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ABSTRACT

Graph neural networks (GNNs) are fundamental tools in graph machine learning.
The performance of GNNs relies crucially on the availability of informative node
features, which can be limited or absent in real-life datasets and applications. A
natural remedy is to augment the node features with embeddings computed from
eigenvectors of the graph Laplacian matrix. While it is natural to default to Lapla-
cian spectral embeddings, which capture meaningful graph connectivity informa-
tion, we ask whether spectral embeddings from alternative graph matrices can also
provide useful representations for learning. We introduce Interpolated Laplacian
Embeddings (ILEs), which are derived from a simple yet expressive family of
graph matrices. Using tools from spectral graph theory, we offer a straightforward
interpretation of the structural information that ILEs capture. We demonstrate
through simulations and experiments on real-world datasets that feature augmen-
tation via ILEs can improve performance across commonly used GNN architec-
tures. Our work offers a straightforward and practical approach that broadens the
practitioner’s spectral augmentation toolkit when node features are limited.

1 INTRODUCTION

Graph neural networks (GNNs) are foundational tools for modeling and learning from relational
data. GNNs operate by passing, transforming, and aggregating messages between neighboring nodes
iteratively, thereby encoding connectivity and feature information into expressive node representa-
tions that can capture complex patterns and relationships. The GNN approach has seen significant
success, enabling advances in domains ranging from biology (Stokes et al., 2020) to recommender
systems (Ying et al., 2018; Wu et al., 2022). The effectiveness of GNNs, however, often hinges on
the availability of rich and informative node-level features. In many practical settings, node features
can be unavailable (due to reasons such as privacy, missing data, etc), limited, or corrupted with
noise (Rossi et al., 2022). Naı̈ve application of GNN methods in these settings can lead to degraded
performance (Said et al., 2023).

In these settings where node features are limited or unavailable, the most natural approach is to
perform feature augmentation. A common heuristic is to augment the node features with one-hot
encoding vectors or the all-ones vector. Such features do not take into account the underlying graph’s
topology. A more informative approach is spectral augmentation, where spectral embeddings de-
rived from the graph Laplacian matrix’s eigenvectors are used as node features (Said et al., 2023).
Indeed, it is well known from the manifold learning and spectral clustering literature that Lapla-
cian spectral embeddings capture rich structural properties of the underlying graph (Ng et al., 2001;
Von Luxburg, 2007; Belkin & Niyogi, 2003). This approach of pre-computing spectral embeddings
as node features is natural, as it supplies prior structural information that even shallow GNNs can di-
rectly exploit, mitigating the need for expensive and deep architectures that often suffer from issues
such as oversmoothing (Rusch et al., 2023). Such embeddings have also been successfully applied
in GNNs beyond the missing/limited features setting, such as in graph transformers (Kreuzer et al.,
2021; Dwivedi & Bresson, 2020) as a form of positional encoding. Lim et al. (2022) showed that
such Laplacian embeddings, after accounting for sign and basis symmetries, are expressive and can
improve performance of GNNs.

Laplacian spectral embeddings are often treated as the default option in GNN feature augmentation
(Said et al., 2023; Lim et al., 2022). On the other hand, a variety of graph matrices motivated by
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different applications have been considered in the spectral graph theory and network science liter-
ature (Grindrod et al., 2018; Ou et al., 2016; Haemers & Omidi, 2011). These alternative matrices
can induce spectral embeddings that capture different kinds of graph connectivity information. For
example, Priebe et al. (2019) showed that Laplacian and adjacency spectral embeddings capture
drastically different structures of graphs that has substantial implications for downstream tasks such
as clustering.

Motivated by the success of spectral feature augmentation in GNNs, especially in the limited/missing
node features setting (Said et al., 2023; Lim et al., 2022), we ask whether considering alternative
spectral embeddings can lead to improved performance in practice. To this end, we propose a simple
yet expressive family of graph matrices that contains many well known graph matrices as special
cases. We call the resulting spectral embeddings captured by this family the interpolated Laplacian
Embeddings (ILEs). Using tools from spectral graph theory, we provide interpretations for the in-
formation captured by ILEs. Through experiments, we show that the choice of graph matrix used
to compute spectral embeddings can impact downstream graph learning performance in the miss-
ing/limited node features setting. We discuss how to select relevant matrices and tuning parameters
in practice. Our results suggest that practitioners many benefit from considering a broader range of
spectral embeddings when augmenting node features in GNNs.

1.1 RELEVANT LITERATURE

We refer to Hamilton et al. (2018); Wu et al. (2022) for general background on graph neural net-
works. Commonly used graph neural network architectures that we adopt in our experiments in-
clude Graph Convolutional Networks (GCN) (Kipf & Welling, 2017), Graph Isomorphism Networks
(GIN) (Xu et al., 2019) and GraphSAGE (Hamilton et al., 2018).

The idea of using Laplacian embeddings as positional encodings to augment input features for graph
neural networks has been explored in the literature (Said et al., 2023; Dwivedi et al., 2021). Such
Laplacian positional encodings are also used in graph transformers (Dwivedi & Bresson, 2020;
Kreuzer et al., 2021). Lim et al. (2022) proposes SignNet and BasisNet as architectural components
that can be used to process eigenvector embeddings to ensure invariance to symmetries that arILE
from sign flips and rotations (when repeated eigenvalues are present).

In addition to the Laplacian, adjacency spectral embeddings have been explored in the spectral
clustering literature (Sussman et al., 2012; Cape et al., 2019). General families of graph matrices and
operators have been considered in the spectral graph theory and network science literature. Notable
examples include the Katz similarity matrix (Ou et al., 2016), deformed Laplacian (Grindrod et al.,
2018), the signless Laplacian (Cvetković et al., 2007) and related generalizations (Nikiforov, 2017),
the universal Adjacency matrices (Haemers & Omidi, 2011), and many more. Different spectral
embeddings can capture different graph structures with different interpretation, an observation noted
in Priebe et al. (2019) in the context of spectral clustering.

Our Contribution In this work, we revisit the common practice of using Laplacian spectral em-
beddings for feature augmentation in graph neural networks. Our contributions are threefold: (i) we
introduce interpolated Laplacian Embeddings (ILEs), which are eigenvectors derived from a simple
and flexible family of graph matrices that generalizes many classical graph matrices as special cases;
(ii) we provide theoretical analysis, leveraging tools from spectral graph theory, to characterize and
interpret the structural information that ILEs encode; and (iii) we conduct extensive experiments
demonstrating that the choice of graph matrix can lead to improvements in downstream GNN per-
formance, especially under settings with limited or missing node features. Our results move beyond
the default use of Laplacian embeddings, broadening the spectral augmentation toolkit available for
GNNs.

2 PRELIMINARIES

2.1 SETUP AND NOTATION

We work in the setting of simple, undirected, connected, weighted graphs. Let G = (V,E,w)
denote such a graph, where V is the vertex set, E the edge set, and w : E → R≥0 assigns a
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nonnegative weight to each edge. For convenience, we write we or wuv to denote the weight of edge
e or edge (u, v) ∈ E. Throughout, we index vertices by [n] := {1, 2, . . . , n}. We use i, j, u, v to
index vertices in [n]. We use the terms nodes and vertices interchangeably. We use bold fonts for
matrices and vectors.

We consider several canonical graph matrices associated with G. The adjacency matrix A of G is
defined entrywILE by Auv = wuv for (u, v) ∈ E and 0 otherwILE. The degree matrix D is the
diagonal matrix with entries Duu = deg(u) =

∑n
v=1 Auv . The graph Laplacian matrix is then given

by L = D−A. Since G is undirected, the matrices A, D, and L are all symmetric, and thus admit
real eigenvalues with orthonormal eigenvectors. We will generally denote the eigenvalues of any
symmetric graph matrices M (including the graph Laplacian L) by λ1, . . . , λn in ascending order
(λi ≤ λj for i < j). Following the usual convention of spectral graph theory, for the special case of
the adjacency matrix A, we denote its eigenvalues by ω1, . . . , ωn in descending order (ωi ≥ ωj for
i < j).

2.2 SPECTRAL EMBEDDINGS OF NODES AND THE TWO-TRUTHS PHENOMENON

The eigenvectors of graph matrices can be used to construct low-dimensional spectral node embed-
dings that preserves structural properties of the underlying graph. Consider the eigendecomposition
of the Laplacian L =

∑n
u=1 λuzuz

T
u . A spectral embedding of dimension k is constructed by se-

lecting the first k eigenvectors of L that corresponds to the smallest k non-zero eigenvalues. The
entries of such eigenvectors are then used as the coordinates in a Euclidean representation. More
concretely, the embedding of node u is given by the u-th row of [z1, z2, . . . , zk] ∈ Rn×k. Adja-
cency spectral embeddings are constructed analogously, except the eigenvectors corresponding to
the largest k eigenvalues are selected.

