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ABSTRACT

Value factorization restricts the joint action value in a monotonic form to enable
efficient search for its optimum. However, the representational limitation of mono-
tonic forms often leads to suboptimal results in cases with highly non-monotonic
payoff. Although recent approaches introduce additional conditions on factoriza-
tion to address the representational limitation, we propose a novel theory for con-
vergence analysis to reveal that single-round factorizations with elaborated condi-
tions are still insufficient for global optimality. To address this issue, we propose a
novel Multi-Round Value Factorization (MRVF) framework that refines solutions
round by round and finally obtains the global optimum. To achieve this, we mea-
sure the non-negative incremental payoff of a solution relative to the preceding so-
lution. This measurement enhances the monotonicity of the payoff and highlights
solutions with higher payoff, enabling monotonic factorizations to identify them.
We evaluate our method in three challenging environments: non-monotonic one-
step games, predator-prey tasks, and StarCraft IT Multi-Agent Challenge (SMAC).
Experiment results demonstrate that our MRVF outperforms existing value factor-
ization methods, particularly in scenarios highly non-monotonic payoff.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) effectively addresses many real-world problems, such
as robotics Hiittenrauch et al.| (2019)), automated warehouses Tao et al.| (2024), and games [Berner
et al.| (2019). MARL’s core issue is finding the optimal action in an action space that grows expo-
nentially with the number of agents. To address this issue, value factorization methods represent
the joint action value in a specific form. Early value factorization methods, such as VDN [Sunehag
et al. (2017) and QMIX |Rashid et al.| (2020b)), represent the joint action value through a monotonic
mix of individual action values. This monotonic relationship ensures that the optimal joint action
can be obtained by searching through individual action spaces. However, because of the monotonic
particularity, these methods struggle to obtain the global optimum in non-monotonic cases.

To mitigate the representational limitation in VDN and QMIX, the following methods propose new
fitting functions (e.g., QPLEX |Wang et al.| (2021) and ResQ [Shen et al.| (2022)) or loss functions
(e.g., QTRAN/|Son et al.[(2019) and WQMIX |Rashid et al.|(2020a))). These designs can be treated as
conditions on the current greedy action to enhance its convergence to the optimal action. However,
the effectiveness of these conditions relies on a strong assumption: the current greedy action is the
optimal action, which means that the optimal action has already been found. We find that when
the current greedy action is among certain suboptimal actions, the greedy action may converge to
such suboptimal actions, resulting in poor performance of these methods. One of our contributions
is that we introduce a theoretical tool with a novel concept, stable point, to describe the conver-
gence of greedy action under value factorization. Using this tool, we explain how existing methods
converge to suboptimal solutions and provide specific cases where they fail to obtain the optimum.

Theoretically, we conclude that no matter how elaborate the conditions on greedy action are, mono-
tonic factorization is almost impossible to obtain the optimal solution for non-monotonic cases.
However, if a non-monotonic payoff is transformed into a monotonic one, we can easily obtain the
optimal solution with monotonic factorization. To achieve this, another contribution of ours is
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that we propose a multi-round value factorization (MRVF) framework. As illustrated in Figure[I] in
each round, we replace the payoff with the payoff increment (non-negative), the payoff clipped by
that of the preceding solution. This process gradually transforms the original payoff into a mono-
tonic one round by round, thereby enabling monotonic factorization to achieve the optimal solution.
Furthermore, using the theory of stable points, we prove that the solution obtained based on the
increment is strictly improved from the previous round. This guarantees that the optimal solution
can be obtained with a sufficient number of iterations.
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Figure 1: The process of transforming a non-monotonic payoff into a monotonic one round by round.
At the beginning, MRVF obtains a suboptimal solution for the non-monotonic payoff. However, by
clipping off these suboptimal values, we transform the payoff into a monotonic one that only leaves
optimal values, thereby enabling monotonic factorization to find the optimal solution. The definition
of monotonic payoff is presented in Appendix [B.T}

To illustrate the superiority of MRVF, we conduct experiments on randomly generated one-step
games that require significant coordination to get bonus, or otherwise a penalty. In addition, we
evaluate MRVF on more challenging tasks such as the predator-prey task Bohmer et al.|(2020) and
the StarCraft I MARL tasks|Whiteson et al.|(2019). The experimental results show that MRVF out-
performs existing value factorization methods, particularly in challenging scenarios that require high
levels of agent coordination. The ablation study demonstrates the importance of strictly improving
current solutions by using the payoff increment as the target value.

2 BACKGROUND

2.1 DEcC-POMDP

In cooperative multi-agent systems, agents interact with the environment to achieve common objec-
tives. This process can be modeled as a decentralized partially observable Markov decision process
(Dec-POMDP) |Oroojlooy & Hajinezhad| (2023), defined by a tuple < S,U, P,O,R,vy,n >, in
which n is the number of agents, S is the state space, U = Uy X Us X -+ - X U, is the action space,
P(s'|s,u) : S x U x 8§ — [0,1] is the transition probability between the states, O : S — O is the
joint observation function where O is the joint observation space, r ~ R : S xU — R is the reward,
v € (0, 1] is the discount, agent have an action-observation history 7 € T = (O x U)*. Similarly
to RL with a single agent, the objective of MARL is to find the policy w = (w1, 72, -+ , ) :
T x U — [0, 1] that maximizes the joint action value Qj¢(s,u) = Ex[>_, v'r¢|s, u], the expecta-
tion of return. However, obtaining the global optimal action u* = arg max,, Qj:(s, ) by searching
the large action space is intractable for value-based learning.

2.2 MONOTONIC VALUE FACTORIZATION

Value factorization methods approximate the joint action value Qj, with a specifically formed
Qtot by minimizing Loy, the Mean Squared Error (MSE) between ()5 and (0. For exam-
ple, VDN |Sunehag et al|(2017) factorizes Qo into the sum of individual @s: Qior = >, Qi.
And QMIX [Rashid et al.| (2020b) uses a monotonic function f,,, to represent the relationship:
Qtot = fmon(®@1,Q2,- -+, Q) Where %‘7&“ > 0,Vi € {1,2,---, N}. The monotonicity of Qo

with respect to @); ensures the alignment of their optimal actions, which is the Individual-Global-
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Max (IGM) principle, defined as follows[ﬂ

n
[ ars max Qi(ri, ui) € argmax Quot (7. w) )
i=0 ‘

n
where [] argmax Q;(7;,u;) = argmax Q1(71,u1) X -+ X argmax Qn(7n, un), and Q; : T; X
i=0 w; uy U,

n
U; — R is the individual action value of agent 7. Here we define w € [] argmax Q;(7;, u;) as the
i=0 i
greedy action. If the IGM principle is satisfied, and (o, approximate (), precisely, it is easy to get
the maximum of Qj; by searching that of Q);.

2.3  GRADIENT-FREE COMPONENTS IN VALUE FACTORIZATION

Value factorization methods use gradient descent to update gradient-based components, such as
individual Q values and the mixing network f,,,. However, not all components in the factorization
are gradient-based. Specifically, the components taking greedy action as a parameter are gradient-
free. To distinguish the meanings of @ as the parameter and greedy action, we refer to u as the
parameter of these components, where u is assigned to u. Gradient-free components are common
in value factorization, for example, the decentralized e-greedy policy 7

€ \n—m i m
W) (1_E+|m) 2)

where m = |{i|u; = u;}|. Recent methods introduce additional terms involving @ into monotonic
factorization. For example, the weight w of the weighted L4 in WQMIX |Rashid et al. (2020a)E]

m(ulT) = (

1 th(‘r,u) > th(T,ﬁ) or u=1u
N 3
wlr,u) {a <1 otherwise 3)
where th is an approximation of @), and the residual mask w, in ResQ Shen et al.| (2022)
0 u=u
r\'l = . 4
wn (T, w) {1 otherwise “)

3 SUBOPTIMALITY OF EXISTING SINGLE-ROUND FACTORIZATION

In this section, we discuss why the policy (or the greedy action) is trapped in local optima dur-
ing training, which results in existing value factorization methods obtain a suboptimal result. To
explain this, we need to analyze the convergence of greedy actions in value factorization. For the
convergence analysis, existing works only analyze the cases when u (a parameter of gradient-free
components) is the optimal action, which is insufficient. In contrast, we provide an analytical ap-
proach to determine what outcomes that w (the greedy action) converges to for general cases of u,
and reveal situations where @ converges to suboptimal actions under certain .

3.1 TRANSITION OF THE GREEDY ACTION

To introduce the analysis of the greedy action’s convergence, we first illustrate how the greedy action
changes during training. We provide an example in Figure [2] where we observe that the transition
of greedy actions is similar to that of a Markov process: & acts as the current "state" (controlling
the transitions) and w as the next "state". This process emerges because updates to gradient-free
parameters (indicated by u) and gradient-based parameters (indicated by @) are asynchronous, with
their relationship shown in Figure 3]

Combining Figure 3] we illustrate the process in Figure [2]as follows:

(1) Initially, w = (1, 3) (top right) generates an all-ones weight matrix.

