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Abstract

We consider the problem of online learning in the presence of sudden distribution shifts, which
may be hard to detect and can lead to a slow but steady degradation in model performance. To
address this problem we propose a new Bayesian meta-algorithm that can both (i) make inferences
about subtle distribution shifts based on minimal sequential observations and (ii) accordingly adapt
a model in an online fashion. The approach uses beam search over multiple change point hypotheses
to perform inference on a hierarchical sequential latent variable modeling framework. Our proposed
approach is model-agnostic, applicable to both supervised and unsupervised learning, and yields
significant improvements over state-of-the-art Bayesian online learning approaches.

1. Introduction

Deployed machine learning systems are often faced with the problem of distribution shift, where the
new data that the model processes is systematically different from the data the system was trained
on. Furthermore, the shift can happen anytime after deployment, unbeknownst to the users, with
dramatic consequences for systems such as self-driving cars, robots, trading algorithms, among many
other examples.

Updating a deployed model on new, representative data can help mitigate these issues, as well as
improve on general performance in most cases. This task is commonly referred to as online learning.
A particular variant of online learning that focuses on adapting models to new or novel data (in either
features and/or outputs) over time is known as continual learning. Approaches developed on this
task typically focus on mitigating the degradation of performance over earlier data, often referred to
as catastrophic forgetting. For instance, variational continual learning (VCL) (Nguyen et al., 2017)
employs a Bayesian online learning framework to prevent forgetting by modeling the model’s prior
distribution for each new batch of data (referred to as a “task” in the continual learning literature) as
the posterior from the previous one.

VCL and other Bayesian solutions are typically robust to catastrophic forgetting; however,
they may suffer from an opposite problem that we are defining as catastrophic remembering. In
continually training a Bayesian model, the posterior distribution becomes progressively more and
more confident as more data is used to inform it. Given enough data, the model’s prior distribution
(i.e. previous posterior distribution) will be too confident to adequately adapt to new data affected by
a distributional shift (for brevity, we will refer to this shift as a novelty).

In this paper, we propose a more robust approach that copes with the problems of both catastrophic
forgetting and remembering. The idea is that the model not only requires a good mechanism to
aggregate data, but also is able to partially forget information that has become obsolete. To achieve
this, we still use the Bayesian online learning framework; however, before combining the previously
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learned posterior with new data evidence, we introduce an intermediate step. This step allows the
model to decide between two actions to take: reduce the previous posterior’s confidence to provide
more “room” for novel information, or remain in the same state (i.e. retain the unchanged, previous
posterior as the new prior). We propose a mechanism for enabling this decision using a “spike
and slab” novelty prior (described in Section 2.1). We further augment this decision process by
introducing variational beam search, a new inference scheme that allows the model to consider
multiple different hypothetical sequences of detected distributional shifts (or lack thereof).

We present experiments for Bayesian deep learning experiments using real datasets with artifi-
cially introduced shifts over time, as well as unsupervised experiments for analyzing semantic change
over time in language (Section C.3 in supplement). Our approach both leads to more semantic and
compact word embeddings, as well as significantly improves performance in the supervised tasks.

2. Methods

We consider a stream of data that arrives in batches ("tasks") x; at discrete times ¢. For notational
simplicity we focus on the unsupervised case, where the task is to model p(x;) using a model p(x;|z;)
with parameters z; that we would like to optimally tune to each new batch!.

We furthermore assume that while the x; are i.i.d. within batches, they are not i.i.d. across batches,
but rather come from a time-varying distribution p;(x;) (or p;(x¢, y:) in the supervised cases) which
is subject to distribution shifts. We assume that these distribution shifts occur instantaneously (as
opposed to gradually) and at unknown times, i.e., a change may (or may not) occur with each batch ¢
and (if it occurs) will persist until the next change. The challenge is to optimally adapt the parameters
z; to each new task while borrowing statistical strength from previous tasks.

Variational Continual Learning The basis of our approach is the insight that for sequential data,
one can use a Bayesian model’s posterior at time ¢ — 1 as a prior for the next task at time ¢. Since
typically the posterior is not available in closed-form, we must use approximate inference. It is
natural to use a variational posterior g;—1(z;). This leads to a sequence of variational inference
tasks (Zhang et al., 2018) known as variational continual learning (VCL) (Nguyen et al., 2017):

qi(z¢) = argmax Eq[log p(x¢|z)] — KL(q(zt)||gi-1(2¢)), (1)
q(z:)€Q
where () is the family of potential approximate posterior distributions (i.e. normal distributions).
Eq. 1 is known as the evidence lower bound (ELBO) in variationa inference (Jordan et al., 1999;
Zhang et al., 2018); for every new task it is optimized until convergence. Note that in its original
formulation, the goal of VCL is to train a model that performs well cumulatively on all the learning
tasks previously encountered (Nguyen et al., 2017), as opposed to just the most recent task, as studied
in this paper.

