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Abstract

Text-to-Speech (TTS) systems have made sig-
nificant strides, enabling the generation of
speech from grapheme sequences. However,
for low-resource languages, these models still
struggle to produce natural and intelligible
speech. Grapheme-to-Phoneme conversion
(G2P) addresses this challenge by enhancing
the input sequence with phonetic information.
Despite these advancements, existing G2P sys-
tems face limitations when dealing with Per-
sian texts due to the complexity of Persian
transcription. In this study, we focus on en-
riching resources for the Persian language. To
achieve this, we introduce two novel G2P train-
ing datasets: one manually labeled and the
other machine-generated. These datasets com-
prise over five million sentences alongside their
corresponding phoneme sequences. Addition-
ally, we propose two evaluation datasets tai-
lored for Persian sub-tasks, including Kasre-
Ezafe detection, homograph disambiguation,
and handling out-of-vocabulary (OOV) words.
To tackle the unique challenges of the Persian
language, we develop a new sentence-level End-
to-End (E2E) model leveraging a two-step train-
ing approach, as outlined in our paper, to maxi-
mize the impact of manually labeled data. The
results show that our model surpasses the state-
of-the-art performance by 1.86% in word error
rate, 4.03% in Kasre-Ezafe detection recall, and
3.42% in homograph disambiguation accuracy.

1 Introduction

Grapheme is the smallest functional unit of a lan-
guage’s writing system, Phoneme is the smallest
distinguishable sound unit of a language, and G2P
is an important part of Text-to-Speech (TTS) and
Automatic Speech Recognition (ASR) (Yolchuyeva
et al., 2019a; Hasegawa-Johnson et al., 2020). E2E
TTS systems using grapheme as input perform
poorly on OOV words and homograph disambigua-
tion (Huang et al., 2023); This phenomenon is more
pronounced for low-resource languages. Using

G2P to convert the written form of text to pronun-
ciation form, and leveraging this form as input to
TTS systems can considerably improve the intelli-
gibility of the generated speech.

G2P is similar with the Machine Translation
(MT) task except that G2P is usually done on an
isolated word tokenized at a character level. As
a result of this character-level tokenization, trans-
formers have performed poorly on G2P unlike in
MT. However, it is shown that the reason behind
this anomaly is the lack of information while updat-
ing model parameters, and it can be resolved by in-
creasing the batch size (Wu et al., 2021). This find-
ing has led to high performance and efficiency in
transformer-based G2P models (Yolchuyeva et al.,
2019c). Following this success, knowledge trans-
fer has been investigated through multilingual and
multitask training (Zhu et al., 2022; Ploujnikov and
Ravanelli, 2022), and grapheme pretraining (Dong
et al., 2022). Some research has also focused on
transfer learning specifically for low-resource lan-
guages (Deri and Knight, 2016) and data augmenta-
tion methods for training large models (Vesik et al.,
2020).

Although in real world applications, G2P is
mainly employed for achieving better performance
in low-resource TTS, recent works on G2P sys-
tems mainly focus on high-resource languages
like, English and pay less attention to the chal-
lenges of G2P for other languages. The Persian
language (a.k.a Farsi) is a low-resource language
known as one of the most challenging languages
in this field (Mortensen et al., 2018; Sokolov et al.,
2019; Rezaei et al., 2022) due to its unique fea-
tures. Firstly, short vowels (/a/, /e/, and /o/) are not
written in Persian text resulting in a lack of informa-
tion while generating the phoneme sequence. Sec-
ondly, there are many homographs in Persian due
to the absence of short vowels e.g., /kerm/, /kerem/,
and /karam/ are identical in written form. Finally,
Kasre-Ezafe, an /e/ sound connecting nouns to ad-



jectives and descriptive nouns, is not written in
Persian text.

As a result of the mentioned features, a Persian
G2P system requires: morphology and phonology
to predict the omitted short vowels of each noun;
syntactical relations to detect Kasre-Ezafe; and se-
mantical knowledge to disambiguate homographs.
Therefore, unlike English G2P that uses words as
input, Persian G2P needs a phrase-level or sentence-
level input to achieve acceptable results. In this
work, the main goal is to improve G2P accuracy
and efficiency by employing sentence-level inputs.
However, lack of data and evaluation standards ap-
pear to be the main obstacles to achieving this goal.
We try to overcome these challenges by provid-
ing new training datasets and an evaluation bench-
mark tailored for specific features of the Persian
language. In this work, we introduce:

* Four sentence-level Perian G2P datasets:
machine-generated training data; manually la-
beled training data; manually labeled evalu-
ation data focusing on Kasre-Ezafe; manu-
ally labeled evaluation data focusing on ho-
mographs.

