
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MRVF: MULTI-ROUND VALUE FACTORIZATION WITH
GUARANTEED ITERATIVE IMPROVEMENT FOR MULTI-
AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Value factorization restricts the joint action value in a monotonic form to enable
efficient search for its optimum. However, the representational limitation of mono-
tonic forms often leads to suboptimal results in cases with highly non-monotonic
payoff. Although recent approaches introduce additional conditions on factoriza-
tion to address the representational limitation, we propose a novel theory for con-
vergence analysis to reveal that single-round factorizations with elaborated condi-
tions are still insufficient for global optimality. To address this issue, we propose a
novel Multi-Round Value Factorization (MRVF) framework that refines solutions
round by round and finally obtains the global optimum. To achieve this, we mea-
sure the non-negative incremental payoff of a solution relative to the preceding so-
lution. This measurement enhances the monotonicity of the payoff and highlights
solutions with higher payoff, enabling monotonic factorizations to identify them.
We evaluate our method in three challenging environments: non-monotonic one-
step games, predator-prey tasks, and StarCraft II Multi-Agent Challenge (SMAC).
Experiment results demonstrate that our MRVF outperforms existing value factor-
ization methods, particularly in scenarios highly non-monotonic payoff.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) effectively addresses many real-world problems, such
as robotics Hüttenrauch et al. (2019), automated warehouses Tao et al. (2024), and games Berner
et al. (2019). MARL’s core issue is finding the optimal action in an action space that grows expo-
nentially with the number of agents. To address this issue, value factorization methods represent
the joint action value in a specific form. Early value factorization methods, such as VDN Sunehag
et al. (2017) and QMIX Rashid et al. (2020b), represent the joint action value through a monotonic
mix of individual action values. This monotonic relationship ensures that the optimal joint action
can be obtained by searching through individual action spaces. However, because of the monotonic
particularity, these methods struggle to obtain the global optimum in non-monotonic cases.

To mitigate the representational limitation in VDN and QMIX, the following methods propose new
fitting functions (e.g., QPLEX Wang et al. (2021) and ResQ Shen et al. (2022)) or loss functions
(e.g., QTRAN Son et al. (2019) and WQMIX Rashid et al. (2020a)). These designs can be treated as
conditions on the current greedy action to enhance its convergence to the optimal action. However,
the effectiveness of these conditions relies on a strong assumption: the current greedy action is the
optimal action, which means that the optimal action has already been found. We find that when
the current greedy action is among certain suboptimal actions, the greedy action may converge to
such suboptimal actions, resulting in poor performance of these methods. One of our contributions
is that we introduce a theoretical tool with a novel concept, stable point, to describe the conver-
gence of greedy action under value factorization. Using this tool, we explain how existing methods
converge to suboptimal solutions and provide specific cases where they fail to obtain the optimum.

Theoretically, we conclude that no matter how elaborate the conditions on greedy action are, mono-
tonic factorization is almost impossible to obtain the optimal solution for non-monotonic cases.
However, if a non-monotonic payoff is transformed into a monotonic one, we can easily obtain the
optimal solution with monotonic factorization. To achieve this, another contribution of ours is

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

that we propose a multi-round value factorization (MRVF) framework. As illustrated in Figure 1, in
each round, we replace the payoff with the payoff increment (non-negative), the payoff clipped by
that of the preceding solution. This process gradually transforms the original payoff into a mono-
tonic one round by round, thereby enabling monotonic factorization to achieve the optimal solution.
Furthermore, using the theory of stable points, we prove that the solution obtained based on the
increment is strictly improved from the previous round. This guarantees that the optimal solution
can be obtained with a sufficient number of iterations.

Clipped Clipped

Non-monotonic Payoff Monotonic PayoffCurrent Solution Optimal Solution

1 2 3

Figure 1: The process of transforming a non-monotonic payoff into a monotonic one round by round.
At the beginning, MRVF obtains a suboptimal solution for the non-monotonic payoff. However, by
clipping off these suboptimal values, we transform the payoff into a monotonic one that only leaves
optimal values, thereby enabling monotonic factorization to find the optimal solution. The definition
of monotonic payoff is presented in Appendix B.1.

To illustrate the superiority of MRVF, we conduct experiments on randomly generated one-step
games that require significant coordination to get bonus, or otherwise a penalty. In addition, we
evaluate MRVF on more challenging tasks such as the predator-prey task Böhmer et al. (2020) and
the StarCraft II MARL tasks Whiteson et al. (2019). The experimental results show that MRVF out-
performs existing value factorization methods, particularly in challenging scenarios that require high
levels of agent coordination. The ablation study demonstrates the importance of strictly improving
current solutions by using the payoff increment as the target value.

2 BACKGROUND

2.1 DEC-POMDP

In cooperative multi-agent systems, agents interact with the environment to achieve common objec-
tives. This process can be modeled as a decentralized partially observable Markov decision process
(Dec-POMDP) Oroojlooy & Hajinezhad (2023), defined by a tuple < S,U , P,O,R, γ, n >, in
which n is the number of agents, S is the state space, U = U1 × U2 × · · · × Un is the action space,
P (s

′ |s,u) : S × U × S → [0, 1] is the transition probability between the states, O : S → O is the
joint observation function where O is the joint observation space, r ∼ R : S×U → R is the reward,
γ ∈ (0, 1] is the discount, agent have an action-observation history τ ∈ T ≡ (O × U)∗. Similarly
to RL with a single agent, the objective of MARL is to find the policy π = (π1, π2, · · · , πn) :
T × U → [0, 1] that maximizes the joint action value Qjt(s,u) = Eπ[

∑
t γ

trt|s,u], the expecta-
tion of return. However, obtaining the global optimal action u∗ = argmaxu Qjt(s,u) by searching
the large action space is intractable for value-based learning.

2.2 MONOTONIC VALUE FACTORIZATION

Value factorization methods approximate the joint action value Qjt with a specifically formed
Qtot by minimizing Ltot, the Mean Squared Error (MSE) between Qjt and Qtot. For exam-
ple, VDN Sunehag et al. (2017) factorizes Qtot into the sum of individual Qs: Qtot =

∑
i Qi.

And QMIX Rashid et al. (2020b) uses a monotonic function fmon to represent the relationship:
Qtot = fmon(Q1, Q2, · · · , Qn) where ∂fmon

∂Qi
≥ 0,∀i ∈ {1, 2, · · · , N}. The monotonicity of Qtot

with respect to Qi ensures the alignment of their optimal actions, which is the Individual-Global-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Max (IGM) principle, defined as follows 1:
n∏

i=0

argmax
ui

Qi(τi, ui) ⊆ argmax
u

Qtot(τ ,u) (1)

where
n∏

i=0

argmax
ui

Qi(τi, ui) = argmax
u1

Q1(τ1, u1) × · · · × argmax
un

Qn(τn, un), and Qi : Ti ×

Ui → R is the individual action value of agent i. Here we define u ∈
n∏

i=0

argmax
ui

Qi(τi, ui) as the

greedy action. If the IGM principle is satisfied, and Qtot approximate Qjt precisely, it is easy to get
the maximum of Qjt by searching that of Qi.

2.3 GRADIENT-FREE COMPONENTS IN VALUE FACTORIZATION

Value factorization methods use gradient descent to update gradient-based components, such as
individual Q values and the mixing network fmon. However, not all components in the factorization
are gradient-based. Specifically, the components taking greedy action as a parameter are gradient-
free. To distinguish the meanings of u as the parameter and greedy action, we refer to ũ as the
parameter of these components, where u is assigned to ũ. Gradient-free components are common
in value factorization, for example, the decentralized ϵ-greedy policy π

π(u|τ) = (
ϵ

|U|
)n−m(1− ϵ+

ϵ

|U|
)m (2)

where m = |{i|ui = ũi}|. Recent methods introduce additional terms involving ũ into monotonic
factorization. For example, the weight w of the weighted Ltot in WQMIX Rashid et al. (2020a) 2

w(τ ,u) =

{
1 Q̂jt(τ ,u) > Q̂jt(τ , ũ) or u = ũ

α < 1 otherwise
(3)

where Q̂jt is an approximation of Qjt, and the residual mask wr in ResQ Shen et al. (2022)

wr(τ ,u) =

{
0 u = ũ

1 otherwise
(4)

3 SUBOPTIMALITY OF EXISTING SINGLE-ROUND FACTORIZATION

In this section, we discuss why the policy (or the greedy action) is trapped in local optima dur-
ing training, which results in existing value factorization methods obtain a suboptimal result. To
explain this, we need to analyze the convergence of greedy actions in value factorization. For the
convergence analysis, existing works only analyze the cases when ũ (a parameter of gradient-free
components) is the optimal action, which is insufficient. In contrast, we provide an analytical ap-
proach to determine what outcomes that u (the greedy action) converges to for general cases of ũ,
and reveal situations where u converges to suboptimal actions under certain ũ.

3.1 TRANSITION OF THE GREEDY ACTION

To introduce the analysis of the greedy action’s convergence, we first illustrate how the greedy action
changes during training. We provide an example in Figure 2, where we observe that the transition
of greedy actions is similar to that of a Markov process: ũ acts as the current "state" (controlling
the transitions) and u as the next "state". This process emerges because updates to gradient-free
parameters (indicated by ũ) and gradient-based parameters (indicated by u) are asynchronous, with
their relationship shown in Figure 3.

Combining Figure 3, we illustrate the process in Figure 2 as follows:

(1) Initially, ũ = (1, 3) (top right) generates an all-ones weight matrix.

1We use "⊆" instead of "=" in Equation 1, as Qtot may have more maxima than individual Qs (Table 1).
2It stands for Centrally-Weighted QMIX.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(2) Minimizing Ltot = w ∗ (Qtot −Qjt)
2 under the all-ones weight w yields the Qtot (left table),

corresponding to u = (3, 3) (bottom right).

(3) ũ is assigned the new value u = (3, 3), thereby altering the weight matrix (shaded regions).

(4) Minimizing Ltot with the weight under ũ = (3, 3) produces a new Qtot (middle table).

(5) u keeps on changing (steps 2-4) until u = ũ is reached (right table).

8 -12 -12

-12 3 0

-12 0 5

-8 -8 -8

-8 1 1

-8 1 5

8 -4.2 2.2

-4.2 -4.2 -4.2

2.2 -4.2 2.2

8 -5 -5

-5 -5 -5

-5 -5 -5

CW-QMIX: 𝛼 = 0.1, 𝜖 = 1

𝑄tot

𝑄jt

෥𝒖 = 1,3 ෥𝒖 = 3,3 ෥𝒖 = 1,1

ഥ𝒖 = 1,1

ഥ𝒖 = 1,1ഥ𝒖 = 3,3

Unstable Unstable Stable

Figure 2: The transition of greedy action in WQMIX with α = 0.1 under uniform visitation (ϵ = 1).
This process begins with ũ = (1, 3) (top right) and stabilizes at u = (1, 1) (top left). The cells in
Qtot where w(s,u) = α are shaded, and the value corresponding to u = (row, column) is in bold.