Arguably the most canonical and commonly used graph matrices are the Laplacian matrix L and
adjacency matrix A. Most work in the literature utilizes only one particular type of spectral em-
bedding, usually the Laplacian by default. The effect of matrix choice on downstream tasks such as
clustering have only been explicitly studied recently. Notably, the pioneering work of Priebe et al.
(2019) identified the “two-truths” phenomenon: spectral embeddings from the normalized Lapla-
cian versus the adjacency matrix yield clustering results that are drastically different yet both valid.
Laplacian spectral embeddings capture community structure, which reflects high connectivity within
communities and low connectivity between communities. This can be interpreted via the well known
relationship between Laplacian eigenvectors and approximate graph cuts (Von Luxburg, 2007). In
contrast, adjacency embeddings capture “core-periphery” structure (Priebe et al., 2019). Here, high-
degree nodes that are highly connected form a hub, whereas low-degree nodes that are sparsely
connected (often only to the core) form the periphery. We pictorially illustrate this phenomenon
in Figure 1. While Priebe et al. (2019) used a stochastic blockmodel and asymptotic analysis to
explain this phenomenon, in section 3.1 we provide an alternative explanation that does not resort to
asymptotics. This phenomenon suggests that the choice of graph matrix for spectral embedding can
affect downstream tasks, motivating our study of its impact on node classification with GNNs.

2.3 GRAPH NEURAL NETWORKS AND SPECTRAL EMBEDDINGS

Graph neural networks (GNNs) most commonly operate under a message passing scheme, which
iteratively applies two general steps: a message-passing step, where nodes aggregate information
from their neighbors, and an update step, where nodes update their representations/learned embed-
dings using that aggregated information. The starting point of such representations is usually taken
to be a set of node (and/or edge) features. Stacking L such layers of message passing together
yields node representation that encode structural information from neighborhoods up to L hops
away. This message passing scheme encompasses a wide variety of popular GNN architectures,
including Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), GraphSAGE (Hamilton
et al., 2018), and Graph Isomorphism Networks (GINs) (Xu et al., 2019). The choice of how the
messages are passed/aggregated and how the node representations are often what distinguishes GNN
models from one another.

Given the importance of node features for GNN learning, in many applications it is often of interest
to supplement node features by spectral embeddings (Said et al., 2023; Lim et al., 2022). Since
spectral embeddings are eigenvectors of symmetric matrices, they are subject to certain symmetries:
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(a) Laplacian embedding (k = 1) captures community
structure

(b) Adjacency embedding (k = 1) captures core-
periphery structure

Figure 1: Illustration of the two truths phenomenon on a small graph. Nodes are colored by thresh-
olding the corresponding embedding values.

for any eigenvector z ∈ Rn, the negated vector −z is also an eigenvector associated with the same
eigenvalue. Moreover, in cases of eigenvalue multiplicity, the corresponding eigenspace admits
infinitely many valid orthonormal bases up to rotations. SignNet and BasisNet (Lim et al., 2022)
are general frameworks that allow for the use of spectral embeddings in GNNs while respecting
symmetry constraints. SignNet achieves invariance to sign flips by symmetrizing the response of
a neural network ϕ applied to each eigenvector individually. Given k eigenvectors z1, . . . , zk ∈
Rn, SignNet defines the mapping f(z1, . . . , zk) = ρ

([
ϕ(zi) + ϕ(−zi)

]k
i=1

)
, where ρ is an

additional learnable aggregation function. By construction, f remains unchanged under any sign
flip, thereby ensuring consistency of learned representations across different eigenbasis choices.
BasisNet operates analogously for rotations for graphs that have repeated eigenvalues: given a matrix
of eigenvectors Z = [z1, · · · , zk] ∈ Rn×k as input, BasisNet considers the associated orthogonal
projector matrix ZZ⊤ since it is invariant to rotations. We defer to Lim et al. (2022) for details.
Rather than appending spectral embeddings directly as node features, SignNet and/or BasisNet first
process the embeddings, and their outputs are then appended as features. While BasisNet is only
applicable for eigenvectors with repeated eigenvalues, SignNet should always be used since sign-
flips symmetry affects all eigenvectors.

3 INTERPOLATED LAPLACIAN EMBEDDINGS

Motivated by the success of feature augmentation with Laplacian spectral embeddings in GNNs, as
well as the observation that different graph matrices can encode different graph structural informa-
tion, we ask whether spectral embeddings from more general families of graph matrices can further
improve performance. To this end, we propose a simple family of graph matrices that subsumes
many classical graph matrices as special cases.

3.1 A FAMILY OF GRAPH MATRICES

One of the most general families of graph matrices proposed in the literature is the universal adja-
cency matrices family (Haemers & Omidi, 2011), which takes the form

M(α, β, κ, ζ) = αD+ βA+ κJ+ ζI, (1)

where J is the all-ones matrix, I is the identity matrix, and α, β, κ, ζ ∈ R. This family has natural
mathematical properties and includes many of the most important graph matrices as special cases,
such as the Laplacian, the signless Laplacian and the Seidel matrix (Haemers & Omidi, 2011). De-
spite the richness, the fact that this family depends on four tuning parameters makes it less practical
for use in machine learning applications.

Observing that J and I are matrices that do not reflect structural information of the underlying graph,
we consider the following two-parameter family of graph matrices that we call the interpolated
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Laplacians:

M(t, s) ≡ tD− sA, (2)

where t, s ∈ R. Here, we drop the J and I components from the universal adjacency matrix family,
and without loss of generality adopt a subtraction based formulation to mimic the form of the Lapla-
cian. We call spectral embeddings constructed from the eigenvectors of the interpolated Laplacian
family of matrices interpolated Laplacian embeddings (ILEs). Below, we interpret the information
captured by ILEs.

3.2 INTERPRETATION OF INTERPOLATED LAPLACIAN EMBEDDINGS

An important way to interpret eigenvectors is as solutions of certain constrained optimization prob-
lems on quadratic forms. Given any symmetric matrix M ∈ Rn×n and nonzero vector x ∈ Rn, its
Rayleigh quotient is defined as

RM(x) =
x⊤Mx

x⊤x
. (3)

Note that without loss of generality, it suffices to consider only unit vectors x, whence RM(x) is
just the quadratic form x⊤Mx.

Let λ1 ≤ λ2 ≤ · · · ≤ λn denote the ordered eigenvalues of M. The Courant–Fischer theorem
(Spielman, 2019) states that the extrema of RM(x) occur at the eigenvectors of M with the cor-
responding optimal values being the eigenvalues of M. More concretely, we have the following
expressions for the eigenvalues

λn = max
x̸=0

RM(x), λ1 = min
x̸=0

RM(x), (4)

λk = min
S∈Rn, dimS=k

max
x∈S\{0}

RM(x) = max
S∈Rn, dimS=n−k+1

min
x∈S\{0}

RM(x), (5)

for any 1 ≤ k ≤ n. The eigenvectors can be characterized by

z1 ∈ argmin
||x||=1

x⊤Mx, zk ∈ argmin
||x||=1, x⊥z1,··· ,zk−1

x⊤Mx, (6)

zk ∈ argmax
||x||=1, x⊥zk+1,··· ,zn

x⊤Mx, (7)

for any 2 ≤ k ≤ n.

Thus, we can interpret the first k eigenvectors of M as a set of vectors that collectively minimizes
Rayleigh quotient. This optimization perspective provides a way for us to interpret the resulting
embeddings.

Interpreting M(t, s) via quadratic forms Consider the matrix family M(t, s) = tD −
sA, t, s ∈ R. For any unit vector x ∈ Rn, its quadratic form is given by

x⊤M(t, s)x = tx⊤Dx− sx⊤Ax. (8)

Expanding each term:

x⊤Dx =

n∑
i=1

deg(i)x2
i =

∑
(i,j)∈E

wij (x
2
i + x2

j ), (9)

x⊤Ax =
∑
i,j

Aijxixj = 2
∑

(i,j)∈E

wij xixj . (10)

This gives

x⊤M(t, s)x =
∑

(i,j)∈E

wij

[
t(x2

i + x2
j )− 2sxixj

]
=

∑
(i,j)∈E

wij

[
t(xi − xj)

2 − 2(s− t)xixj

]
.

(11)
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This makes apparent that the objective combines the terms
∑

(i,j)∈E wij(xi − xj)
2 and

2
∑

(i,j)∈E wijxixj , which enables various tradeoffs.

It is well known that the term
∑

(i,j)∈E wij(xi−xj)
2 is equal to the Laplacian quadratic form x⊤Lx

(Spielman, 2019; Von Luxburg, 2007). This objective penalizes variation of node embeddings across
heavily weighted edges, encouraging strongly connected nodes to take similar values and thereby
capturing community structure in the graph.

On the other hand, 2
∑

(i,j)∈E wijxixj is equal to the adjacency quadratic form x⊤Ax. Maximizing
this objective (equivalent to minimizing its negation in equation 11) corresponds to assigning larger
embedding values for nodes that have a high degree of connectivity (large degree), thus capturing
core-periphery structures. This provides an alternative explanation of adjacency embeddings with-
out resorting to the asymptotic arguments and modeling assumptions used in Priebe et al. (2019).
Taken together, these characterizations show that varying t and s yields embeddings that balance
core–periphery and community structure differently. If node labels in a classification task depend
on some combination of these structures, then spectral embeddings from a suitably chosen M(s, t)
may offer an advantage.

3.3 RICHNESS OF REPRESENTATION

In defining the matrix family M(t, s), we have dropped two components corresponding to I and J
in the universal adjacency matrix family M(α, β, κ, ζ) for a more parsimonious representation that
is conducive to ML practice. Below, we show that dropping the I component does not affect the
richess of our spectral embeddings. This is exemplified by the following lemma:

Lemma 3.1. Let M ∈ Rn×n be a symmetric matrix with no repeated eigenvalues, and consider its
perturbation M+ ζI for some scalar ζ ∈ R. Then the eigenvectors of M and M+ ζI coincide, and
the eigenvalues of M+ ζI are shifted by ζ relative to their counterparts in M.

