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Abstract001

Continued pretraining (CPT) is a popular ap-002
proach to adapt existing large language models003
(LLMs) to new languages. When doing so,004
it is common practice to include a portion of005
English data in the mixture, but its role has006
not been carefully studied to date. In this007
work, we show that including English does008
not impact validation perplexity, yet it is crit-009
ical for the emergence of downstream capa-010
bilities in the target language. We introduce011
a language-agnostic benchmark for in-context012
learning (ICL), which reveals catastrophic for-013
getting early on CPT when English is not in-014
cluded. This in turn damages the ability of the015
model to generalize to downstream prompts in016
the target language as measured by perplexity,017
even if it does not manifest in terms of accuracy018
until later in training, and can be tied to a big019
shift in the model parameters. Based on these020
insights, we introduce curriculum learning and021
exponential moving average (EMA) of weights022
as effective alternatives to mitigate the need023
for English. All in all, our work sheds light024
into the dynamics by which emergent abilities025
arise when doing CPT for language adaptation,026
and can serve as a foundation to design more027
effective methods in the future.028

1 Introduction029

Despite achieving remarkable results in multilin-030

gual tasks like machine translation (Zhu et al.,031

2024), existing large language models (LLMs) are032

notoriously English-centric, and their performance033

has been reported to drop significantly in less-034

resourced languages (Shliazhko et al., 2024; Yong035

et al., 2023; Scao et al., 2023; Talat et al., 2022).036

This has motivated a large body of work to extend037

existing LLMs to new languages through continued038

pretraining (CPT) (Gogoulou et al., 2024; Etxaniz039

et al., 2024; Luukkonen et al., 2023; Yong et al.,040

2023). In its most basic form, CPT uses an existing041
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Figure 1: Continued pretraining of Llama 2 7B on
Basque data with and without including English data.
Both models exhibit similar validation perplexity on
Basque (top), yet the variant including English signifi-
cantly outperforms on downstream tasks (bottom).

LLM as initialization and fine-tunes all parame- 042

ters on next-token prediction over a monolingual 043

corpus in the target language. 044

Nevertheless, vanilla CPT is rarely used in prac- 045

tice. Instead, there are two techniques that are 046

broadly used in the literature: (i) mixing target lan- 047

guage data with English or other languages in the 048

original mixture (Etxaniz et al., 2024; Gogoulou 049

et al., 2024), and (ii) using LORA (Hu et al., 2021) 050

or other parameter-efficient fine-tuning methods 051

(Cui et al., 2024; Yong et al., 2023). There are 052

inherent advantages to these techniques that have 053

typically been used to justify their adoption, such 054
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as preserving English performance when including055

data in this language (Fujii et al., 2024; Cui et al.,056

2024), or reducing memory requirements when per-057

forming parameter-efficient fine-tuning (Hu et al.,058

2021). Perhaps more intriguingly, there have also059

been isolated reports of these two techniques im-060

proving performance in the target language (Ji et al.,061

2024; Etxaniz et al., 2024).062

Through systematic experiments, we corrobo-063

rate that including English data when doing CPT is064

critical to obtain strong in-context learning (ICL)065

performance in the target language (§4.1). For066

instance, we obtain considerably better results on067

Basque downstream tasks when performing CPT of068

Llama 2 on a mixture of Basque and English data,069

as opposed to Basque alone (Figure 1b). But, to our070

surprise, we find that both mixtures perform at par071

in terms of Basque perplexity (Figure 1a). We find072

this to be counterintuitive: both models do equally073

well in terms of the pretraining objective in the074

target language,1 yet downstream capabilities only075

emerge in one of the variants, challenging prior076

observations in monolingual settings that models077

with a similar perplexity tend to obtain similar per-078

formance in downstream tasks (Du et al., 2024; Xia079

et al., 2023).080

We present an empirical study of the training081

dynamics that lead to this behavior. We introduce082

Copain, a new benchmark to evaluate ICL in a083

language-agnostic manner (§3), which reveals that084

CPT without English suffers from a catastrophic085

forgetting of its ICL capabilities in the first few086

steps of training (§4.2). We further show that the087

ability of this variant to generalize to downstream088

prompts gets severely damaged at this exact same089

period as measured by perplexity, even if it does not090

manifest in terms of accuracy until much later in091

training (§4.3). Finally, we show that this behavior092

can be tied to a strong shift in the model parameters093

when English is not included in the CPT mixture094

(§4.4).095

Based on these insights, we explore two alterna-096

tive approaches that mitigate the need for English.097

First, we show that including English in the first098

10% training steps in a curriculum learning fashion099

is sufficient, confirming that the critical period is100

concentrated in the first stage of CPT (§5.1). Sec-101

ond, we eliminate the need for English by applying102

the exponential moving average (EMA) of weights,103

1Note that perplexity is the exponential of cross-entropy,
which is used as the loss.