* A new sentence-level Persian G2P model and
a two-step training method for low-resource
settings.

* A new benchmark to unify Persian G2P evalu-
ation.

2 Related Work

The initial G2P systems used lexicons to map
words to pronunciations (Kim et al., 2015). How-
ever, a comprehensive coverage of all words is
not feasible as language varies over time, location,
and usage domain. Therefore, rule-based meth-
ods are employed alongside lexicons to alleviate
this problem (Ktosowski, 2022; Rezatkovi et al.,
2021; Yamasaki, 2022). Although rule-based sys-
tems address the OOV problem, they introduce new
challenges: 1) designing rules requires language
expertise; 2) the combination of all rules must be
checked to ensure no out-of-language words are
generated; 3) the rules might still not cover all
words in the language (Bisani and Ney, 2008).
Labeling words with phonetic labels is much
easier compared to designing rules, leading to the
use of probabilistic models to predict phoneme se-
quences of words (Novak et al., 2012; Rao et al.,

2015). With the success of Recurrent Neural Net-
works (RNNs) in machine translation, the com-
munity started using RNNs for G2P (Rao et al.,
2015; Milde et al., 2017; Behbahani et al., 2016;
Wang et al., 2023), yielding superior results com-
pared to probabilistic models. Convolutional Neu-
ral Networks (CNNs) have also been explored to re-
duce computational costs and create more efficient
models, yet CNNs have lower accuracy compared
to RNNs (Yolchuyeva et al., 2019b; Wang et al.,
2023).

Yolchuyeva et al. (2019c) show that transform-
ers have higher accuracy compared to RNNs and
CNNs while using fewer parameters. Addition-
ally, Sun et al. (2019) demonstrate that using an
ensemble of all three previously mentioned archi-
tectures and then transferring the knowledge to
a smaller transformer through knowledge distilla-
tion achieves superior results. Following the intro-
duction of transformers, attention has turned from
model architecture towards other methods to en-
hance performance.

Data Augmentation Complex models require
more training data, but generating G2P data is an
expensive endeavor that requires language exper-
tise. Data augmentation methods have been pro-
posed to address these issues by automatically gen-
erating data (Vesik et al., 2020; Huang et al., 2023).
In Vesik et al. (2020), a new set of words is col-
lected from Wikipedia articles and converted to
phoneme sequences (silver labels) using a model
trained on manually labeled data (golden labels).
In the second step, the model is trained on a com-
bination of silver and gold labels. Contrary to ex-
pectations that data augmentation should decrease
the error rate, it actually has reverse results. Ryan
and Hulden (2020) use recurrent subwords with
unchanging pronunciations in the data and concate-
nate them to create new words for training. This
method results in consistent error rate decrease for
extremely low-resource settings with 500 or fewer
words. However, this is not the case for languages
with more training data.

Multilingual and Transfer Learning (Milde
etal., 2017; Vesik et al., 2020; Zhu et al., 2022) use
multilingual training to reduce G2P errors. Milde
et al. (2017) use bilingual English-German train-
ing resulting in better performance for English but
worse performance for German. Vesik et al. (2020)
use multilingual training on 15 languages and show
that language similarity can positively affect re-



sults, but similar alphabet (script) does not affect
the knowledge transfer. Zhu et al. (2022) demon-
strate that massively multilingual models trained
on 99 languages can perform as well as unilingual
ones. They further explore the effect of the level
of tokenization in G2P and find that character-level
tokenization performs better compared to subword-
level models. Furthermore, they showe that using
the multilingual model as a starting point to train
on a new language performs better compared to a
model pretrained on masked language modeling
(MLM).

Similar to Zhu et al. (2022), Dong et al. (2022)
and Reza¢kov4 et al. (2021) explore MLM pre-
training for G2P models. In Rezatkova et al.
(2021), subword-level MLM pretraining on sen-
tences is done before subword-level G2P training,
resulting in lower error rates compared to RNN-
based G2P. Dong et al. (2022) train BERT on
character-level MLM for isolated words. The re-
sulting BERT model is once used as the encoder
of a transformer-based G2P model, and in another
instance, BERT embeddings are combined with
the encoder’s self-attention and decoder’s encoder-
decoder attention. It is shown that for medium-
resource languages, fusing BERT embeddings in
attention has the best performance, and for low-
resource languages, BERT as encoder performs
best.