Gradient-free

Parameters

Gradient-based

Parameters

Gradients
①

②

③ ③

① Gradient descent update

② Assignment

③ Gradient calculation

Figure 3: The relationship between gradient-based and gradient-free parameters. The gradient-free
parameters are updated according the values of gradient-based parameters rather than the gradients,
leading to asynchronous updates between the two parameters.

3.2 CONVERGENCE OF THE GREEDY ACTION

From the discussion above, the transition of u typically begins in a transient phase (steps 2-4) and
ends in a steady phase (step 5). The steady phase of this transition is what we are interested in,
which reflects the convergence result of greedy actions. Based on the above discussion, we use
stable points to describe the convergence of u, defined as follows:

Definition 1 (Stable Point). In a specific value factorization framework, for a joint action value Qjt

and state s ∈ S, if ǔ is a stable point of Qjt(s, ·), then for ũ = ǔ in the optimization of minimizing
Ltot, the converged u satisfies u = ǔ.

Note that multiple stable points may exist in value factorization, any of which could be the final
result of greedy actions. To analyze the possible outcomes of greedy actions, we need to determine
whether an action is a stable point, which is described as follows:

(1) Set ũ = ǔ to generate the gradient-free parameters.

(2) Minimize Ltot under ũ = ǔ to obtain Qtot (multiple solutions may exist) and corresponding u.

(3) If any u satisfies u = ǔ, then ǔ is a stable point.

(4) Furthermore, if u = ǔ holds for all solutions, ǔ is a strongly stable point. Otherwise, ǔ is a
weakly stable point.

The difference between mixer types lies in Step 2: For VDN-style mixers, we obtain Qtot using
gradient descent. And for QMIX-style mixers, we obtain Qtot based on the Ideal QMIX assumption:
The Ideal QMIX yields the optimal Qtot that minimizes Ltot under any given ũ (Appendix B.2).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 SUBOPTIMALITY OF EXISTING FACTORIZATION

We analyze stable points in existing methods to demonstrate cases where greedy actions converge
to suboptimal actions, which usually happens in environments with highly non-monotonic payoff.
Then, we derive the conditions under which the greedy action converges solely to the optimal action.

WQMIX: WQMIX can not guarantee the convergence to the optimal action. In some cases, as
shown in Table 1, the optimal action is not a stable point for any α, which means that the greedy
action does not converge to the optimal action.

4 0 -8
0 3 0
-8 0 -8

(a) Qjt

1 α α
α α α
α α α

(b) w

Ltot=70α
4 1 -4
1 1 -4
-4 -4 -8

(c) Q∗
tot for u = u∗

Ltot=33α
4 4 -8
4 4 0
-8 0 -8

(d) Qtot with u ̸= u∗

Table 1: An example for WQMIX in which u∗ is not a stable point. (a): The matrix of Qjt with the
maximum value of 4. (b): The weight w of WQMIX where ũ = u∗. (c): The Qtot with minimum
Ltot under the condition that u = u∗. (d): Another Qtot where u ̸= u∗ achieves less Ltot than (c).
Therefore, u∗ is not a stable point in this case.

QPLEX: QPLEX proves that if ũ happens to be the optimal action, then u can converge to the
optimal action. However, we find that multiple suboptimal stable points exist in QPLEX, which
means that if ũ is certain suboptimal actions, u will converge to them (examples in Appendix D).

ResQ: ResQ proves that u can converge to the optimal action when ũ is the optimal action (similar
to QPLEX). However, we find that although the optimal action is the only stable point, it is always
a weak stable point (proof in Appendix C.2). This means that even if the optimal action has been
found (ũ = u∗), it may be lost subsequently.

From the above discussion, we conclude that in single-round value factorization, if the greedy action
is to be guaranteed to converge to the optimal action, then the optimal action must be the unique
strongly stable point, which means:

(1) The optimal action must be a strong stable point (WQMIX and ResQ fail)
(2) All suboptimal actions must be unstable points (QPLEX fails).

4 APPROACH OPTIMUM THROUGH MULTI-ROUND FACTORIZATION

In Section 3.3, we provide the condition under which the greedy action converges exclusively to the
optimal action. This condition is highly stringent, to the extent that existing single-round factoriza-
tion methods struggle to satisfy them. Therefore, we propose a multi-round factorization framework
with a lenient condition for achieving optimality: the greedy action must be strictly improved
round by round (Strict Improvement Condition). Satisfying this condition guarantees that the
greedy action in a certain round is the optimal one (Theorem 1).
Theorem 1. For a joint action value Qjt with a finite action space U and s ∈ S, consider a sequence
{uk|uk ∈ U}, if ∀k > 1, Qjt(s,u

k) > Qjt(s,u
k−1) when uk−1 ̸= u∗, then ∃K > 0,uK = u∗.

(Proof in Appendix C.1)

4.1 DESIGNS FOR THE STRICT IMPROVEMENT CONDITION

The key point in MRVF is designing the backward computation of Qtot. Typically, Q̂jt, a payoff
measurement, serves as the target value of Qtot. In this paper, we replace it with the action-value
increment for round k > 1. As shown in Equation 5, this increment is computed by clipping the
original Q̂jt with its value at the preceding greedy action uk−1

t , with negative values set to zero.

Ltot = Eτ t,uk
t ∼πk

[(Qtot(τ t,u
k−1
t ,uk

t)−max{Q̂jt(τ t,u
k
t)− Q̂jt(τ t,u

k−1
t), 0})2], k > 1 (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where max{Q̂jt(τ t,u
k
t)− Q̂jt(τ t,u

k−1
t), 0} is the action-value increment.

Intuitively, the action-value increment enhances the monotonicity of Q̂jt round by round, thereby
enabling monotonic factorization to find the optimal solution easily. Theoretically, it ensures the
strict improvement of greedy action when uk−1

t ̸= u∗. This is grounded in a property of mono-
tonic factorization: the greedy action under QMIX will not converge to actions with the lowest target
value of Qtot, since these lowest-value actions are not stable points (Theorem 2). Therefore, with
the the action-value increment, uk

t only converge to actions that are superior to uk−1
t , since all uk

t

with Q̂jt(τ t,u
k
t) ≤ Q̂jt(τ t,u

k−1
t) are assigned the minimum value, zero.

Theorem 2. Consider a non-constant joint action value Qjt(s, ·) (∀s ∈ S,∀C ∈ R, Qjt(s, ·) ̸≡ C)
with finite state space S and action space U . For the ideal QMIX defined in Equation (12) and
the centralized ϵ-greedy policy π defined in Equation (8), we have ∀s ∈ S,∃E ∈ (0, 1),∀ϵ ∈
(0, E),∀u ∈ argminu Qjt(s,u), u is not a stable point. (Proof in Appendix C.1)

We illustrate in Table 2 how the target value of Qtot shapes during the multi-round process. For the
first round (k = 1), we use the original Q̂jt as the target for Qtot, as shown in Equation (6).

Ltot = Eτ t,uk
t ∼πk

[(Qtot(τ t,u
k
t)− Q̂jt(τ t,u

k
t))

2], k = 1 (6)

8 -12 -12
-12 3 0
-12 0 5

(a) k = 1

3 0 0
0 0 0
0 0 0

(b) k = 2

0 0 0
0 0 0
0 0 0

(c) k = 3

Table 2: This table shows the target of Qtot in three round, in which the value corresponding to u

is in bold when it is unique. (a): The target of Qtot in the first round which is the original Q̂jt. (b):
The target of Qtot in the second round which is clipped with Q̂jt(τ t,u

1
t) = 5. (c): The target of

Qtot in the final round where any u can be u3.

The forward computation in step t generates the final action ut (or the greedy final action ut during
evaluation) that actually interacts with the environment. Note that the final action is not always the
action in the final round. As shown in Table 2, the greedy action in the round k = 2 is the optimal
action. As a result, the greedy action can possibly converge to any action in round k = 3, which
violates the Strict Improvement Condition. Therefore, early termination is necessary when the strict
improvement is not achieved. Specifically, we check the strict improvement by comparing the Q̂jt

values of the two greedy actions: When Q̂jt(τ t,u
k
t) ≤ Q̂jt(τ t,u

k−1
t), the forward process in step

t is terminated with an output uk−1
t , otherwise the process proceed to the next round.

4.2 OVERVIEW OF THE ARCHITECTURE

The architecture of our methods is shown in Figure 4. The architecture consists of three crucial
parts: individual Q networks, a mixing network with positive weights, and a joint action value
network. Individual Q networks receive the action-observation history τ t and the greedy action of
the preceding round uk−1

t (default action for the first round). Then, they output the actions of the
current round uk

t through the ϵ-greedy action selector. The mixing network receives individual Q
values and outputs Qtot. The joint action value network outputs Q̂jt to approximate the real Qjt.
We update Q̂jt by minimizing the temporal difference (TD) error in Equation (7).

Ljt = Eτ t,ut∼π[(Q̂jt(τ t,ut)− (rt + γQ̂jt(τ t+1,ut+1)))
2] (7)

where ut is the greedy final action, and Q̂jt(τ t+1,ut+1) approximates maxut+1
Q̂jt(τ t+1,ut+1).

Within step t, both the forward and backward processes take τ t as input, and in each round, the
individual Q networks are fed with τ t and uk−1

t to produce Qi and uk
t . The difference is that

the forward process computes and compares Q̂jt to determine whether to terminate early, while the
backward process does not involve early termination and computes Q̂jt only once using the recorded
ut from the batch (not shown in Figure 4). In addition, Qtot is computed only in the backward.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

𝑘 − 1 round 𝑘 round 𝑘 + 1 round

𝝉𝑡 𝝉𝑡 𝝉𝑡

ഥ𝒖𝑡
𝑘−2 ഥ𝒖𝑡

𝑘−1 ഥ𝒖𝑡
𝑘

Individual 𝑄0

Individual 𝑄1

Individual 𝑄𝑛

⋯

𝜏𝑡
0, ഥ𝒖𝑡

𝑘−1
𝑸0 𝜏𝑡

0, ഥ𝒖𝑡
𝑘−1,⋅

𝑸1 𝜏𝑡
1, ഥ𝒖𝑡

𝑘−1,⋅

𝑸𝑛 𝜏𝑡
𝑛, ഥ𝒖𝑡

𝑘−1,⋅

Mixing

network

𝜏𝑡
1, ഥ𝒖𝑡

𝑘−1

𝜏𝑡
𝑛, ഥ𝒖𝑡

𝑘−1

𝑄tot 𝝉𝑡, ഥ𝒖𝑡
𝑘−1, 𝒖𝑡

𝑘

𝝐-greedy

policy

𝑸 𝝉𝑡, ഥ𝒖𝑡
𝑘−1, 𝒖𝑡

𝑘

Joint action

value network

෠𝑄jt 𝝉𝑡, ഥ𝒖𝑡
𝑘ഥ𝒖𝑡

𝑘

𝑠𝑡 , ഥ𝒖𝑡
𝑘−1

𝝉𝑡

𝒖𝑡

Compare

෠𝑄jt 𝝉𝑡, ഥ𝒖𝑡
𝑘−1

Terminate ?