"'We use "C" instead of "="in Equation as Qo+ may have more maxima than individual Qs (Table .
21t stands for Centrally-Weighted QMIX.
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(2) Minimizing Liot = w * (Qot — th)Q under the all-ones weight w yields the Qo (left table),
corresponding to @ = (3, 3) (bottom right).

(3) w is assigned the new value w = (3, 3), thereby altering the weight matrix (shaded regions).
(4) Minimizing Ly with the weight under w = (3, 3) produces a new Qo (middle table).
(5) wu keeps on changing (steps 2-4) until w = w is reached (right table).

[CW-QMIX: ¢ = 0.1,e =1 | 8 [-12|-12
““““““““““ Qi |-12] 3 | 0
12| 0| 5
8] 8[8| a=033 |8 [42[22]| u=(,1) |8
Qot | 81 [ 1 | —— |42]|42]|42| — |
8] 1[5 | 22 ]-42] 22 | 5])15[5]
i=(13) o u=(33) o a=0110
Unstable Unstable Stable

Figure 2: The transition of greedy action in WQMIX with o = 0.1 under uniform visitation (e = 1).
This process begins with u = (1, 3) (top right) and stabilizes at w = (1,1) (top left). The cells in
Qtot Where w(s, u) = « are shaded, and the value corresponding to w = (row, column) is in bold.
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Figure 3: The relationship between gradient-based and gradient-free parameters. The gradient-free
parameters are updated according the values of gradient-based parameters rather than the gradients,
leading to asynchronous updates between the two parameters.

3.2 CONVERGENCE OF THE GREEDY ACTION

From the discussion above, the transition of w typically begins in a transient phase (steps 2-4) and
ends in a steady phase (step 5). The steady phase of this transition is what we are interested in,
which reflects the convergence result of greedy actions. Based on the above discussion, we use
stable points to describe the convergence of u, defined as follows:

Definition 1 (Stable Point). In a specific value factorization framework, for a joint action value Qjq
and state s € S, if @ is a stable point of Qj (s, -), then for w = @ in the optimization of minimizing
Liot, the converged w satisfies u = .

Note that multiple stable points may exist in value factorization, any of which could be the final
result of greedy actions. To analyze the possible outcomes of greedy actions, we need to determine
whether an action is a stable point, which is described as follows:

(1) Setw = u to generate the gradient-free parameters.
(2) Minimize Lo under u = 4 to obtain Qo (multiple solutions may exist) and corresponding .
(3) If any w satisfies w = u, then  is a stable point.

(4) Furthermore, if w = @ holds for all solutions, % is a strongly stable point. Otherwise, & is a
weakly stable point.

The difference between mixer types lies in Step 2: For VDN-style mixers, we obtain Q. using
gradient descent. And for QMIX-style mixers, we obtain Q1. based on the Ideal QMIX assumption:
The Ideal QMIX yields the optimal Qo that minimizes Ly, under any given u (Appendix [B.2).
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3.3 SUBOPTIMALITY OF EXISTING FACTORIZATION

We analyze stable points in existing methods to demonstrate cases where greedy actions converge
to suboptimal actions, which usually happens in environments with highly non-monotonic payoff.
Then, we derive the conditions under which the greedy action converges solely to the optimal action.

WOQMIX: WQMIX can not guarantee the convergence to the optimal action. In some cases, as
shown in Table [I| the optimal action is not a stable point for any «, which means that the greedy
action does not converge to the optimal action.

Lt0t=70a Ltot=33a

4 101 -8 l|a|« 4 1 | -4 4 14| -8

030 al|lala 1 1|4 4 1410

8101 -8 al|la |« 4 -4 -8 810 -8
(a) Qje (b) w (©) Qi foru = u™ (d) Qtor Withw # u™

Table 1: An example for WQMIX in which 4™ is not a stable point. (a): The matrix of Q);; with the
maximum value of 4. (b): The weight w of WQMIX where u = u*. (c): The Qtot With minimum
Lot under the condition that w = u*. (d): Another Q,; Where w # u* achieves less Lot than (c).
Therefore, u* is not a stable point in this case.

QPLEX: QPLEX proves that if w happens to be the optimal action, then @ can converge to the
optimal action. However, we find that multiple suboptimal stable points exist in QPLEX, which
means that if @ is certain suboptimal actions, & will converge to them (examples in Appendix D).

ResQ: ResQ proves that w can converge to the optimal action when w is the optimal action (similar
to QPLEX). However, we find that although the optimal action is the only stable point, it is always
a weak stable point (proof in Appendix [C.2). This means that even if the optimal action has been
found (u = u*), it may be lost subsequently.

From the above discussion, we conclude that in single-round value factorization, if the greedy action
is to be guaranteed to converge to the optimal action, then the optimal action must be the unique
strongly stable point, which means:

(1) The optimal action must be a strong stable point (WQMIX and ResQ fail)
(2) All suboptimal actions must be unstable points (QPLEX fails).

4  APPROACH OPTIMUM THROUGH MULTI-ROUND FACTORIZATION

In Section [3.3] we provide the condition under which the greedy action converges exclusively to the
optimal action. This condition is highly stringent, to the extent that existing single-round factoriza-
tion methods struggle to satisfy them. Therefore, we propose a multi-round factorization framework
with a lenient condition for achieving optimality: the greedy action must be strictly improved
round by round (Strict Improvement Condition). Satisfying this condition guarantees that the
greedy action in a certain round is the optimal one (Theorem|I)).

Theorem 1. For a joint action value Qj, with a finite action space U and s € S, consider a sequence
{@*[@® e U}, if vk > 1, Qs (s, u") > Qji(s, @™ ') when w*~! # u*, then IK > 0, = u*.
(Proof in Appendix

4.1 DESIGNS FOR THE STRICT IMPROVEMENT CONDITION

The key point in MRVF is designing the backward computation of Q.. Typically, th, a payoff
measurement, serves as the target value of Q0. In this paper, we replace it with the action-value
increment for round k£ > 1. As shown in Equation [5] this increment is computed by clipping the

original th with its value at the preceding greedy action ﬁffl, with negative values set to zero.

Lot = Eq—,,,u@mrk,[(Qtot(Tnﬁf_l,Uf) —maX{Qjc(Tt,Uf) —th(Tt,ﬂf_l)vo})Q]a k>1(5)
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where max{Qj: (T, uf) — Qji(T¢, @y ), 0} is the action-value increment.

Intuitively, the action-value increment enhances the monotonicity of th round by round, thereby
enabling monotonic factorization to find the optimal solution easily. Theoretically, it ensures the
strict improvement of greedy action when ﬂ,’f ~! £ u*. This is grounded in a property of mono-
tonic factorization: the greedy action under QMIX will not converge to actions with the lowest target
value of Qy.¢, since these lowest-value actions are not stable points (Theorem @ Therefore, with

the the action-value increment, @} only converge to actions that are superior to ﬂf ~1, since all u¥

with Qj¢ (T4, u¥) < Qi (74, @) are assigned the minimum value, zero.

Theorem 2. Consider a non-constant joint action value Qj(s,-) (Vs € S,VC € R, Qji(s,-) # C)
with finite state space S and action space U. For the ideal QMIX defined in Equation (I2) and
the centralized e-greedy policy T defined in Equation , we have Vs € S,3F € (0,1),Ve €
(0, E),Vu € arg min, Qj(s,w), w is not a stable point. (Proof in Appendix|C.1)

We illustrate in Table[2|how the target value of Q¢ shapes during the multi-round process. For the
first round (k = 1), we use the original Qj; as the target for Qot, as shown in Equation (@)

Liot = Er\ by [(Quot (71, uf) — Qie (T, uf))?], k=1 (6)
8 -12 | -12 3 0 0 0 0 0
-12 3 0 0 0 0 0 0 0
-12 0 5 0 0 0 0 0 0
@k=1 b k=2 © k=3

Table 2: This table shows the target of Qo4 in three round, in which the value corresponding to @
is in bold when it is unique. (a): The target of Qo in the first round which is the original Qj;. (b):
The target of Qtor, in the second round which is clipped with Qj¢ (7, ﬁ%) = 5. (c): The target of

Q1ot 1n the final round where any u can be .

The forward computation in step ¢ generates the final action u, (or the greedy final action u; during
evaluation) that actually interacts with the environment. Note that the final action is not always the
action in the final round. As shown in Table [2] the greedy action in the round k£ = 2 is the optimal
action. As a result, the greedy action can possibly converge to any action in round k£ = 3, which
violates the Strict Improvement Condition. Therefore, early termination is necessary when the strict

improvement is not achieved. Specifically, we check the strict improvement by comparing the Qjq
values of the two greedy actions: When Qj; (¢, @}) < Qji(T+, @, '), the forward process in step
t is terminated with an output uf_l, otherwise the process proceed to the next round.