Another approach to transfer learning is multi-
task training, explored by Ploujnikov and Ra-
vanelli (2022) and Wang et al. (2021), where
a combination of G2P with homograph disam-
biguation and grapheme-phoneme alignment is
used respectively to train G2P models, leading
to better performance on English G2P compared
to RNN-based G2P. Deri and Knight (2016); Pe-
ters et al. (2017); Li et al. (2022) strive to adapt
high-resource G2P models for low-resource lan-
guages. Deri and Knight (2016) have collected
G2P data for 85 high-resource languages and 229
low-resource languages, where low-resource data
is only used for evaluation. They define lang2lang
and phone2phone metrics to measure linguistic and
phonetic distance between languages, and for each
low-resource language, the nearest high-resource
language is used to create a model for the respec-
tive low-resource language. The adaptation is done
in two ways: adapting the output and adapting the
training data using the phone2phone metric to find
the nearest high-resource phoneme to each low-
resource phoneme.

Peters et al. (2017) use the data introduced by
Deri and Knight (2016) to train a multilingual
model on all high-resource and low-resource lan-
guages by adding a prefix to the input indicating
the language. Their results show improvement on
low-resource languages but not on high-resource
languages compared to the previous work. They
also investigated model embeddings and mention
there is considerable alignment between phoneme
embeddings and the phone2phone metric. How-
ever, there is no correlation between language pre-
fix embeddings and the lang2lang metric, meaning
generalizing the multilingual model to new lan-
guages using the prefix embedding won’t be an
option. Li et al. (2022) train a model for each of
260 languages that had enough training data. Then
for each of the 600 low-resource languages, an en-
semble of k nearest languages is used, where the
nearest languages are found based on the language
family tree. The results show an improvement in
error rates compared to models trained on English-
only, multilingual, and nearest language data.

Context-based Models For many languages like
Chinese, one of the main challenges of sentence-
level G2P is homograph disambiguation. Previous
works have attempted to incorporate context in their
models to overcome the homograph disambigua-
tion challenge. For instance, Kim et al. (2023) use
a window of the input for Chinese G2P. Rezackov4
et al. (2021), Huang et al. (2023), and Ploujnikov
and Ravanelli (2022) use sentence-level input for
English G2P. In addition, Rezaei et al. (2022) and
Behbahani et al. (2016) use context at the phrase
and sentence levels, respectively, for Persian G2P.
Furthermore, Zhao et al. (2022) employ context em-
bedding in transformer-based G2P to reduce output
errors caused by typos in the input.

3 Persian Language

Persian, an Indo-European language, uses the Ara-
bic script, which originates from the Semitic lan-
guage family with a vastly different phonetic sys-
tem. This leads to inconsistencies between the
written and spoken forms of Persian, resulting in
a lack of orthographic transparency. Orthographic
transparency is achieved when each grapheme cor-
responds to one and only one phoneme, and vice
versa (Miangah and Vulanovic, 2021). In Persian,
each consonant can be represented by up to four
different graphemes, and given that short vowels
are typically not written, each grapheme can corre-



spond to up to four different pronunciations. Con-
sequently, to manage this complexity and enable
Persian G2P, the task is divided into three subtasks:
OOV G2P, Kasre-Ezafe detection, and homograph
disambiguation.

3.1 OOV G2P

In this task, the goal is to predict the phoneme se-
quence of new words not seen in the training data.
Namnabat and Homayounpour (2006) employ a
combination of neural networks and rule-based sys-
tems to perform this task using a modified ver-
sion of the FarsDat data (further explained in Sec-
tion 4.1). Behbahani et al. (2016) and Rezaei et al.
(2022) use RNN and transformer models, respec-
tively, on their own modified versions of FarsDat
to perform OOV G2P.

3.2 Kasre-Ezafe Detection

From a grammatical perspective, Kasre-Ezafe is
a feature that connects words in the noun group,
adjective group, and prepositional group, thereby
creating larger structures within the hierarchical
structure of a sentence (Bijankhan, 2006). Al-
though Kasre-Ezafe lacks intrinsic meaning, it sig-
nificantly influences the syntactical relations and
semantics of a sentence. With the introduction of
Peykare (Bijankhan et al., 2011), a Part-of-Speech
(POS) tagging dataset that includes an exclusive
label for Kasre-Ezafe, many studies have focused
on detecting Kasre-Ezafe as a binary classifica-
tion task, which can be considered a subtask of
POS tagging. Methods used for this binary clas-
sification include Classification and Regression
Tree (CART) (Koochari et al., 2006), genetic algo-
rithms (Shamsfard and Noferesti, 2014), Maximum
Entropy (ME), Conditional Random Field (CRF),
Statistical Machine Translation (SMT) (Asghari
et al., 2014), RNNs based on gated recurrent units
(Rezaei et al., 2022) and long short-term memory,
CNNs, BERT, and XLMRoBERTa (Doostmoham-
madi et al., 2020).