Proof. Let (λ,x) be an eigenpair of M, i.e. Mx = λx where, x ̸= 0. Then (M + ζI)x =
Mx+ ζIx = (λ+ ζ)x. Thus x is also an eigenvector of M+ ζI with eigenvalue λ+ ζ.

Note that the same statement applies when M has repeated eigenvalues, except it would be the
eigenspaces rather than then eigenvectors that are identical.

The above implies that not only are the eigenvectors of M unchanged when it is perturbed by ζI,
the ordering of the eigenvalues are unchanged either. In our context of selecting the first k eigenvec-
tors for spectral embeddings, the above lemma shows that M(t, s) yields the same expressivity of
spectral embeddings as M(t, s) + ζI.

While it is immediate that certain natural choices of (t, s) reduce to well-known matrices (e.g.,
t = 1, s = 1 for the Laplacian, t = 0, s = −1 for the adjacency, and t = 1, s = −1 for the sign-
less Laplacian), Lemma 3.1 allows us to show the less obvious fact that embeddings from M(t, s)
subsume the embeddings generated by the deformed Laplacian graph matrix family.

Recall the deformed Laplacian matrices (Grindrod et al., 2018)

Ldeformed(q) = I− qA+ q2(D− I), q ∈ R, (12)

Note that in the original formulation q ∈ C is allowed for full mathematical generality, here we
only consider real q for our ML context. This family of matrices is important in graph theory, as it
is known to capture meaningful centrality measures via non-backtracking random walks (Grindrod
et al., 2018).

Expanding, we obtain
Ldeformed(q) = (1− q2)I+ q2D− qA.

Thus, setting t = q2 and s = q, and applying Lemma 3.1, we see that the eigenvectors and thus
spectral embeddings of M(t, s) contains those generated by Ldeformed(q).

The above results demonstrate the richness of the interpolated Laplacian family M(t, s). We next
consider testing this family in empirical experiments.
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(a) Core-Periphery (b) Community

Figure 2: Illustration of two realizations of SBM graphs that exhibit (a) core-periphery and (b)
community structures

4 EXPERIMENTS AND SIMULATIONS

We empirically test the hypothesis that alternative spectral embeddings can potentially lead to down-
stream performance gains compared to the Laplacian case.

4.1 EXPERIMENTAL SETUP

We evaluate the effectiveness of ILE in the context of node classification, where ILE is used to
augment node features in GNNs. The resulting models are then assessed based on their classification
accuracy. Our experiments cover a range of datasets and models.

We consider three settings.

1. We first consider a synthetic scenario with Stochastic Block Models (SBM) consisting
of two blocks of equal size. Node labels correspond to block membership. Following
Priebe et al. (2019), we choose connectivity parameters that lead to two graphs exhibiting
core–periphery and community structures respectively. See Figure 2 for illustration.

2. We consider network datasets that do not come with node features. This include the
Karate Club (Rozemberczki et al., 2020), Twitter Congress (Fink et al., 2023), Facebook
Ego (Leskovec & Mcauley, 2012), and Political Blogs (Polblogs) (Adamic & Glance, 2005)
datasets. We use ILEs as node features on these datasets.

3. We consider network datasets that come with node features, which include the Cornell (Pei
et al., 2020), Texas (Pei et al., 2020), and Wisconsin (Pei et al., 2020) datasets. We corrupt
the original node features with various levels of noise, and append ILEs as extra node
features to observe performance.

We consider three representative models: GCN Kipf & Welling (2017), GIN Xu et al. (2019), and
GraphSAGE Hamilton et al. (2018). We also use a 5-layer MLP as a baseline. Detailed descriptions
of all datasets are provided in Appendix B.

We adopt a train-test split using a 70/30 ratio. To account for stochasticity, each experiment is
repeated 5 times, and we report the mean and standard deviation of the resulting classification accu-
racies.

We try ILEs with s taking values in the range [−1,−0.5, 0, 0.5, 1] and t taking values in the range
[−1,−0.5, 0.5, 1]. The case s = 1, t = 1 corresponds to the Laplacian case. We omit the case of
t = 0 since it corresponds to various scalings of the adjacency matrix.

7
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4.2 SBM SIMULATIONS

As shown in Table 1, the best-performing embeddings across the datasets are members of ILEs that
do not correspond to Laplacian embeddings. Observe that the GCN model has the best performance,
whereas the MLP model, which did not leverage graph convolutional operations, performed roughly
at 50 percent accuracy. Since the Core-Periphery case is largely determined by the degree repre-
sentation, we would expect that the embeddings that are most informative about high degree nodes
(t = 1) or low degree nodes (t = −1)) to enjoy good performance. Indeed, for GCN, GIN and
GraphSAGE, the best performance came from the t = −1 and t = 1 columns.

In the community structure case, we would expect that embeddings that are close to the Laplacian
or Signless Laplacian embeddings would capture the community structure much better than adja-
cency based embeddings. Indeed, across the models the ILE embeddings performed better than the
adjacency embeddings. Note that GCN is a special case since its convolutional operation includes
a normalized Laplacian component, so it is unsurprising that it is able to detect community patterns
better than other models.

Table 1: Testing accuracy (%) of different models augmented with spectral embedding variants
under SBM graphs that exhibit core-periphery and community structure.

Model Variant SBM Core-Periphery SBM Community
t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1

GCN None 45.33(4.64) 48.00(1.94)
Adjacency 94.33(3.43) 99.67(0.67)
s = −1 94.33(4.03) 94.67(1.94) 93.67(1.94) 92.00(4.00) 96.67(4.35) 99.00(0.82) 96.00(6.38) 99.67(0.67)
s = −0.5 94.33(4.16) 89.00(4.67) 95.00(2.36) 92.00(1.25) 99.33(1.33) 98.67(1.25) 99.67(0.67) 94.67(9.85)
s = 0 97.00(1.94) 88.00(4.00) 93.33(2.36) 91.67(3.50) 99.33(0.82) 98.33(1.49) 98.67(1.25) 100.00(0.00)
s = 0.5 96.00(3.27) 91.67(3.80) 91.67(3.50) 92.33(4.90) 96.33(6.53) 97.00(4.40) 100.00(0.00) 99.33(0.82)
s = 1 93.33(1.83) 92.67(4.29) 91.67(2.98) 95.33(2.87) 72.67(25.66) 98.00(4.00) 96.00(3.74) 98.33(0.00)

MLP None 43.67(3.23) 45.33(2.87)
Adjacency 45.67(3.43) 45.67(3.74)
s = −1 52.33(3.27) 57.33(3.43) 48.33(4.35) 50.33(7.18) 52.33(6.11) 47.33(6.80) 48.00(5.52) 55.33(4.14)
s = −0.5 50.00(6.83) 54.67(3.23) 48.67(9.85) 47.67(8.79) 47.00(5.62) 49.33(7.57) 50.00(3.33) 45.67(4.55)
s = 0 45.67(5.12) 49.33(5.44) 46.33(5.31) 51.33(3.56) 51.67(3.33) 50.00(7.67) 47.67(4.78) 47.00(6.00)
s = 0.5 50.00(7.89) 48.67(5.42) 47.67(7.20) 47.00(6.53) 51.00(8.00) 54.00(7.93) 50.67(6.55) 51.67(6.41)
s = 1 52.33(4.90) 51.33(3.23) 51.67(6.50) 49.33(4.67) 50.00(5.96) 46.67(4.22) 51.33(5.81) 51.00(4.67)

GIN None 50.33(4.00) 43.00(6.18)
Adjacency 74.67(22.98) 84.67(15.43)
s = −1 77.67(16.62) 74.00(23.49) 68.00(15.54) 83.00(17.04) 87.67(10.62) 91.00(6.63) 87.33(9.64) 87.67(16.62)
s = −0.5 87.00(6.09) 82.00(13.43) 73.67(23.46) 91.67(3.16) 91.00(6.72) 83.00(17.90) 89.33(6.02) 83.67(19.45)
s = 0 79.00(14.67) 77.67(18.15) 80.00(17.09) 88.00(10.67) 96.67(3.80) 79.67(17.99) 91.33(4.88) 75.67(22.45)
s = 0.5 81.00(16.28) 88.33(13.00) 81.00(19.91) 78.67(19.04) 95.33(2.87) 93.67(4.14) 92.00(8.72) 96.00(1.33)
s = 1 67.33(17.11) 81.33(10.97) 76.67(18.41) 54.67(20.61) 94.67(6.78) 96.00(2.26) 92.33(5.01) 94.00(3.59)

GraphSAGE None 48.33(4.47) 48.33(5.48)
Adjacency 60.00(8.88) 56.00(10.62)
s = −1 57.00(16.78) 77.00(19.76) 66.67(18.35) 70.00(13.82) 93.33(6.58) 90.67(5.01) 86.67(6.99) 86.00(8.67)
s = −0.5 68.00(18.18) 73.00(4.76) 79.33(11.58) 75.00(20.52) 85.33(7.99) 84.33(12.85) 84.33(12.36) 87.00(7.99)
s = 0 72.67(12.00) 75.00(13.98) 82.67(12.54) 70.00(17.48) 88.33(10.70) 89.33(5.12) 83.33(4.71) 84.33(10.09)
s = 0.5 88.67(8.06) 73.00(14.73) 71.00(14.55) 79.67(13.60) 81.00(16.38) 85.00(9.94) 91.67(5.48) 93.67(4.40)
s = 1 66.67(8.94) 71.33(10.82) 69.33(17.34) 67.67(9.35) 83.67(8.39) 91.67(6.75) 81.00(8.07) 80.00(16.30)

4.3 DATASETS WITHOUT FEATURES

In our experiments with the datasets that did not come with node features, we again consistently see
the pattern where spectral feature augmentation with ILEs led to better results than the Laplacian
embeddings (s = 1, t = 1). Results are shown in Table 2 in the appendix.