4.2 OVERVIEW OF THE ARCHITECTURE

The architecture of our methods is shown in Figure ] The architecture consists of three crucial
parts: individual Q networks, a mixing network with positive weights, and a joint action value
network. Individual Q networks receive the action-observation history 7; and the greedy action of

the preceding round ﬁf ~1 (default action for the first round). Then, they output the actions of the
current round u} through the e-greedy action selector. The mixing network receives individual Q

values and outputs Qiot. The joint action value network outputs th to approximate the real Qj;.
We update th by minimizing the temporal difference (TD) error in Equation .

Lit = Bry o [(Qje (76, we) — (re + 7Qje (Teg1, Wer1))) ] (7)
where @, is the greedy final action, and Q;; (741, ;1) approximates MaXy, Qit(Tiy1, Wigr).

Within step ¢, both the forward and backward processes take 7, as input, and in each round, the
individual Q networks are fed with 7, and @" ! to produce Q; and @*. The difference is that
the forward process computes and compares QQj; to determine whether to terminate early, while the

backward process does not involve early termination and computes th only once using the recorded
u; from the batch (not shown in Figure E[) In addition, Qo is computed only in the backward.

6
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Figure 4: The architecture of multi-round value factorization framework.

4.3 SAMPLING

We approximate the expectation in Lj; and L, by sampling the action spaces. We design sam-
pling strategies for multi-round frameworks to ensure stable training. For the final action u; in Lj,
its sampling should not only cover the greedy final action and random actions, but also cover the
greedy action in each round, which obtains an accurate target value in Equation[5] Therefore, during
training, we select @} ) in a certain round  as the final action with probability p. For ¥ in Ly, its

distribution 7}, is the centralized e-greedy policy defined in Equation (8) with & = w".
l—e+ g u=u
muln =9 M ®)
i uF£u

The reason for not using the decentralized one (defined in Equation [2) is that, according to Theo-
rem [2] the centralized e-greedy policy is required to guarantee the Strict Improvement Condition.
More importantly, since Qo learns the actual payoff from th, the centralized e-greedy policy al-
lows the same actions to be sampled in L;; and L. when sampling random actions, which prevents

Qo from learning regions where ;¢ exhibits underfitting.

5 EXPERIMENT

In this section, we evaluate the performance in one-step games, the predator-prey task Bohmer et al.
(2020) with increasing punishment, and a variety of SMAC Whiteson et al.|(2019) scenarios, among
which one-step games and predator-prey tasks with large punishment are environments with highly
non-montonic payoff (defined in Appendix [B.T). We present the graphical results where the median
and shade of 25%-75% quartile (0%-100% quartile for one-step games) are included. In addition,
we provide details about our experimental setting in Appendix[E]and ablation results in Appendix[F

5.1 ONE-STEP GAME

From the discussion in Section[3.3] we find that existing methods fail to achieve optimality when, at
the global optimum, any deviation by an agent leads to significant negative rewards. To demonstrate
this limitation of existing methods, we evaluate their performance in the risk-reward game, where
agents must reach a consensus to obtain rewards, or otherwise they incur punishments, and higher
rewards for consensus correspond to harsher punishments for dissension. These games are randomly
generated by averaging individual rewards (positive if consensus is reached, negative otherwise), and
more details are provided in the Appendix The risk-reward game is an extension of the matrix
game |Son et al.|(2019) [Shen et al.[(2022) that allows the participation of more than two agents.

As shown in Figure[3] in cases with 3 agents and 5 actions, monotonic factorizations (QMIX [Rashid
et al.| (2020b) and NAZQ [Liu et al|(2023)) obtain the smallest positive return, nearly zero, while
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QTRAN [Wang et al|(2021) and WQMIX |Rashid et al.| (2020a)) only achieve a moderate positive
return. In contrast, our method consistently attains the optimal return. When the number of agents
increases to 5, the risk of obtaining positive returns increases, since consensus requires coordina-
tion among more agents. Existing methods rarely obtain positive returns, while our method still
obtains the optimum with high probability. However, in cases with 5 agents and 8 actions, the action
space becomes prohibitively large for sufficient sampling (averaging only ~ 1.5 samples per action).
Despite this challenge, our method still obtains better results than others.

3agents_5actions 5agents_5actions 5agents_8actions

-0.25

Test Normalized Return
Test Normalized Return
Test Normalized Return

-0.50

-0.75 _08

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Step Step Step

MRVF QMIX  —— NA2Q —— QPLEX —— QTRAN —— WQMIX RESQ

Figure 5: Test normalized return in the risk-reward games. The positive returns are normalized to
[0, 1] (O corresponds to the smallest positive return, and 1 corresponds to the largest). The negative
returns are normalized to [—1, 0). Five random cases for each setting.

5.2 PREDATOR PREY

We conduct experiments on the predator-prey task involving 8 agents, where capturing a prey re-
quires cooperation between at least two agents. Agents are punished for capturing the prey alone.
We vary the punishment from O to -5 to evaluate its impact on performance. The non-monotonic
property of the payoff increases with the punishment, since agents must act more cautiously when
choosing the "capture" action to ensure consensus and avoid punishments.

The results in Figure [6 show that all methods perform well when the punishment is zero. However,
as the punishment intensifies, existing methods avoid the "capture" action to prevent punishments,
resulting in return ~ 0. Among baseline approaches, WQMIX performs adequately only under
moderate punishments, while the performance of ResQ shows significant fluctuations due to its
weak stability. In contrast, our method consistently achieves the best performance, even under the
strongest punishment of -5. Combined with the results in risk-reward games, we conclude that our
method outperforms existing methods in environments with highly non-monotonic payoff.

predator prey 0 predator prey -2 predator prey -5

40

Test Return
3

Test Return
o

Test Return
o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 06 08 1.0
Step 1e6 Step 1e6

—— MRVF QMIX  =—— NA2Q —— QPLEX —— QTRAN

WQMIX RESQ

Figure 6: Test return in the predator prey tasks with punishments 0 (left), -2 (middle), and -5 (right).
The non-monotonicity of the payoff increases with the punishment.

5.3 STARCRAFT Il MULTI-AGENT CHALLENGE

We conduct experiments on the SMAC benchmark in scenarios of varying difficulty. Monotonic
value factorization methods, including QMIX |Rashid et al.| (2020b) and NA’Q |Liu et al| (2023),
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are particularly well-suited for the SMAC because changes in an individual agent’s action within
a single step have little impact on overall performance (see Appendix [E3] for details). Neverthe-
less, as shown in Figure [7} MRVF even achieves an advantage over monotonic value factorization
methods, particularly in 3s_vs_5z, 2c_vs_64zg and bane_vs_bane scenarios. Meanwhile, the final
performance of MRVF is the best in most scenarios, as shown in Table@ Combined with the results
in the risk-reward games and the predator prey task, we conclude that MRVF performs the best in
both monotonic and non-monotonic scenarios.

In contrast, other methods (QPLEX Wang et al.|(2021), ResQ|[Shen et al.| (2022)), QTRAN|Son et al.
(2019) and WQMIX [Rashid et al.| (2020a)) often converge to suboptimal stable points. This leads
to a high variance in performance within a scenario and across scenarios. Within the same scenario,
although they occasionally achieve strong performance (as seen in the upper bounds of the shaded
regions in Figure[7), their average performance lags behind. In addition, across different scenarios,
their performance may vary drastically. For example, WQMIX performs well in bane_vs_bane but
poorly in both 5m_vs_6m and 3s_vs_5z. Therefore, MRVF achieves significant improvements in
robustness and performance over them in almost all scenarios.

Methods | MRVF QMIX NA?Q QPLEX QTRAN WOQMIX RESQ
Best 6 3 4 1 1 1 3
Worst 0 1 0 3 5 2 1

Table 3: The number of SMAC scenarios where each method performs the best and the worst. We
evaluate the final performance (averaged over steps after 1.5M) with a tolerance of £0.05.
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Figure 7: Test win rate in the SMAC benchmarks.

6 CONCLUSION

In this paper, we introduce a novel theoretical tool for studying the convergence of greedy action
under value factorization, and propose MRVF, a novel framework for cooperative multi-agent re-
inforcement learning. In Section [3] we use this theoretical tool to derive the condition for global
optimality in single-round factorization, and provide examples to demonstrate why existing meth-
ods struggle to satisfy this condition. In Section[d}, we propose the condition for global optimality in
multi-round factorization, which is strictly improving the greedy action round by round. To satisfy
this condition, we design the forward and backward computation of MRVF. In addition, we design
new sampling strategies suitable for multi-round factorization to ensure training stability. Exper-
iments on non-monotonic one-step games, predator-prey tasks, and the StarCraft II Multi-Agent
Challenge show the superior performance and robustness of MRVF compared to state-of-the-art
value factorization methods.
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A RELATED WORK

Reinforcement learning has been extensively studied in single-agent scenarios. However, when
extended to multi-agent scenarios, a key issue is that the action space grows exponentially with the
number of agents. To address this issue, existing approaches can be broadly categorized into two
paradigms. The first paradigm treats other agents as part of the environment and focuses on learning
individual value functions or policies. The second paradigm considers all agents as a unified entity
and learns joint value functions with specific forms.