3.3 Homograph Disambiguation

An important aspect of Persian natural language
processing involves understanding the morpholog-
ical, phonological, syntactical, and semantical re-
lations among words (Bijankhan and Moradzade,
2004). Based on these relations, three categories
of words are defined: 1) homonyms, which have
the same written and spoken form but different
meanings; 2) homophones, which have different

written forms and meanings but similar pronunci-
ation; and 3) homographs, which are written the
same but have different meanings and pronuncia-
tions (these words may share the same POS tag
or not). Additionally, there are Persian words that
can be read with different pronunciations without
changing their meaning, though the tone of speak-
ing changes considerably. In TTS and G2P systems,
accurately identifying the correct spoken form of
these words and homographs based on context is es-
sential for generating natural and intelligible output.
Rezaei et al. (2022) employ an RNN-based model
to perform homograph disambiguation on homo-
graph words that take different POS tags; This is
the only work on Persian homograph disambigua-
tion.

3.4 Discussion

Although previous works on OOV G2P have mod-
ified and used the FarsDat data for training and
evaluating their proposed methods, none of these
works have published their datasets. This has led to
a lack of resources for training Persian G2P mod-
els and the absence of a benchmark for comparing
these methods. A similar issue exists in homo-
graph disambiguation, as there has not been any
publicly available data for this task in the Persian
language. For Kasre-Ezafe detection, the introduc-
tion of Peykare provided a foundation for research.
However, not all studies use the same proportion
of Peykare for evaluating their models, making it
difficult to compare their results. Furthermore, al-
though the proposed models have achieved over
99% accuracy on Peykare, they still struggle to pro-
vide high-quality output in real-world applications.
Another unaddressed issue in Persian G2P is
that the previously explored subtasks overlap sig-
nificantly. To solve these subtasks, the model needs
to reach an understanding of the language on dif-
ferent levels. According to Tenney et al. (2019),
Language Models (LMs) exhibit signs of syntacti-
cal understanding in lower layers and semantical
understanding in higher layers. Therefore, we ar-
gue that although each of these subtasks requires a
specific level of language understanding, training
an LM to address all tasks in a multitask manner
might improve performance on all tasks. This is
because they are highly correlated and unlikely to
interfere with each other’s training. Furthermore, a
single E2E model is more parameter-efficient and
easier to tune and train compared to a multi-module
model that has a specific model for each subtask.



Dataset Sentences Unique Words Avg. Word/Sent. Avg. Char/Sent.
machine generated 5,375,235 1,054,620 25.26 126.46
farsdat aligned 909 4,954 28.12 144.28
kasre eval 257 1,624 12.79 65.20
homograph eval 269 1,667 13.40 63.24

Table 1: Statistics of the proposed datasets, including number of sentences, number of unique words, Average word

per sentence and average character per sentence.

4 Datasets

To address the issues discussed in Section 3.4, we
propose two datasets for training Persian G2P at the
sentence level, aiming to overcome all mentioned
challenges using a single LM. These datasets in-
clude a manually labeled dataset (“farsdat aligned”)
and an automatically labeled dataset (“‘machine
generated”). Additionally, we propose two evalua-
tion datasets, “homograph eval” and “kasre eval”,
to benchmark Persian G2P models. “homograph
eval” consists of challenging sentences that include
homographs, while “kasre eval” contains challeng-
ing sentences featuring Kasre-Ezafe. Statistics and
data samples for all proposed datasets are available
in Table 1 and Table 6 respectively.

4.1 FarsDat Aligned

FarsDat (Bijankhan et al., 1994) is an ASR dataset
where the recorded speech of all participants is
accompanied by phoneme labels generated by lan-
guage experts. Although FarsDat can be a great
source for Persian G2P, the transcripts are not
cross-checked with the speech, and the phoneme
sequence is generated based on participants’ ut-
terances, leading to misalignment between the
grapheme and phoneme sequences. Additionally,
participants come from different regions of Iran
with varying accents, resulting in inconsistencies
in word pronunciation. Furthermore, some of the
texts read by participants require college-level read-
ing, which not all participants can properly handle.

In response, utterances of five participants with
Tehrani accents and college-level or higher edu-
cation were chosen to create a G2P dataset. First,
each sentence of the transcripts was aligned with its
phoneme sequence. If a full sentence was skipped
by the participant, it was removed from the tran-
script. We then examined the words and modi-
fied the phoneme sequences if a word was mispro-
nounced or a completely different word was pro-
nounced instead. Furthermore, all words ending

“-I E3]

with Kasre-Ezafe were labeled with the token
added to the end of their phoneme sequence. This
token serves as an indicator of Kasre-Ezafe occur-
rence and distinguishes such words from those that
naturally end with the /e/ phoneme.