Catastrophic Remembering While continual learning mainly addresses catastrophic forgetting,
where a model loses in performance on the tasks previously encountered, we address the opposite
effect: catastrophic remembering (French, 1999). Here, a model becomes overconfident with time
and loses its ability to adapt to distribution shifts. In Bayesian online learning, such catastrophic
remembering is caused by an overconfident posterior. To explain this effect, we note that a posterior’s
variance shrinks as it encounters more data. Assume that after a long sequence of updates, the

1. In supervised setups, we consider a conditional model p(y+|z¢, x:) with features x. and targets y:.
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posterior ¢;—1(z;) can be well-approximated by a point mass d(z; — zg) centered around some
parameter zg. In this case, any new data evidence p(x;|z;) will have a diminishing effect on the
next posterior q¢(z;) as q:(z¢) x p(x¢|z¢)d(z¢ — z0) ~ qi—1(2¢), in other words, the strong prior
over-rules the new data even though the training data that lead to it may have become obsolete due
to a distribution shift. To prevent catastrophic remembering, we adapt Eq. 1 to the online learning
scenario, specifically assuming irregular and instantaneous distribution shifts.

2.1. Posterior Broadening Mechanisms

In order to combat catastrophic remembering, the posterior in Eq. 1 needs to be broadened before
it is combined with new data evidence. This broadening mechanism erases learned information to
free-up model capacity to adjust to the new data distribution.

Among several possible options, we consider relative broadening, which amounts to tempering
the prior by a fixed amount, resulting in pg(z;) o qt_l(zt)ﬁ for 0 < 8 < 1. For a Gaussian g with
diagonal variances af in dimension z;, relative broadening removes an equal amount of information
in each dimension, H; = 1 log(2meo?/?) = 1 log(2mes?) — log 3. Since tempering broadens the

posterior non-locally, this scheme does not possess a continuous latent time series interpretation 2.

Conditional Broadening If novelties happened at a predictable and constant rate, we were done:
tuning the parameter 5 to the expected rate of change (with a large 5 for a high change rate and
[ =1 for no expected change). However, in reality, novelties can be of varying strength, irregular,
and unobserved. We therefore propose to model the novelty at time ¢ with a binary latent variable
s¢, with s; = 0 for no change occurring, and s; = 1 indicating a shift. For s; = 1, we broaden the
posterior and use it as a prior. If no change occurs, we just use the previous posterior as the new prior
and proceed. This gives rise the the following conditional prior:

qt—1(z¢) fors; =0
pp(zt]st) = : ()
o {qfl(zt) fors; =1

We defined the tempered approximate posterior at time ¢ — 1 as qtﬁfl(zt) = W%. (Note

that ¢° has a closed-form expression for a Gaussian ¢.) The conditional broadening approach leads
to the following online inference scheme:

qi(ze|si) = argmax L(qls¢),
q(zt|st)€Q 3)

L(qlst) == Eq[log p(xt|z¢)] — KL(q(zt|st)|Ips(ze|st))-

This involves a joint variational distribution ¢(z;|s;) over the latents z; and change variable s;. We
place a Bernoulli prior p(s;) on the change variables. As described below, we jointly infer z; and the
change variables s; from data.

2.2. Bayesian Reasoning over Distribution Shifts

Structured Variational Inference According to our assumptions, the novelties occur at discrete
times and are unobserved. Therefore, both z; and s; have to be inferred from data. We first define the

2. This means that it is impossible to specify a conditional distribution p(z¢|z—1) that corresponds to relative broadening.
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marginal likelihood over data given the change variable s; to be ps(x¢|s¢) := [ p(x¢|ze)ps(2e|st)dze,
which is often intractable. This intractability leaves the exact posterior over s;, pg(s:|x;) not
available as well (by Bayes rule). However, we can follow a structured variational inference
approach (Wainwright and Jordan, 2008; Hoffman and Blei, 2015; Zhang et al., 2018), defining a
joint variational distribution q(z, s;) = q(s¢)q(z¢|s¢).

By definition, the conditional distributions ¢(z|s;) are solutions to the optimization problem in
Eq. 3. Absorbing the optimized conditional ELBO in Eq. 3, ¢(s;) has a closed-form solution:

q"(st) = Bern(sg;m);  m =0 (L(glse = 1) — L(gls: = 0) + &), )

where o is the sigmoid function and &y = log p(s; = 1) — log p(s; = 0) are the log-odds of the prior
p(s¢). This specifies the posterior over s;. We provide the derivation details, the resemblance to the
exact inference, and the interpretation as a likelihood ratio test in the Supplement.

Finally, we obtain the marginal distribution over latent variables ¢(z;) at time ¢ as a binary
mixture with mixture weights ¢(s; =0) = mand ¢(s; =1) =1 —m:

at(zt) = mq(zt|st = 0) + (1 — m)q(ze]se = 1). S)

Exponential Branching We note that while we had originally started with a Gaussian variational
posterior ¢;—1(z;) at the previous time, our inference scheme resulted in ¢;(z;) being a mixture of
two Gaussians: the inference scheme branches over two alternative hypotheses. When we iterate,
we encounter an exponential branching of possibilities, or hypotheses over possible sequences of
regime shifts. To still be able to carry out the filtering scheme efficiently, we need a truncation
scheme, e.g., approximate the bimodal marginal distribution by a unimodal one. The next section
will discuss several methods to achieve this goal.

2.3. Online Inference and Variational Beam Search

While the previous subsections have focused on a single update, we now investigate the possibility of
doing multiple updates in a row. This amounts to working out a truncation scheme to restrict the
variational posterior to be a unimodal Gaussian (Variational Greedy Search (VGS)) or, a mixture of
fixed size (Variational Beam Search (VBS)) at every time step.