A.1 OVERVIEW OF EXISTING WORK

Independent Learning Methods Among the first category of methods, IQL Tan| (1993) is one
of the earliest methods where agents independently learn individual action values. However, this
method does not account for the dynamic policies of other agents. Subsequent work addresses this
limitation by learning individual policies with joint action values. For example, COMA |Foerster
et al. (2018) introduces a counterfactual baseline in actor-critic framework, while MAPPO [Yu et al.
(2022) adapts PPO [Schulman et al.|(2017) to multi-agent settings.

Value Factorization Methods The second category of methods factorizes the joint value func-
tion into individual components. Monotonic factorization is an intuitive way to satisfy the IGM
principle. For example, VDN |Sunehag et al.| (2017) represents the joint action value as the sum
of individual action values. QMIX Rashid et al.| (2020b) represents the joint action value with a
monotonic network that uses a positive weighted linear to deal with individual action values. Qat-
tan [Yang et al.| (2020) uses multi-head attention Vaswani et al.| (2017) to generate mixing weights.
NAZQ|Liu et al.|(2023) improves interpretability through Taylor expansion-based monotonic factor-
ization. However, monotonic factorizations may suffer from representational limitations. To address
this issue, QTRAN [Son et al.| (2019) and WQMIX |Rashid et al.[| (2020a) pay more attention to the
estimation of greedy action values. Specifically, QTRAN introduces a compensatory base to relax
the non-optimal errors, while WQMIX reduces the weight on approximation of non-optimal parts.
Other methods like QPLEX |Wang et al.| (2021) and ResQ |Shen et al.| (2022) design complete fac-
torizations of the joint action value. QPLEX uses the maximum of a mixer value and a non-positive
advantage function. ResQ combines a monotonic function with a non-positive function. GVR [Wan
et al.| (2022) takes a different approach by making u* the only stable point, although this requires
numerous approximations.

Communication-based Methods Other researchers study communication mechanisms in multi-
agent systems. CommNet|Sukhbaatar et al.|(2016) enables multi-round communication for sharing
observations. DIAL |[Foerster et al.| (2016) designs gradient-based messages exchanged between
agents. To decide with whom to communicate, TarMAC Das et al.| (2019) uses a signature-based
soft attention mechanism, and MAGIC N1u et al.|(2021) uses graph neural networks. NDQ |Wang
et al.|(2020) combines value factorization and communication by mixing individual (s through com-
munication. ACE |Li et al.| (2023) models communication as intermediate processes in the Markov
Decision Process. In addition to parallel decision making, recent methods study sequential decision
making through communication. PG-AR [Fu et al.| (2022) randomizes the order of decision making.
SeqComm |Ding et al.| (2024) use intentions to prioritize agents in sequential decision-making.

Other MARL Methods Recent works introduce additional innovations in MARL. RES [Pan et al.
(2021) addresses value overestimation using regularized softmax losses. MAVEN Mabhajan et al.
(2019) enhances exploration efficiency through randomized latent vectors. LIGS Mguni et al.|(2022)
proposes learnable intrinsic rewards to improve multi-agent cooperation. SHAQ |Wang et al.| (2022)
integrates the Shapley value by modeling Q functions as marginal contributions of agents.

A.2 RELATIONSHIP TO EXISTING WORK

Relationship to Weighted QMIX Both Weighted QMIX |Rashid et al.| (2020a) and the single-
round value factorization in our method aim to enhance convergence toward actions superior to
a given action. Weighted QMIX achieves this by reducing the fitting weight for inferior actions,
whereas our method assigns them the minimum target value. However, Weighted QMIX cannot
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guarantee strict improvement over the given action, as suboptimal actions may be stable points. In
contrast, our method ensures strict improvement by preventing actions with minimum target value
from becoming stable points. Moreover, even when Weighted QMIX obtains the optimal action, it
may fail to stabilize at this optimum because the optimal action might not be a stable point. Although
our method similarly risks deviating from the optimal action, we mitigate this by early termination
when no further improvement is detected.

Relationship to GVR The main idea of GVR [Wan et al|(2022) is to establish the optimal action
as a stable point while rendering other actions non-stable. However, this approach requires a prior
knowledge of the optimal action, which is fundamentally infeasible in MARL since finding the opti-
mal action is the primary objective. Consequently, GVR inevitably relies on approximations of ideal
conditions, which not only increase the complexity but may also convert certain suboptimal actions
into stable points. In contrast to GVR, our method converts inferior actions into unstable points
in each iteration. Determining inferior actions is computationally straightforward, and by assign-
ing them the minimum target value, existing monotonic value factorizations can effectively exclude
these inferior actions. Therefore, our method strictly improves the current action through iterations,
providing a more reliable approximation to the optimal action. Furthermore, GVR only defines the
concept of stable points within the policy distribution, and its analysis is limited to a particular form
of QMIX. In contrast, we not only explicitly identify the origin of stable points (characterized by the
lag between changes in non-differential variables and gradient-based parameters) but also provide a
formal definition. In addition, we provide a comprehensive analysis on existing value factorization
methods, unifying their suboptimal performance under a common explanation: the presence of at
least one non-optimal stable point.

Relationship to Communication Our method can also be interpreted as a multi-round commu-
nication algorithm within a parallel execution framework. In each iteration, agents exchange pre-
decision information and generate new decisions through communication. The key challenge in such
frameworks is ensuring that post-communication actions strictly improve upon pre-communication
actions - failure to achieve this prevents agents from reaching consensus, resulting in suboptimal
solutions. In our method, by rendering actions inferior to pre-communication ones as non-stable
points, our approach not only guarantees the improvement of post-communication actions but also
approaches the optimal action within sufficient communication rounds. In contrast, sequential exe-
cution frameworks essentially extend single-step action selection across agents, where each agent’s
action depends on higher-priority agents’ choices. Such frameworks not only demonstrate lower
efficiency but also introduce additional concerns regarding policy convergence and suboptimality
caused by execution ordering |Ding et al.| (2024).

B DEFINITION

In this section, we will define some important concepts that have been used in previous work but
have not yet been rigorously defined.

B.1 MONOTONIC PAYOFF

Note that the definition of monotonicity for payoffs differs from that in functions of real variables,
as there is no ordering relationship defined in the action space, the domain of the payoff. We define
an order relation on the actions based on the function F' as follows:

Definition 2 (Order Relation ). Let u},u? € U; be two actions of agent i. For the function F, if
the order relation between u} and u? is u} = u?, then

F(uzl’ u*i) > F(u?a u*i)7vu*i € ufi (9)
where w_; = (U1, ,Ui—1,Uit1," " ,Uy) LS the joint action without u;.

The function F' can be replaced with Qj;, a measurement of payoff. However, the order relation
based on Qj; exists over the entire action space only if Q¢ is monotonic, which is defined as follows:

Definition 3 (Monotonic Qj¢). Vs € S, if for every agent i and any two actions u},u? € U,, there
exists an order relation that is either u} = u? or u? = u}, then Qj, is monotonic.
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Figure 8: An illustration of Definition |3} We intercept curves corresponding to different w_; and
check whether their monotonicity with respect to u; is consistent.

Table [ shows the payoff matrices with different monotonicity. Monotonic factorization methods
can easily obtain the optimal solution in monotonic cases ((a) and (b) in Table @) and sometimes
in non-monotonic cases ((c) in Table EI) However, monotonic factorizations struggle to obtain the
optimal solution in highly non-monotonic cases ((d) in Table d).

918 |7 81917 91010 91919
65|14 3121 0[50 915 0
31211 516 1|4 0|00 91010

(a) Monotonic (b) Monotonic (c) Non-monotonic (d) Highly non-monotonic

Table 4: Payoff matrices with different monotonicity, where the value in row 7 and column ¢ denotes
the payoff of joint action u = (r, ¢). (a): A monotonic payoff matrix. (b) A monotonic payoff matrix
generated by rearranging the rows and columns of (a). (c) A non-monotonic payoff matrix, where
the relation between any two rows or columns is partially ordered. (d) A highly non-monotonic
payoff matrix, where the relation between any two rows or columns is largely unordered.