Forward only Backward onlyForward and Backward

Figure 4: The architecture of multi-round value factorization framework.

4.3 SAMPLING

We approximate the expectation in Ljt and Ltot by sampling the action spaces. We design sam-
pling strategies for multi-round frameworks to ensure stable training. For the final action ut in Ljt,
its sampling should not only cover the greedy final action and random actions, but also cover the
greedy action in each round, which obtains an accurate target value in Equation 5. Therefore, during
training, we select uk

t) in a certain round k as the final action with probability p. For uk
t in Ltot, its

distribution πk is the centralized ϵ-greedy policy defined in Equation (8) with ũ = uk.

π(u|τ) =

{
1− ϵ+ ϵ

|U | u = ũ
ϵ

|U | u ̸= ũ
(8)

The reason for not using the decentralized one (defined in Equation 2) is that, according to Theo-
rem 2, the centralized ϵ-greedy policy is required to guarantee the Strict Improvement Condition.
More importantly, since Qtot learns the actual payoff from Q̂jt, the centralized ϵ-greedy policy al-
lows the same actions to be sampled in Ljt and Ltot when sampling random actions, which prevents
Qtot from learning regions where Q̂jt exhibits underfitting.

5 EXPERIMENT

In this section, we evaluate the performance in one-step games, the predator-prey task Böhmer et al.
(2020) with increasing punishment, and a variety of SMAC Whiteson et al. (2019) scenarios, among
which one-step games and predator-prey tasks with large punishment are environments with highly
non-montonic payoff (defined in Appendix B.1). We present the graphical results where the median
and shade of 25%-75% quartile (0%-100% quartile for one-step games) are included. In addition,
we provide details about our experimental setting in Appendix E and ablation results in Appendix F.

5.1 ONE-STEP GAME

From the discussion in Section 3.3, we find that existing methods fail to achieve optimality when, at
the global optimum, any deviation by an agent leads to significant negative rewards. To demonstrate
this limitation of existing methods, we evaluate their performance in the risk-reward game, where
agents must reach a consensus to obtain rewards, or otherwise they incur punishments, and higher
rewards for consensus correspond to harsher punishments for dissension. These games are randomly
generated by averaging individual rewards (positive if consensus is reached, negative otherwise), and
more details are provided in the Appendix E.1. The risk-reward game is an extension of the matrix
game Son et al. (2019) Shen et al. (2022) that allows the participation of more than two agents.

As shown in Figure 5, in cases with 3 agents and 5 actions, monotonic factorizations (QMIX Rashid
et al. (2020b) and NA2Q Liu et al. (2023)) obtain the smallest positive return, nearly zero, while

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

QTRAN Wang et al. (2021) and WQMIX Rashid et al. (2020a) only achieve a moderate positive
return. In contrast, our method consistently attains the optimal return. When the number of agents
increases to 5, the risk of obtaining positive returns increases, since consensus requires coordina-
tion among more agents. Existing methods rarely obtain positive returns, while our method still
obtains the optimum with high probability. However, in cases with 5 agents and 8 actions, the action
space becomes prohibitively large for sufficient sampling (averaging only ∼ 1.5 samples per action).
Despite this challenge, our method still obtains better results than others.

0 10000 20000 30000 40000 50000
Step

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Te
st

 N
or

m
al

ize
d

Re
tu

rn

3agents_5actions

0 10000 20000 30000 40000 50000
Step

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Te
st

 N
or

m
al

ize
d

Re
tu

rn

5agents_5actions

0 10000 20000 30000 40000 50000
Step

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Te
st

 N
or

m
al

ize
d

Re
tu

rn

5agents_8actions

MRVF QMIX NA²Q QPLEX QTRAN WQMIX RESQ

Figure 5: Test normalized return in the risk-reward games. The positive returns are normalized to
[0, 1] (0 corresponds to the smallest positive return, and 1 corresponds to the largest). The negative
returns are normalized to [−1, 0). Five random cases for each setting.

5.2 PREDATOR PREY

We conduct experiments on the predator-prey task involving 8 agents, where capturing a prey re-
quires cooperation between at least two agents. Agents are punished for capturing the prey alone.
We vary the punishment from 0 to -5 to evaluate its impact on performance. The non-monotonic
property of the payoff increases with the punishment, since agents must act more cautiously when
choosing the "capture" action to ensure consensus and avoid punishments.

The results in Figure 6 show that all methods perform well when the punishment is zero. However,
as the punishment intensifies, existing methods avoid the "capture" action to prevent punishments,
resulting in return ≈ 0. Among baseline approaches, WQMIX performs adequately only under
moderate punishments, while the performance of ResQ shows significant fluctuations due to its
weak stability. In contrast, our method consistently achieves the best performance, even under the
strongest punishment of -5. Combined with the results in risk-reward games, we conclude that our
method outperforms existing methods in environments with highly non-monotonic payoff.

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

5

10

15

20

25

30

35

40

Te
st

 R
et

ur
n

predator prey 0

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

40

30

20

10

0

10

20

30

40

Te
st

 R
et

ur
n

predator prey -2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

40

30

20

10

0

10

20

30

40

Te
st

 R
et

ur
n

predator prey -5

MRVF QMIX NA²Q QPLEX QTRAN WQMIX RESQ

Figure 6: Test return in the predator prey tasks with punishments 0 (left), -2 (middle), and -5 (right).
The non-monotonicity of the payoff increases with the punishment.

5.3 STARCRAFT II MULTI-AGENT CHALLENGE

We conduct experiments on the SMAC benchmark in scenarios of varying difficulty. Monotonic
value factorization methods, including QMIX Rashid et al. (2020b) and NA2Q Liu et al. (2023),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

are particularly well-suited for the SMAC because changes in an individual agent’s action within
a single step have little impact on overall performance (see Appendix E.3 for details). Neverthe-
less, as shown in Figure 7, MRVF even achieves an advantage over monotonic value factorization
methods, particularly in 3s_vs_5z, 2c_vs_64zg and bane_vs_bane scenarios. Meanwhile, the final
performance of MRVF is the best in most scenarios, as shown in Table 3. Combined with the results
in the risk-reward games and the predator prey task, we conclude that MRVF performs the best in
both monotonic and non-monotonic scenarios.

In contrast, other methods (QPLEX Wang et al. (2021), ResQ Shen et al. (2022)), QTRAN Son et al.
(2019) and WQMIX Rashid et al. (2020a)) often converge to suboptimal stable points. This leads
to a high variance in performance within a scenario and across scenarios. Within the same scenario,
although they occasionally achieve strong performance (as seen in the upper bounds of the shaded
regions in Figure 7), their average performance lags behind. In addition, across different scenarios,
their performance may vary drastically. For example, WQMIX performs well in bane_vs_bane but
poorly in both 5m_vs_6m and 3s_vs_5z. Therefore, MRVF achieves significant improvements in
robustness and performance over them in almost all scenarios.

Methods MRVF QMIX NA2Q QPLEX QTRAN WQMIX RESQ
Best 6 3 4 1 1 1 3

Worst 0 1 0 3 5 2 1

Table 3: The number of SMAC scenarios where each method performs the best and the worst. We
evaluate the final performance (averaged over steps after 1.5M) with a tolerance of ±0.05.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.2

0.4

0.6

0.8

Te
st

 W
in

 R
at

e

2c_vs_64zg

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

3s_vs_5z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.2

0.4

0.6

0.8

Te
st

 W
in

 R
at

e

MMM2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 W
in

 R
at

e

5m_vs_6m

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

bane_vs_bane

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

3s5z

MRVF QMIX NA²Q QPLEX QTRAN WQMIX RESQ

Figure 7: Test win rate in the SMAC benchmarks.

6 CONCLUSION

In this paper, we introduce a novel theoretical tool for studying the convergence of greedy action
under value factorization, and propose MRVF, a novel framework for cooperative multi-agent re-
inforcement learning. In Section 3, we use this theoretical tool to derive the condition for global
optimality in single-round factorization, and provide examples to demonstrate why existing meth-
ods struggle to satisfy this condition. In Section 4, we propose the condition for global optimality in
multi-round factorization, which is strictly improving the greedy action round by round. To satisfy
this condition, we design the forward and backward computation of MRVF. In addition, we design
new sampling strategies suitable for multi-round factorization to ensure training stability. Exper-
iments on non-monotonic one-step games, predator-prey tasks, and the StarCraft II Multi-Agent
Challenge show the superior performance and robustness of MRVF compared to state-of-the-art
value factorization methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In International
Conference on Machine Learning, pp. 980–991. PMLR, 2020.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, and
Joelle Pineau. Tarmac: Targeted multi-agent communication. In International Conference on
machine learning, pp. 1538–1546. PMLR, 2019.

Gang Ding, Zeyuan Liu, Zhirui Fang, Kefan Su, Liwen Zhu, and Zongqing Lu. Multi-agent coordi-
nation via multi-level communication. Advances in Neural Information Processing Systems, 37:
118513–118539, 2024.

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning
to communicate with deep multi-agent reinforcement learning. Advances in neural information
processing systems, 29, 2016.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common practices in cooper-
ative multi-agent reinforcement learning. In International Conference on Machine Learning, pp.
6863–6877. PMLR, 2022.

Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. Deep reinforcement learning for
swarm systems. Journal of Machine Learning Research, 20(54):1–31, 2019.

Chuming Li, Jie Liu, Yinmin Zhang, Yuhong Wei, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli
Ouyang. Ace: Cooperative multi-agent q-learning with bidirectional action-dependency. In Pro-
ceedings of the AAAI conference on artificial intelligence, volume 37, pp. 8536–8544, 2023.

Zichuan Liu, Yuanyang Zhu, and Chunlin Chen. NA2Q: Neural attention additive model for inter-
pretable multi-agent q-learning. In International Conference on Machine Learning, pp. 22539–
22558. PMLR, 2023.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in neural information processing systems, 32, 2019.