The simplest VGS trains the model in an online fashion by iterating over time steps ¢. For each ¢,
it explores all possible branches and then truncates the branches. In general, VGS first optimizes
the conditional ELBO (Eq. 3) for both s; = 0 and s; = 1 (which corresponds to branches). With
the optimized conditional ELBO, it computes the binary mixture weights using Eq. 4. Finally VGS
projects ¢:(z:) (Eq. 5) on the more probable component. Detailed steps are in the Supplement.

Note that VGS updates z; at every time step ¢, resulting in continuously changing variational
parameters u; and o;. The fact that u; and o, change even between two detected change points
makes the output of the algorithm poorly interpretable. One can get a better fit if one outputs the
variational parameters ; and oy at the end of a segment of constant z,, just before a detected change
point s; = 1. We call this a “shy” variant of VGS. More details are in supplement.

VGS and its shy variant make greedy decisions on s, in the sense that they ignore the subsequent
tasks. A greedy search is prone to missing change points in data sets with a low signal/noise ratio
per time step because it cannot accumulate evidence for a change point over a series of time steps.

3. See also Fig. 4 of the Supplementary Material.
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The most obvious improvement over greedy search that has the ability to accumulate evidence for
a change point is beam search. Rather than deciding greedily whether a change occurred or not at
each time step, beam search considers both cases in parallel, and it delays the decision as to which
one is more likely. Empirically, we find that the naive beam search procedure does not reveal its
full potential. As commonly encountered in beam search, histories over change points are largely
shared among all members of the beam. We thus developed a simple beam diversification scheme
to encourage diverse beams. We found this beam diversification scheme to work robustly across a
variety of experiments. More details about diversified VBS are described in the supplement.

3. Experiments

Overview The objective of our experiments is to show that compared to other methods, variational
beam search (VBS) (1) better reacts to novelties in supervised setups, while (2) revealing interpretable
and temporally sparse latent structure in unsupervised setups. To this end, we experiment on artificial
data (Section 3.1), study Bayesian deep learning approaches on sequences of transformed CIFAR
and SVHN images (3.2), and study the dynamics of word embeddings on historical text corpora
(Section C.3 in supplement). Additional details are in the Supplement.

MODELS CIFAR-10 SVHN
VBS (K=6) (PROPOSED) 69.7 £ 0.7 89.8 £ 0.4 1 — Iypothesis L
VBS (K=3) (PROPOSED) 69.1+0.8 89.44+05 0] X noisy data
VGS (PROPOSED) 68.2+0.8 88.9+0.5 “ X[ ground truth
VCL [NGUYEN ET AL., 2017] 66.7 == 0.8 88.7 £ 0.5 ) X=X x
LP [SMOLA ET AL., 2003] 62.6 £1.0 82.8+£0.9 y XX
INDEPENDENT TASK 63.74+ 0.5 85.5£0.7 . . . XX
0 10 time step +20 30
Table 1: Average Test Acc. Figure 1: VBS on Toy Data

3.1. Toy Experiments

To test VBS in a very simple setup, we simulated noisy data points centered around a piecewise-
constant step function with two steps (Fig. 1). The task is to infer the mean (black line) of a
time-varying data distribution (black samples). We evaluated VBS with beam sizes 1 and 2 in terms
of their ability to correctly identify the latent jumps in hindsight. Both algorithms start with similar
performance initially. However, VBS with beam size 1 (“greedy”, orange) fails to recognize the
two-fold jump correctly. In contrast, beam size 2 operates with two hypotheses over function levels.
Around step 20, the initially unlikely hypothesis with two jumps becomes the dominant one.

3.2. Supervised Experiments

Next, we considered a supervised learning setup, in which an algorithm is exposed to a sequence
classification tasks, consisting of batches of CIFAR-10 and SVHN images. To introduce novelties,
every few tasks we transform all images globally by combining rotations, shifts, and scaling transfor-
mations. To make the approach compatible with our framework, we used a Bayesian convolutional
neural network and applied variational beam search to the network’s weights. We focused on the
latest task performance and evaluated the classification accuracy on a test set subject to the same
transformations.
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Figure 2: Test performance of our proposed VBS and VGS algorithms compared to various baselines (see
main text) on transformed CIFAR-10 (left) and SVHN (right). The top panel shows example
transformations of both data.

Datasets We used two standard datasets for image classification: CIFAR-10 (Krizhevsky et al.,
2009) and SVHN (Netzer et al., 2011), adopting the original training and test set splits. We further
split the training set into batches for online learning, each batch consisting of a third of the full data.
Each transformation (either rotation, translation, or scaling) is generated from a fixed, predefined
distribution (see Supplement C.2). Changes are introduced every three tasks, where the total number
of tasks was 100. Fig 2 (top panel) shows typical resulting transformations.

Baselines. In our supervised experiments, we compared VBS against established Bayesian online
learning baselines and an independent batch learning baseline. In addition to Variational Continual
Learning (VCL, see Section 2), we also compared against Laplace Propagation (LP) (Smola et al.,
2003). We refer to (Nguyen et al., 2017) for technical descriptions of LP. Finally, we also adopt a
trivial baseline: learning independent classifiers on each task. Here, we adopt a non-Bayesian neural
network with the same architecture. See Supplement for more details.

Architectures and Protocol. All Bayesian methods use the same neural network architecture. We
used a truncated version of the VGG convolutional neural network (Supplementary Material C.2)
on both datasets and confirmed that our architecture achieved similar performance on CIFAR10
compared to the results reported by Zenke et al. (2017) and Lopez-Paz and Ranzato (2017) in a
similar setting. We stress that lower accuracies are obtained in our online learning setting due to the
distribution shifts. We initialize each algorithm by training the model on the full, untransformed
dataset. We set the relative broadening 3 = 2/3 for all supervised experiments. During every new
task, all algorithms are trained until convergence (see Supplement for details).