4.2 Machine Generated

We used “farsdat aligned” to train a sentence-
level G2P model, with the results available in Ap-
pendix A indicating that the data was insufficient
to train a Persian G2P model. Therefore, following
Vesik et al. (2020), we augmented the data using
existing G2P models and used “farsdat aligned”
for model tuning. Furthermore, G2P models are
sensitive to data domain (for more information on
G2P data size and domain, refer to the pilot exper-
iments in Appendix A). Therefore, to provide a
corpus that covers both formal and informal ver-
sions of contemporary Persian, we sampled text
from Peykare (Bijankhan et al., 2011), Miras (Sa-
beti et al., 2018), and Naab (Sabouri et al., 2022)
including five million sentences after removing du-
plicates. Before generating phoneme sequences for
each sentence, the sampled text was cleaned us-
ing the pre-processing script introduced by Sabouri
et al. (2022), and the results were normalized using
Parsivar! to reduce the error rate during automatic
phoneme sequence generation. Finally, the best cur-
rent G2P model introduced by Rezaei et al. (2022)
was used to generate phoneme sequences for the
sampled sentences. This model also generates “1”
for words ending with Kasre-Ezafe.

4.3 Evaluation Data

To benchmark Persian G2P models regarding all
existing challenges, we provide two evaluation
datasets, “homograph eval” and “kasre eval” con-
taining challenging cases of homograph disam-
biguation and Kasre-Ezafe detection, respectively.
The challenging test cases include sentences that

"https://github.com/ICTRC/Parsivar
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previous G2P models failed to predict accurately
in addition to sentences that are hard for humans to
correctly read at first glance. All words that have
homographs are labeled with the token “2,” and all
words ending with Kasre-Ezafe are labeled with
the token “1” in the phoneme sequence. As a result,
in addition to evaluating G2P models based on their
error rate in OOV G2P, we can also assess their per-
formance in Kasre-Ezafe detection and homograph
disambiguation.

5 Experimental Setup

To address the challenges previously discussed and
provide a Persian end-to-end G2P model (GE2PE),
we propose a byte-level transformer with one sen-
tence as input. To mitigate the lack of data re-
sources during training, we implement a two-step
training process that optimizes the use of manu-
ally labeled data (“farsdat aligned”). In the follow-
ing sections, we offer detailed explanations of our
model architecture, baselines, proposed training
methods, and evaluation metrics.

5.1 Models

Following Zhu et al. (2022), we use ByT5 (Xue
et al., 2022), a text-to-text transformer with input
tokenized at the byte level. The byte level tokeniza-
tion makes the model flexible enough to handle new
words which frequently occurs in low resource G2P.
To be able to train a single model on all Persian
G2P subtasks, context is needed. Therefore, in-
stead of using isolated words as input, similar to
Rez4ckova et al. (2021), we use a complete sen-
tence as input. Considering the lack of data and
computational resources, the number of blocks in
the encoder and decoder of ByT5 is reduced to
two in each. We tried other transformer architec-
tures as well which results can be found in our pilot
experiments in Appendix A.

The proposed model is compared to the state-
of-the-art Persian G2P model (Rezaei et al., 2022)
which uses a 4x4 transformer on words for OOV,
and two GRU networks on a window of five words
for Kasre-Ezafe detection and homograph disam-
biguation. Their model is trained on all FarsDat
data (100 participants) modified by authors includ-
ing 42,000 sentences and one million words. We
also compare our model with the best version of
Persian G2P (ByT5-small) among the multilingual
and monolingual models provided by Zhu et al.
(2022).

5.2 Training Method

Similar to Vesik et al. (2020), we first combined
the two proposed datasets, “farsdat aligned” and
“machine generated”, using the best ratio (manu-
ally labeled:machine generated = 1:4) proposed by
Fadaee and Monz (2018). However, the model’s
output was not intelligible until we reached a ra-
tio of 1:20. At this ratio, the model repeated
the frequent errors present in the “machine gen-
erated” data and no improvement based on “farst-
dat aligned” was observed (output samples in Ap-
pendix A). This outcome aligned with the findings
of Vesik et al. (2020), where using silver labels
mixed with gold labels resulted in worse perfor-
mance.