4.4 DATASETS WITH NODE FEATURES CORRUPTED BY NOISE

We also considered three datasets that come with node features (Texas, Cornell and Wisconsin).
Here we corrupt the original node features with Gaussian noise of different magnitude. Results
for the datasets Texas, Cornell and Wisconsin are shown in Tables 5, 3 and 4, respectively, in the
appendix. We observe a pattern where the larger the noise perturbation, generally the worse the
performance. We also observe that at low noise corruption levels, the ILE families that perform
well in general (e.g. the t = 0.5 column in the Wisconsin dataset under 0 percent and 10 percent
corruption in Table 4) are generally stable. At high noise corruption level, the numerous noisy node
features appear to overpower the effect of the spectral embeddings.
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4.5 SELECTING HYPERPARAMETERS

A main goal of this paper is to show that more general spectral embeddings can outperform Lapla-
cian embeddings. While this observation holds true in our experiments which look at options in an
exhaustive fashion, in practice users might have to select certain tuning parameters, including the
dimension of the spectral embeddings k, as well as the tuning parameters t, s for the interpolated
Laplacian family.

For selecting the spectral dimension k for Laplacian-based families, the multi-way Cheeger’s in-
equality Lee et al. (2014) suggests that k should be selected as the number of communities in the
underlying graph. If no such prior information is available, then a conservative k (an upper bound
on the number of communities) should be chosen. For general graph matrices, one can adopt the
commonly used strategy of inspecting Scree plots and determining k according to the location of the
elbow (Cattell, 1966).

As for the selection of s, t, if ones has prior information on the graph’s underlying structure (e.g.
community versus core-periphery) and their relationship to the node labels, one can selectively try
appropriate ranges of s, t according to the interpretation provided in Section 3. A slightly more com-
putationally intensive approach would be to compute some correlation measure between the spectral
embeddings and the node labels in a training or validation set. Yet another more computationally
intensive approach is to perform cross-validation to select the s, t that leads to the highest validation
accuracy.

4.6 COMPUTATIONAL TIME

The computational complexity of a naı̈ve spectral decomposition of a n×n matrix is on the order of
O(n3). However, fast numerical and/or iterative schemes (e.g. Lanczos algorithm, Power method,
Preconditioned methods etc) are often available and can be highly effective in practice for the com-
putational of only the top k eigenvectors (Press, 2007). Some of these iterative methods enjoy linear
converge rates. Moreover, fast numerical methods are often available for sparse graphs or for the
approximate computational of eigenvectors, which may suffice for the application at hand.

5 DISCUSSION

This work broadens the scope of spectral augmentation in graph neural networks by moving beyond
the Laplacian to a unified family of graph matrices that we term interpolated Laplacian Embeddings
(ILEs). Our theoretical analysis provides an interpretable characterization of the structural prop-
erties that different parameterizations of ILEs capture, ranging from community to core–periphery
structure. Empirically, we demonstrated that the choice of graph matrix can substantially influence
downstream node classification performance, particularly in the limited- or missing-feature regime.
Natural directions of future research include generalization of such approaches to directed graphs, or
to graphs with edge features, and to graphs with dynamic, temporal, or heterophilic structures. The
theoretical and empirical aspects of non-Laplacian operators in graph machine learning in general
is understudied compared to the canonical Laplacian case. We hope that this work motivates more
systematic study of spectral embeddings beyond the Laplacian, and inspires new methods that more
effectively leverage different types of graph structures for representation learning.

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics and report no ethical concerns in producing this work.

REPRODUCIBILITY STATEMENT

We attach all code that generated the experimental results as supplementary material. The code is
commented for interpretability and seeded for reproducibility. All datasets that we use are publicly
available. We describe experimental and dataset details in the appendix and in section 4 of the main
paper. For theoretical results, all proofs are provided in the paper and relevant references cited.
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B DATASET DETAILS

We first evaluate our family of spectral embeddings on synthetic networks generated from SBMs.
The SBM is a fundamental generative model for random graphs with community or group structure.
In its general form, the model partitions nodes into latent blocks and specifies the probability of
an edge between any two nodes as a function of their block memberships. By varying the block
structure and edge probabilities, the SBM is able to capture a wide range of network patterns. In
our simulations, we generate networks with 1000 nodes. To study a core–periphery structure, we
divide the nodes evenly into a 500-node core and a 500-node periphery. Edges between core nodes
are drawn with high probability (90%), edges between core and periphery nodes with intermediate
probability (50%), and edges between periphery nodes with low probability (10%). To study a
community structure, we again partition the 1000 nodes into two equal groups of 500. In this
case, the within-group edge probability is very high (99%), while the between-group probability
is comparatively low (30%). Figure 2 illustrates example realizations of the core–periphery and
community SBM graphs using 40 nodes.

We next evaluate ILE on real-world networks that do not contain node features. In these settings, we
demonstrate that augmenting the nodes with ILE substantially improves classification accuracy. The
datasets in this group are Zachary’s Karate Club (Rozemberczki et al., 2020), a social network of 34
nodes and 78 edges partitioned into four classes; Twitter Congress (Fink et al., 2023), a network of
475 nodes and 13,289 edges representing interactions among members of the 117th United States
Congress; Facebook Ego (Leskovec & Mcauley, 2012), a social network of 4,039 nodes and 88,234
edges capturing ego-centric friendship circles on Facebook; and Political Blogs (Polblogs) (Adamic
& Glance, 2005), a network of 1,490 nodes and 19,025 edges, with binary labels indicating the
political leaning of online blogs. The Twitter Congress and Facebook Ego datasets lack ground-
truth node labels. To enable evaluation, we construct artificial labels based on node degree: nodes
in the top 20% by degree are assigned label 1, and all others are assigned label 0.

Finally, we evaluate the ILE family on real-world datasets with node attributes. In this setting, we
show that augmenting node features with ILE improves classification accuracy both under standard
conditions and in scenarios where the original features are corrupted. The datasets in this group are
Cornell (Pei et al., 2020), a web network with 183 nodes, 298 edges, 1,703 features, and five classes,
where nodes correspond to university web pages and edges represent hyperlinks; Texas Pei et al.
(2020), a structurally similar university web network with 183 nodes, 325 edges, 1,703 features, and
five classes; and Wisconsin (Pei et al., 2020), another university web network with 251 nodes, 515
edges, 1,703 features, and five classes.

C FURTHER EXPERIMENTAL RESULTS

Table 2: Testing accuracy (%) of different models augmented with spectral embedding variants
under various datasets that did not come with node features.

Model Variant Karate Club Twitter Congress Facebook Ego Polblogs
t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1

GCN None 29.09(8.91) 79.58(2.23) 79.55(0.77) 51.41(0.78)
Adjacency 92.73(8.91) 84.76(2.36) 87.34(0.84) 83.45(4.46)
s = −1 92.73(6.80) 81.82(9.96) 81.82(9.96) 76.36(7.27) 85.17(2.14) 86.71(2.12) 86.15(2.70) 86.57(1.68) 87.01(0.84) 86.91(1.29) 86.20(0.74) 87.26(0.74) 75.53(5.31) 79.91(4.14) 70.02(8.29) 79.06(5.08)
s = −0.5 83.64(17.63) 78.18(7.27) 85.45(12.33) 83.64(6.80) 85.03(1.05) 81.96(2.27) 86.43(2.45) 87.41(1.71) 86.72(1.12) 87.38(0.88) 86.70(0.51) 87.06(0.69) 79.11(3.78) 79.02(3.11) 79.73(7.91) 70.96(7.98)
s = 0 78.18(7.27) 78.18(10.91) 80.00(6.80) 72.73(16.26) 85.31(2.12) 86.43(2.41) 84.62(2.42) 84.76(1.36) 86.25(0.43) 87.15(0.68) 86.50(0.97) 86.53(0.53) 74.18(6.69) 82.19(2.55) 73.74(9.78) 79.82(1.91)
s = 0.5 85.45(7.27) 87.27(4.45) 69.09(30.21) 89.09(10.60) 86.29(1.05) 84.34(1.80) 85.31(2.69) 85.31(2.50) 86.52(0.21) 86.91(0.59) 87.29(0.67) 87.59(0.72) 78.75(5.32) 84.52(1.11) 75.26(6.54) 77.05(7.76)
s = 1 83.64(12.06) 92.73(6.80) 89.09(6.80) 89.09(6.80) 85.45(2.23) 86.57(2.56) 85.31(1.53) 87.83(2.75) 86.44(0.42) 86.98(0.86) 86.98(0.34) 87.49(0.36) 77.27(5.99) 75.26(1.10) 76.02(8.88) 76.38(4.04)