Results The bottom panel of Fig. 2 shows our main results on CIFAR-10 (left) and SVHN (right).
To account for varying task difficulties, we show the percentage of the relative error reduction relative
to our main baseline, VCL.

VBS with a large beam size of K = 6 performs best, followed by VBS with K = 3. Variational
greedy search (VGS), which corresponds to a beam size K = 1, performed comparably with and
slightly better than VCL. The reason is that, empirically, the greedy version of our algorithm only
detected a small fraction of distribution shifts. This makes its performance sometimes similar to
VCL. This stresses the importance of beam search: for larger K, multiple changes were detected.

Table 1 shows the absolute performances of all considered methods, averaged across all of the
100 tasks for the two datasets. Our proposed methods improved significantly over the best-performing



VARIATIONAL BEAM SEARCH

baseline VCL by 1.1 percentage points on SVHN and by 3 percentage points on CIFAR-10. The
effect of beam search is also evident, with larger beam sizes consistently performing better.
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Appendix A. Structured Variational Inference

According to the main paper, we consider the generative model pg(x¢, z¢, 5¢) = p(5¢)pg(2¢|s¢)p(x¢|2¢)
at time step ¢. Upon observing the data x;, both z; and s; are inferred. However, exact inference is
not available due to the intractability of the marginal likelihood ps(x¢|s;). To tackle this, we utilize
structured variational inference for both the latent variables z; and the Bernoulli change variable
s¢. Towards this end, we define the joint variational distribution ¢(z, s¢) = q(s¢)q(z¢|s:). Then the
updating procedure for ¢(s;) and ¢(z|s;) is obtained by maximizing the ELBO £L(q):

q1(z¢, 5t) = argmax L(q),
q(z¢,5¢)€Q
E(Q) = Eq[logpﬁ(xtvzta St) — log Q(Zt, St)]-

Given the generative models, we can further expand £(q) to simplify the optimization:

L(q) = Eq(s,)q(ze|s,) [l0g p(s¢) + log ps(z¢|s¢) + log p(x¢|z:) — log q(s¢) — log q(z¢]s)]
= Eq(s,) [log p(st) — log q(st) + Eq(z,|s,)[l0g ps(zt|st) + log p(x¢|2z:) — log q(z¢]s1)]]
= Ey(s)llog p(st) —log q(st) + Eq(z,s,) log p(xt|2ze)] — KL(q(zt|st)|[ps(Zt|st))]
= Eq(s,)[log p(st) —log q(se) + L{qlst)] ©)

where the second step pushes inside the expectation with respect to ¢(z|s;), the third step re-orders
the terms, and the final step utilizes the definition of conditional ELBO (Eq. 3 in the main paper).
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It therefore implies a two-step optimization to maximize £(q): first maximize the conditional
ELBO L(g|s¢) to find the optimal ¢;(z:|s; = 1) and ¢;(z|s; = 0), respectively, then compute the
Bernoulli distribution ¢*(s;) by maximizing £(q) in which the conditional ELBOs £L(g;|s;) are fixed.

While q;(z¢|s:) typically needs to be inferred by black box variational inference (Ranganath
et al., 2014; Kingma and Welling, 2013; Zhang et al., 2018), the optimal ¢*(s;) has a closed-form
solution and bears resemblance to the exact inference counterpart (Eq. 7 in the main paper). To
see this, we assume L(g;|s;) are present and ¢(s;) is parameterized by m € R (for the Bernoulli
distribution). Rewriting Eq. 6 gives

L(q) =m(logp(sy = 1) —logm + L(q¢|st = 1))
+ (1 —m)(logp(st = 0) —log(1 —m) + L(g|st = 0))
which is concave due to the second derivative is negative. Thus taking the derivative and setting it to
zero leads to the optimal solution of
m
log T logp(se =1) —logp(sy =0) + L(ge|se = 1)) — L(qe|st = 0)),
m = o (L(g|se = 1)) = L(q]st = 0)) + o),

which attains the closed-form solution as stated in Eq. 4 in the main paper.

Exact Inference To see the similarities to the exact inference, recall pg(x¢|s:) = [ p(x¢|z¢)pp(2z¢|st)dz,.
The exact posterior over s; is again a Bernoulli pg(s|x;) = Bern(s; m) with parameter

pp(x¢|st = 1)p(sy = 1)> g2 ) [ p(xelze)a,  (2¢)dz
p,B(XtISt = O)Z?(St = 0) fP(Xt|Zt)Qt—1(Zt)dZt

m—o <1Og + fo) NG

where o is the sigmoid function and £y = log p(s; = 1) —log p(s; = 0) are the log-odds of the prior
p(st).

Eq. 7 has a simple interpretation as a likelihood ratio test: a change is more or less likely
depending on whether or not the observations x; are better explained under the assumption of the
broadened prior distribution qﬁ1 (z¢), in other words, a partial reset of previously learned information.

Then we demonstrate the resemblance between the exact inference and the approximate inference
for s;. Notice the conditional ELBO in Eq. 3 is a lower bound to the logarithm of the marginal
likelihood log pg(x¢|s;), we can use the former as a proxy of the latter in Eq. 7, resulting in the
update in Eq. 4. In other words, the tighter the conditional ELBO to log pg(x¢|st), q(s¢) is more
precise.