To maximize the effect of “farsdat aligned” and
reduce the errors caused by the noise in “machine
generated”, we take insight from Ratle et al. (2010),
and first train the model on “machine generated”
data, then finetune it on “farsdat aligned.” To avoid
overfitting on noisy data, since “machine generated”
contains errors in phoneme sequences, we use the
“farsdat aligned” validation set during the first train-
ing step. This way, training can be stopped as soon
as the model starts learning the noise.

5.3 Evaluation Metrics

Phoneme Error Rate (PER) and Word Error Rate
(WER) are the two metrics used in G2P evaluation.
In PER, the Levenshtein distance is calculated at
the character level, while in WER, the same dis-
tance is calculated at the word level. If the number
of substitutions, insertions, and deletions are de-
noted as S, I, and D respectively, and the number
of reference phonemes (or words for WER) is rep-
resented by [V, then the error rate is calculated as:

ErrorRate = w (D
N

In addition to these metrics, we use the “1” token
to identify words ending with Kasre-Ezafe. Con-
sidering the low frequency of these words, we cal-
culate recall and precision to evaluate the model’s
ability to detect Kasre-Ezafe. For evaluating the
model’s performance on homograph disambigua-
tion, we first minimize the Levenshtein distance
to find a word-level alignment between the refer-
ence phoneme sequence and the predicted phoneme
sequence. Then, based on the “2” tokens, homo-
graphs are identified, and accuracy in homograph
disambiguation is reported as the ratio of homo-



Model PER% WER%
silver GE2PE 3.75 17.97
GE2PE 2.92 14.83
(Rezaei et al., 2022) 2.96 16.69

Table 2: average of PER and WER on both “kasre eval”
and “homograph eval” datasets.

graphs that were predicted correctly, where "cor-
rectly" means having zero PER.

6 Results

In the first experiment, we compare our proposed
model to the multi-module model introduced by
Rezaei et al. (2022) on the “kasre eval” and “homo-
graph eval” datasets. In the second experiment, we
compare our proposed model to the multi-lingual
model presented by Zhu et al. (2022) using the test
set provided in their paper?. This comparison is
because the multi-lingual model is trained solely
on isolated words and is not capable of processing
sentence-level Persian inputs.

To assess the effectiveness of our training
method in maximizing the impact of manually la-
beled data, we calculated PER and WER for both
evaluation datasets in the first experiment. The re-
sults, summarized in Table 2, indicate that our two-
step training approach not only surpasses the silver
GE2PE model (the model solely trained on “ma-
chine generated”) but also outperforms the multi-
module model. It is notable that our proposed
model has only one-sixth of the parameters of the
multi-module model and was trained on just 900
manually labeled sentences.

Table 3 presents the evaluation results for Kasre-
Ezafe detection and homograph disambiguation.
The results show improvements in both tasks com-
pared to the multi-module model. Specifically,
some sentences in the “kasre eval” dataset require
the entire sentence context for accurate Kasre-
Ezafe detection, whereas the multi-module model
uses only a five-word window. This broader con-
text utilization likely contributes to our model’s
superior performance in this task.

Unlike Kasre-Ezafe detection, there is no explicit
token in the phoneme sequence of the training data
to indicate the occurrence of homographs. Thus,
our model was not explicitly trained for homograph

2h'ctps ://github.com/lingjzhu/CharsiuG2P/blob/
main/data/test/fas.tsv

Model Kasre-Ezafe Homograph

Rec.% Prec.% Acc.%
GE2PE 73.93 7497 61.86
(Rezaei 69.90 69.72 58.44
etal., 2022)

Table 3: Kasre-Ezafe detection and homograph disam-
biguation results based on “kasre eval” and “homograph
eval” datasets.

Model Original Modified

PER WER PER WER
silver GE2PE  7.02 32.20 5.17 24.00
GE2PE 9.04 36.00 7.19 28.40
(Zhu et al.,, 1228 51.20 - -
2022)

Table 4: PER and WER on original and modified ver-
sions of Zhu et al. (2022)’s test set.

disambiguation. Nevertheless, the language under-
standing gained through the G2P training process
appears to enhance its performance in this task.

PER and WER are reported on Zhu et al.
(2022)’s original test set for the multi-lingual base-
line, silver GE2PE, and GE2PE models in Table 4.
Although both versions of our proposed model
outperform the baseline, the error rates are much
higher compared to previous test sets, and surpris-
ingly, silver GE2PE performs better than GE2PE.
To better understand this phenomenon, we exam-
ined frequent errors for these models. Interest-
ingly, the most frequent error occurred with words
starting with a vowel in their phoneme sequence.
However, no syllable can start with a vowel in the
Persian language. Therefore, we modified the data
and addressed this issue by adding the / ’/ conso-
nant to the start of the phoneme sequence for all
words starting with a vowel. The error rates on the
modified test set are reported in Table 4.