MLP None 32.73(12.33) 77.90(1.80) 79.42(0.73) 50.07(2.55)
Adjacency 80.00(21.82) 83.22(3.62) 80.17(1.38) 49.57(2.13)
s = −1 61.82(18.54) 63.64(9.96) 70.91(10.60) 63.64(9.96) 73.99(2.09) 74.55(4.57) 79.58(2.56) 78.60(1.86) 79.92(0.95) 79.69(0.74) 79.31(0.85) 79.62(0.62) 56.02(5.00) 54.77(1.63) 50.78(3.22) 55.97(2.04)
s = −0.5 58.18(18.72) 69.09(12.33) 52.73(6.80) 29.09(10.60) 78.88(1.03) 76.92(2.34) 76.08(4.73) 81.54(2.01) 79.88(0.80) 80.10(0.82) 79.85(0.82) 79.70(1.29) 53.29(2.67) 55.17(3.29) 57.94(3.49) 55.75(3.95)
s = 0 32.73(7.27) 25.45(6.80) 43.64(14.55) 29.09(19.41) 79.30(3.79) 78.88(2.85) 78.60(2.10) 81.54(2.53) 80.02(0.56) 79.85(0.55) 79.90(0.83) 80.13(0.93) 50.20(0.94) 49.26(2.48) 48.81(2.40) 47.61(1.82)
s = 0.5 41.82(9.27) 54.55(5.75) 67.27(10.91) 56.36(21.82) 78.60(2.82) 79.16(5.87) 80.70(1.80) 78.18(1.12) 80.31(0.96) 80.31(0.71) 80.07(0.40) 79.87(1.04) 56.73(1.29) 57.72(1.87) 57.49(2.68) 55.93(0.94)
s = 1 49.09(14.77) 65.45(10.60) 61.82(6.80) 67.27(12.33) 77.48(4.27) 74.13(4.00) 78.46(3.81) 75.66(2.63) 79.83(0.71) 79.85(0.91) 80.25(0.73) 79.70(0.51) 56.60(0.97) 51.86(3.17) 57.18(3.43) 51.68(0.88)

GIN None 27.27(11.50) 71.75(13.54) 71.25(17.65) 55.84(3.85)
Adjacency 49.09(9.27) 85.03(2.60) 88.07(1.32) 69.62(11.15)
s = −1 43.64(31.18) 67.27(29.65) 67.27(15.85) 52.73(36.09) 86.57(4.04) 84.90(1.44) 83.92(2.80) 84.90(2.24) 88.73(0.85) 89.74(0.66) 89.97(0.49) 88.91(0.43) 81.39(4.72) 74.41(9.44) 81.12(1.25) 81.30(2.60)
s = −0.5 70.91(13.36) 54.55(22.27) 63.64(18.18) 69.09(14.77) 82.66(3.52) 85.87(2.70) 82.66(2.78) 83.64(2.06) 88.80(1.29) 89.19(0.64) 89.08(0.25) 88.40(0.48) 80.98(2.13) 76.02(8.11) 80.09(5.21) 82.51(1.86)
s = 0 52.73(14.55) 69.09(12.33) 40.00(25.45) 65.45(14.55) 84.34(1.14) 84.20(2.75) 82.38(2.59) 85.03(2.24) 87.97(1.62) 88.23(1.11) 89.09(0.76) 88.17(1.02) 79.91(4.54) 73.78(6.47) 81.12(1.06) 80.81(0.67)
s = 0.5 70.91(10.60) 60.00(24.80) 72.73(29.88) 58.18(23.43) 83.36(5.58) 83.92(2.21) 85.31(1.77) 85.03(1.69) 89.26(0.67) 89.27(0.52) 88.73(0.56) 88.33(0.61) 81.25(1.35) 82.24(2.06) 82.86(0.97) 79.42(4.08)
s = 1 49.09(29.65) 69.09(7.27) 58.18(29.09) 60.00(25.45) 86.15(1.95) 83.78(0.93) 85.17(3.20) 84.90(1.05) 88.71(1.65) 88.42(0.86) 88.99(0.91) 88.83(0.52) 76.64(7.55) 75.84(7.50) 73.83(7.66) 81.92(2.25)

GraphSAGE None 18.18(5.75) 68.39(23.71) 79.98(0.91) 49.98(5.23)
Adjacency 72.73(22.27) 59.30(29.94) 80.48(1.10) 84.56(2.29)
s = −1 78.18(17.81) 80.00(10.60) 89.09(6.80) 78.18(18.72) 80.70(3.11) 75.38(6.37) 77.90(3.58) 82.80(2.68) 71.37(13.99) 80.74(0.66) 76.68(7.76) 70.33(14.01) 62.28(5.30) 62.28(2.88) 60.40(1.56) 61.34(4.79)
s = −0.5 80.00(12.06) 80.00(10.60) 83.64(6.80) 70.91(21.82) 78.88(2.63) 81.82(1.47) 79.72(1.40) 80.42(2.12) 79.32(0.47) 78.81(2.47) 77.84(3.67) 74.70(11.67) 60.54(2.66) 57.94(0.91) 62.24(1.67) 59.37(3.03)
s = 0 65.45(10.60) 70.91(22.56) 81.82(28.17) 76.36(4.45) 79.72(2.38) 80.56(4.13) 81.68(2.59) 80.28(3.35) 76.07(9.23) 79.67(0.85) 74.42(10.38) 73.47(9.80) 54.59(6.69) 58.21(8.02) 64.92(4.47) 53.87(5.21)
s = 0.5 78.18(12.33) 78.18(12.33) 81.82(8.13) 70.91(13.36) 79.30(3.02) 79.86(1.62) 82.80(2.78) 78.46(3.89) 75.89(8.50) 76.47(8.32) 73.83(11.89) 74.03(13.10) 59.69(6.22) 60.81(7.65) 59.28(2.73) 55.35(4.74)
s = 1 76.36(4.45) 96.36(4.45) 81.82(23.71) 80.00(15.64) 80.42(2.21) 76.92(2.54) 77.90(3.55) 80.42(3.22) 79.97(0.71) 79.55(0.26) 76.53(4.77) 73.63(11.48) 64.03(5.27) 59.73(3.86) 60.45(6.65) 60.54(6.54)
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Table 3: Testing accuracy (%) of different models augmented with spectral embedding variants
under various feature corruption ratios on the Cornell dataset.

Model Variant Corruption = 0% Corruption = 10% Corruption = 20% Corruption = 50% Corruption = 90%
t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1

GCN None 42.55(5.59) 41.45(8.24) 44.00(8.56) 30.18(8.34) 34.18(9.51)
Adjacency 44.73(3.37) 46.91(3.88) 40.36(6.44) 44.36(7.68) 32.36(4.66)
s = −1 41.45(5.91) 42.91(7.51) 41.09(6.15) 48.36(5.47) 42.55(4.08) 41.09(9.31) 38.18(5.27) 40.73(4.96) 41.45(8.40) 46.18(2.18) 44.36(0.89) 41.82(6.30) 38.18(5.98) 36.73(2.41) 35.64(6.26) 40.36(7.03) 34.91(7.03) 31.64(3.92) 34.18(4.36) 32.73(1.99)
s = −0.5 42.18(6.65) 42.18(3.13) 46.91(3.71) 45.45(3.25) 45.45(4.45) 37.09(9.10) 47.27(7.18) 45.45(2.82) 39.27(3.56) 42.18(1.78) 41.82(4.88) 43.27(6.84) 37.82(6.24) 36.00(5.06) 37.82(5.56) 37.82(5.32) 35.27(5.22) 35.64(8.50) 31.27(5.80) 39.64(3.13)
s = 0 41.09(4.82) 39.64(3.71) 41.45(3.13) 45.82(4.36) 38.18(9.96) 39.64(6.13) 42.91(10.06) 45.09(2.41) 44.36(6.46) 41.82(9.27) 38.91(5.22) 43.27(4.66) 36.00(6.94) 42.18(4.21) 40.73(6.76) 38.55(6.55) 32.73(5.14) 37.45(5.70) 35.27(7.85) 35.27(5.47)
s = 0.5 43.64(6.19) 46.55(1.85) 42.55(11.13) 44.73(6.67) 41.45(2.41) 42.18(3.13) 40.73(5.22) 44.73(6.57) 37.45(8.02) 39.27(8.95) 43.64(5.01) 43.64(7.09) 37.82(6.24) 36.73(4.36) 36.36(5.01) 38.91(6.26) 33.45(6.86) 37.09(4.82) 34.18(4.36) 37.82(8.24)
s = 1 40.73(4.24) 47.27(8.68) 42.55(4.82) 46.91(9.16) 49.09(5.39) 41.82(3.64) 45.45(6.40) 41.45(2.12) 40.73(4.08) 43.27(2.67) 43.64(3.81) 40.00(3.04) 35.64(4.39) 38.18(3.45) 36.73(4.80) 37.45(5.34) 36.36(7.54) 32.36(7.31) 31.27(5.56) 29.09(6.08)