B.2 IDEAL QMIX

The objective of QMIX is to find individual @s and Qy,,y, that minimize the MSE between Q. and
Qjt, which is defined in Equation ( . for certains € S EI

Liot(s) = > m(1]8)(Quon(s, 1) — Qj(s,u))? (10)

u

Since the relationship between individual Qs and Q,., is monotonic, the magnitude relationship
of Qmon is constrained by that of individual @s, which is Vi € {1,2,--- ,n},Vu,;,v; € Uj,u_; €
Ll,Z- :ul X "'Z/{i,1 ><Ui+1 Xoeee ><Z/ln

(Qmon(svufiaui) - Qmon(37 ’U,fi,’l)i))(Qi(S, ui) - Qi(savi)) > 0 (11)

Combining the objective defined in Equation (T0) and the constrain defined in Equation (TI)), we
get the ideal optimization problem that QMIX solves. In practice, QMIX uses the network as a
monotonic function fy,,, to represent the constraint between individual s and @0, and applies
stochastic gradient descent (SGD) to minimize the objective. In this way, (Q; is updated based on
its gradient which involves 9/, 50 However, since how af mon yaries is unknown, to avoid this
confounding factor, we assume that QMIX can obtain the 0pt1mal combination of individual Qs and

3To simplify the discussion, we focus on the fully observable environment by replacing 7 with s in Qyot
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Qmon that satisfies Equation (@, and consequently minimize L,,. We name QMIX based on this
assumption as the ideal QMIX which is defined as follows['}

Definition 4 (Ideal QMIX). Let Q be the set of pairs (Q, Qmon ), where the individual action values
Q=(Q1,Q2, - ,Qyn) and Quon satisfy Equation . For a joint action value Qj; and policy T,
Q and Qon of the ideal QMIX converge to Q™ and QF _ which satisfy Vs € S

mon

Q*a anon € arg min Z 7T(U’|S)(QIIIOH(Sa u) - th(sv ’LL))2 (12)
(QngOD)EQ u

where Qor = Qmon in OMIX.

As for other value factorization methods such as WQMIX |Rashid et al. (2020a) and ResQ |Shen
et al.| (2022) where Q,on appears in their design, we also assume they share the same property as
the ideal QMIX, which aligns with the assumption used in their papers.

From Definition [} the ideal QMIX obtains a monotonic representation of Q;j; with the minimum
Lyiot. We illustrate this process in matrix cases: Given the order of rows and columns, we can find
the monotonic matrix with local minimum Ly by solving the constraint optimization problem. To
find the monotonic matrix with minimum Ly, we compare Ly for all possible orders. We give an
example of the ideal QMIX shown in Table 5]

Ltot =36.22 Ltot=45-56

8 | -12 | -12 -8 -8]-8 8 | -5]-5

-12] 3 0 S| 1|1 S|-5|-5

-12 10 5 8] 115 S|-51-5
(@ Qje (b) Qs (©) Qior foru = u”

Table 5: (a): A non-monotonic payoff matrix, where the value presented in row r and column
¢ denotes the Q)j; value of joint action (r,c). (b): The monotonic representation with the global
minimum L. (c) The optimal monotonic representation constrained by w = u™*. Since the Lyt
of (b) is less than the Ly of (¢), Qior Of the ideal QMIX under uniform visitation (e = 1) will
converge to (b), which fails to get the global optimal action.

C PROOF

C.1 THEOREM ON MRVF

Theorem 1. For a joint action value Q);; with a finite action space U and s € S, consider a sequence
{@*[@® e U}, if vk > 1,Qji(s,a") > Qji(s,@*~1) when w1 # u*, then IK > 0,u” = u*.

Proof. LetU" = {u|Qji(s,u) > Qji(s,@"),u € U}. Assume that Vk > 0,a" # u*. Since
Yk > 1,Q(s,@") > Qji(s, w" ') when u" ! # u*, Llﬁ_ C U’i_l. Therefore, we have |L{’j__1| -
U% | > 1. Then, we have Yk > 0, U | < [U}| — (k — 1). If we choose K > [U| + 1, since
UL C U, weget U] < [UY|— U] < 0. Since Vk > 0,[U"| > 0, the assumption is false.
Therefore, we prove that 3K > 0, ol = u*. O

Lemma 1. For the converged Qiot of the idea QMIX defined in Equation and e-greedy policy
7 that is continuous for € € [0, 1] and satisfies Equation , we have lim+ Qiot(s,u) = Qje(s, 1)
e—0

fors e S.

. 1 u=u
eli%h m(uls) = {0 otherwise (13)

“The policy 7r is omitted in the definition by T. Rashid et al. [Rashid et al.| (2020a). However, it plays a
crucial role in shaping Q¢+ and will be extensively analyzed in our proof.
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Proof. Assume that 3A > 0,VE > 0,3e € (0, E), | Q7. (s, 1) — Qje(s,w)| > A The loss of Q5
defined in Equation (T2) is

Loy = Z (u]$)(Qior (s, u) — Qje(s,u))

= Z 8)(Qbor (s, 1) — Qji(s,u))* 4+ 7(us)(Qfoy (s, @) — Qji(s, ) (14)
u#u
> m(uls)A?
Let Qfmt(s7 )= % + Qj(s,w). The loss of Qéot is
/ A - ~ A
Liy = Y m(uls)(5 + Qiels,u) - Qji(s,u))” + TF(U\S)(g)2 (15)
u#u

. * ’
Consider Li,, — L., we have

’ ~ A A ~
Lot — Loy = 7T(u|s)(§)2 = m(uls)(5 + Que(s,u) - Qjt(s, u))? (16)
uZu
Notice that

lim (ﬂ(iﬂs)(%)Q - Z Tr(u\s)(% + Qji(s, 1) — Qj(s,u))?) = (é)2 >0 (17

e—0t < 2
u#u

Therefore, 3E > 0,Ve € (0,E), L{,, > L ot Which is against with condition that @5, satisfies
Equation (12). Thus, the assumption is false. We have VA > 0,3E > 0,Ve € (0, E), |Qf..(s,u) —
Qjt(s, )| < A which means lim+ Qi (s, 1) = Qip(s, u).

e—0

Theorem 2. Consider a non-constant joint action value Qi (s, -) (Vs € S,VC € R, Qji(s,-) # C)
with finite state space S and action space U. For the ideal QMIX deﬁned in Equdtton @ and
the centralized e- greedy policy T defined in Equation (I) we have Vs € S§,JE € (0,1),Ve €
(0, E),Vu € argmin,, Qj(s,w), u is not a stable point.

Proof. For s € S, Assume that VE;, € (0,1],3e € (0,E,),3Q;,; that Qi (s, ") =

ming, Qj¢(s,u) and u = u* (@* is a stable point). We define Ut = {u|Qj(s,u) >

ming Qji(s,u)} and U~ = U —UT . Since lim+ Qi (8, T") = Qj(s,u") (Lemma and
e—0

u = u*), we have 3E? € (0,1],Ve € (0,E?),Q,(s,u*) < min,cy+ Qji(s,u). Thus,

Yu € UT, since Qi (s,u) < Qf.(s,u*) < Qji(s, u), consider a term of L, we have

Ligi(u) = 7r(ul )(Qior(5,w) — Qje(s,u))?

(18)
‘u| (Qtot(s u ) th(s7u))
Therefore, for the loss of @}, defined in Equation (12)), we have
Liy =) m(uls)(Qfo (s, ) — Qyu(s,w))?
P (19)
€ * —x% € * —% —%
>l Y (Qie(s,a) = Qye(s,u))* + (1 — e+ W)(Qm(sau ) — Qir(s.@"))
uclt
Consider certain ut™ € U™, We define Q;Ot as
/ Qjt(s,ut) uwu=ut
= 20
@ror(s,u) {Qfot(s,u*) otherwise 20)

The loss of Q;Ot defined in Equation l) is (u =u")
’ € * — % * —x% —x%
Loy =77 ( Z (Qior(s,u™) — th(sau))z + Z (Qior(s,u") — Qje(s,w ))2)

‘u| ueUt—{ut}) ueUu~
€ * —x P
+(17€+ ‘u|)(Qtot(svu ) 7th(87u ))2

2y
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*

. ’
Comparing L{, and L, ., we have

Liy — Lioy > ﬁ((Ql‘ot(s,ﬂ*) — Qit(s,u™))? — [UT|( Qi (s,7) — Qiu(s,@"))?)  (22)
Notice that
f(@) = (z - Qu(s,u™))” — U |(x — Qju(s, w"))? (23)

is a continuous function and lim  f(z) = (Qi(s,@*) — Qji(s,u™))? > 0. Since
r—=Qjt(s,u*)

lir(]gl+ Qii(s,u*) = Qji(s,u*), we have IE! € (0,1],Ve € (0, EL), f(Qiyi(s,u*)) > 0. There-

€E—

fore, we find B, = min{E?, E!} € (0,1] that Ve € (0,E,) L¥,, > Ly, which is against

with the condition that Q},, satisfies Equation (I2). Thus, 3E, € (0,1],Ve € (0,E;),Vu €

arg min,, Qj¢(s,u), w is not a stable point. Finally, we complete the proof by taking E =

min Fj. [
seS

C.2 THEOREM ON RESQ

We will prove that u* is the unique yet weakly stable point of ResQ [Shen et al.[(2022). Here, we
present the expression of Q¢ of ResQ.