After addressing this issue, we compared the
frequent errors of silver GE2PE and GE2PE, with
samples of this comparison found in Table 5. Five
categories of errors were identified in the outputs:
1) wrong short vowel prediction, 2) correct predic-
tion but erroneous data, 2) late stop-token genera-
tion (only in GE2PE), 4) generating /’i/ instead of
/yi/ (only in GE2PE), and 5) wrong Kasre-Ezafe
generation (only in silver GE2PE).

The main reasons GE2PE performed worse than


https://github.com/lingjzhu/CharsiuG2P/blob/main/data/test/fas.tsv
https://github.com/lingjzhu/CharsiuG2P/blob/main/data/test/fas.tsv

Source

Error Samples

GE2PE silver GE2PE

shared
Grapheme Data 5,0 g3 (g
Phoneme Data  dorg/r, duhe, berun
silver GE2PE d/rgar, dohe, borun
GE2PE d/rg/r, dohe, borun

SR by ax
q/8q/8, t/rsayi, ce
qe$qe$, t/rsayi, ce

tarsa@i,

S5 S 3,55 ey
k/fgiri, gurex/r, torob
k/fegiri, gurx/r, torb

l

k/fgiri, gurex/r, torob

Table 5: Error samples occurring in experiments using Zhu et al. (2022)’s test set, categorized based on their

occurrence in silver GE2PE and GE2PE outputs.

silver GE2PE were errors 5 and 4, caused by “fars-
dat aligned” features. This dataset contains only
long sentences, which biases the model towards
longer outputs and delays the generation of the
stop token. This can be mitigated by including iso-
lated words and short sentences in the training data.
Furthermore, two consecutive "y" in grapheme can
be read as /yi/ or /°i/, but the latter is the old Persian
standard used in FarsDat, while the former is the
modern standard. This error can be corrected by
editing “farsdat aligned” to follow modern Persian
standards. Another significant issue is type 2 er-
rors, which highlight the low quality of the only
available public Persian G2P resource.

7 Conclusion

With the recent growth of high-resource TTS sys-
tems, the G2P module has been removed from the
pipelines, and speech has been generated using
graphemes in an E2E manner. However, phonemes
are still needed to generate natural and intelligi-
ble speech for low-resource languages. Although
G2P is mainly used for these languages in real
world applications, little work has been done on
low-resource G2P. In this work, we emphasized
the need for new data resources and conversion ap-
proaches for Persian, a low-resource language, and
provided new datasets for training and evaluating
Persian G2P with regard to three important Persian
G2P challenges: OOV, Kasre-Ezafe detection, and
homograph disambiguation. Additionally, a new
E2E model was introduced to address these Per-
sian G2P challenges and serve as a baseline for the
newly proposed datasets.

Although using the proposed data, model, and
training method led to state-of-the-art results in
OO0V, Kasre-Ezafe detection, and homograph dis-
ambiguation, there is still room for improvement.

The current work uses maximum likelihood loss
to train the model for all tasks. However, adding a
task-specific loss for Kasre-Ezafe detection can fur-
ther improve the results. Future work can also focus
on augmenting data for homograph disambiguation
and using task-specific loss for homograph disam-
biguation as well. These enhancements can further
improve the results of the two tasks without any
changes to the model architecture or training pro-
cedure.

Limitations

FarsDat is a valuable resource for providing gold
labels for the G2P task. However, in this study,
we were only able to modify the data of five par-
ticipants with the Tehrani accent. Modifying the
data of all 100 participants would not only enhance
the current model’s output quality but also enable
the development of G2P models for various Iranian
accents of Persian.

Furthermore, we did not apply any specific loss
function for each task during training, relying in-
stead on the additional tokens added for Kasre-
Ezafe. Although these tokens might implicitly train
the model on different tasks, an explicit training
method could yield better results. Additionally, due
to limited computational resources, we were unable
to test other architectures for the defined multi-task
objective.

It is also important to note that low PER and
WER and high accuracy in Kasre-Ezafe detection
and homograph disambiguation do not guarantee
the intelligibility of the output. For example, if
one phoneme of a word is generated incorrectly,
the audience might still infer the intended word
based on the remaining phonemes or the context,
or they might interpret it as an entirely different
word or meaning. The quality and usability of these



systems can only be accurately assessed when used
in a TTS pipeline in practice.
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A Pilot Experiments

A.1 Data Experiments

We first trained the 2x2 ByT5 transformer on “fars-
dat aligned”. However, the output was completely
irrelevant to the input (e.g., "@/z @/ran @/san
@/n @/n @/san @/n @/san @/n @/..."). In the
second attempt, the same model was trained on
4,000 sentences from the Miras corpus combined
with “farsdat aligned”, but the same results were
observed (e.g., " h/mcen m/rel m/rel m/rel m/rel
m/rel marel ..."). Finally, with 20,000 sentences
from Miras and 10 epochs of training, we were able
to generate reasonable outputs. The PER and WER
on the validation set of the machine-generated data
were 2.7% and 7.8%, respectively.