Appendix B. Details on Online Learning and Variational Beam Search

Variational Greedy Search For each ¢, VGS updates a truncated variational distribution via the
following three steps:

1. Compute the conditional prior pg(z:|s;) (Eq. 2) based on ¢;—1 and optimize the conditional
ELBO (Eq. 3) for both s; = 0 and s; = 1. This results in the optimized variational distributions
q(z:|sy = 0) and g(z[s; = 1).

2. Compute the binary mixture weights m and (1 —m) using Eq. 4, resulting in q;(z¢) = m q(z¢|sy =
0) + (1 — m)q(z|s: = 1) (Eq. 5).
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a) Variational Greedy Search (VGS) b) Variational Beam Search (VBS)
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Figure 3: Sparse inference via greedy search (left) and variational beam search (right), see also
Section B.
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Figure 4: Conditional probability table of variational beam search

3. Truncate q;(z¢) to a uni-modal distribution to avoid branching. This can be achieved by projecting
qt(z¢) on the more probable component.

The filtering algorithm mentioned above iteratively updates the variational distribution over z;
each time it observes new data x;. In the version of variational greedy search discussed above, the
approach decides immediately, i.e., before observing subsequent data points, whether a change in z;
has occurred (by projecting on one mixture component in the truncation step) or not. This approach
is illustrated in the blue part of Fig. 3 (a). Here, the dark blue line shows the fitted mean p; over time
steps ¢, with =10 error bars in light blue. The fact that u; and o; change even between two detected
change points makes the output of the algorithm poorly interpretable.

“Shy” Variational Greedy Search One obtains a better fit if one outputs the variational parameters
e and o, at the end of a segment of constant z;. More precisely, when the algorithm detects a
change point s; = 1, it outputs the variational parameters ;1 and o;—1 from just before the detected
change point {. These parameters define a variational distribution that has been fitted, in an iterative
way, to all data points since the preceding detected change point. We call this the “shy” variant of
the variational greedy search algorithm, because this variant quietly iterates over the data and only
outputs a new fit when it is as certain about it as it will ever be. The red lines and regions in Fig. 3 (a)
illustrate means and standard deviations outputted by the “shy” variant of variational greedy search.

Variational Beam Search As we see in the main paper, the above two algorithm variants (“greedy”
and “shy”) discussed so far are greedy in the detection of change points, prone to missing change
points in noisy data sets. An obvious improvement that can delay decisions to accumulate evidence
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is beam search. This algorithm is illustrated schematically in Fig. 3 (b). The algorithm keeps track
of a fixed number K > 1 of possible histories, i.e., sequences of change points. For each history, it
iteratively updates a Gaussian variational distribution as in the greedy variants. At each time step ¢,
each history splits up into two for the two cases s; € {0, 1}, thus doubling the number of histories of
which the algorithm has to keep track of. To keep the computational requirements bounded, beam
search thus discards half of the histories based on an exploration-exploitation trade-off.

As follows, we present a more detailed explanation of the variational beam search procedure
outlined in Section 2.2 of the main paper. Our beam search procedure defines an effective way to
search for potential hypotheses with regards to sequences of inferred change points. The procedure is
completely defined by detailing three sequential steps, that when executed, take a set of hypotheses
found at time step ¢ — 1 and transform them into the resulting set of likely hypotheses for time step ¢
that have appropriately accounted for the new data seen at ¢. The red arrows in Figure 4 illustrate
these three steps for beam search with a beam size of K = 4.

In Figure 4, each of the three steps maps a table of considered histories to a new table. Each
table defines a mixture of Gaussian distributions where each mixture component corresponds to
a different history and is represented by different a row in the table. We start on the left with the
(truncated) variational distribution ¢;_1(z;—1) from the previous time step, which is a mixture over
K = 4 Gaussian distributions. Each mixture component (row in the table) is labeled by a 0-1 vector
s<t = (S0,81, - ,81—1) of the change variable values according to that history. Each mixture
component s, further has a mixture weight g(s<;) € [0, 1], a mean, and a standard deviation.

We then obtain a prior for time step ¢ by transporting each mixture component of q;—1(z;—1)
forward in time via the broadening functional (“Step 1” in the above figure). The prior pg(z;) (second
table in the figure) is a mixture of 2K Gaussian distributions because each previous history splits
into two new ones for the two potential cases s; € {0,1}. The label for each mixture component
(table row) is a new vector (s<¢, S¢) Or S<¢+1, appending s; to the tail of s;.

“Step 2” in the above figure takes the data x; and fits a variational distribution ¢;(z) that is also
a mixture of 2K Gaussian distributions. To learn the variational distribution, we (i) numerically fit
each mixture component q(z¢|s<¢, s¢) individually, using the corresponding mixture component of
pp(z¢) as the prior; (ii) evaluate (or estimate) the conditional ELBO of each fitted mixture component,
conditioned on (s<¢, s;); (iii) compute the approximate posterior probability ¢*(s;) of each mixture
component, in the presence of the conditional ELBOs; and (iv) obtain the mixture weight equal to
the posterior probability over (s<, s;), best approximated by g(s<¢)q*(s¢).

“Step 3” in the above figure truncates the variational distribution by discarding K of the 2K
mixture components. The truncation scheme can be either the “vanilla” beam search or diversified
beam search outlined in the main paper. The truncated variational distribution ¢;(z;) is again a
mixture of only K Gaussian distributions, and it can thus be used for subsequent update steps, i.e.,
fromttot+ 1.