Qtot (8, %) = Qmon(s,u) + wy(s,u) * Q:(s,u) (24)
Where Qmon = fmon(Qh Q2> e 7Qn)a Qr S 0 and

we(s,u) = {O u=u (25)

1 otherwise

We provide a specific instance for the weak stability of ResQ in Table[6] Then, we prove that the
weak stability occurs in general cases in Theorem 3]

8 -12 | -12 8 8 8 0 | -20 | -20
121 3 0 8 8 9 20| -5 -9
-12 1 0 5 8 8 8 20 | -8 -4

(a) th (b) Qmon (C) Wy * Qr

Table 6: This table shows the weak stability of ResQ for a specific ();; in (a), where we let u = u*
initially to check whether ResQ will stabilize at u*. We highlight the values related to w in red and
a in blue. Qo is the sum of Quon in (b) and w, * @, in (c), which is identical to Q¢ (Lot = 0).
However, since w # w* may happens, w* is not a strongly stable point for ResQ.

Lemma 2. For a joint action value Qj; and s € S, Vu € U, we can find Qo with Lioy = 0 and
u # u.

Proof. We can find a Q.0 that satisfies

(1) Qmon > th
(2) Qmon(s7 77/) = th(sa 17’)
B)u#u

Here we give a specific Qo that satisfies these conditions:

th(s7 ;Lvl’) u= ;LVL
_ 2
Qmon(sa u) {maxu th(s’ u) —+ A otherwise ( 6)
where A > 0. We let Qr = th - Qmon- Since Qmon > th’ we have Qr =0

Vu # u, we have Qi (s, u) = Qrot(8, u) = Qmon (8, u) +1xQ: (s, u). For u, since Quon(s, u) =
Qi (8, ), we have Qi (s, 1) = Qrot(8, 1) = Qumon (s, w) + 0 x Qr(s,1).

Therefore, Vu € U, we have Qj¢ (s, u) = Qo (S, w), which means Lo, = 0. Thus, we find Qyot
with Lyoy = 0 and w # u. O
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Theorem 3. For a joint action value Qi and s € S, Yu* € arg max, Qjt(s,u), u* is a weakly
stable point of ResQ Shen et al.|(2022), while Yu~ ¢ argmax,, Qj(s,u) is not a stable point of
ResQ.

Proof. First, we illustrate that w* is a stable point. Assume that u = u*. We can find a Qp,p that
satisfies

(1) Qmon > Qjs

(2) Qmon(s; u) = Qji(s, u)

3) u=u*

where Qmon = Qi (s, u*) is a specific case.

We let Qr = Qjt — Qmon- Since Qmon > Qjt, we have @, < 0.

Vu # u, we have Qi (s, u) = Qiot(8, ) = Qmon(s, u)+1xQ:(s,u). For u, since Qmon(s, w) =
Qji(s,u), we have Qj4 (8, 1) = Qiot (S, U) = Qmon(s, ) + 0 Q,(s,w).

Therefore, we have Ly, = 0, which is the lower bound of loss. However, according to Lemma@,
we can find Q;, with L,, = Lo While u # u*. Thus, u* is a weakly stable point of ResQ.

Second, we illustrate that w4~ is not a stable point. Let w = uw~, Assume that there exists Qo
satisfying @ = u~ and achieving the minimum loss. According to Lemma we have Lo, = 0,
otherwise L. 1s not the minimum.

Since Lio; = 0, we have Yu € U, Qior(s,u) = Qji(s,u). For u~, we have Qior(s,u™) =
Qje(s,u™). For u*, we have Qot (s, u*) = Qje(s, u*).

However, since Qiot(S,u™) > Qiot(s,u*) due to w = u~, we get a contradiction where
Qie(s,u™) > Qje(s, u*). Therefore, u™ is not a stable point.

O

D STABILITY ANALYSIS OF QPLEX

In this section, we provide a suboptimal case of QPLEX in matrix games. Here, we present the
expression of Qo of QPLEX.

Qtot (T, u) = ZHBXQi(TnUi) + ) wilr,w) x (Qi(Ti, ui) — H}L?XQi(Ti;ui)) 27

where w; (T, u) > 0.
The suboptimal cases of QPLEX are presented in Table [7]in Table [8] where there are three stable
points but only one is optimal.

For QPLEX, stable point occurs when the gradients of @ and w satisfy that Vi € {1,2,--- | N}

6Ltot aLtot
=0 >0 28
50 =% Fw 2 (28)
OLsot

ow;
where Dus () 0 only when w;(7,u) = 0. Here, we provide the mathematical expressions of
the gradients of @) and w in Equation for verification.

> (Qtot (T, 1) — Qje(T, w))w; (T, u) u;p # U;
weU(u;=u;)
aLtot —
aQi(Ti7 ul) Z (Qtot (Tﬂ ’U,) - th (T7 u))w’b (T’ ’U,)+ (29)
ueU (ui=u;) w; = u;
Z (Qtot(Tv ’LL) - th(T’ ’U,))(l - wi(T7 u))
uwel
aLtot . —
W =(Qtot(T,u) — th(ﬂu))(Qi(Tuuqi) — Qi(7i,u;))

18
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where U(u; = u;) = {ulu € U, u; = u;}.

Q
Q12 1.29

0.66

341

138 | 6.5

-12

-12

0.68 | -12

3

3.09 | -12

0

6.5

Table 7: The example of QPLEX in which w* is not the only one stable points. The quantities of
Q¢ and w listed in the same column correspond to a particular stable point, where we highlight

8 -12 | -12
-12
-12 0
(a) Qjt
Q2 | 577 0.31 | 0.37 Q2 1.82 | 3.09 | 0.70
Q1 Q1
523 | 8 12 |12 142 [ 55 | -12 | -12
049 | -12 3 0 241 | -12 | 55 0
033 | -12 0 35 1.09 | -12 0 5
(b) Q:ot (C) Qt*ot
0.25 | 1.51 | 1.71 0.00 | 17.64 | 5.01
421 | 048 | 0.10 8.53 | 7.65 1.41
4.08 | 0.59 | 0.09 530 | 4.16 | 0.15
(e) wi () wi
2.01 | 8.13 | 8.34 0.00 | 9.07 | 5.22
085 | 1.12 | 3.12 13.71 | 7.94 | 2.29
4.62 | 2.08 | 1.05 8.23 376 | 0.13
(h) w3 i) ws

(d) Q:ot

0.00 | 6.70

10.86

335 ] 0.26

2.71

5.10

1.03

1.92

(2) wi

0.00 | 2.58

2.50

4.93

1.05

0.23

8.72 | 2.36

1.47

() w3

Q2| 586 | 0

™ in bold.
8 0 0
0 3 0
0] 015
(a) th
Q| 414 | 185 | 0.73 Q2 | 557 | 275 | 0.99
Q1 Q1
3.86 | 8 0 0 239 | 5.5 0 0
0441 0 3 0 275 0 5.5 0
054 0 0 5 II1| 0 0 5
(b) Q:ot (C) Qt*ot
094 [ 1.31 [ 1.10 0.00 | 33.25 [ 1.48
234 1083 | 0.91 8.82 | 13.44 | 0.44
241 | 1.49 | 0.83 3.00 | 3.35 | 0.16
(e) wi () wi
1.44 | 3.50 | 2.34 0.00 ] 19.52 T 2.99
0.76 | 0.95 | 143 31.74 | 20.50 | 3.13
0.66 | 1.34 | 0.07 3.35 1.73 | 0.14
(h) w3 Q) wi

Table 8: The example in which QPLEX has two suboptimal stable points, while QMIX can easily
obtain the optimum. The quantities of @)}, and w; listed in the same column correspond to a

particular stable point, where we highlight w* in bold.
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57 | 3.15
Q1
3.06 | 6.5 0 0
0.82 0 3 0
3.35 0 0 6.5
(d) Q:ot
0.00 | 2.91 | 22.31
2.13 | 0.54 | 2.57
435 | 1.53 | 14.12
(g) wi
0.00 | 2.20 | 0.10
3.89 | 0.83 | 1.94
22.74 | 2.53 | 6.15
() w3




Under review as a conference paper at ICLR 2026

E EXPERIMENTAL SETUP

We adopt a setup similar to PyMARL Whiteson et al.|(2019). We use the implementation of QMIX,
QTRAN, QPLEX, WQMIX, ResQ, and NA°Q |Liu et al.[(2023) from their open-source reposito-
ries P[]JF] These codes are released under the Apache License V2.0.