To evaluate the quality of the machine-generated
data, we tested the model on in-domain (News)
and out-of-domain data. Interestingly, the model
could not generate the stop token in time for Per-
sian poems and literary text where standard gram-
matical rules are not followed (e.g., the verb can
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appear anywhere in the sentence instead of at the
end). As a result, we decided to sample data from
multiple sources (Miras, Peykare, Naab) with dif-
ferent styles (News, history, literary, etc.). Another
observation was that among multiple characters
used for each Persian grapheme, the multi-module
model (Rezaei et al., 2022) used for generating
the machine-generated data recognized only one
of the characters and ignored any other character
appearing in the input. Furthermore, the multi-
module model falsely generated Kasre-Ezafe when
space was used instead of half-space. Therefore,
we added text normalization to our preprocessing
pipeline to ensure the highest quality output using
the multi-module model.

A.2 Model Architecture

Due to a lack of computational resources, we ran
the experiment for only two architectures, 3x1 and
2x2 ByT5 transformers. The 2x2 architecture per-
formed well, as reported in section 6. However,
in the 3x1 configuration, although all the words in
the phoneme sequence were valid Persian words,
they were completely irrelevant to the input (e.g.,
"@/mma @in ra b/raye mixah/m bud v/ nohs/d v/
@..." instead of "midanim hoqugel to boxor n/mir
@/st @/mma d/r @iran beman"). This could be
due to using only one block in the decoder. As a
result, we chose to use the 2x2 architecture.

A.3 Implementation Details

We used a ByT5 model with 2 encoder blocks
and 2 decoder blocks. The input and output sizes
are 512 tokens, and the number of neurons in the
feed-forward network is 512. There are 6 attention
heads, and the size of vectors in the attention mech-
anism is 64. The training batch size is set to 25
with gradient accumulation equal to 2. The initial
learning rate is set to Se-4 with a cosine learning
rate scheduler. The number of beams during infer-
ence is set to 5 for beam search. All experiments
were run using Kaggle cloud resources (P100 GPU
and 12 gigabytes of RAM) with the random seed
equal to 1625. We were only able to run the exper-
iment once due to lack of resources (each exper-
iment takes 30 to 40 hours). All datasets used in
this work are public datasets and the multi-module
model (Rezaei et al., 2022) was used with the con-
sent of authors.
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Dataset Sample

Ll 4l 50 iS5 ol sladlo & pdanil oo Sl Lo (555 S 5 920 45 2la Lo 2 0l5m (e
ol 5 S s ogla Lis s Ly o LA s g lls oy b oSl &y 55y alags, o 5 axslial
- - . .P O)' “Q-;SGA

machine
generated v/ m/n h/rgah be salhayi ke h/nuz d/r pi$el ruyel ma @/st mi@/ndi$/m be
salhayel ro$d v/ k/$fel do janebeyel noqatel naSenaxte v/ (@an ruzhayel
bozorg be nagah g/srel g/dimiyel danl/ri d/r n/z/r/m besiyar der/x$an jelve
mikon/d v/ (@chsas mikon/m z/nel xo8b/xti h/st/m
5955 5 a5 30 Jussl ole 5o 5 ¢ ot ST plany Glejlas rpels 28w (rpmitlaniy o L
S 55 geie sl ygiS Gy S50 L &
farsdat ) ) ) .
align (@eSare p/njahomin salg/rdel t/@sisel sazemanel peymanel @atlantikel
$omali nato d/r mahel @avrilel hezar v/ nohs/d v/ n/v/d v/ noh ba $erk/tel
s/ranel ke$v/rhayel @ozv b/rgozar $od
5 3he 5 Olnl o oz e by S slags) 0 e ]
kasre eval
@an m/rdel ruzhayel s/xt payiz @azemel j/ngel beynel @iran v/ (@/raq $od
DS gl denly s jalane dz a |y 14wl sl ¢ et ol wy 5l
homograph _ _
eval q/bl @/z x/ridel d/stgahel boxur2 bay/d bedanid ke (@an ra be ce m/nzur

mixahid t/hiyye konid

Table 6: Samples of the proposed datasets, grapheme sequences and their corresponding phoneme sequence.
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