D Mguni, T Jafferjee, J Wang, O Slumbers, N Perez-Nieves, F Tong, L Yang, J Zhu, and Y Yang.
Ligs: Learnable intrinsic-reward generation selection for multi-agent learning. In ICLR 2022-10th
International Conference on Learning Representations, volume 2022. ICLR, 2022.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Yaru Niu, Rohan R Paleja, and Matthew C Gombolay. Multi-agent graph-attention communication
and teaming. In AAMAS, volume 21, pp. 20th, 2021.

Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement
learning. Applied Intelligence, 53(11):13677–13722, 2023.

Ling Pan, Tabish Rashid, Bei Peng, Longbo Huang, and Shimon Whiteson. Regularized softmax
deep multi-agent q-learning. Advances in Neural Information Processing Systems, 34:1365–1377,
2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems, pp. 10199–
10210, 2020a.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Siqi Shen, Mengwei Qiu, Jun Liu, Weiquan Liu, Yongquan Fu, Xinwang Liu, and Cheng Wang.
Resq: A residual q function-based approach for multi-agent reinforcement learning value factor-
ization. Advances in Neural Information Processing Systems, 35:5471–5483, 2022.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In Interna-
tional conference on machine learning, pp. 5887–5896. PMLR, 2019.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropaga-
tion. Advances in neural information processing systems, 29, 2016.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

Lesong Tao, Miao Kang, Jinpeng Dong, Songyi Zhang, Ke Ye, Shitao Chen, and Nanning Zheng.
Poaql: A partially observable altruistic q-learning method for cooperative multi-agent reinforce-
ment learning. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
15076–15082. IEEE, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Lipeng Wan, Zeyang Liu, Xingyu Chen, Xuguang Lan, and Nanning Zheng. Greedy based value
representation for optimal coordination in multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 22512–22535. PMLR, 2022.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations, 2021.

Jianhong Wang, Yuan Zhang, Yunjie Gu, and Tae-Kyun Kim. Shaq: Incorporating shapley value
theory into multi-agent q-learning. Advances in Neural Information Processing Systems, 35:
5941–5954, 2022.

Tonghan Wang, Jianhao Wang, Chongyi Zheng, and Chongjie Zhang. Learning nearly decompos-
able value functions via communication minimization. In International Conference on Learning
Representations, 2020.

S Whiteson, M Samvelyan, T Rashid, CS De Witt, G Farquhar, N Nardelli, TGJ Rudner, CM Hung,
PHS Torr, and J Foerster. The starcraft multi-agent challenge. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, pp. 2186–2188, 2019.

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv
preprint arXiv:2002.03939, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611–24624, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A RELATED WORK

Reinforcement learning has been extensively studied in single-agent scenarios. However, when
extended to multi-agent scenarios, a key issue is that the action space grows exponentially with the
number of agents. To address this issue, existing approaches can be broadly categorized into two
paradigms. The first paradigm treats other agents as part of the environment and focuses on learning
individual value functions or policies. The second paradigm considers all agents as a unified entity
and learns joint value functions with specific forms.

A.1 OVERVIEW OF EXISTING WORK

Independent Learning Methods Among the first category of methods, IQL Tan (1993) is one
of the earliest methods where agents independently learn individual action values. However, this
method does not account for the dynamic policies of other agents. Subsequent work addresses this
limitation by learning individual policies with joint action values. For example, COMA Foerster
et al. (2018) introduces a counterfactual baseline in actor-critic framework, while MAPPO Yu et al.
(2022) adapts PPO Schulman et al. (2017) to multi-agent settings.

Value Factorization Methods The second category of methods factorizes the joint value func-
tion into individual components. Monotonic factorization is an intuitive way to satisfy the IGM
principle. For example, VDN Sunehag et al. (2017) represents the joint action value as the sum
of individual action values. QMIX Rashid et al. (2020b) represents the joint action value with a
monotonic network that uses a positive weighted linear to deal with individual action values. Qat-
tan Yang et al. (2020) uses multi-head attention Vaswani et al. (2017) to generate mixing weights.
NA2Q Liu et al. (2023) improves interpretability through Taylor expansion-based monotonic factor-
ization. However, monotonic factorizations may suffer from representational limitations. To address
this issue, QTRAN Son et al. (2019) and WQMIX Rashid et al. (2020a) pay more attention to the
estimation of greedy action values. Specifically, QTRAN introduces a compensatory base to relax
the non-optimal errors, while WQMIX reduces the weight on approximation of non-optimal parts.
Other methods like QPLEX Wang et al. (2021) and ResQ Shen et al. (2022) design complete fac-
torizations of the joint action value. QPLEX uses the maximum of a mixer value and a non-positive
advantage function. ResQ combines a monotonic function with a non-positive function. GVR Wan
et al. (2022) takes a different approach by making u∗ the only stable point, although this requires
numerous approximations.

Communication-based Methods Other researchers study communication mechanisms in multi-
agent systems. CommNet Sukhbaatar et al. (2016) enables multi-round communication for sharing
observations. DIAL Foerster et al. (2016) designs gradient-based messages exchanged between
agents. To decide with whom to communicate, TarMAC Das et al. (2019) uses a signature-based
soft attention mechanism, and MAGIC Niu et al. (2021) uses graph neural networks. NDQ Wang
et al. (2020) combines value factorization and communication by mixing individual Qs through com-
munication. ACE Li et al. (2023) models communication as intermediate processes in the Markov
Decision Process. In addition to parallel decision making, recent methods study sequential decision
making through communication. PG-AR Fu et al. (2022) randomizes the order of decision making.
SeqComm Ding et al. (2024) use intentions to prioritize agents in sequential decision-making.

Other MARL Methods Recent works introduce additional innovations in MARL. RES Pan et al.
(2021) addresses value overestimation using regularized softmax losses. MAVEN Mahajan et al.
(2019) enhances exploration efficiency through randomized latent vectors. LIGS Mguni et al. (2022)
proposes learnable intrinsic rewards to improve multi-agent cooperation. SHAQ Wang et al. (2022)
integrates the Shapley value by modeling Q functions as marginal contributions of agents.

A.2 RELATIONSHIP TO EXISTING WORK

Relationship to Weighted QMIX Both Weighted QMIX Rashid et al. (2020a) and the single-
round value factorization in our method aim to enhance convergence toward actions superior to
a given action. Weighted QMIX achieves this by reducing the fitting weight for inferior actions,
whereas our method assigns them the minimum target value. However, Weighted QMIX cannot

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

guarantee strict improvement over the given action, as suboptimal actions may be stable points. In
contrast, our method ensures strict improvement by preventing actions with minimum target value
from becoming stable points. Moreover, even when Weighted QMIX obtains the optimal action, it
may fail to stabilize at this optimum because the optimal action might not be a stable point. Although
our method similarly risks deviating from the optimal action, we mitigate this by early termination
when no further improvement is detected.

Relationship to GVR The main idea of GVR Wan et al. (2022) is to establish the optimal action
as a stable point while rendering other actions non-stable. However, this approach requires a prior
knowledge of the optimal action, which is fundamentally infeasible in MARL since finding the opti-
mal action is the primary objective. Consequently, GVR inevitably relies on approximations of ideal
conditions, which not only increase the complexity but may also convert certain suboptimal actions
into stable points. In contrast to GVR, our method converts inferior actions into unstable points
in each iteration. Determining inferior actions is computationally straightforward, and by assign-
ing them the minimum target value, existing monotonic value factorizations can effectively exclude
these inferior actions. Therefore, our method strictly improves the current action through iterations,
providing a more reliable approximation to the optimal action. Furthermore, GVR only defines the
concept of stable points within the policy distribution, and its analysis is limited to a particular form
of QMIX. In contrast, we not only explicitly identify the origin of stable points (characterized by the
lag between changes in non-differential variables and gradient-based parameters) but also provide a
formal definition. In addition, we provide a comprehensive analysis on existing value factorization
methods, unifying their suboptimal performance under a common explanation: the presence of at
least one non-optimal stable point.

Relationship to Communication Our method can also be interpreted as a multi-round commu-
nication algorithm within a parallel execution framework. In each iteration, agents exchange pre-
decision information and generate new decisions through communication. The key challenge in such
frameworks is ensuring that post-communication actions strictly improve upon pre-communication
actions - failure to achieve this prevents agents from reaching consensus, resulting in suboptimal
solutions. In our method, by rendering actions inferior to pre-communication ones as non-stable
points, our approach not only guarantees the improvement of post-communication actions but also
approaches the optimal action within sufficient communication rounds. In contrast, sequential exe-
cution frameworks essentially extend single-step action selection across agents, where each agent’s
action depends on higher-priority agents’ choices. Such frameworks not only demonstrate lower
efficiency but also introduce additional concerns regarding policy convergence and suboptimality
caused by execution ordering Ding et al. (2024).

B DEFINITION

In this section, we will define some important concepts that have been used in previous work but
have not yet been rigorously defined.

B.1 MONOTONIC PAYOFF

Note that the definition of monotonicity for payoffs differs from that in functions of real variables,
as there is no ordering relationship defined in the action space, the domain of the payoff. We define
an order relation on the actions based on the function F as follows:
Definition 2 (Order Relation ⪰). Let u1

i , u
2
i ∈ Ui be two actions of agent i. For the function F , if

the order relation between u1
i and u2

i is u1
i ⪰ u2

i , then

F (u1
i ,u−i) ≥ F (u2

i ,u−i),∀u−i ∈ U−i (9)

where u−i = (u1, · · · , ui−1, ui+1, · · · , un) is the joint action without ui.

The function F can be replaced with Qjt, a measurement of payoff. However, the order relation
based on Qjt exists over the entire action space only if Qjt is monotonic, which is defined as follows:

Definition 3 (Monotonic Qjt). ∀s ∈ S , if for every agent i and any two actions u1
i , u

2
i ∈ Ui, there

exists an order relation that is either u1
i ⪰ u2

i or u2
i ⪰ u1

i , then Qjt is monotonic.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Monotonic Non-monotonic

𝑢𝑖
1

𝑢𝑖
2

𝑢𝑖
1

𝑢𝑖
2

𝑢𝑖
2

𝑢𝑖
2

𝑢𝑖
1

𝑢𝑖
1

𝑢𝑖
1 ≽ 𝑢𝑖

2 𝑢𝑖
1 ≽ 𝑢𝑖

2 𝑢𝑖
1 ≽ 𝑢𝑖

2
𝑢𝑖
2 ≽ 𝑢𝑖

1

Figure 8: An illustration of Definition 3. We intercept curves corresponding to different u−i and
check whether their monotonicity with respect to ui is consistent.

Table 4 shows the payoff matrices with different monotonicity. Monotonic factorization methods
can easily obtain the optimal solution in monotonic cases ((a) and (b) in Table 4) and sometimes
in non-monotonic cases ((c) in Table 4). However, monotonic factorizations struggle to obtain the
optimal solution in highly non-monotonic cases ((d) in Table 4).