All algorithms apply TD(0) to update Q4.+ including ResQ, as TD(X) result in catastrophic perfor-
mance in 5m_vs_6m while no measurable improvement in other scenarios. The hyperparameters
for all algorithms and environments are presented in Table [0} For WQMIX, we set v = 0.1 for all
environments. For MRVF, we use three rounds of value factorization, with a probability p = 0.2 for
sampling preselected actions.

For hardware, we run experiments on an NVIDIA 3090 GPU for risk-reward games, predator-prey
tasks, and SMAC scenarios (excluding bane_vs_bane). In addition, we use an NVIDIA A800 GPU
for MRVF in 2¢_vs_64zg and MMM?2 scenarios.

Hyperparameter Value | Description

Batch Size 32 Number of episodes per update

Replay buffer size 5000 Maximum number of stored episodes
Target update interval | 200 Frequency of updating the target network
Initial € 1.0 The initial € in the e-greedy policy

Final € 0.05 The final € in the e-greedy policy

Anneal steps for e 50,000 | Number of steps for linearly decay of e
Discount 0.99 Discount of future return

Test interval 10,000 | Frequency of test evaluation

Test episodes 32 Number pf episodes to test

Table 9: The hyperparameters for experiments

Network structure We provide details of the network structures presented in Figure[d] The indi-
vidual Q network and the mixing network (Qiot) are shown in Figure 0] and the joint action value

network (th) is shown in Figure

The individual Q network processes the observation using a linear layer followed by a GRU (Chung
et al.| (2014) with 64 hidden dimensions. The mixing network processes the state with 2-layer linear
network (64 hidden dimension) and processes the individual Qs with 2-layer linear network, where
the weights and bias (generated by the state’s linear processor) have 32 hidden dimension. Inspired
by the embedding module Bengio et al.|(2003) Mikolov et al.|(2013)), we generate the features of a”
by selecting them from the continuous features (128 dimensions) of the observation or state. For the
concatenated feature, we double the hidden dimensions to 128.

The network structure of th is similar to that of Qy.¢, with two key differences: First, we use a
3-layer linear network to process the state. Second, the output of the individual network has 64
dimensions. We input the state to ()j; in all SMAC scenarios except 355z and 3s_vs_5z, because
masking observations of dead units loses critical information for return prediction in complex sce-
narios. In the bane_vs_bane scenario, we replace the embedding feature with the action index to
avoid GPU out-of-memory errors.

>https://github.com/oxwhirl/pymarl
Shttps://github.com/oxwhirl/wqmix
"https://github.com/xmu-rl-3dv/ResQ
8https://github.com/zichuan-liu/NA2Q
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Figure 10: The network structure of Qjs.

E.1 ONE-STEP GAME

We randomly generate Q)j; of the risk-reward game with the following steps: First, randomly gen-
erate the individual reward vectors r; > 0. Second, we randomly generate a bijection U — U
that maps u; to another action v; for all agents ¢, which is the exchange of rows and columns for a

matrix. Finally, we let Qji(u) = sign(v) * > r;(v;) where sign(v) = 1 if all agents choose the

i=0
same mapped action, and sign(v) = —1 otherwise. Here, we give an example of the risk-reward
matrix in Table [T0l

21345 215]4]3

71 1

0 3 |41]-5 2 71-61-5

1 415 |-6 0 S| 413

2 S1-617 1 6| 5|4

(@ (b)

Table 10: An example of the risk-reward matrix. (a): the risk-reward matrix before action mapping,

where positive rewards are in the diagonal. (b): the risk-reward matrix after action mapping, which
scatters positive rewards.

We constrain the values of Qj; to the interval [—10, 10]. To achieve this, we first generate the reward
vectors uniformly from [0, 1], then divide each component by n, and finally multiply the result by
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10. The normalized return in Figure [3]is defined as

Qit(w)= min  Qu(u®)
max Qjt(ut)— min Qj(ut) th (u) >0
teut u

w teut

return(u) = (30)
th(u)—u_meiil‘_ Qje(u™)

min  Qj¢(u™) th (u) <0

uT €U

where Ut = {ut|ut €U, Qj(ut) > 0} andUT LU =U.

E.2 PREDATOR PREY

The predator-prey task Bohmer et al.[(2020) involves a multi-agent scenario where 8 predators co-
operate to capture 8 prey. Each predator can choose from six possible actions: four directional
movements (up, down, left, right), staying still, or attempting to "capture" prey.

Capture Conditions

* A predator can only select the "capture” action when occupying the same position with
prey.

* Successful capture requires at least two predators simultaneously choosing "capture" on
the same prey.

* Successful capture yields +10 reward.
* If only one predator chooses "capture" for a prey, the team receives a punishment.

* The captured prey and successful predators are immediately removed from the environ-
ment. Observations of removed agents are masked with zeros.

E.3 STARCRAFT II MULTI-AGENT CHALLENGE

The SMAC (SC2.4.10 version) involves two opposing teams competing to defeat each other. Players
control one team’s units with the objective of eliminating all enemy units. The reward system
consists of three components:

Reward

* Kill Reward: +10 for eliminating an enemy unit by reducing its HP to zero.
* Win Reward: 4200 for defeating all enemy units and winning the game.
* Damage: The amount of change in an enemy’s HP.

In the original PYMARL implementation Whiteson et al.|(2019), rewards are enforced as positive by
taking absolute values. However, in scenarios where enemies can regenerate health/shields, agents
might artificially inflate rewards by allowing recovery and reinflicting damage, rather than focusing
on winning. To address this, we adopt the reward without taking its absolute values.

We illustrate why monotonic value factorizations excel in SMAC from two aspects. First, the in-
dividual action has slight impact on returns. Take 3s_vs_5z scenario for example, the enemy unit,
Zealot, has 100 health and 50 recoverable shields. Thus, the maximum return is

150 * 5 410 * 5 + 200 = 1000 (€20
—— = =
Damage Kill Win

In particular, damages constitutes the major component of return (75% proportion). Within a step,
an individual agent’s action only affects its damage, and its action will not cause a sharp change
of the state. Consequently, a slight deviation from the optimal joint action is insufficient to cause a
significant drop in return. Therefore, monotonic value factorization advantages in SMAC, as without
the sharp drop in return near the global optimum, monotonic value factorization can attain the global
optimum.
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Second, choosing the optimal individual action also performs the best in average. We consider a
"focus fire" case that frequently appears in SMAC. In this case, two agents fight with three enemies
denoted as "A", "B", and "C", and focusing fire on the same target is the trick to win. Those enemies
are identical units, except that Enemy A currently has less HP. We present the Q) of this case in
Table Although Qj; in Table [11|is non-monotonic, the average return of choosing action A is
superior to that of choosing other actions. In this case, monotonic value factorization can obtain the
optimal value.

A B C 0

A . 1.1 | 1.1 | -09
B | 1.1 2 1 -1
C . 1 2 -1
0 [-09]-1]-1 -2

Table 11: Qj, in the "focus fire" case of the SMAC environment: The action is denoted by its attack
target, and the action () means no attack. The data in the table only represents the relative advantages
of each joint action rather than actual values. The agents receive a higher return (+2) when both
focus fire on the same target, a moderate return (+1) when attacking different targets, and lower
returns for not attacking. Additionally, attacking low-health units (Enemy A) grants a +0.1 bonus to
the returns.

F ABLATION STUDY

F.1 EXPERIMENT AND ANALYSIS

We analyze the impact of multi-round iteration and strictness in improving greedy action (Equa-
tion E]) We design MRVF-single, which uses a single round, and MRVF-non-strict, which also uses
the original Qj; as the target value of Qo+ (Equation @) for round £ > 1. We present the results in
risk-reward games (Figure[TT)), predator-prey tasks (Figure[I2), and SMAC (Figure [I3).

3agents_5actions 5agents_5actions 5agents_8actions

-0.25

Test Normalized Return
Test Normalized Return
Test Normalized Return

-0.50

-0.75

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Stej Stej Step

—— MRVF MRVF-single = MRVD-non-strict

Figure 11: Test normalized return in the risk-reward games.

The results presented in Figure[TT|and Figure[I2]demonstrate that the strict improvement contributes
to better performance in highly non-monotonic scenarios. The explanation for this is that MRVF-
non-strict cannot guarantee improvement in the greedy action compared to the preceding round,
which prevents it from obtaining the optimal action within a given number of rounds.

As for approximately monotonic scenarios like SMAC, Figure [I3|shows a slight improvement com-
pared to single-round factorization. In these scenarios, the improvement comes from additional
information in decision-making. Specifically, by feeding Ef ~L into the individual Q networks, each
agent knows the intentions of others and could infer their states accordingly. Without global infor-
mation, this additional information contributes to better decision-making. In addition, due to the
approximate monotonicity of the payoff, the first round of MRVF already produces a satisfactory

solution, which explains the slightness of the improvement.
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Figure 12: Test return in the predator-prey tasks with punishments O (left), -2 (middle), and -5
(right).
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Figure 13: Test win rate in the SMAC benchmarks.

