.073

Figure 3: Distribution of forecast error across data sets and
models.

outputs and the distribution of Root Mean Square Errors (RMSE).
The results demonstrated that AutoGluon Ensemble exhibited the
highest stability among the tested models, showing the lowest vari-
ance in both metrics, except the RMSE for the Favorita data set.
This superior stability can be attributed to its ensemble approach,
as well as the fact that some statistical or otherwise deterministic
models were selected in the ensemble.

The findings suggest that when considering both predictive per-
formance and reliability of results, AutoGluon Ensemblemay be par-
ticularly suitable for applications where consistent outputs across
multiple runs are crucial. Future research could explore how model
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stability can be impacted by other factors such as model complexity,
ensemble configurations, or small perturbations to the inputs. Ad-
ditionally, as noted in the introduction, a deeper understanding of
cycle-to-cycle stability across models is an important practical con-
sideration for forecasting models that are deployed in production
systems. It would be interesting to study cycle-to-cycle change in a
way that separates the contribution of model-induced stochasticity
from changes that can be attributed to the addition of new points
in the training data. These insights contribute to our understanding
of model reliability in practical applications and can guide practi-
tioners in selecting appropriate forecasting models based on their
stability requirements.
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A AutoGluon Ensemble
Table 4 shows the componentmodels trained in theAutoGluon “best
quality" ensemble model. The ensemble uses two cross validation
windows, and fits a global ensemble by selecting the optimal convex
combination of the component model outputs over the validation

Table 4: AutoGluon Best Quality Model Ensemble

Model Name

Seasonal Naive
AutoETS
Nonparametric Time Series (NPTS)
Dynamic Optimized Theta
Recursive Tabular
Direct Tabular
TFT
Patch TST
DeepAR
Chronos bolt zero shot
Chronos bolt fine tuned
TiDE

windows. For more information on individual model configurations
we refer to the AutoGluon Model Zoo [1].

B Hyperparameter Tuning
Table 5 shows the hyperparameters learned by grid search for each
data set and each of the deep learning forecasting models.
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Table 5: Hyperparameter settings learned by grid search for each data set and deep learning model.

Favorita M5

Model Hyperparameter Value Model Hyperparameter Value

TiDE dropout_rate 0.01 TiDE dropout_rate 0.4
num_head 1 num_head 4
batch_size 64 batch_size 256
lr 1e-4 lr 1e-3
distr_hidden_dim 32 distr_hidden_dim 256
feat_proj_hidden_dim 2 feat_proj_hidden_dim 8
encoder_hidden_dim 32 encoder_hidden_dim 256
decoder_hidden_dim 32 decoder_hidden_dim 256
temporal_hidden_dim 32 temporal_hidden_dim 64
num_layers_encoder 1 num_layers_encoder 1
num_layers_decoder 1 num_layers_decoder 2

TFT hidden_size 76 TFT hidden_size 92
dropout_rate 0.7 dropout_rate 0.2
batch_size 128 batch_size 256
num_head 1 num_head 4
lr 1e-3 lr 1e-3
hidden_dim 240 hidden_dim 40

PatchTST num_encoder_layers 4 PatchTST num_encoder_layers 4
nhead 4 nhead 1
batch_size 256 batch_size 128
d_model 320 d_model 320
lr 1e-4 lr 1e-4

DeepAR hidden_size 62 DeepAR hidden_size 46
dropout_rate 0.1 dropout_rate 0.1
batch_size 128 batch_size 64
num_layer 3 num_layer 4
lr 1e-2 lr 1e-2
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