9 8 7
6 5 4
3 2 1

(a) Monotonic

8 9 7
3 2 1
5 6 4

(b) Monotonic

9 0 0
0 5 0
0 0 0

(c) Non-monotonic

9 -9 -9
-9 5 0
-9 0 0

(d) Highly non-monotonic

Table 4: Payoff matrices with different monotonicity, where the value in row r and column c denotes
the payoff of joint action u = (r, c). (a): A monotonic payoff matrix. (b) A monotonic payoff matrix
generated by rearranging the rows and columns of (a). (c) A non-monotonic payoff matrix, where
the relation between any two rows or columns is partially ordered. (d) A highly non-monotonic
payoff matrix, where the relation between any two rows or columns is largely unordered.

B.2 IDEAL QMIX

The objective of QMIX is to find individual Qs and Qmon that minimize the MSE between Qtot and
Qjt, which is defined in Equation (10) for certain s ∈ S 3.

Ltot(s) =
∑
u

π(u|s)(Qmon(s,u)−Qjt(s,u))
2 (10)

Since the relationship between individual Qs and Qmon is monotonic, the magnitude relationship
of Qmon is constrained by that of individual Qs, which is ∀i ∈ {1, 2, · · · , n},∀ui, vi ∈ Ui,u−i ∈
U−i = U1 × · · · Ui−1 × Ui+1 × · · · × Un

(Qmon(s,u−i, ui)−Qmon(s,u−i, vi))(Qi(s, ui)−Qi(s, vi)) ≥ 0 (11)

Combining the objective defined in Equation (10) and the constrain defined in Equation (11), we
get the ideal optimization problem that QMIX solves. In practice, QMIX uses the network as a
monotonic function fmon to represent the constraint between individual Qs and Qmon, and applies
stochastic gradient descent (SGD) to minimize the objective. In this way, Qi is updated based on
its gradient which involves ∂fmon

∂Qi
. However, since how ∂fmon

∂Qi
varies is unknown, to avoid this

confounding factor, we assume that QMIX can obtain the optimal combination of individual Qs and

3To simplify the discussion, we focus on the fully observable environment by replacing τ with s in Qtot

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Qmon that satisfies Equation (11), and consequently minimize Ltot. We name QMIX based on this
assumption as the ideal QMIX which is defined as follows 4:

Definition 4 (Ideal QMIX). Let Q be the set of pairs (Q, Qmon), where the individual action values
Q = (Q1, Q2, · · · , Qn) and Qmon satisfy Equation (11). For a joint action value Qjt and policy π,
Q and Qmon of the ideal QMIX converge to Q∗ and Q∗

mon which satisfy ∀s ∈ S

Q∗, Q∗
mon ∈ argmin

(Q,Qmon)∈Q

∑
u

π(u|s)(Qmon(s,u)−Qjt(s,u))
2 (12)

where Qtot = Qmon in QMIX.

As for other value factorization methods such as WQMIX Rashid et al. (2020a) and ResQ Shen
et al. (2022) where Qmon appears in their design, we also assume they share the same property as
the ideal QMIX, which aligns with the assumption used in their papers.

From Definition 4, the ideal QMIX obtains a monotonic representation of Qjt with the minimum
Ltot. We illustrate this process in matrix cases: Given the order of rows and columns, we can find
the monotonic matrix with local minimum Ltot by solving the constraint optimization problem. To
find the monotonic matrix with minimum Ltot, we compare Ltot for all possible orders. We give an
example of the ideal QMIX shown in Table 5.

8 -12 -12
-12 3 0
-12 0 5

(a) Qjt

Ltot=36.22
-8 -8 -8
-8 1 1
-8 1 5

(b) Q∗
tot

Ltot=45.56
8 -5 -5
-5 -5 -5
-5 -5 -5

(c) Q∗
tot for u = u∗

Table 5: (a): A non-monotonic payoff matrix, where the value presented in row r and column
c denotes the Qjt value of joint action (r, c). (b): The monotonic representation with the global
minimum Ltot. (c) The optimal monotonic representation constrained by u = u∗. Since the Ltot

of (b) is less than the Ltot of (c), Qtot of the ideal QMIX under uniform visitation (ϵ = 1) will
converge to (b), which fails to get the global optimal action.

C PROOF

C.1 THEOREM ON MRVF

Theorem 1. For a joint action value Qjt with a finite action space U and s ∈ S, consider a sequence
{uk|uk ∈ U}, if ∀k > 1, Qjt(s,u

k) > Qjt(s,u
k−1) when uk−1 ̸= u∗, then ∃K > 0,uK = u∗.

Proof. Let Uk
+ = {u|Qjt(s,u) > Qjt(s,u

k),u ∈ U}. Assume that ∀k > 0,uk ̸= u∗. Since
∀k > 1, Qjt(s,u

k) > Qjt(s,u
k−1) when uk−1 ̸= u∗, Uk

+ ⊂ Uk−1
+ . Therefore, we have |Uk−1

+ | −
|Uk

+| ≥ 1. Then, we have ∀k > 0, |Uk
+| ≤ |U1

+| − (k − 1). If we choose K > |U | + 1, since
U1

+ ⊆ U , we get |UK
+ | < |U1

+| − |U | ≤ 0. Since ∀k > 0, |Uk
+| ≥ 0, the assumption is false.

Therefore, we prove that ∃K > 0,uK = u∗.

Lemma 1. For the converged Qtot of the idea QMIX defined in Equation (12) and ϵ-greedy policy
π that is continuous for ϵ ∈ [0, 1] and satisfies Equation (13), we have lim

ϵ→0+
Q∗

tot(s, ũ) = Qjt(s, ũ)

for s ∈ S.

lim
ϵ→0+

π(u|s) =
{
1 u = ũ

0 otherwise
(13)

4The policy π is omitted in the definition by T. Rashid et al. Rashid et al. (2020a). However, it plays a
crucial role in shaping Qtot and will be extensively analyzed in our proof.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. Assume that ∃∆ > 0,∀E > 0,∃ϵ ∈ (0, E), |Q∗
tot(s, ũ)−Qjt(s, ũ)| ≥ ∆ The loss of Q∗

tot
defined in Equation (12) is

L∗
tot =

∑
u

π(u|s)(Q∗
tot(s,u)−Qjt(s,u))

2

=
∑
u̸=ũ

π(u|s)(Q∗
tot(s,u)−Qjt(s,u))

2 + π(ũ|s)(Q∗
tot(s, ũ)−Qjt(s, ũ))

2

≥ π(ũ|s)∆2

(14)

Let Q
′

tot(s, ·) ≡ ∆
2 +Qjt(s, ũ). The loss of Q

′

tot is

L
′

tot =
∑
u̸=ũ

π(u|s)(∆
2

+Qjt(s, ũ)−Qjt(s,u))
2 + π(ũ|s)(∆

2
)2 (15)

Consider L∗
tot − L

′

tot, we have

L∗
tot − L

′

tot ≥ π(ũ|s)(∆
2
)2 −

∑
u̸=ũ

π(u|s)(∆
2

+Qjt(s, ũ)−Qjt(s,u))
2 (16)

Notice that

lim
ϵ→0+

(π(ũ|s)(∆
2
)2 −

∑
u̸=ũ

π(u|s)(∆
2

+Qjt(s, ũ)−Qjt(s,u))
2) = (

∆

2
)2 > 0 (17)

Therefore, ∃E > 0,∀ϵ ∈ (0, E), L∗
tot > L

′

tot which is against with condition that Q∗
tot satisfies

Equation (12). Thus, the assumption is false. We have ∀∆ > 0,∃E > 0,∀ϵ ∈ (0, E), |Q∗
tot(s, ũ)−

Qjt(s, ũ)| < ∆ which means lim
ϵ→0+

Q∗
tot(s, ũ) = Qjt(s, ũ).

Theorem 2. Consider a non-constant joint action value Qjt(s, ·) (∀s ∈ S,∀C ∈ R, Qjt(s, ·) ̸≡ C)
with finite state space S and action space U . For the ideal QMIX defined in Equation (12) and
the centralized ϵ-greedy policy π defined in Equation (8), we have ∀s ∈ S,∃E ∈ (0, 1),∀ϵ ∈
(0, E),∀u ∈ argminu Qjt(s,u), u is not a stable point.

Proof. For s ∈ S, Assume that ∀Es ∈ (0, 1],∃ϵ ∈ (0, Es),∃Q∗
tot that Qjt(s,u

∗) =

minu Qjt(s,u) and ũ = u∗ (u∗ is a stable point). We define U+ = {u|Qjt(s,u) >

minu Qjt(s,u)} and U− = U − U+ . Since lim
ϵ→0+

Q∗
tot(s,u

∗) = Qjt(s,u
∗) (Lemma 1 and

ũ = u∗), we have ∃E0
s ∈ (0, 1],∀ϵ ∈ (0, E0

s), Q
∗
tot(s,u

∗) < minu∈U+ Qjt(s,u). Thus,
∀u ∈ U+, since Q∗

tot(s,u) ≤ Q∗
tot(s,u

∗) < Qjt(s,u), consider a term of L∗
tot, we have

L∗
tot(u) = π(u|s)(Q∗

tot(s,u)−Qjt(s,u))
2

>
ϵ

|U |
(Q∗

tot(s,u
∗)−Qjt(s,u))

(18)

Therefore, for the loss of Q∗
tot defined in Equation (12), we have

L∗
tot =

∑
u

π(u|s)(Q∗
tot(s,u)−Qjt(s,u))

2

>
ϵ

|U |
∑

u∈U+

(Q∗
tot(s,u

∗)−Qjt(s,u))
2 + (1− ϵ+

ϵ

|U |
)(Q∗

tot(s,u
∗)−Qjt(s,u

∗))2
(19)

Consider certain u+ ∈ U+. We define Q
′

tot as

Q
′

tot(s,u) =

{
Qjt(s,u

+) u = u+

Q∗
tot(s,u

∗) otherwise
(20)

The loss of Q
′

tot defined in Equation (12) is (ũ = u∗)

L
′

tot =
ϵ

|U |
(

∑
u∈(U+−{u+})

(Q∗
tot(s,u

∗)−Qjt(s,u))
2 +

∑
u∈U−

(Q∗
tot(s,u

∗)−Qjt(s,u
∗))2)

+ (1− ϵ+
ϵ

|U |
)(Q∗

tot(s,u
∗)−Qjt(s,u

∗))2

(21)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Comparing L∗
tot and L

′

tot, we have

L∗
tot − L

′

tot >
ϵ

|U |
((Q∗

tot(s,u
∗)−Qjt(s,u

+))2 − |U−|(Q∗
tot(s,u

∗)−Qjt(s,u
∗))2) (22)

Notice that
f(x) = (x−Qjt(s,u

+))2 − |U−|(x−Qjt(s,u
∗))2 (23)

is a continuous function and lim
x→Qjt(s,u∗)

f(x) = (Qjt(s,u
∗) − Qjt(s,u

+))2 > 0. Since

lim
ϵ→0+

Q∗
tot(s,u

∗) = Qjt(s,u
∗), we have ∃E1

s ∈ (0, 1],∀ϵ ∈ (0, E1
s), f(Q

∗
tot(s,u

∗)) > 0. There-

fore, we find Es = min{E0
s , E

1
s} ∈ (0, 1] that ∀ϵ ∈ (0, Es) L∗

tot > L
′

tot, which is against
with the condition that Q∗

tot satisfies Equation (12). Thus, ∃Es ∈ (0, 1],∀ϵ ∈ (0, Es),∀u ∈
argminu Qjt(s,u), u is not a stable point. Finally, we complete the proof by taking E =
min
s∈S

Es.