which acts as a regularizer to limit the parameter 104

shift (§5.2). 105

All in all, our work sheds light into the dynam- 106

ics that condition the emergence of downstream 107

abilities when doing CPT for language adaptation, 108

which transcend what is directly observable by in- 109

specting the training loss. We validate our findings 110

by designing two CPT variants that mitigate the 111

need for English, and we hope that our analysis 112

can serve as a foundation to design more effective 113

language adaptation methods in the future. 114

2 Experimental Setup 115

Our focus is to analyze the CPT of English-centric 116

LLMs for language adaptation. To that end, we 117

conduct separate experiments on 3 diverse target 118

languages: Basque, Arabic and Indonesian. We 119

next detail our experimental settings. 120

Base models. We use Llama 2 7B (Touvron et al., 121

2023) as the base model for most of our experi- 122

ments. We base this choice on the original pre- 123

training of Llama 2 being notoriously English- 124

centric,2 making it a good fit to study CPT under 125

language shift. To understand the impact of scale 126

and different base models, we run additional exper- 127

iments on Basque using Llama 2 13B, Llama 3.1 128

8B (Dubey et al., 2024) and Gemma 2 9B (Riviere 129

et al., 2024). 130

Training data. For Basque, we use the Latxa cor- 131

pus (Etxaniz et al., 2024), which consists of 4.7B 132

tokens of high-quality Basque text. For Arabic 133

and Indonesian, we randomly sample documents 134

from their respective CulturaX corpus (Nguyen 135

et al., 2023). We ensure all languages have to- 136

ken count parity (4.5∼4.7B tokens per language). 137

When including English in the CPT mixture, we 138

use a random sample of 500k English documents 139

from the Pile (Gao et al., 2020). For all languages, 140

the English data accounts for 20% of the total CPT 141

tokens. 142

Hyperparameters. All models are continued 143

pretrained for 10k steps on 4× 8 A100 GPUs. The 144

learning rate is set to 1E-04 with cosine scheduling 145

and a 10% warm-up ratio. The maximum sequence 146

length is set to 4096 and the effective batch size 147

to 256. These hyperparameters were chosen in ac- 148

cordance with Etxaniz et al. (2024); we did not 149

2According to the authors, their pretraining dataset in-
cluded 0.03% of Indonesian and less than 0.005% of Basque
and Arabic.
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observe any significant impact when varying them150