MLP None 65.45(7.54) 61.09(5.59) 64.36(7.85) 31.64(9.80) 29.09(11.33)
Adjacency 68.36(5.34) 58.55(8.56) 54.18(7.92) 35.64(8.10) 22.18(4.36)
s = −1 73.09(5.06) 66.91(9.44) 62.18(5.19) 61.82(10.48) 67.27(2.57) 59.27(9.10) 57.45(4.24) 64.36(6.15) 53.45(7.14) 54.55(2.57) 57.82(6.65) 46.91(3.71) 46.91(4.51) 37.45(6.36) 38.18(8.37) 37.82(6.24) 25.45(11.78) 26.18(7.85) 25.45(6.80) 23.27(6.55)
s = −0.5 66.91(11.11) 68.36(6.04) 67.64(5.68) 67.64(4.51) 65.82(4.51) 65.45(6.40) 64.73(5.70) 61.45(10.12) 54.55(5.39) 57.09(5.22) 57.82(4.51) 57.82(9.65) 39.64(6.65) 35.64(1.85) 36.73(5.56) 40.00(9.96) 25.82(7.40) 25.45(6.40) 25.45(4.45) 26.91(7.49)
s = 0 67.64(4.36) 66.91(5.91) 71.64(7.24) 64.36(7.42) 64.00(5.56) 64.36(4.96) 66.18(6.96) 62.91(5.70) 53.09(6.84) 56.36(11.95) 61.09(6.36) 56.36(12.22) 37.82(8.56) 38.18(8.53) 34.18(6.34) 37.45(3.92) 29.45(5.32) 20.00(1.99) 21.09(7.51) 31.27(8.08)
s = 0.5 68.73(4.51) 68.73(5.56) 68.73(6.13) 74.55(10.22) 61.45(2.41) 58.55(5.80) 61.82(10.22) 62.55(7.05) 54.18(10.31) 54.18(4.66) 53.45(9.24) 53.09(11.23) 41.45(7.49) 40.36(6.13) 50.18(8.10) 42.55(8.80) 25.82(6.44) 20.00(5.98) 17.09(7.59) 25.82(5.91)
s = 1 65.45(6.19) 66.18(4.69) 66.91(4.21) 71.64(3.56) 64.36(9.87) 59.64(9.01) 65.09(6.02) 62.91(7.85) 60.36(5.32) 57.09(7.14) 61.09(3.74) 62.55(5.82) 37.82(9.58) 38.18(7.54) 44.00(7.49) 44.36(8.50) 22.18(7.83) 16.00(4.05) 22.91(2.72) 22.55(4.24)

GIN None 49.09(2.57) 49.09(4.15) 50.91(3.45) 46.55(4.08) 49.09(3.81)
Adjacency 49.09(4.15) 50.91(6.19) 50.18(4.24) 49.45(8.24) 52.00(2.47)
s = −1 52.00(5.34) 51.27(1.36) 51.64(4.69) 43.64(3.04) 49.82(7.14) 48.00(5.47) 51.64(2.47) 49.09(4.74) 46.91(6.13) 53.82(4.54) 46.91(7.58) 46.91(4.93) 54.55(6.19) 47.27(4.74) 47.64(5.80) 52.73(2.30) 49.09(4.74) 50.55(4.93) 48.00(6.15) 49.09(9.76)
s = −0.5 52.36(6.02) 50.91(4.15) 46.55(7.51) 49.45(2.12) 48.36(4.69) 52.73(3.98) 46.91(2.12) 48.36(5.22) 49.45(3.88) 46.91(5.06) 53.45(8.50) 50.18(5.59) 46.18(2.18) 50.55(3.88) 48.36(10.58) 46.18(3.17) 52.36(4.66) 47.27(2.57) 46.91(5.32) 51.64(2.95)
s = 0 48.36(8.10) 46.91(6.02) 45.82(5.06) 50.91(5.51) 50.91(5.75) 51.27(4.66) 46.18(4.54) 45.45(4.45) 45.82(8.48) 45.82(6.02) 49.09(2.30) 52.36(3.71) 49.82(6.36) 52.36(4.51) 53.45(5.47) 49.82(4.82) 48.00(5.47) 56.00(7.22) 52.00(10.00) 50.55(8.32)
s = 0.5 52.00(5.70) 54.18(5.56) 54.18(3.13) 53.09(7.03) 50.18(2.95) 52.73(4.74) 48.73(5.06) 48.36(2.72) 52.73(3.25) 54.55(4.60) 52.36(7.22) 50.55(5.32) 50.18(4.39) 50.18(5.47) 53.09(5.06) 53.09(6.94) 49.45(2.12) 50.18(6.67) 46.91(6.65) 53.82(4.24)
s = 1 53.45(1.85) 54.55(2.82) 53.82(6.26) 50.55(4.80) 47.64(4.21) 45.09(4.05) 47.27(5.39) 51.64(4.54) 56.00(3.33) 55.64(4.39) 54.18(5.06) 48.36(5.70) 50.91(1.63) 49.45(6.02) 49.45(5.32) 50.18(4.82) 51.27(4.66) 49.09(3.98) 50.18(6.86) 48.36(2.95)

GraphSAGE None 53.82(4.24) 58.55(7.13) 49.09(4.74) 53.09(2.41) 51.64(4.39)
Adjacency 57.09(5.82) 58.18(5.63) 54.18(4.21) 53.45(6.15) 52.73(3.45)
s = −1 54.91(2.41) 61.82(4.74) 56.73(3.13) 55.64(2.72) 56.36(3.25) 56.73(4.51) 50.55(5.56) 54.18(4.80) 56.36(6.08) 52.36(9.99) 51.27(4.51) 54.18(5.56) 51.64(2.95) 52.00(4.69) 49.82(5.22) 48.73(6.94) 47.27(5.01) 57.09(6.76) 52.00(1.85) 46.91(2.12)
s = −0.5 58.18(6.61) 59.27(3.17) 54.91(4.21) 57.45(5.59) 49.09(3.81) 53.82(8.95) 53.45(6.57) 54.18(3.33) 50.55(4.05) 56.00(2.67) 56.36(2.57) 54.18(7.13) 52.36(9.99) 46.55(9.24) 47.27(9.48) 56.36(4.88) 50.55(5.56) 52.36(11.17) 44.36(5.47) 48.73(5.68)
s = 0 63.64(4.15) 53.82(4.69) 58.18(7.09) 57.09(2.47) 56.00(3.13) 54.18(4.80) 58.18(6.50) 53.82(1.85) 50.55(4.51) 53.45(5.70) 57.09(6.04) 53.45(7.42) 52.36(6.84) 54.55(5.51) 55.27(3.74) 53.45(4.08) 49.09(3.25) 49.82(4.69) 56.36(8.13) 54.91(4.21)
s = 0.5 55.27(9.93) 53.09(9.58) 56.00(4.51) 56.73(3.13) 53.45(7.05) 52.36(6.34) 53.09(8.56) 52.73(8.37) 54.55(6.40) 56.00(4.05) 52.00(1.85) 54.91(6.24) 55.27(7.14) 51.64(7.51) 54.18(2.41) 53.82(4.69) 50.55(7.75) 54.55(6.30) 53.82(3.92) 53.45(9.45)
s = 1 57.45(3.56) 55.64(3.74) 60.36(7.58) 50.91(6.61) 54.55(7.27) 55.27(6.57) 49.45(7.40) 52.00(4.96) 57.82(9.58) 51.27(3.13) 48.00(7.77) 54.18(7.22) 46.18(10.00) 51.27(3.71) 48.00(3.56) 52.73(4.74) 53.09(6.24) 51.27(4.51) 50.91(5.98) 50.55(6.02)

Table 4: Testing accuracy (%) of different models augmented with spectral embedding variants
under various feature corruption ratios on the Wisconsin dataset.

Model Variant Corruption = 0% Corruption = 10% Corruption = 20% Corruption = 50% Corruption = 90%
t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1

GCN None 41.05(7.51) 39.47(5.33) 40.79(4.08) 41.05(4.19) 45.79(4.59)
Adjacency 40.26(5.30) 40.79(7.81) 45.79(5.22) 42.11(6.81) 43.42(4.40)
s = −1 42.11(4.56) 41.05(4.03) 41.05(6.83) 45.53(4.21) 41.58(2.29) 43.16(5.09) 42.63(1.58) 42.63(5.43) 40.79(3.43) 42.11(4.78) 41.58(4.45) 46.32(6.14) 40.00(7.14) 45.53(4.29) 42.63(3.78) 42.11(7.67) 40.00(6.04) 43.42(5.52) 47.37(4.16) 42.63(1.78)
s = −0.5 42.37(1.75) 42.89(8.39) 40.79(5.58) 46.84(5.49) 41.84(2.55) 41.32(5.80) 43.95(3.39) 38.16(5.83) 42.89(1.97) 40.00(3.68) 38.68(6.89) 39.21(3.47) 40.53(9.36) 42.11(3.00) 41.32(5.03) 42.89(2.29) 42.63(5.80) 41.05(2.93) 40.26(7.61) 41.05(3.27)
s = 0 44.74(5.71) 39.47(5.71) 45.00(4.36) 40.79(3.53) 42.89(3.29) 41.84(4.19) 40.26(4.37) 37.89(3.27) 42.89(4.90) 42.37(4.11) 43.16(4.28) 44.47(2.41) 40.53(5.61) 39.74(2.26) 41.84(6.14) 43.95(3.39) 41.58(10.01) 42.63(3.18) 43.95(2.95) 41.58(3.29)
s = 0.5 45.79(4.95) 43.68(1.53) 42.89(4.53) 41.05(3.85) 42.63(3.96) 40.26(4.60) 42.37(4.95) 41.84(2.81) 40.00(5.10) 42.11(6.06) 41.05(2.26) 41.58(3.39) 39.21(7.55) 44.47(1.53) 43.42(2.35) 42.63(2.95) 36.32(8.83) 43.42(5.77) 41.58(2.14) 41.32(3.18)
s = 1 44.47(5.22) 37.37(2.14) 38.16(2.63) 42.63(4.53) 43.16(2.68) 40.79(3.00) 42.37(1.29) 39.47(5.83) 40.79(3.33) 44.74(1.44) 40.79(4.78) 43.68(5.67) 38.42(7.46) 40.79(2.35) 40.53(2.26) 47.11(4.43) 41.05(2.81) 43.42(4.63) 38.16(7.76) 42.63(2.44)