C.2 THEOREM ON RESQ

We will prove that u∗ is the unique yet weakly stable point of ResQ Shen et al. (2022). Here, we
present the expression of Qtot of ResQ.

Qtot(s,u) = Qmon(s,u) + wr(s,u) ∗Qr(s,u) (24)
where Qmon = fmon(Q1, Q2, · · · , Qn), Qr ≤ 0 and

wr(s,u) =

{
0 u = ũ

1 otherwise
(25)

We provide a specific instance for the weak stability of ResQ in Table 6. Then, we prove that the
weak stability occurs in general cases in Theorem 3.

8 -12 -12
-12 3 0
-12 0 5

(a) Qjt

8 8 8
8 8 9
8 8 8

(b) Qmon

0 -20 -20
-20 -5 -9
-20 -8 -4

(c) wr ∗Qr

Table 6: This table shows the weak stability of ResQ for a specific Qjt in (a), where we let ũ = u∗

initially to check whether ResQ will stabilize at u∗. We highlight the values related to ũ in red and
u in blue. Qtot is the sum of Qmon in (b) and wr ∗ Qr in (c), which is identical to Qjt (Ltot = 0).
However, since u ̸= u∗ may happens, u∗ is not a strongly stable point for ResQ.

Lemma 2. For a joint action value Qjt and s ∈ S , ∀ũ ∈ U , we can find Qtot with Ltot = 0 and
u ̸= ũ.

Proof. We can find a Qmon that satisfies

(1) Qmon ≥ Qjt

(2) Qmon(s, ũ) = Qjt(s, ũ)

(3) u ̸= ũ

Here we give a specific Qmon that satisfies these conditions:

Qmon(s,u) =

{
Qjt(s, ũ) u = ũ

maxu Qjt(s,u) + ∆ otherwise
(26)

where ∆ > 0. We let Qr = Qjt −Qmon. Since Qmon ≥ Qjt, we have Qr ≤ 0.

∀u ̸= ũ, we have Qjt(s,u) = Qtot(s,u) = Qmon(s,u)+1∗Qr(s,u). For ũ, since Qmon(s, ũ) =
Qjt(s, ũ), we have Qjt(s, ũ) = Qtot(s, ũ) = Qmon(s, ũ) + 0 ∗Qr(s, ũ).

Therefore, ∀u ∈ U , we have Qjt(s,u) = Qtot(s,u), which means Ltot = 0. Thus, we find Qtot

with Ltot = 0 and u ̸= ũ.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem 3. For a joint action value Qjt and s ∈ S, ∀u∗ ∈ argmaxu Qjt(s,u), u∗ is a weakly
stable point of ResQ Shen et al. (2022), while ∀u− /∈ argmaxu Qjt(s,u) is not a stable point of
ResQ.

Proof. First, we illustrate that u∗ is a stable point. Assume that ũ = u∗. We can find a Qmon that
satisfies

(1) Qmon ≥ Qjt

(2) Qmon(s, ũ) = Qjt(s, ũ)

(3) u = u∗

where Qmon ≡ Qjt(s,u
∗) is a specific case.

We let Qr = Qjt −Qmon. Since Qmon ≥ Qjt, we have Qr ≤ 0.

∀u ̸= ũ, we have Qjt(s,u) = Qtot(s,u) = Qmon(s,u)+1∗Qr(s,u). For ũ, since Qmon(s, ũ) =
Qjt(s, ũ), we have Qjt(s, ũ) = Qtot(s, ũ) = Qmon(s, ũ) + 0 ∗Qr(s, ũ).

Therefore, we have Ltot = 0, which is the lower bound of loss. However, according to Lemma 2,
we can find Q

′

tot with L
′

tot = Ltot while u
′
̸= u∗. Thus, u∗ is a weakly stable point of ResQ.

Second, we illustrate that u− is not a stable point. Let ũ = u−, Assume that there exists Qtot

satisfying u = u− and achieving the minimum loss. According to Lemma 2, we have Ltot = 0,
otherwise Ltot is not the minimum.

Since Ltot = 0, we have ∀u ∈ U , Qtot(s,u) = Qjt(s,u). For u−, we have Qtot(s,u
−) =

Qjt(s,u
−). For u∗, we have Qtot(s,u

∗) = Qjt(s,u
∗).

However, since Qtot(s,u
−) ≥ Qtot(s,u

∗) due to u = u−, we get a contradiction where
Qjt(s,u

−) ≥ Qjt(s,u
∗). Therefore, u− is not a stable point.

D STABILITY ANALYSIS OF QPLEX

In this section, we provide a suboptimal case of QPLEX in matrix games. Here, we present the
expression of Qtot of QPLEX.

Qtot(τ ,u) =
∑
i

max
ui

Qi(τi, ui) +
∑
i

wi(τ ,u) ∗ (Qi(τi, ui)−max
ui

Qi(τi, ui)) (27)

where wi(τ ,u) ≥ 0.

The suboptimal cases of QPLEX are presented in Table 7 in Table 8, where there are three stable
points but only one is optimal.

For QPLEX, stable point occurs when the gradients of Q and w satisfy that ∀i ∈ {1, 2, · · · , N}
∂Ltot

∂Qi

= 0,
∂Ltot

∂wi
≥ 0 (28)

where ∂Ltot

∂wi(τ ,u) > 0 only when wi(τ ,u) = 0. Here, we provide the mathematical expressions of
the gradients of Q and w in Equation (29) for verification.

∂Ltot

∂Qi(τi, ui)
=



∑
u∈U(ui=ui)

(Qtot(τ ,u)−Qjt(τ ,u))wi(τ ,u) ui ̸= ui

∑
u∈U(ui=ui)

(Qtot(τ ,u)−Qjt(τ ,u))wi(τ ,u)+∑
u∈U

(Qtot(τ ,u)−Qjt(τ ,u))(1− wi(τ ,u))
ui = ui

∂Ltot

∂wi(τ ,u)
=(Qtot(τ ,u)−Qjt(τ ,u))(Qi(τi,ui)−Qi(τi,ui))

(29)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where U(ui = ui) = {u|u ∈ U ,ui = ui}.

8 -12 -12
-12 3 0
-12 0 5

(a) Qjt

Q1

Q2 2.77 0.31 0.37

5.23 8 -12 -12
0.49 -12 3 0
0.33 -12 0 5

(b) Q∗
tot

Q1

Q2 1.82 3.09 0.70

1.42 5.5 -12 -12
2.41 -12 5.5 0
1.09 -12 0 5

(c) Q∗
tot

Q1

Q2 1.29 0.66 3.41

1.38 6.5 -12 -12
0.68 -12 3 0
3.09 -12 0 6.5

(d) Q∗
tot

0.25 1.51 1.71
4.21 0.48 0.10
4.08 0.59 0.09

(e) w∗
1

0.00 17.64 5.01
8.53 7.65 1.41
5.30 4.16 0.15

(f) w∗
1

0.00 6.70 10.86
3.35 0.26 2.71
5.10 1.03 1.92

(g) w∗
1

2.01 8.13 8.34
0.85 1.12 3.12
4.62 2.08 1.05

(h) w∗
2

0.00 9.07 5.22
13.71 7.94 2.29
8.23 3.76 0.13

(i) w∗
2

0.00 2.58 2.50
4.93 1.05 0.23
8.72 2.36 1.47

(j) w∗
2

Table 7: The example of QPLEX in which u∗ is not the only one stable points. The quantities of
Q∗

tot and w∗
i listed in the same column correspond to a particular stable point, where we highlight

u∗ in bold.

8 0 0
0 3 0
0 0 5

(a) Qjt

Q1

Q2 4.14 1.85 0.73

3.86 8 0 0
0.44 0 3 0
0.54 0 0 5

(b) Q∗
tot

Q1

Q2 2.57 2.75 0.99

2.59 5.5 0 0
2.75 0 5.5 0
1.11 0 0 5

(c) Q∗
tot

Q1

Q2 2.86 0.57 3.15

3.06 6.5 0 0
0.82 0 3 0
3.35 0 0 6.5

(d) Q∗
tot

0.94 1.31 1.10
2.34 0.83 0.91
2.41 1.49 0.83

(e) w∗
1

0.00 33.25 1.48
8.82 13.44 0.44
3.00 3.35 0.16

(f) w∗
1

0.00 2.91 22.31
2.13 0.54 2.57
4.35 1.53 14.12

(g) w∗
1

1.44 3.50 2.34
0.76 0.95 1.43
0.66 1.34 0.07

(h) w∗
2

0.00 19.52 2.99
31.74 20.50 3.13
3.35 1.73 0.14

(i) w∗
2

0.00 2.20 0.10
3.89 0.83 1.94

22.74 2.53 6.15

(j) w∗
2

Table 8: The example in which QPLEX has two suboptimal stable points, while QMIX can easily
obtain the optimum. The quantities of Q∗

tot and w∗
i listed in the same column correspond to a

particular stable point, where we highlight u∗ in bold.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E EXPERIMENTAL SETUP

We adopt a setup similar to PyMARL Whiteson et al. (2019). We use the implementation of QMIX,
QTRAN, QPLEX, WQMIX, ResQ, and NA2Q Liu et al. (2023) from their open-source reposito-
ries 5 6 7 8. These codes are released under the Apache License V2.0.

All algorithms apply TD(0) to update Qtot including ResQ, as TD(λ) result in catastrophic perfor-
mance in 5m_vs_6m while no measurable improvement in other scenarios. The hyperparameters
for all algorithms and environments are presented in Table 9. For WQMIX, we set α = 0.1 for all
environments. For MRVF, we use three rounds of value factorization, with a probability p = 0.2 for
sampling preselected actions.

For hardware, we run experiments on an NVIDIA 3090 GPU for risk-reward games, predator-prey
tasks, and SMAC scenarios (excluding bane_vs_bane). In addition, we use an NVIDIA A800 GPU
for MRVF in 2c_vs_64zg and MMM2 scenarios.