in our early experiments (see Appendix A).151

Evaluation. For all models, we report the per-152

plexity on the validation split of their respective153

data. We assess the performance on downstream154

tasks using multiple-choice benchmarks. For Ara-155

bic and Indonesian, we report accuracy on Ara-156

bicMMLU (Koto et al., 2024) and IndoMMLU157

(Koto et al., 2023), respectively. Both benchmarks158

consist of 5 sub-tasks measuring language profi-159

ciency, reasoning ability, and cultural knowledge160

of their respective language. For Basque, we re-161

port average accuracy across EusTrivia, EusProfi-162

ciency, EusExams and EusReading (Etxaniz et al.,163

2024). All benchmarks use multiple choice prompt-164

ing (Robinson et al., 2023) with 5-shot examples,165

except for EusReading which uses 1-shot (see Ap-166

pendix C for details). In addition, we report ac-167

curacy in Copain—a new language-agnostic ICL168

benchmark we introduce in §3—for all languages.169

3 Copain: A Language-Agnostic ICL170

Benchmark171

Multiple-choice benchmarks require both (i) a good172

level of ICL (so the LLM generates an answer in173

the expected format based on the few-shot demon-174

strations), and (ii) knowledge of the relevant task175

in the target language. Intuitively, (i) is not tied to176

any specific language, so the initial models should177

already be capable on it, while (ii) should improve178

as we perform CPT in the target language. How-179

ever, the fact that these two aspects are conflated180

in downstream metrics makes it hard to understand181

why certain variants underperform others. Are they182

less effective at learning the target language? Or183

do they become weaker at ICL?184

So as to evaluate ICL in a language-agnostic185

manner, we introduce the Contextual pattern186

inference (Copain) benchmark. As shown in Ta-187

ble 1, the input of the task is a list of either numbers188

or characters, and the model needs to output the189

element in the list that meets certain criterion. How-190

ever, there is no natural language instruction in the191

prompt, so the model needs to infer the task from192

the few-shot demonstrations.193

The benchmark comprises 7 tasks. Each task194

consists of 150 examples, totaling 1050. The tasks195

are to identify: (i) the minimum/maximum/median196

number in a list of 3 integers, (ii) the even/odd num-197

ber in a list of 4 integers, and (iii) the alphabetically198

first/last character in a list of 3 Latin characters. We199

Task Example Prompt

Max. integer in list
85, 24, 63∶ 85
29, 47, 79∶ 79
59, 77, 41∶ 77
19, 81, 88∶

Min. integer in list
85, 24, 63∶ 24
29, 47, 79∶ 29
59, 77, 41∶ 41
19, 81, 88∶

Median integer in list
85, 24, 63∶ 63
29, 47, 79∶ 47
59, 77, 41∶ 59
19, 81, 88∶

Even integer among odd list
21, 71, 68, 95∶ 68
25, 35, 58, 83∶ 58
92, 71, 61, 29∶ 92
97, 66, 1, 3∶

Odd integer among even list
24, 76, 60, 51∶ 51
83, 52, 22, 52∶ 83
32, 68, 10, 79∶ 79
64, 87, 0, 28∶

First character alphabetically
w, y, a∶ a
b, m, k∶ b
v, h, p∶ h
y, e, p∶

Last character alphabetically
w, y, a∶ y
b, m, k∶ m
v, h, p∶ v
y, e, p∶

Table 1: Example Copain tasks using 3-shot demon-
strations. The model’s predictions are evaluated using
exact match accuracy.

use exact-match accuracy as the evaluation metric. 200

4 The Impact of English in CPT 201

In this section, we study the impact of English 202

when doing CPT for language adaptation, covering 203

the final performance at the end of CPT (§4.1), 204

the learning trajectory (§4.2), the generalization 205

behavior as measured by perplexity (§4.3), and the 206

parameter shift (§4.4). 207

4.1 Final performance 208

We start by analyzing the final performance of the 209

models at the end of CPT. As shown in Table 2, 210

CPT brings big gains over all base models in terms 211

of target language perplexity. Both CPT variants 212

perform at par: the one with English wins in 3 213

instances and the one without wins in the remaining 214

3, but the differences are small in all cases. This 215

suggests that including English does not directly 216

help language modeling in the target language, at 217

least in terms of the pretraining objective itself. 218

However, we do observe notable differences in 219

downstream performance. Just as with perplexity, 220

all CPT models outperform their corresponding 221

base model. But, in this case, the variant including 222
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PPL Dwn. Cop.
Basque (eu)
Llama 2 (7B) 23.64 27.43 44.67

+ CPT (eu+en) 3.35 34.14 43.43
+ CPT (eu) 3.58 28.89 20.12

Llama 2 (13B) 13.66 29.52 49.23
+ CPT (eu+en) 2.82 42.52 47.80
+ CPT (eu) 2.79 35.20 29.43

Llama 3.1 (8B) 2.18 42.31 41.32
+ CPT (eu+en) 1.73 55.75 42.04
+ CPT (eu) 1.82 54.84 41.19

Gemma 2 (9B) 2.28 42.22 51.90
+ CPT (eu+en) 1.52 49.39 50.23
+ CPT (eu) 1.48 45.95 43.59

Arabic (ar)
Llama 2 (7B) 4.36 32.45 44.67

+ CPT (ar+en) 2.09 34.34 32.60
+ CPT (ar) 2.12 32.67 23.80

Indonesian (id)
Llama 2 (7B) 6.27 26.65 44.67

+ CPT (id+en) 3.25 30.79 30.79
+ CPT (id) 3.05 26.92 27.34

Table 2: Main results for each base model and its
continued pretraining with and without English. We
report validation perplexity in the target language (PPL),
average downstream accuracy in the target language
(Dwn; see §2 for details), and Copain accuracy (Cop).

English obtains considerably better results, beating223

the variant not including English in all cases. The224

weaker the base model is in a given language, the225

more helpful including English tends to be, with a226

difference over 7 points for Llama 2 13B in Basque.227

Results in Copain show a similar trend: the CPT228

variant with English outperforms the one without229

in all cases. The differences tend to be large (e.g.,230

around 20 points for Llama 2 in Basque), although231

they greatly vary across languages and base mod-232

els. However, different from perplexity and down-233

stream tasks, it is the initial model that obtains the234

best results in most cases (5 out of 6). This suggests235

that doing CPT for language adaptation tends to236

harm the ICL capabilities of LLMs, and including237

English helps mitigate this.238

All in all, our results show that including En-239

glish during CPT leads to considerably better down-240

stream performance. However, this difference does241

not manifest in perplexity, and can instead be at-242

tributed to a better preservation of the ICL capabil-243

ities of the original model.244

4.2 Learning Trajectory245

Our results so far were limited to the final perfor-246

mance of the models. In this section, we will look247
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Figure 2: Copain results for Llama 2 7B. Including
English during CPT retains over 94% of the original per-
formance, while not including it results in catastrophic
forgetting followed by a slow partial recovery.