MLP None 76.84(5.86) 70.00(10.34) 64.74(4.51) 40.26(6.79) 14.21(2.93)
Adjacency 79.21(3.57) 74.21(7.42) 61.58(6.19) 47.63(8.09) 29.21(11.08)
s = −1 76.05(6.19) 78.16(7.09) 76.32(5.46) 81.32(6.14) 72.11(8.50) 71.84(5.80) 74.74(4.66) 71.05(10.26) 64.21(5.22) 64.21(7.91) 67.11(3.81) 63.16(5.46) 41.58(6.21) 44.47(4.28) 41.58(3.59) 45.26(11.12) 25.53(9.62) 36.84(9.30) 16.32(2.83) 20.79(5.97)
s = −0.5 80.79(5.17) 82.11(3.59) 80.53(4.43) 76.32(6.34) 71.58(4.29) 70.53(6.21) 77.63(6.06) 73.42(6.30) 67.89(7.70) 63.16(6.71) 68.16(7.60) 69.74(4.48) 44.21(5.17) 41.05(2.55) 48.16(3.78) 48.42(10.70) 20.53(8.67) 25.53(4.29) 25.79(9.29) 25.00(10.26)
s = 0 80.00(4.66) 77.63(3.72) 82.63(4.66) 78.42(5.37) 73.95(5.42) 68.95(8.59) 69.74(4.78) 72.89(3.68) 65.00(4.90) 68.95(2.95) 64.74(4.88) 64.74(8.66) 46.84(7.74) 46.58(5.62) 37.11(4.11) 46.05(2.63) 23.16(10.48) 23.42(5.22) 22.89(10.38) 21.58(6.21)
s = 0.5 78.42(2.44) 82.37(3.96) 83.16(5.29) 81.05(6.84) 71.05(4.48) 74.74(6.88) 68.95(4.75) 68.95(5.68) 60.26(6.98) 65.79(7.40) 69.21(6.48) 65.00(3.39) 47.63(7.42) 44.21(3.39) 45.79(6.36) 45.53(5.56) 29.47(1.78) 26.32(9.08) 25.00(14.44) 17.37(6.83)
s = 1 81.05(3.18) 80.53(3.76) 77.63(7.30) 78.95(7.98) 71.58(2.83) 71.32(4.95) 72.37(7.30) 73.95(6.41) 66.84(6.68) 61.58(4.66) 68.16(6.63) 64.47(6.00) 49.47(7.47) 46.58(4.90) 48.16(4.75) 50.00(4.24) 20.53(8.83) 25.26(8.70) 30.79(5.30) 22.37(4.78)

GIN None 45.53(5.68) 43.68(2.11) 43.42(3.99) 46.05(2.20) 45.79(2.55)
Adjacency 48.42(2.41) 46.84(6.04) 46.58(4.75) 47.11(4.59) 42.63(2.58)
s = −1 50.26(2.68) 50.00(4.85) 51.32(7.49) 48.16(4.82) 48.95(4.88) 47.63(3.76) 45.53(6.53) 42.11(4.48) 45.53(3.18) 48.95(3.57) 46.32(3.67) 47.37(5.46) 45.00(4.81) 51.32(2.76) 50.53(2.58) 48.42(4.51) 47.11(6.19) 48.95(3.37) 48.95(4.51) 50.53(3.68)
s = −0.5 50.53(4.53) 47.63(5.61) 46.32(4.19) 42.89(3.07) 42.63(3.96) 47.11(4.03) 50.00(3.22) 46.32(4.43) 47.37(5.58) 47.37(4.16) 47.63(3.57) 46.32(2.68) 47.11(4.74) 46.58(4.04) 50.79(3.78) 43.42(5.26) 48.42(4.03) 45.53(8.83) 47.37(3.00) 47.63(2.11)
s = 0 43.95(4.21) 45.53(3.39) 42.37(3.16) 46.05(5.88) 49.21(4.75) 46.84(8.35) 45.00(7.32) 47.11(3.16) 50.79(3.39) 46.05(3.72) 49.21(6.53) 49.47(4.21) 46.05(2.35) 45.53(2.71) 45.26(7.52) 47.37(5.39) 48.42(5.42) 48.42(2.11) 47.11(5.02) 48.16(3.96)
s = 0.5 46.58(7.79) 47.63(3.67) 46.32(3.85) 50.00(6.00) 45.79(2.81) 44.47(3.94) 46.32(5.35) 44.74(6.55) 45.53(6.21) 48.16(1.78) 52.11(4.60) 48.42(4.88) 48.42(6.83) 43.95(2.71) 43.68(3.16) 46.58(1.78) 44.47(4.19) 45.00(4.66) 46.32(6.63) 46.32(5.09)
s = 1 47.63(3.37) 46.84(2.29) 46.05(5.71) 46.84(4.13) 47.63(4.88) 43.95(4.53) 44.47(4.03) 46.05(3.33) 51.05(5.02) 48.42(7.65) 46.05(6.71) 46.05(3.72) 43.68(4.03) 46.84(8.39) 45.26(3.78) 46.32(4.36) 45.26(4.13) 43.68(3.85) 44.47(4.66) 45.53(8.09)

GraphSAGE None 66.84(4.03) 66.84(6.73) 59.47(3.27) 56.58(4.63) 51.84(9.06)
Adjacency 70.53(5.49) 67.11(3.99) 60.79(1.53) 53.95(4.40) 45.26(5.24)
s = −1 69.21(5.30) 66.84(7.08) 65.00(4.75) 68.42(4.63) 62.63(4.13) 58.68(6.04) 61.58(4.59) 62.37(3.68) 60.79(2.68) 61.05(4.82) 61.58(5.22) 62.89(1.93) 55.00(2.81) 52.89(3.47) 55.53(7.60) 58.95(4.81) 51.84(4.29) 52.63(3.99) 51.32(7.85) 56.05(1.78)
s = −0.5 66.05(5.22) 70.79(3.05) 71.05(4.48) 64.74(5.09) 64.47(3.53) 63.95(4.97) 65.00(5.86) 66.58(3.78) 61.32(2.14) 58.95(3.05) 61.84(6.55) 61.84(3.22) 57.11(6.53) 57.63(5.91) 58.68(3.39) 62.37(3.96) 52.37(5.67) 54.21(2.93) 52.37(8.50) 53.95(2.50)
s = 0 66.05(3.05) 65.26(4.53) 65.79(4.16) 70.26(4.97) 63.42(3.94) 66.58(6.99) 58.68(4.29) 65.00(3.07) 65.53(4.95) 61.32(4.29) 55.79(1.78) 64.47(5.06) 51.32(5.58) 54.47(3.59) 58.16(8.66) 60.26(2.81) 53.42(6.15) 50.26(7.18) 53.42(4.29) 46.84(4.97)
s = 0.5 70.00(6.08) 66.84(4.74) 70.79(3.27) 67.37(6.41) 65.26(6.26) 68.68(4.95) 64.74(3.67) 65.53(3.05) 58.42(3.39) 55.79(8.67) 64.47(4.71) 66.84(7.55) 52.37(4.28) 57.63(5.55) 56.84(5.61) 56.84(4.81) 47.89(6.58) 53.42(3.59) 53.68(5.02) 51.84(4.53)
s = 1 67.89(4.45) 66.58(5.68) 64.21(4.66) 73.95(3.94) 66.58(2.58) 65.00(5.30) 60.26(6.98) 63.42(3.85) 58.95(5.16) 60.26(4.74) 64.21(6.19) 63.42(6.98) 58.68(7.92) 55.53(5.42) 61.32(5.62) 57.63(2.41) 48.95(8.38) 49.47(4.75) 51.05(3.85) 52.11(2.71)

Table 5: Testing accuracy (%) of different models augmented with spectral embedding variants
under various feature corruption ratios on the Texas dataset.