Beam Search Diversification To encourage diverse beams, we constructed the following simple
scheme: Let K be the number of hypotheses in a beam. While transitioning from time ¢ — 1 to ¢,
every hypothesis splits into two scenarios, one with s; = 0 and one with s; = 1, resulting in 2K
hypotheses. If two resulting hypotheses only differ in their most recent s¢-value, we say that they
come from the same "family." Each member among the 2K hypotheses is ranked according to its
ELBO value (Eq. 3). In a first step, we discard the bottom 1/3 of the 2K hypotheses, leaving 4/3 K
hypotheses. (We always take integer multiples of 3 for K). To truncate the beam size from 4 /3K
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Table 2: Convolution Neural Network Architecture

LAYER FILTER SIZE FILTERS STRIDE ACTIVATION DROPOUT
CONVOLUTIONAL 3x3 32 1 RELU
CONVOLUTIONAL 3 x3 32 1 RELU

MAXPOOLING 2x 2 2 0.2
CONVOLUTIONAL 3x3 64 1 RELU
CONVOLUTIONAL 3x3 64 1 RELU

MAXPOOLING 2x2 2 0.2
FULLYCONNECTED 10 SOFTMAX

Table 3: Hyperparameters of Bayesian Deep Learning Models for CIFAR-10

MODEL LEARNING RATE BATCH SIZE NUMBER OF EPOCHS 3 &o
LP 0.001 64 150 N/A  N/A
VCL 0.0005 64 150 N/A  N/A
VBS 0.0005 64 150 2/3 0

down to K, we rank the remaining hypotheses according to their ELBO and pick the top K ones
while also ensuring that we pick a member from every remaining family. The diversification scheme
ensures that underperforming families can survive, leading to a more diverse set of hypotheses.

Appendix C. Experiment Details and Results
C.1. Toy Data Experiments

Data Generating Process To generate Figure 1 in the main paper, we used a step-wise function as
ground truth, where the step size was 1 and two step positions were chosen randomly. We sampled 30
equally-spaced points with time spacing 1. To get noisy observations, Gaussian noise with standard
deviation 0.5 was added to the points.

Model Parameters In this simple one-dimensional model, we used absolute broadening with a
Gaussian transition kernel K (z;, z}) = N (z; — z;, DAt) where D = 1.0 and At = 1. The inference
is thus tractable because p(z|s;) is conditional conjugate to p(x;|z, s;) (and both are Gaussian
distributed). We set the prior log-odds € to log ]’; Eiiég where p(s; = 1) = 0.1. We used beam
size 1 and beam size 2 to do the inference, respectively. We reported the results with beam size 2,
which also involved the resulting hypothesis for beam size 1 (greedy search) as the one with lower

probability.

C.2. Bayesian Deep Learning Experiments

Transformations We used Albumentations (Buslaev et al., 2020) to implement the transformations
as covariate shifts. As stated in the main paper, the transformation involved rotation, scaling, and
translation. Each transformation factor followed a fixed distribution: rotation degree conformed
to (0, 10%); scaling limit conformed to A/(0, 0.3?); and the magnitude of vertical and horizontal
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Table 4: Hyerparameters of Bayesian Deep Learning Models for SVHN.

MODEL LEARNING RATE BATCH SIZE NUMBER OF EPOCHS  f3 o
LP 0.001 64 150 N/A  N/A
VCL 0.00025 64 150 N/A  N/A
VBS 0.00025 64 150 2/3 0

translation limit conformed to Beta(1, 10), and the sampled magnitude is then rendered positive or
negative with equal probability. The final scaling and translation factor should be the corresponding
sampled limit plus 1, respectively.

Neural Network Architecture We used the same convolutional neural network architecture for
both datasets, which can be found in Table 2. We implemented the Bayesian models using TensorFlow
Probability and the non-Bayesian counterpart (namely Laplace Propagation) using TensorFlow Keras.
Every bias term in all the models were treated deterministically and were not affected by any
regularization.

Tempered Conditional ELBO In the presence of massive observations and a large neural network,
posterior distributions of change variables usually have very low entropy because of the very large
magnitude of the difference between conditional ELBOs as in Eq. 4. Therefore change variables
become over confident about the switch-state decisions. The situation gets even more severe in beam
search settings where almost all probability mass is centered around the top hypothesis while the other
hypotheses get little probability and thereby will not take effect in predictions. A possible solution is
to temper the conditional ELBO (or the marginal likelihood) and introduce more uncertainty into
the change variables. To this end, we divide the conditional ELBO by the number of observations.
While the tempering strategy has the model no longer work in strict Bayesian paradigm, it renders
every hypothesis effective in beam search setting.

Hyperparameters, Initialization, and Model Training The hyperparameters used across all of
the models for the different datasets are listed in Tables 3 and 4. Regarding the model-specific
parameters, we set & to O for both datasets and searched /3 in the values {5/6,2/3,1/2,1/4} on a
validation set. We used the first 5000 images in the original test set as the validation set, and the
others as the test set. We found that 5 = 2/3 performs relatively well for both data sets. Optimization
parameters, including learning rate, batch size, and number of epochs, were selected to have the best
validation performance of the classifier on one independent task. To estimate the change variable s;’s
variational parameter, we approximated the conditional ELBOs 3 by averaging 10000 Monte Carlo
samples.