at how their behavior evolves throughout CPT. To 248

that end, we will focus on Llama 2 7B in Basque, 249

for which we have previously observed one of the 250

biggest differences in final performance. 251

As shown in Figure 1a, the learning curve for 252

perplexity looks very similar regardless of whether 253

English is included or not. In contrast, downstream 254

performance shows an emergent behavior when 255

including English, with a sudden improvement of 256

8 points between steps 2k and 4k, while it never 257

takes off when English is not included (Figure 1b). 258

This challenges prior findings that models with 259

a similar perplexity obtain a similar downstream 260

performance, with certain abilities emerging when 261

perplexity falls below a certain threshold (Xia et al., 262

2023; Du et al., 2024). While those studies focused 263

on monolingual pretraining, we show that this be- 264

havior does not hold more broadly when doing CPT 265

for language adaptation. 266

Figure 2 shows that both CPT variants behave 267

differently in Copain too. When English is not in- 268

cluded, we observe catastrophic forgetting early on 269

training, with performance plummeting to nearly 270

zero in the first few steps. This is followed by a 271

slow improvement throughout the rest of training, 272

which is far from recovering the full performance 273

of the original model. The CPT variant with En- 274

glish suffers a more progressive degradation in the 275

first 2k steps, but it is very mild in comparison, and 276

performance remains nearly constant after that. 277

Based on these results, we hypothesize that there 278

is a critical period at the beginning of CPT, where 279

the strong distribution shift from switching to a 280

new language can result in a catastrophic forgetting 281

of the ICL capabilities of the model. This would 282

in turn prevent the emergence of downstream ca- 283
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pabilities later on, even if not directly impacting284

the training objective as reflected by the validation285

perplexity. Including English data in the mixture286

would alleviate this distribution shift, mitigating287

the catastrophic forgetting.288

4.3 Generalization Behavior289

We have so far established that including English290

data in CPT is critical for good downstream and291

ICL performance, despite not having an impact on292

validation perplexity. In other words, the two CPT293

variants perform similarly when evaluated in the294

training distribution,3 but generalize differently to295

few-shot tasks that are out of this distribution. How-296

ever, the two aspects are evaluated using different297

metrics (perplexity vs. accuracy). The former is298

a function of the training loss, but the latter is not299

directly tied to it, making it difficult to understand300

the nature of this different generalization behavior.301

To overcome this, we next formulate downstream302

tasks as conditional text generation, and use per-303

plexity to evaluate different models on it.304

Given a set of few-shot demonstrations C and305

a question Q, the model predicts the probability306

of each answer label A conditioned on the prefix307

prompt:308

P(A∣C,Q) =
T

∏
t=1

p(At∣C,Q < T ) (1)309

The perplexity of the answers aggregated over the310

entire test set can be computed as follows:311

PPL(A∣Q,C) = 2
− 1

N
∑N

i=1 logP (ai∣ci,qi) (2)312

We separately compute the perplexity of the cor-313

rect and incorrect answers. Intuitively, we want the314

gap between the two to be as high as possible, as315

strong models should assign a higher probability316

to correct answers than to incorrect answers. As317

shown in Figure 3, CPT with English is effective at318

achieving this: the perplexity of incorrect answers319

increases early on training, while the perplexity of320

correct answers remains constant or even slightly321

goes down. When English data is not included,322

the perplexity of both answers spikes in the first323

few steps of CPT. Even if it tends to stabilize later324

on, it stays high compared to the variant with En-325

glish. Moreover, the gap between the correct and326

the incorrect answers is much smaller.327

3Our training and validation datasets are obtained by taking
two random splits of the original corpora, and they thus come
from the same distribution.
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Figure 3: Perplexity of choice labels on Basque down-
stream tasks for Llama 2 7B. The variant without
English experiences a spike in perplexity simultaneous
with the drop in ICL (Figure 2). PPL of incorrect labels
are averaged.