Hyperparameter Value Description
Batch Size 32 Number of episodes per update
Replay buffer size 5000 Maximum number of stored episodes
Target update interval 200 Frequency of updating the target network
Initial ϵ 1.0 The initial ϵ in the ϵ-greedy policy
Final ϵ 0.05 The final ϵ in the ϵ-greedy policy
Anneal steps for ϵ 50,000 Number of steps for linearly decay of ϵ
Discount γ 0.99 Discount of future return
Test interval 10,000 Frequency of test evaluation
Test episodes 32 Number pf episodes to test

Table 9: The hyperparameters for experiments

Network structure We provide details of the network structures presented in Figure 4. The indi-
vidual Q network and the mixing network (Qtot) are shown in Figure 9, and the joint action value
network (Q̂jt) is shown in Figure 10.

The individual Q network processes the observation using a linear layer followed by a GRU Chung
et al. (2014) with 64 hidden dimensions. The mixing network processes the state with 2-layer linear
network (64 hidden dimension) and processes the individual Qs with 2-layer linear network, where
the weights and bias (generated by the state’s linear processor) have 32 hidden dimension. Inspired
by the embedding module Bengio et al. (2003) Mikolov et al. (2013), we generate the features of uk

by selecting them from the continuous features (128 dimensions) of the observation or state. For the
concatenated feature, we double the hidden dimensions to 128.

The network structure of Q̂jt is similar to that of Qtot, with two key differences: First, we use a
3-layer linear network to process the state. Second, the output of the individual network has 64
dimensions. We input the state to Qjt in all SMAC scenarios except 3s5z and 3s_vs_5z, because
masking observations of dead units loses critical information for return prediction in complex sce-
narios. In the bane_vs_bane scenario, we replace the embedding feature with the action index to
avoid GPU out-of-memory errors.

5https://github.com/oxwhirl/pymarl
6https://github.com/oxwhirl/wqmix
7https://github.com/xmu-rl-3dv/ResQ
8https://github.com/zichuan-liu/NA2Q

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

MLP

GRU

MLP

Embed

𝜏𝑡
𝑖

ℎ𝑡−1
𝑖 ℎ𝑡

𝑖

ഥ𝒖𝑡
𝑘−1

𝑸𝑖 𝜏𝑡
𝑖 , ഥ𝒖𝑡

𝑘−1,⋅

𝑄0 𝜏𝑡
0, ഥ𝒖𝑡

𝑘−1, 𝑢𝑡
𝑘,0

𝜋

Individual

𝑄0

Individual

𝑄𝑛
⋯

𝜏𝑡
𝑖 ഥ𝒖𝑡

𝑘−1 𝜏𝑡
𝑖 ഥ𝒖𝑡

𝑘−1

𝜏𝑡
𝑖

Mixing Network

𝑄𝑛 𝜏𝑡
𝑛, ഥ𝒖𝑡

𝑘−1, 𝑢𝑡
𝑘,𝑛

𝜋

MLP

MLP

|𝑤 𝑠𝑡 |, 𝑏 𝑠𝑡

𝒔𝑡

|𝑤 𝑠𝑡 |, 𝑏 𝑠𝑡

𝒔𝑡

Embed

ഥ𝒖𝑡
𝑘−1

ഥ𝒖𝑡
𝑘−1

𝑸

⋯

𝑄tot 𝝉𝑡, ഥ𝒖𝑡
𝑘−1, 𝒖𝑡

𝑘

Figure 9: The network structure of Qtot.

MLP

GRU

MLP

𝜏𝑡
𝑖

ℎ𝑡−1
𝑖

ℎ𝑡
𝑖 𝜋

Individual

𝑄0

Individual

𝑄𝑛
⋯

𝜏𝑡
0

Mixing Network

෠𝑄jt 𝝉𝑡, ഥ𝒖𝑡
𝑘−1

𝜋

MLP

MLP

𝑤 𝑠𝑡 , 𝑏 𝑠𝑡

𝒔𝑡

𝑤 𝑠𝑡 , 𝑏 𝑠𝑡

𝒔𝑡

𝒇

⋯
⋯

𝑼𝑖

𝐿

𝜏𝑡
𝑛

𝑓 𝜏𝑡
𝑖 ,⋅

Figure 10: The network structure of Qjt.

E.1 ONE-STEP GAME

We randomly generate Qjt of the risk-reward game with the following steps: First, randomly gen-
erate the individual reward vectors ri ≥ 0. Second, we randomly generate a bijection U → U
that maps ui to another action vi for all agents i, which is the exchange of rows and columns for a

matrix. Finally, we let Qjt(u) = sign(v) ∗
n∑

i=0

ri(vi) where sign(v) = 1 if all agents choose the

same mapped action, and sign(v) = −1 otherwise. Here, we give an example of the risk-reward
matrix in Table 10.

r1

r2 3 4 5

0 3 -4 -5
1 -4 5 -6
2 -5 -6 7

(a)

r1

r2 5 4 3

2 7 -6 -5
0 -5 -4 3
1 -6 5 -4

(b)

Table 10: An example of the risk-reward matrix. (a): the risk-reward matrix before action mapping,
where positive rewards are in the diagonal. (b): the risk-reward matrix after action mapping, which
scatters positive rewards.

We constrain the values of Qjt to the interval [−10, 10]. To achieve this, we first generate the reward
vectors uniformly from [0, 1], then divide each component by n, and finally multiply the result by

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

10. The normalized return in Figure 5 is defined as

return(u) =



Qjt(u)− min
u+∈U+

Qjt(u
+)

max
u+∈U+

Qjt(u+)− min
u+∈U+

Qjt(u+) Qjt(u) ≥ 0

Qjt(u)− min
u−∈U−

Qjt(u
−)

min
u−∈U−

Qjt(u−) Qjt(u) < 0

(30)

where U+ = {u+|u+ ∈ U , Qjt(u
+) ≥ 0} and U+ ∪ U− = U .

E.2 PREDATOR PREY

The predator-prey task Böhmer et al. (2020) involves a multi-agent scenario where 8 predators co-
operate to capture 8 prey. Each predator can choose from six possible actions: four directional
movements (up, down, left, right), staying still, or attempting to "capture" prey.

Capture Conditions

• A predator can only select the "capture" action when occupying the same position with
prey.

• Successful capture requires at least two predators simultaneously choosing "capture" on
the same prey.

• Successful capture yields +10 reward.
• If only one predator chooses "capture" for a prey, the team receives a punishment.
• The captured prey and successful predators are immediately removed from the environ-

ment. Observations of removed agents are masked with zeros.

E.3 STARCRAFT II MULTI-AGENT CHALLENGE

The SMAC (SC2.4.10 version) involves two opposing teams competing to defeat each other. Players
control one team’s units with the objective of eliminating all enemy units. The reward system
consists of three components:

Reward

• Kill Reward: +10 for eliminating an enemy unit by reducing its HP to zero.
• Win Reward: +200 for defeating all enemy units and winning the game.
• Damage: The amount of change in an enemy’s HP.

In the original PyMARL implementation Whiteson et al. (2019), rewards are enforced as positive by
taking absolute values. However, in scenarios where enemies can regenerate health/shields, agents
might artificially inflate rewards by allowing recovery and reinflicting damage, rather than focusing
on winning. To address this, we adopt the reward without taking its absolute values.

We illustrate why monotonic value factorizations excel in SMAC from two aspects. First, the in-
dividual action has slight impact on returns. Take 3s_vs_5z scenario for example, the enemy unit,
Zealot, has 100 health and 50 recoverable shields. Thus, the maximum return is

150 ∗ 5︸ ︷︷ ︸
Damage

+10 ∗ 5︸ ︷︷ ︸
Kill

+ 200︸︷︷︸
Win

= 1000 (31)

In particular, damages constitutes the major component of return (75% proportion). Within a step,
an individual agent’s action only affects its damage, and its action will not cause a sharp change
of the state. Consequently, a slight deviation from the optimal joint action is insufficient to cause a
significant drop in return. Therefore, monotonic value factorization advantages in SMAC, as without
the sharp drop in return near the global optimum, monotonic value factorization can attain the global
optimum.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Second, choosing the optimal individual action also performs the best in average. We consider a
"focus fire" case that frequently appears in SMAC. In this case, two agents fight with three enemies
denoted as "A", "B", and "C", and focusing fire on the same target is the trick to win. Those enemies
are identical units, except that Enemy A currently has less HP. We present the Qjt of this case in
Table 11. Although Qjt in Table 11 is non-monotonic, the average return of choosing action A is
superior to that of choosing other actions. In this case, monotonic value factorization can obtain the
optimal value.

A B C ∅
A 2.2 1.1 1.1 -0.9
B 1.1 2 1 -1
C 1.1 1 2 -1
∅ -0.9 -1 -1 -2

Table 11: Qjt in the "focus fire" case of the SMAC environment: The action is denoted by its attack
target, and the action ∅ means no attack. The data in the table only represents the relative advantages
of each joint action rather than actual values. The agents receive a higher return (+2) when both
focus fire on the same target, a moderate return (+1) when attacking different targets, and lower
returns for not attacking. Additionally, attacking low-health units (Enemy A) grants a +0.1 bonus to
the returns.

F ABLATION STUDY

F.1 EXPERIMENT AND ANALYSIS

We analyze the impact of multi-round iteration and strictness in improving greedy action (Equa-
tion 5). We design MRVF-single, which uses a single round, and MRVF-non-strict, which also uses
the original Qjt as the target value of Qtot (Equation 6) for round k > 1. We present the results in
risk-reward games (Figure 11), predator-prey tasks (Figure 12), and SMAC (Figure 13).

0 10000 20000 30000 40000 50000
Step

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Te
st

 N
or

m
al

ize
d

Re
tu

rn

3agents_5actions

0 10000 20000 30000 40000 50000
Step

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Te
st

 N
or

m
al

ize
d

Re
tu

rn

5agents_5actions

0 10000 20000 30000 40000 50000
Step

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Te
st

 N
or

m
al

ize
d

Re
tu

rn

5agents_8actions

MRVF MRVF-single MRVD-non-strict

Figure 11: Test normalized return in the risk-reward games.

The results presented in Figure 11 and Figure 12 demonstrate that the strict improvement contributes
to better performance in highly non-monotonic scenarios. The explanation for this is that MRVF-
non-strict cannot guarantee improvement in the greedy action compared to the preceding round,
which prevents it from obtaining the optimal action within a given number of rounds.