As outlined in the main paper, we initialized each algorithm by training the model on the full,
untransformed dataset. The model weights used a standard Gaussian distribution as the prior for this
meta-initialization step.

When optimizing with variational inference, we initialized ¢(z;) to be a point mass around zero
for stability. When performing non-Bayesian optimization, we initialized the weights using Glorot
Uniform initializer (Glorot and Bengio, 2010). All bias terms were initialized to be zero.

We performed both the Bayesian and non-Bayesian optimization using ADAM (Kingma and
Ba, 2014). For additional parameters of the ADAM optimizer, we set 81 = 0.9 and 52 = 0.999 for
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Figure 5: Dynamic Word Embeddings on Google books, Congressional records, and UN debates, trained
with VBS (proposed, blue) vs. VCL (grey). In contrast to VCL, VBS reveals sparse, time-localized
semantic changes (see main text).
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Figure 6: Document dating error as a function of model sparsity, measured in average parameter
updates per year.

both data sets. For the deep Bayesian models specifically, which include VCL and VBS, we used
stochastic black box variational inference (Ranganath et al., 2014; Kingma and Welling, 2013; Zhang
et al., 2018). We also used the Flipout estimator (Wen et al., 2018) to reduce variance in the gradient
estimator.

Predictive Distributions We evaluated the predictive posterior distribution of the test set by the
following approximation:

K S
p(yie|xe, D1xt) = ZZ wp(ye|xt, ﬁ;ﬂ)
k: s=1

where K is the beam size, wy, is the normalized weight of the £™ hypothesis after truncation, and
S is the number of Monte Carlo samples from the variational posterior distribution ¢;(z;). In our
experiments we found S = 10 to be sufficient. We take arg maxy, p(yt|x¢, D1:t) to be the predicted
class.

VGS and VCL set K = 1 for the single hypothesis in the above formula. LP further only used
the MAP estimation z; to predict the test set: p(y¢|x¢, D1:¢) =~ p(yi|X¢, 2} ).
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C.3. Unsupervised Experiments

Our third experiment focused on unsupervised learning, where our focus was different: instead of
showing performance improvements in terms of higher accuracy, we demonstrated that VBS and
VGS help uncover interpretable latent structure in high-dimensional time series, such as localizing
changes in the meanings of individual words over large time spans. We also show that these word
embedding trajectories can be used for document dating.

Datasets We analyzed three large time-stamped text corpora, all of which are available online.
Our first dataset is the Google Books corpus (Michel et al., 2011) consisting of n-grams, which is
sufficient for learning word embeddings. We focused on the period from 1900 to 2000. To have
an approximately even amount of data per year, we sub-sampled 250M to 300M tokens per year.
Second, we used the Congressional Records data set (Gentzkow et al., 2018), which has 13M to
52M tokens per two-year period from 1875 to 2011. Third, we used the UN General Debates corpus
(Jankin Mikhaylov et al., 2017), which has about 250k to 450k tokens per year from 1970 to 2018.
The vocabulary size was 30000 for all three corpora. We further randomly split the corpus of every
time step into training set (90%) and heldout test set (10%).

Model and Baselines To analyze the semantic changes of individual words over time, we used
Dynamic Word Embeddings (Bamler and Mandt, 2017) as our base model in all experiments. The
model relies on a probabilistic interpretation of Word2Vec and learns smooth word embedding
trajectories by imposing a time-series prior on the embeddings. We compared against the online
version of dynamic word embeddings with a diffusion prior, which is equivalent to VCL. By
construction, this prior does not encourage temporal sparsity, meaning the word embeddings change
every year. For our proposed approach, we imposed our spike and slab novelty prior (Eq. 2) that
induces temporal sparsity, allowing us to time-localize semantic changes of words. We set the relative
broadening constant 5 = 0.5 for Google books and Congressional records and let 8 = 0.25 for UN
debates. We combined this prior with beam search (KX = 2), where we reported results on the most
likely beam.

We also considered regular word embeddings trained on individual years (Mikolov et al., 2013).
While (Bamler and Mandt, 2017) already carried-out the comparison to dynamic word embeddings,
we used them to measure the compressibility of word embedding trajectories for document dating
tasks, as we describe below.

Qualitative Results Our first experiments demonstrate that a spike & slab prior is more inter-
pretable and results in more meaningful word semantics than the diffusion prior of (Bamler and
Mandt, 2017). Figure 5 shows three selected words ("simulation”, "atom", and "race"—one taken from
each corpus) and their nearest neighbors in latent space. As time progresses the nearest neighboring
words change, reflecting a semantic change of the words. While the horizontal axis shows the year,
the vertical axis shows the cosine distance of the word’s embedding vector at the given year to its
embedding vector in the last available year.

The plot reveals several interpretable semantic changes of each word. For example, “atom’
changes its meaning from “element” to “nuclear” in 1945—the year when two nuclear bombs were
detonated. The word “race” changes from the cold-war era “arms”(-race) to its more prevalent
meaning after 1991 when the cold war ended. The word "simulation" changes its dominant context
from "deception" to "programming" with the advent of computers. The plot also compares the nearest

>
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Figure 7: Additional results of Dynamic Word Embeddings on Google books, Congressional records,
and UN debates.

neighbors obtained with the diffusion prior (Bamler and Mandt, 2017) in grey to our VBS-based
approach in blue, with arguably more interpretable results.