In conclusion, when it comes to their pure lan- 328

guage modeling performance, both CPT variants 329

behave similarly in the training distribution. But, 330

when not including English, the ability to gener- 331

alize to multiple choice prompts that are out of 332

this distribution gets severely damaged after the 333

first few steps. Even if the difference in down- 334

stream accuracy becomes prominent later on train- 335

ing (around step 3k in Figure 1b), this shows that 336

the real damage happens much earlier, in line with 337

the drop observed for Copain in §4.2. 338

4.4 Parameters Shift 339

Our experiments so far have shown that excluding 340

English from the mixture causes catastrophic for- 341

getting of some emergent abilities in the first few 342

steps of CPT. In this section, we analyze the un- 343

derlying training dynamics that cause this behavior. 344

To that end, we measure how much the model pa- 345

rameters change with respect to their initial value 346

as training progresses. 347

As shown in Figure 4, the variant without En- 348

glish experiences a stronger parameter shift. The 349

shift rapidly builds up during the first few steps: 350

at the 100th step, the cumulative L2 distance is 351

7x higher for the variant without English, reach- 352

ing 15x by the 1000th step. In contrast, CPT with 353

English shows a more steady and regularized pa- 354

rameter change. In fact, the variant without English 355

undergoes a bigger change in the first 10 steps than 356

the variant with English during the entire course of 357

training. 358

We further run an experiment using LoRA with 359

Basque data only.4 We find that LoRA has a similar 360

4We set the rank to 512 following Talla et al. (2024), which
corresponds to 20% additional trainable parameters.
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Figure 4: L2 distance of model parameters from the
initial Llama 2 7B model throughout full-parameter CPT
and using LoRA. The CPT variant without English data
rapidly diverges from the initial weights during the first
1k steps. The divergence is slowed for the rest of the
training steps.

effect to including English, with an even smaller361

shift in model parameters.5 As reported in Ap-362

pendix B, this approach is quite effective at preserv-363

ing ICL performance, but barely improves over the364

initial model on downstream tasks. This suggests365

that overly constraining the parameter shift can hin-366

der learning the target language, while giving too367

much flexibility can cause catastrophic forgetting368

of ICL capabilities. Given its effectiveness at reduc-369

ing the parameter shift, this can explain why, with370

optimized hyperparameters, prior work has found371

LoRA to outperform full-parameter CPT in low-372

resource languages when English is not included373

(Ji et al., 2024; Yong et al., 2023).374

5 Alternatives to Including English Data375

Our analysis in §4 shows that (i) there is a critical376

period early on CPT where catastrophic forgetting377

occurs if not including English, and (ii) this phe-378

nomenon can be tied to a strong shift in the model’s379

parameters. Based on these insights, we next ex-380

plore two alternative CPT techniques that achieve381

the same effect.382

5.1 Curriculum Learning383

Even if the difference in downstream accuracy384

arises around step 3k (Figure 1b), our results on385

5LoRA reparameterizes the model weights as W = W0 +
AB, where W0 are the initial model weights (which are kept
frozen), and A and B are learnable, low-rank matrices. This
way, even if the number of learnable parameters is reduced,
one can still measure the parameter shift from W0 to W in a
way that is comparable to full fine-tuning.

PPL Dwn. Cop.
Basque (eu)
Llama 2 (7B) 23.64 27.43 44.67

+ CPT (full) 3.35 34.14 43.43
+ CPT (curr) 3.08 35.12 42.94

Llama 2 (13B) 13.66 29.52 49.23
+ CPT (full) 2.82 42.52 47.80
+ CPT (curr) 2.65 42.42 46.33

Arabic (ar)
Llama 2 (7B) 4.36 32.45 44.67

+ CPT (full) 2.09 34.34 32.60
+ CPT (curr) 2.00 34.53 39.66

Indonesian (id)
Llama 2 (7B) 6.27 26.65 44.67

+ CPT (full) 3.25 30.79 30.79
+ CPT (curr) 3.14 29.09 31.03

Table 3: Results with English data added for all train-
ing steps (full) and for the first 10% steps (curr). We
report validation perplexity (PPL), average downstream
accuracy (Dwn) and Copain accuracy (Cop).

ICL capabilities (Figure 2), perplexity of down- 386

stream choice labels (Figure 3) and parameter shift 387

(Figure 4) show that the divergence originates much 388

earlier. This can presumably be attributed to the 389

strong distribution shift when changing the train- 390

ing language in CPT, and including English would 391

serve to mitigate this. But what if we make the shift 392

more gradual in a curriculum learning fashion? Is 393

English really needed after the initial critical pe- 394

riod? 395

To answer this, we experiment with including 396

English during the first 1k steps, and omitting it 397

thereafter. As shown in Table 3, models trained 398

with this approach (curr) exhibit similar perfor- 399

mance compared to those where English is included 400

throughout the entirety of CPT (full). More con- 401

cretely, each variant wins in half of the cases for 402

both downstream and Copain accuracy. Interest- 403

ingly, the curriculum approach obtains the best 404

perplexity results in all cases, which we speculate 405

could be attributed to the additional training budget 406

in the target language from omitting English. In 407

any case, the differences are small in all cases. 408

All in all, these results corroborate that the role 409

of English is to provide a smoother transition to the 410

target language distribution. In line with our results 411

in Table 2, this also explains why certain models 412

like Llama 3.1 and Gemma 2 benefit less from 413

including English: those initial models are already 414

decent at modeling the target language distribution 415

(as reflected by their lower validation perplexity), 416

alleviating the distribution shift in CPT and making 417
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PPL Dwn. Cop
Basque (eu)
Llama 2 (7B) 23.64 27.43 44.67