As for approximately monotonic scenarios like SMAC, Figure 13 shows a slight improvement com-
pared to single-round factorization. In these scenarios, the improvement comes from additional
information in decision-making. Specifically, by feeding uk−1

t into the individual Q networks, each
agent knows the intentions of others and could infer their states accordingly. Without global infor-
mation, this additional information contributes to better decision-making. In addition, due to the
approximate monotonicity of the payoff, the first round of MRVF already produces a satisfactory
solution, which explains the slightness of the improvement.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

5

10

15

20

25

30

35

40

Te
st

 R
et

ur
n

predator prey 0

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

40

30

20

10

0

10

20

30

40

Te
st

 R
et

ur
n

predator prey -2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

40

30

20

10

0

10

20

30

40

Te
st

 R
et

ur
n

predator prey -5

MRVF MRVF-single MRVD-non-strict

Figure 12: Test return in the predator-prey tasks with punishments 0 (left), -2 (middle), and -5
(right).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 W
in

 R
at

e

5m_vs_6m

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

3s5z

MRVF MRVF-single MRVD-non-strict

Figure 13: Test win rate in the SMAC benchmarks.

F.2 DISCUSSION ON ROUNDS

We will discuss how many rounds MRVF requires to obtain the optimal solution under scenarios
with different levels of non-monotonicity. As discussed in Section F.1, a second round is required to
obtain the optimal solution in highly non-monotonic environments. To support our claim, we calcu-
late the proportion of uk

t = ut for each round k throughout test episodes, as shown in Figure 14.

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

3agents_5actions

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

5agents_5actions

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

5agents_8actions

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

predator prey 0

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

predator prey -2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

predator prey -5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

3s_vs_5z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

5m_vs_6m

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

3s5z

Round 1 Round 2 Round 3

Figure 14: Proportion of final actions generated in each round throughout test episodes.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

From Figure 14, we find that in the predator-prey environment, as the penalty increases, the pro-
portion of second-round decisions rises from 30% to nearly 50%. In contrast, for approximately
monotonic scenarios such as SMAC, the proportion of second-round decisions typically remains
around 20%, and the performance gap between multi-round and single-round is small. In addition,
a third round is generally unnecessary unless the reward is so sparse that the second round fails to
find the optimal action. As shown in Figure 14, third-round decisions account for only about 5%
across all predator-prey and SMAC scenarios. Nevertheless, to balance performance and efficiency,
we recommend starting with a maximum of three rounds and adjusting it based on the proportion.

G LIMITATIONS

Although MRVF achieves significant improvements over existing methods in highly non-monotonic
scenarios, it faces the issue of high computational complexity: MRVF requires calculating Qtot and
Qjt in each round. Although we reduce computational complexity by reusing parts of network out-
puts (e.g., individual features in Qjt) and early terminating the multi-round iterations for evaluation,
the computational complexity of MRVF is still O(K(N + 1)), while that of QMIX is at O(N). In
addition, as shown in Equation (6) and Equation (5), the update of Qtot depends on the results of
Qjt. As a result, the update of Qtot is delayed compared to standard TD learning, which leads to a
slow rise of the win rate in 3s_vs_5z (Figure 7). However, learning directly from Qjt is inevitable for
environments that are not retraceable. Otherwise, if exploration of branching trajectories is allowed,
TD targets could be used in the update of Qtot.

We summarize the reasons why MRVF may fail to achieve the optimal solution in practice: First,
the approximation errors of Q̂jt propagate to Qtot, which may prevent the Qtot from reaching the
global optimum. Second, monotonic factorization is not ideal. Since we use a neural network as
the mixing network, the approximation errors introduced by the network make it difficult to obtain
the Qtot that minimizes Ltot. Third, insufficient sampling may further amplify these approximation
errors. As shown in Figure 5, MRVF struggles to achieve optimal performance in 5agents_8actions.

H SUPPLEMENTARY EXPERIMENT AND ANALYSIS

In this section, we provide analysis and experiments that are not included in the main part of this
paper.

H.1 STARCRAFT II MULTI-AGENT CHALLENGE

In Section 3.3, we analyze the stability of QPLEX Wang et al. (2021), WQMIX Rashid et al. (2020a)
and ResQ Shen et al. (2022). We reveal that suboptimal stable points are the main cause of the sub-
optimality in highly non-monotonic scenarios including risk-reward games and predator-prey tasks
with large punishments. However, in Figure 7, these methods show inferior performance compared
to monotonic value factorizations in SMAC scenarios. We provide the following explanation for this
phenomenon.

QPLEX and ResQ From Table 8 in Appendix D, in cases where QMIX can easily obtain the
global optimum, QPLEX may still fail due to multiple suboptimal stable points. In addition, for
ResQ, Theorem 3 shows that u∗ is a weakly stable point in general cases. The weak stability of
ResQ is particularly severe because any action can potentially become u (Lemma 2). Consequently,
QPLEX and ResQ do not perform well in SMAC.

WQMIX WQMIX is designed for highly non-monotonic scenarios, and from Figure 5 and Fig-
ure 6, it outperforms monotonic value factorization methods. Although WQMIX is supposed to
perform similarly to QMIX in weakly non-monotonic or monotonic scenarios, it shows poor perfor-
mance in SMAC (Figure 7). We provide three factors resulting in this phenomenon.

(1) The joint action-value network: Individual features constitute only a small portion of the
mixer’s input in the joint action-value network. Consequently, the joint action-value net-
work hardly distinguishes different actions, since action information is primarily embedded
in these individual features.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(2) Decentralized ϵ-greedy policy: The decentralized ϵ-greedy policy (defined in Equation 2)
combined with the weight in WQMIX enhances the convergence to the local optimum,
since the decentralized ϵ-greedy policy explores locally and the weight discards lower val-
ues around the local optimum.

(3) Weight: When α < 1, the weight reduces sample efficiency, as downweighting samples is
similar to discarding them.

We conduct additional experiments to support our analysis. We replace the network of Q̂jt with
that of ours and replace the decentralized ϵ-greedy policy with the centralized one. The result in
Figure 15 demonstrates that these three factors do result in the performance gap between WQMIX
and QMIX.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 W
in

 R
at

e

3s_vs_5z

WQMIX WQMIX (our Qjt) WQMIX (centralized) WQMIX (both)

Figure 15: Test win rate in 3s_vs_5z. WQMIX (Q̂jt) represents WQMIX replacing the network of
Q̂jt with that of ours. WQMIX (centralized ϵ) represents WQMIX replacing the policy with the
centralized one. WQMIX (both) represents WQMIX with both modifications.

H.2 SUPER-HARD SCENARIO OF SMAC

We conduct additional experiments on the 6h_vs_8z scenario, which is a particularly challenging
scenario where the "focus fire" is a key tactic for victory Whiteson et al. (2019). We adopt a setup
similar to the bane_vs_bane scenario, except that we set anneal steps for ϵ to 106. The results in Fig-
ure 16 show a slight difference between MRVF and QMIX, supporting our analysis in Appendix E.3.

0 1 2 3 4 5
Step 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 W
in

 R
at

e

6h_vs_8z

MRVF QMIX

Figure 16: Test win rate in 6h_vs_8z in SMAC benchmarks.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

H.3 PREDATOR PREY

From the results in Figure 6, QMIX fails to obtain the optimal action when the penalty is -2. How-
ever, an analysis based on ideal QMIX will reveal that the optimal action is a stable point for any
ϵ ∈ (0, 1]. In fact, this does not indicate a theoretical flaw. An explanation is that suboptimal actions
are also stable points as ϵ → 0.

We will provide an analysis of the stable points when ϵ → 0. Taking two agents as an example, the
reward function for the predator-prey environment with a penalty of -2 is given in Equation 32.

reward =


10 −2 · · · −2
−2 0 · · · 0

...
...

. . .
...

−2 0 · · · 0

 (32)

where the reward is a matrix of shape 6× 6.

Consider ũ that neither agent executes the "capture" action, which yields a reward of 0. As ϵ → 0,
Q∗

tot that minimizes Ltot is given in Equation 33.

lim
ϵ→0

Q∗
tot|ũ̸=u∗ =


−2 −2 · · · −2
−2 0 · · · 0

...
...

. . .
...

−2 0 · · · 0

 , L∗
tot = 0 + 0 ∗ o(ϵ) + 122 ∗ o(ϵ2) (33)

where u∗ = ũ, and both correspond to the agents that perform the "non-capture" action. Therefore,
"non-capture" action pairs are stable points in predator prey with penalty -2.

Since suboptimal actions are in the majority, it is difficult for the greedy action to converge to the
optimal one. However, because suboptimal actions are stable points only when ϵ is small, we can
enhance the convergence to the optimal action by slowing down the decay of ϵ. To support our
analysis, we conduct additional experiments on QMIX with ϵ fixed at 1 and QMIX with ϵ decaying
in one million steps, as shown in Figure 17. From the result in predator prey -2, agents successfully
learn to capture prey in both settings, yet they still fail when the penalty is -5. In addition, increasing
the weight of the optimal action in the policy can enhance the convergence to the optimal action. For
example, the weighting mechanism in WQMIX serves a similar purpose. However, these methods
still fail when the penalty is set to -5.

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

40

30

20

10

0

10

20

30

40

Te
st

 R
et

ur
n

predator prey -2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

40

30

20

10

0

10

20

30

40

Te
st

 R
et

ur
n

predator prey -5

QMIX (50k -anneal) QMIX (= 1) QMIX (1mil -anneal)

Figure 17: Test return in the predator prey tasks with punishments -2 (left), and -5 (right). QMIX
(50k ϵ-anneal) represents QMIX with 5 ∗ 104 anneal steps for ϵ. QMIX (1mil ϵ-anneal) represents
QMIX with 106 anneal steps for ϵ. QMIX (ϵ = 1) represents QMIX with ϵ = 1 constantly.

27

	Introduction
	Background
	Dec-POMDP
	Monotonic Value Factorization
	Gradient-Free Components in Value Factorization

	Suboptimality of existing single-round factorization
	Transition of the greedy action
	Convergence of the greedy action
	Suboptimality of existing factorization

	Approach optimum through multi-round factorization
	Designs for the strict improvement condition
	Overview of the architecture
	Sampling

	Experiment
	One-Step Game
	Predator Prey
	StarCraft II Multi-Agent Challenge

	Conclusion
	Related Work
	Overview of Existing Work
	Relationship to Existing Work

	Definition
	Monotonic Payoff
	Ideal QMIX

	Proof
	Theorem on MRVF
	Theorem on ResQ

	Stability Analysis of QPLEX
	Experimental Setup
	One-Step Game
	Predator Prey
	StarCraft II Multi-Agent Challenge

	Ablation Study
	Experiment and Analysis
	Discussion on Rounds

	Limitations
	Supplementary Experiment and Analysis
	StarCraft II Multi-Agent Challenge
	Super-hard Scenario of SMAC
	Predator Prey