Quantitative Results. Another benefit of dynamic sparsity, as induced by VBS, is a more com-
pressible representation of the revealed latent states. For dynamic word embeddings, word embedding
trajectories can be stored as a list of embedding vectors with associated time stamps—one vector per
update. In contrast, the work of (Bamler and Mandt, 2017) or (Mikolov et al., 2013) would require a
separate embedding vector for every word for all years.

We analyzed a rate-distortion tradeoff in the classical compression sense, where we tuned
the prior on the change variable s; (the prior log-odds & in Eq. 4) to suppress semantic changes.
With changes being suppressed, naturally the word embeddings get worse in quality, but lead to
smaller file sizes as only updated word embeddings have to be stored. Figure 6 shows the results on
Congressional Records data. To measure model performance, we predicted the year in which each
held-out document’s word-word co-occurrence statistics have the highest likelihood and measured
L1 error.

As a simple baseline, we assumed that we had separate word embeddings associated with
episodes of L consecutive years. For T years in total, the associated memory requirements would
be proportional to V'« T'/ L, where V' is the vocabulary size. Assuming we could perfectly date the
document up to L years results in the "binning" baseline in Figure 6. We see that our approach results
in a much better rate-distortion tradeoff since we are allowing each word to change at different times,
as opposed to only collectively.

C.4. More on Dynamic Word Embeddings Experiments

Model Assumptions As outlined in the main paper, we analyzed the semantic changes of individual
words over time. We augmented the probabilistic models proposed by Bamler and Mandt (2017)
with the spike and slab novelty prior (Eq. 2 in the main paper) to encourage temporal sparsity. We
pre-trained the context word embeddings* using the whole corpus, and kept them constant when
updating the target word embeddings. This practice denied possible interference on one target
word embedding from the updates of the others. If we did not employ this practice, the spike and

4. We refer readers to (Mikolov et al., 2013; Bamler and Mandt, 2017) for the difference between target and context
word embeddings.

16



VARIATIONAL BEAM SEARCH

Table 5: Hyerparameters of Dynamic Word Embedding Models

CORPUS VOCAB DIMS I} LEARNING RATE EPOCHES &; BEAMS
GOOGLE BOOKS 30000 100 0.5 0.01 5000 -10 2
CONGRESSIONAL

RECORDS 30000 100 0.5 0.01 5000 -10 2
UN DEBATES 30000 20 0.25 0.01 5000 -1 2

slab prior on word 7 would lead to two branches of the “remaining vocabulary” (embeddings of
the remaining words in the vocabulary), conditioned either on the spike prior of word ¢ or on the
slab prior. This hypothetical situation gets severe when every word in the vocabulary can take two
different priors, thus leading to exponential branching of the sequences of inferred change points.
When this interference is allowed, the exponential scaling of hypotheses translates into exponential
scaling of possible word embeddings for a single target word, which is not feasible to compute for
any meaningful vocabulary sizes and number of time steps. To this end, while using a fixed, pre-
trained context word embeddings induces a slight drop of predictive performance, the computational
efficiency improves tremendously and the model can actually be learned.

Hyperparameters and Optimization Qualitative results in Figure 5 in the main paper were
generated using the hyperparameters in Table 5. The initial prior distribution used for all latent
embedding dimensions was a standard Gaussian distribution. We also initialized all variational
distributions with standard Gaussian distributions. For model-specific hyperparameters § and &g,
we first searched the broadening constant 3 to have the desired jump magnitude observed from
the semantic trajectories mainly for medium-frequency words. We then tuned the bias term &, to
have the desired change frequencies in general. We did the searching for the first several time steps.
We performed the optimization using black box variational inference and ADAM. For additional
parameters of ADAM optimizer, we set 51 = 0.9 and S5 = 0.999 for all three corpora. In this case,
we did not temper the conditional ELBO by the number of observations.

Quantitative results of VGS in Figure 6 in the main paper were generated by setting a smaller
vocabulary size and embedding dimension, 10,000 and 20, respectively for all three corpora. Other
hyperparameters were inherited from the qualitative experiments. On the other hand, the baseline,
“binning”, and had closed-form performance if we assume (i) a uniformly distributed year in which
a document query is generated, (ii) “binning” perfectly locates the ground truth episode, and (iii)
the dating result is uniformed distributed within the ground truth episode. The L1 error associated
with “binning” with episode length L is By 1) v w1, [t — V']] = % By varying L, we get
binning’s rate-distortion curve in Figure 6 in the main paper.

Additional Results Additional qualitative results can be found in Figure 7. it, again, reveals
interpretable semantic changes of each word: the first change of “computer” happens in 1940s—when
modern computers appeared; “broadcast” adopts its major change shortly after the first commercial
radio stations were established; “climate” changes its meaning at the time when Intergovernmental
Panel on Climate Change (IPCC) was set up, and when it released the assessment reports to address
the implications and potential risks of climate changes.
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Predictive Distributions In the demonstration of the quantitative results, i.e., the document dating
experiments, we predicted the year in which each held-out document’s word-word co-occurrence
statistics x have the highest likelihood and measured L1 error. To be specific, for a given document
in year ¢, we approximated its likelihood under year ¢’ by evaluating ﬁ log p(x¢|z},), where z},
is the mode embedding in year ¢’ and |V| is the vocabulary size. We predicted the year t* =
arg max, ‘—é.' log p(x¢|z},). We then measured the L1 error by - ZZT |ti—t| given T truth-prediction
pairs.
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