+ CPT (eu+en) 3.35 34.14 43.43
+ CPT w/ EMA (eu) 2.98 34.89 42.66

Llama 2 (13B) 13.66 29.52 49.23
+ CPT (eu+en) 2.82 42.52 47.80
+ CPT w/ EMA (eu) 2.71 41.39 42.99

Arabic (ar)
Llama 2 (7B) 4.36 32.45 44.67

+ CPT (ar+en) 2.09 34.34 32.60
+ CPT w/ EMA (ar) 2.03 33.36 42.76

Indonesian (id)
Llama 2 (7B) 6.27 26.65 44.67

+ CPT (id+en) 3.25 30.79 30.79
+ CPT w/ EMA (id) 2.97 29.11 33.34

Table 4: Results using EMA of model parameters
without English data. We report validation perplexity
(PPL), average downstream accuracy (Dwn) and Copain
accuracy (Cop).

the smoother transition from including English less418

necessary.419

5.2 EMA of Model Parameters420

As discussed in §4.4, including English signif-421

icantly reduces the parameter shift during CPT,422

which can presumably explain why this variant is423

less prone to catastrophic forgetting. In this sec-424

tion, we explore taking the EMA of the parameters425

(Morales-Brotons et al., 2024; Cha et al., 2021)426

as an alternative approach to reduce the parameter427

shift without requiring any English data.428

More concretely, every η steps EMA sets the429

model parameters to a weighted average between430

their current value and their value η steps ago:431

θt = {θ
′
t if t ≤ 0 ∨ t mod η ≠ 0

αθt−η + (1 − α) θ′t otherwise
432

where θ′t and θt denote the model parameters at step433

t before and after EMA is applied, respectively, and434

α denotes the decay rate, which we set to 0.92 in all435

of our experiments. Unless otherwise indicated, we436

use η = 1 for Basque and Indonesian, and η = 10437

for Arabic.438

As shown in Table 4, EMA is competitive with439

conventional CPT without the need for any English440

data. More concretely, it obtains the best validation441

perplexity in all cases, and comparable results on442

downstream tasks. This corroborates that the ben-443

efit of including English can be tied to alleviating444

the parameter shift during CPT, and a similar effect445

can be obtained by using EMA as a regularizer.446

However, differences in Copain are bigger and 447

more inconsistent. For instance, EMA outperforms 448

vanilla CPT by 10 points for Llama 2 7B in Arabic, 449

but underperforms it by 5 points for Llama 2 13B 450

in Basque. In relation to this, we found that the in- 451

terval of applying EMA, η, had a big impact during 452

our preliminary experiments: lower values result in 453

more constrained parameter updates, which helps 454

mitigate the catastrophic forgetting of ICL capabil- 455

ities, but can potentially obstruct the learning of 456

the target language. Intuitively, we want to set η 457

so the shift in parameters is comparable to that of 458

vanilla CPT with English. But, as shown in Figure 459

5, this requires different values of η depending on 460

the language. While outside the scope of this work, 461

this prompts for future work to develop more ro- 462

bust methods that can find a good trade-off without 463

excessive hyperparameter tuning. 464

6 Related Work 465

CPT for Language Adaptation. The increased 466

availability of LLMs lays a strong foundation for 467

adapting models to new domains through CPT (Ab- 468

nar et al., 2021). Lately, CPT has been employed 469

to expand LLMs to new languages or boost their 470

performance in languages where they previously 471

struggled (Gogoulou et al., 2024). Compared to 472

training from scratch, CPT achieves promising re- 473

sults by efficiently transferring the knowledge and 474

abilities learned by English-centric LLMs to tar- 475

get languages (Fujii et al., 2024). Full-parameter 476

CPT has been shown to be efficient, provided that 477

sufficient data is available in the target language 478

(Etxaniz et al., 2024; Luukkonen et al., 2023; Yong 479

et al., 2023). For low-resource languages, LoRA 480

is often leveraged in CPT. Separate LoRA weights 481

can be trained for each target language (Fujii et al., 482

2024; Badola et al., 2023) or for all languages col- 483

lectively (Ji et al., 2024) and then merged with the 484

original weights. However, comprehensive inves- 485

tigations on the effectiveness of LoRA in CPT are 486

limited. 487

Stability Gap in Continual Learning. Contin- 488

ual learning aims to accumulate knowledge in deep 489

neural models (Parisi et al., 2019). It is often used 490

to extend pretrained models to new domains, tasks, 491

and languages. However, the ongoing distribution 492

shift leads to catastrophic forgetting of previous 493

capabilities (Ghunaim et al., 2023). A large body 494

of literature focused on mitigating this forgetting, 495