Model Variant Corruption = 0% Corruption = 10% Corruption = 20% Corruption = 50% Corruption = 90%
t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1 t = −1 t = −0.5 t = 0.5 t = 1

GCN None 43.64(7.54) 45.45(2.57) 44.73(2.47) 48.36(5.34) 48.73(4.05)
Adjacency 42.18(6.65) 48.73(4.21) 45.82(6.34) 44.73(4.08) 38.91(5.22)
s = −1 41.09(4.96) 46.91(4.21) 46.18(3.17) 46.18(5.47) 42.55(4.54) 41.45(5.32) 45.45(6.08) 47.27(3.81) 46.55(6.26) 46.55(4.96) 46.91(5.19) 47.64(5.68) 42.91(6.57) 41.09(4.24) 46.55(4.24) 41.82(8.13) 43.64(12.39) 42.18(3.71) 49.82(3.37) 39.64(5.56)
s = −0.5 44.36(11.42) 43.27(5.91) 48.00(5.47) 42.55(6.76) 43.27(5.44) 45.82(6.44) 49.09(2.57) 45.45(1.63) 38.91(5.70) 42.55(7.33) 45.45(4.15) 37.45(2.47) 42.91(2.95) 43.64(4.15) 48.00(7.05) 47.64(2.67) 44.73(4.24) 41.45(1.78) 48.00(4.54) 45.09(2.67)
s = 0 46.18(5.34) 45.82(8.08) 42.91(6.46) 45.09(5.80) 46.55(7.33) 46.91(4.51) 41.45(7.92) 45.09(4.21) 44.73(8.42) 45.45(4.15) 42.55(4.96) 42.91(4.96) 45.45(5.75) 40.36(5.68) 50.55(2.67) 42.55(5.22) 46.18(5.22) 45.45(5.01) 45.45(7.18) 44.36(4.69)
s = 0.5 45.09(3.88) 44.73(4.08) 46.18(4.96) 44.36(6.86) 43.64(5.01) 44.73(2.72) 48.73(3.13) 46.55(4.24) 48.00(5.22) 41.09(2.47) 41.45(3.53) 46.18(5.82) 48.73(5.68) 45.82(8.40) 45.09(7.31) 44.00(3.88) 44.36(5.82) 47.64(7.92) 44.36(4.08) 45.45(6.40)
s = 1 47.27(3.04) 50.18(4.39) 47.27(5.14) 41.45(6.02) 45.82(3.71) 44.36(5.82) 37.45(14.06) 45.09(8.86) 46.18(6.26) 43.64(7.09) 45.45(5.51) 43.27(2.12) 42.18(6.44) 45.09(8.86) 39.64(4.80) 41.09(5.59) 43.27(5.56) 42.55(4.24) 44.36(7.24) 43.64(3.81)

MLP None 69.45(5.32) 63.64(10.73) 53.45(10.13) 40.36(9.99) 18.91(18.31)
Adjacency 73.09(6.74) 68.00(5.70) 57.09(7.51) 38.91(5.22) 20.36(7.75)
s = −1 74.18(5.80) 63.64(11.78) 71.27(10.69) 70.55(10.37) 65.82(12.67) 60.36(7.40) 65.82(10.69) 68.00(11.07) 68.73(7.03) 60.00(6.30) 59.27(4.39) 57.82(7.83) 50.55(8.40) 43.27(7.75) 42.91(10.51) 33.45(10.51) 22.91(11.18) 26.18(9.45) 21.09(4.69) 23.27(11.29)
s = −0.5 67.27(4.74) 71.64(7.14) 63.64(8.83) 69.09(10.60) 62.18(12.14) 75.64(3.37) 68.73(4.21) 66.91(5.06) 66.18(10.06) 54.18(5.80) 63.27(6.65) 59.27(10.26) 45.82(10.81) 39.27(10.26) 42.18(7.03) 41.82(9.05) 25.09(5.06) 23.64(7.09) 15.27(1.85) 24.36(12.26)
s = 0 73.09(5.80) 73.45(10.32) 75.64(10.00) 71.27(7.92) 70.18(5.47) 56.00(7.40) 60.36(7.31) 67.27(8.53) 53.82(7.77) 60.73(12.26) 58.18(12.22) 62.91(11.07) 38.91(11.07) 48.73(6.44) 43.64(5.01) 43.27(6.84) 18.18(10.48) 19.64(3.71) 18.55(2.12) 18.18(6.99)
s = 0.5 75.27(5.93) 74.55(5.75) 80.00(5.39) 77.82(6.34) 58.91(6.86) 63.64(4.88) 64.73(6.96) 68.00(9.24) 63.64(2.82) 53.45(14.34) 60.36(12.98) 56.00(11.46) 36.73(12.03) 33.45(6.26) 41.45(8.86) 43.64(10.79) 16.36(8.91) 20.73(11.13) 18.91(8.26) 25.45(4.60)
s = 1 72.36(5.06) 76.36(5.27) 76.00(8.79) 77.45(5.93) 67.64(8.86) 61.82(6.50) 68.00(7.05) 69.82(3.92) 66.18(8.10) 58.91(4.96) 56.73(8.08) 61.09(9.17) 38.55(10.99) 38.18(9.89) 36.73(7.58) 40.00(14.13) 26.55(6.26) 29.09(10.97) 26.55(9.93) 21.82(9.27)

GIN None 55.64(4.39) 54.91(5.44) 49.82(6.96) 53.45(7.14) 56.36(2.30)
Adjacency 50.18(8.73) 55.27(6.76) 53.82(7.85) 54.18(4.21) 55.27(6.57)
s = −1 55.27(9.10) 54.91(4.93) 51.64(6.15) 51.64(5.22) 57.45(2.72) 57.82(5.56) 55.64(2.95) 49.45(3.53) 53.82(3.74) 50.18(3.74) 54.18(4.51) 60.73(7.33) 57.45(7.14) 56.73(4.05) 47.27(3.25) 48.36(3.74) 58.18(6.80) 57.45(4.54) 56.73(4.36) 50.91(3.64)
s = −0.5 54.18(5.80) 52.73(6.08) 50.18(7.85) 54.18(3.88) 57.09(4.39) 51.64(8.88) 54.55(7.27) 54.18(6.24) 52.36(5.32) 55.27(5.09) 49.09(6.99) 44.36(3.74) 52.73(5.75) 47.64(3.53) 52.00(3.74) 46.55(5.22) 58.91(5.22) 55.27(8.65) 53.45(3.17) 58.18(4.45)
s = 0 51.64(5.22) 52.73(7.36) 53.09(8.00) 54.55(8.53) 59.64(4.80) 56.36(3.25) 49.45(6.44) 52.00(5.47) 53.45(6.26) 57.82(3.71) 51.27(4.05) 58.18(5.86) 50.55(4.93) 53.82(6.15) 54.18(4.80) 55.64(6.26) 53.09(5.44) 47.27(3.64) 59.64(4.51) 55.27(6.26)
s = 0.5 57.09(7.05) 50.91(3.45) 50.18(4.08) 53.82(5.34) 54.18(4.21) 53.45(2.18) 54.55(6.50) 54.91(7.40) 50.18(2.95) 56.36(5.27) 51.27(3.88) 54.91(4.05) 47.64(9.72) 50.91(3.04) 52.73(6.40) 56.00(4.21) 56.36(7.36) 57.82(8.94) 57.45(4.39) 58.18(4.60)
s = 1 57.45(2.47) 55.27(4.08) 50.18(3.37) 53.09(7.66) 52.36(3.88) 53.09(6.34) 52.36(4.21) 52.36(3.71) 55.64(7.14) 53.09(5.56) 46.55(5.59) 55.27(5.22) 53.09(4.93) 53.09(4.51) 53.82(5.34) 56.00(5.56) 57.09(5.09) 56.36(4.74) 54.18(3.53) 54.91(4.51)

GraphSAGE None 59.64(6.74) 64.73(7.24) 59.27(6.57) 62.18(7.31) 62.91(3.37)
Adjacency 67.27(4.88) 61.09(4.54) 59.64(8.79) 60.73(5.93) 55.27(8.26)
s = −1 64.36(6.15) 61.45(12.88) 61.09(3.74) 64.36(7.77) 65.45(4.88) 65.82(6.02) 58.55(5.44) 62.55(9.10) 56.73(7.66) 61.45(2.41) 61.82(5.63) 64.73(4.69) 57.45(4.24) 59.27(5.70) 55.27(8.73) 62.55(6.76) 61.09(6.15) 54.18(9.01) 64.73(5.82) 61.09(4.39)
s = −0.5 65.82(3.13) 64.00(3.13) 60.36(3.53) 61.45(5.56) 60.36(3.13) 62.91(5.34) 64.73(9.66) 60.36(2.41) 61.45(8.08) 56.73(5.56) 57.09(8.02) 57.45(3.37) 58.55(5.80) 65.09(5.80) 63.27(6.84) 61.45(5.44) 60.73(3.56) 60.36(4.66) 67.27(7.36) 58.55(6.44)
s = 0 68.73(5.32) 62.18(4.05) 59.64(3.71) 59.64(9.58) 62.91(6.26) 64.00(7.75) 56.73(9.58) 60.00(3.04) 65.82(8.16) 58.55(5.80) 57.82(5.56) 64.36(2.72) 58.55(2.67) 64.73(5.47) 54.18(9.99) 60.73(9.38) 64.00(7.40) 53.45(8.02) 62.18(8.56) 52.36(6.24)
s = 0.5 56.00(5.91) 56.36(11.15) 60.73(3.17) 64.00(5.91) 64.36(4.24) 62.55(4.39) 62.91(7.51) 58.18(4.74) 62.55(7.14) 59.27(3.74) 58.91(2.72) 59.27(3.17) 58.91(3.74) 62.18(5.91) 60.00(6.08) 56.73(9.99) 59.27(6.04) 64.00(5.91) 64.73(6.57) 61.82(3.98)
s = 1 60.36(6.74) 64.00(5.56) 61.82(7.88) 53.09(8.86) 61.45(5.32) 64.36(8.34) 64.36(5.22) 62.55(8.26) 59.27(7.85) 64.00(6.34) 62.91(11.13) 54.91(6.02) 60.36(6.74) 65.09(6.02) 62.55(3.37) 62.18(4.36) 60.36(6.44) 58.55(7.22) 61.09(5.93) 59.27(4.39)
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