F.2 DISCUSSION ON ROUNDS

We will discuss how many rounds MRVF requires to obtain the optimal solution under scenarios
with different levels of non-monotonicity. As discussed in Section|F.I] a second round is required to
obtain the optimal solution in highly non-monotonic environments. To support our claim, we calcu-
late the proportion of uf = w; for each round & throughout test episodes, as shown in Figure

3agents_5actions 5agents_5actions 5agents_8actions
0.8 08 0.8
§06 § §
2 206 206
5 5 5
§0.4 S04 g04 s e —
& &
0.2 0.2 0.2
0.0 0.0 0.0
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Step Step Step
predator prey 0 predator prey -2 predator prey -5
0.8

Proportion
Proportion
Proportion

P
0.6

s § §
£ £ 0.6 g
go gos g
L Wi —— 02 Wt A e <
0 0.0
000 025 050 075 100 125 150 175 2.00 0.00 025 050 075 1.00 125 150 175 2.00 0.00 025 050 075 100 125 150 175 2.00
Step 1e6 Step 1e6 Step 1e6
—— Round1l —— Round2 = Round3

Figure 14: Proportion of final actions generated in each round throughout test episodes.
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From Figure [I4] we find that in the predator-prey environment, as the penalty increases, the pro-
portion of second-round decisions rises from 30% to nearly 50%. In contrast, for approximately
monotonic scenarios such as SMAC, the proportion of second-round decisions typically remains
around 20%, and the performance gap between multi-round and single-round is small. In addition,
a third round is generally unnecessary unless the reward is so sparse that the second round fails to
find the optimal action. As shown in Figure [I4] third-round decisions account for only about 5%
across all predator-prey and SMAC scenarios. Nevertheless, to balance performance and efficiency,
we recommend starting with a maximum of three rounds and adjusting it based on the proportion.

G LIMITATIONS

Although MRVF achieves significant improvements over existing methods in highly non-monotonic
scenarios, it faces the issue of high computational complexity: MRVF requires calculating Q¢ and
Qj in each round. Although we reduce computational complexity by reusing parts of network out-
puts (e.g., individual features in Qj;) and early terminating the multi-round iterations for evaluation,
the computational complexity of MRVF is still O(K (N + 1)), while that of QMIX is at O(N). In
addition, as shown in Equation (6) and Equation (3)), the update of Q¢ depends on the results of
Qj¢- As aresult, the update of (¢ is delayed compared to standard TD learning, which leads to a
slow rise of the win rate in 3s_vs_5z (Fi gure. However, learning directly from Q)j; is inevitable for
environments that are not retraceable. Otherwise, if exploration of branching trajectories is allowed,
TD targets could be used in the update of Q.

We summarize the reasons why MRVF may fail to achieve the optimal solution in practice: First,
the approximation errors of th propagate to Qyot, Which may prevent the Qyo¢ from reaching the
global optimum. Second, monotonic factorization is not ideal. Since we use a neural network as
the mixing network, the approximation errors introduced by the network make it difficult to obtain
the Qo1 that minimizes Lyot. Third, insufficient sampling may further amplify these approximation
errors. As shown in Figure[5] MRVF struggles to achieve optimal performance in Sagents_8actions.

H SUPPLEMENTARY EXPERIMENT AND ANALYSIS

In this section, we provide analysis and experiments that are not included in the main part of this
paper.

H.1 STARCRAFT II MULTI-AGENT CHALLENGE

In Section we analyze the stability of QPLEX |Wang et al.| (2021), WQMIX |Rashid et al.|(2020al)
and ResQ Shen et al.[(2022)). We reveal that suboptimal stable points are the main cause of the sub-
optimality in highly non-monotonic scenarios including risk-reward games and predator-prey tasks
with large punishments. However, in Figure|/] these methods show inferior performance compared
to monotonic value factorizations in SMAC scenarios. We provide the following explanation for this
phenomenon.

QPLEX and ResQ From Table [§] in Appendix D] in cases where QMIX can easily obtain the
global optimum, QPLEX may still fail due to multiple suboptimal stable points. In addition, for
ResQ, Theorem 3| shows that u* is a weakly stable point in general cases. The weak stability of
ResQ is particularly severe because any action can potentially become @ (Lemma[2). Consequently,
QPLEX and ResQ do not perform well in SMAC.

WQMIX WQMIX is designed for highly non-monotonic scenarios, and from Figure [5 and Fig-
ure [} it outperforms monotonic value factorization methods. Although WQMIX is supposed to
perform similarly to QMIX in weakly non-monotonic or monotonic scenarios, it shows poor perfor-
mance in SMAC (Figure[7). We provide three factors resulting in this phenomenon.

(1) The joint action-value network: Individual features constitute only a small portion of the
mixer’s input in the joint action-value network. Consequently, the joint action-value net-
work hardly distinguishes different actions, since action information is primarily embedded
in these individual features.
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(2) Decentralized e-greedy policy: The decentralized e-greedy policy (defined in Equation [2)
combined with the weight in WQMIX enhances the convergence to the local optimum,
since the decentralized e-greedy policy explores locally and the weight discards lower val-
ues around the local optimum.

(3) Weight: When o < 1, the weight reduces sample efficiency, as downweighting samples is
similar to discarding them.

We conduct additional experiments to support our analysis. We replace the network of th with
that of ours and replace the decentralized e-greedy policy with the centralized one. The result in
Figure [T5] demonstrates that these three factors do result in the performance gap between WQMIX
and QMIX.

3s_vs_5z

Test Win Rate

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step le6
— WQMIX WQMIX (our éjt) — WQMIX (centralized ¢) — WQMIX (both)

Figure 15: Test win rate in 3s_vs_5z. WQMIX (th) represents WQMIX replacing the network of

th with that of ours. WQMIX (centralized €) represents WQMIX replacing the policy with the
centralized one. WQMIX (both) represents WQMIX with both modifications.

H.2 SUPER-HARD SCENARIO OF SMAC

We conduct additional experiments on the 6i_vs_8z scenario, which is a particularly challenging
scenario where the "focus fire" is a key tactic for victory Whiteson et al.| (2019). We adopt a setup
similar to the bane_vs_bane scenario, except that we set anneal steps for € to 10°. The results in Fig-
ure[T6]show a slight difference between MRVF and QMIX,, supporting our analysis in Appendix [E-3]

6h_vs 8z
0.6

Test Win Rate
o o o
w S w

o
N}

0.1

0.0

Step le6

—— MRVF QMIX

Figure 16: Test win rate in 6A_vs_8z in SMAC benchmarks.
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H.3 PREDATOR PREY

From the results in Figure 6} QMIX fails to obtain the optimal action when the penalty is -2. How-
ever, an analysis based on ideal QMIX will reveal that the optimal action is a stable point for any
€ € (0, 1]. In fact, this does not indicate a theoretical flaw. An explanation is that suboptimal actions
are also stable points as € — 0.

We will provide an analysis of the stable points when € — 0. Taking two agents as an example, the
reward function for the predator-prey environment with a penalty of -2 is given in Equation 32}

0 -2 - =2
2 0 .- 0

reward = | . . . (32)
90 ... 0

where the reward is a matrix of shape 6 x 6.

Consider u that neither agent executes the "capture” action, which yields a reward of 0. As ¢ — 0,
Q7o that minimizes Ly is given in Equation [33]

-2 -2 ... -9
-2 0 --- 0

I Qilazu = | . . . .| Li=0+0%x0(e) + 127 x o(e?) (33)
-2 0 --- 0

where uw* = wu, and both correspond to the agents that perform the "non-capture" action. Therefore,
"non-capture” action pairs are stable points in predator prey with penalty -2.

Since suboptimal actions are in the majority, it is difficult for the greedy action to converge to the
optimal one. However, because suboptimal actions are stable points only when € is small, we can
enhance the convergence to the optimal action by slowing down the decay of e. To support our
analysis, we conduct additional experiments on QMIX with ¢ fixed at 1 and QMIX with ¢ decaying
in one million steps, as shown in Figure From the result in predator prey -2, agents successfully
learn to capture prey in both settings, yet they still fail when the penalty is -5. In addition, increasing
the weight of the optimal action in the policy can enhance the convergence to the optimal action. For
example, the weighting mechanism in WQMIX serves a similar purpose. However, these methods
still fail when the penalty is set to -5.

predator prey -2 predator prey -5

Test Return
L
5 o

Test Return
|
5 o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0
Step 1e6 Step 1le6

—— QMIX (50k g-anneal) QMIX (e=1) —— QMIX (1mil e-anneal)
Figure 17: Test return in the predator prey tasks with punishments -2 (left), and -5 (right). QMIX

(50k e-anneal) represents QMIX with 5 x 10% anneal steps for e. QMIX (I1mil e-anneal) represents
QMIX with 108 anneal steps for e. QMIX (¢ = 1) represents QMIX with € = 1 constantly.
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