mentioning it often occurs as a transition phase to 496
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Figure 5: L2 distance of model parameters from the initial Llama 2 (7B) during CPT with and without English
data, and using EMA with interval (η) of 1 and 10.

the new distribution (Lange et al., 2023; Caccia497

et al., 2022): the phase is referred to as the Stability498

Gap. During this gap, models lose performance499

on previously learned tasks before recovering dur-500

ing training, or sometimes not at all. Our analysis501

shows an analogous yet extreme case of the sta-502

bility gap. Namely, we see a rapid loss in ICL on503

Copain (§3), from which the model struggles to504

recover.505

EMA of Model Weights. EMA stabilizes the506

training of deep learning models. It is often em-507

ployed in approaches that focus on improving the508

generalization of the final model or models close509

to convergence (Cha et al., 2021; Yang et al., 2019;510

Izmailov et al., 2018; Nikishin et al., 2018). Fur-511

thermore, EMA allows the use of higher learning512

rates, which is particularly beneficial for training513

LLMs with large effective batch sizes (Morales-514

Brotons et al., 2024). Lately, EMA gained wider515

use in alignment of LLMs (Ouyang et al., 2022).516

For example, it is used as a dynamic anchor in517

regularization to prevent forgetting of pretrained518

knowledge while optimizing for rewards during519

Reinforcement Learning from Human Feedback520

(RLHF) (Ramé et al., 2024) and Proximal Policy521

Optimization (PPO) (Schulman et al., 2017).522

7 Conclusion523

In this paper, we have shown that including English524

data in CPT can be critical for downstream capa-525

bilities to emerge in the new language, despite not526

having an impact in validation perplexity. This can527

be traced back to a critical period early on CPT,528

during which a drastic change in the training distri- 529

bution when switching to a new language causes 530

a big shift in the model parameters, which in turn 531

results in the catastrophic forgetting of its ICL ca- 532

pabilities. Based on these insights, we have shown 533

that curriculum learning and EMA can achieve the 534

same effect while reducing—or fully eliminating— 535

the need for English data, further validating our 536

findings. 537

While the focus of our work was to analyze the 538

dynamics by which emergent abilities arise during 539

CPT, we believe that our insights can be helpful to 540

develop better strategies for language adaptation 541

in the future. In particular, one of our key findings 542

is that controlling the degree of parameter shift is 543

critical for good downstream performance: giving 544

too much flexibility can result in the catastrophic 545

forgetting of ICL, but overly constraining it can 546

hinder the learning of the target language. Our re- 547

sults with both LoRA and EMA show that finding 548

the right balance can be very sensitive to hyper- 549

parameters, and even including English is not a 550

universal solution as reflected by the considerable 551

drop in Copain performance in the case of Arabic 552

and Indonesian (Table 2). In the future, we want to 553

explore more robust CPT approaches that can find 554

the optimal trade-off without the need for excessive 555

hyperparameter tuning. 556

Limitations 557

Our analysis of emergent abilities was limited to 558

multiple-choice downstream tasks and language- 559

agnostic ICL. It would be interesting to extend 560

8



the study to other capabilities, both from the per-561

spective of language-independent skills that might562

suffer from catastrophic forgetting, and target lan-563

guage skills that may or may not emerge depending564

on the training dynamics. However, the scarcity of565

relevant benchmarks, in particular in low-resource566

languages, hinders this study.567

In addition, our experiments were limited to in-568

cluding English in combination with the target lan-569

guage. Experimenting with other high-resource570

languages could provide additional insights, in par-571

ticular when closely related to the target language.572
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LR PPL Dwn. Cop.

Llama-2 (7B) – 23.64 27.43 44.67
+ CPT (eu) 1e0-4 3.58 28.89 20.12
+ CPT (eu) 5e0-5 8.76 27.98 26.43
+ CPT (eu) 1e0-5 8.29 27.42 29.43

Table 5: Preliminarily experiments to determine
whether lower learning rates can reduce the impact of
forgetting of the ICL capabilities during CPT. We use
the Llama-2-7B model and do CPT with Basque data
only.

PPL Dwn. Cop.

Llama-2 (7B) 23.64 27.43 44.67
+ CPT (eu+en) 3.35 34.14 43.43
+ CPT (eu) 3.58 28.89 20.12
+ LoRA (eu) 3.68 28.03 39.61

Table 6: Results of CPT using LoRA compared to full
parameter CPT with and without English.

A Initial Experiments784

In our initial experiments, we experimented with785

CPT of the Llama 2 7B model with Basque data786

only using smaller learning rates to reduce the im-787

pact of catastrophic forgetting. The results of these788

experiments are shown in Table 5. We find that789

reducing the learning rate up to a factor of 10 not790

only did not solve the problem, but it also hindered791

the learning of the new language.792

B Continued Pre-training using LoRA793

Table 6 shows the results of using LoRA in CPT794

compared to full parameter CPT with and without795

including English data.796

C Multiple Choice Prompting797

Computation798

In multiple choice prompting, the model is799

prompted with few-shot demonstrations c and800

a question q and the set of choices A =801

{A,B,C,D}. It generates a probability of the an-802

swer label aϵA conditioned on the prefix prompt803

given by Equation 1. The model’s answer is then804

set to:805

argmax
aϵA

(P (a∣c, q)) (3)806

Figure 6 shows examples from EusExams using807

multiple choice prompting.808

D Detailed Downstream Performance809

Table 7 reports detailed downstream results in810

the different subsets of Basque downstream tasks,811

while Table 8 does so for Arabic and Indonesian. 812

11



Figure 6: Example from EusExams using multiple choice prompting
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Basque (eu)
EusProf EusExams EusRead EusTrivia Average

Random 25.00 25.00 25.83 26.55 25.59

Llama 2 (7B) 24.09 28.84 27.27 29.50 27.43
+ CPT (eu+en) 29.75 34.20 28.12 44.49 34.14
+ CPT (eu) 25.53 28.70 27.27 34.07 28.89
+ CPT (eu+en) (curr) 30.70 33.48 30.68 45.65 35.12
+ CPT w/ EMA (eu) 30.10 33.45 31.25 44.78 34.89
+ CPT w/ EMA (eu) (curr) 28.19 31.69 30.39 41.63 32.97
+ LoRA (eu) 25.82 27.90 28.49 29.93 28.03

Llama 2 (13B) 25.90 29.66 28.98 33.53 29.52
+ CPT (eu+en) 41.73 40.05 36.09 52.22 42.52
+ CPT (eu) 33.35 32.08 28.69 46.70 35.20
+ CPT (eu+en) (curr) 41.92 40.19 35.39 52.18 42.42
+ CPT w/ EMA (eu) 40.80 40.30 32.67 51.77 40.39
+ CPT w/ EMA (eu) (curr) 40.80 40.30 32.67 51.77 40.39

Llama 3.1 (8B) 32.52 48.01 43.03 45.70 42.31
+ CPT (eu+en) 53.34 54.55 60.47 54.67 55.75
+ CPT (eu) 52.54 53.41 59.07 53.33 54.84

Gemma 2 (9B) 37.19 25.56 52.24 53.88 42.22
+ CPT (eu+en) 47.19 29.10 59.21 62.08 49.39
+ CPT (eu) 43.75 26.66 56.31 57.08 45.95

Table 7: Detailed downstream results on Basque

STEM Humanities Language Social
Science

Local
Culture

Arabic (ar)
Random 29.50 28.60 25.80 28.90 32.30

Llama 2 (7B) 33.70 32.65 28.40 32.80 34.70
+ CPT (ar+en) 35.02 35.23 32.36 33.82 35.31
+ CPT (ar) 34.40 35.18 28.24 31.73 33.79
+ CPT (ar+en) (curr) 37.23 34.51 32.35 31.78 36.76
+ CPT w/ EMA 34.48 33.22 31.52 31.34 36.23
+ CPT w/ EMA (curr) 33.21 31.95 29.02 30.13 34.45

Indonesian (id)
Random 21.90 23.50 24.40 23.40 26.60

Llama 2 (7B) 26.57 26.03 28.47 25.76 26.19
+ CPT (id+en) 28.78 30.85 32.33 31.92 30.19
+ CPT (id) 25.17 26.72 28.23 26.19 27.86
+ CPT (id+en) (curr) 28.64 28.73 30.97 27.39 29.72
+ CPT w/ EMA 28.45 27.67 31.40 27.84 30.21
+ CPT w/ EMA (curr) 27.64 26.37 28.97 26.97 27.38

Table 8: Detailed downstream results in Arabic and Indonesian
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