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Abstract

Text-to-Speech (TTS) systems have made sig-001
nificant strides, enabling the generation of002
speech from grapheme sequences. However,003
for low-resource languages, these models still004
struggle to produce natural and intelligible005
speech. Grapheme-to-Phoneme conversion006
(G2P) addresses this challenge by enhancing007
the input sequence with phonetic information.008
Despite these advancements, existing G2P sys-009
tems face limitations when dealing with Per-010
sian texts due to the complexity of Persian011
transcription. In this study, we focus on en-012
riching resources for the Persian language. To013
achieve this, we introduce two novel G2P train-014
ing datasets: one manually labeled and the015
other machine-generated. These datasets com-016
prise over five million sentences alongside their017
corresponding phoneme sequences. Addition-018
ally, we propose two evaluation datasets tai-019
lored for Persian sub-tasks, including Kasre-020
Ezafe detection, homograph disambiguation,021
and handling out-of-vocabulary (OOV) words.022
To tackle the unique challenges of the Persian023
language, we develop a new sentence-level End-024
to-End (E2E) model leveraging a two-step train-025
ing approach, as outlined in our paper, to maxi-026
mize the impact of manually labeled data. The027
results show that our model surpasses the state-028
of-the-art performance by 1.86% in word error029
rate, 4.03% in Kasre-Ezafe detection recall, and030
3.42% in homograph disambiguation accuracy.031

1 Introduction032

Grapheme is the smallest functional unit of a lan-033

guage’s writing system, Phoneme is the smallest034

distinguishable sound unit of a language, and G2P035

is an important part of Text-to-Speech (TTS) and036

Automatic Speech Recognition (ASR) (Yolchuyeva037

et al., 2019a; Hasegawa-Johnson et al., 2020). E2E038

TTS systems using grapheme as input perform039

poorly on OOV words and homograph disambigua-040

tion (Huang et al., 2023); This phenomenon is more041

pronounced for low-resource languages. Using042

G2P to convert the written form of text to pronun- 043

ciation form, and leveraging this form as input to 044

TTS systems can considerably improve the intelli- 045

gibility of the generated speech. 046

G2P is similar with the Machine Translation 047

(MT) task except that G2P is usually done on an 048

isolated word tokenized at a character level. As 049

a result of this character-level tokenization, trans- 050

formers have performed poorly on G2P unlike in 051

MT. However, it is shown that the reason behind 052

this anomaly is the lack of information while updat- 053

ing model parameters, and it can be resolved by in- 054

creasing the batch size (Wu et al., 2021). This find- 055

ing has led to high performance and efficiency in 056

transformer-based G2P models (Yolchuyeva et al., 057

2019c). Following this success, knowledge trans- 058

fer has been investigated through multilingual and 059

multitask training (Zhu et al., 2022; Ploujnikov and 060

Ravanelli, 2022), and grapheme pretraining (Dong 061

et al., 2022). Some research has also focused on 062

transfer learning specifically for low-resource lan- 063

guages (Deri and Knight, 2016) and data augmenta- 064

tion methods for training large models (Vesik et al., 065

2020). 066

Although in real world applications, G2P is 067

mainly employed for achieving better performance 068

in low-resource TTS, recent works on G2P sys- 069

tems mainly focus on high-resource languages 070

like, English and pay less attention to the chal- 071

lenges of G2P for other languages. The Persian 072

language (a.k.a Farsi) is a low-resource language 073

known as one of the most challenging languages 074

in this field (Mortensen et al., 2018; Sokolov et al., 075

2019; Rezaei et al., 2022) due to its unique fea- 076

tures. Firstly, short vowels (/a/, /e/, and /o/) are not 077

written in Persian text resulting in a lack of informa- 078

tion while generating the phoneme sequence. Sec- 079

ondly, there are many homographs in Persian due 080

to the absence of short vowels e.g., /kerm/, /kerem/, 081

and /karam/ are identical in written form. Finally, 082

Kasre-Ezafe, an /e/ sound connecting nouns to ad- 083
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jectives and descriptive nouns, is not written in084

Persian text.085

As a result of the mentioned features, a Persian086

G2P system requires: morphology and phonology087

to predict the omitted short vowels of each noun;088

syntactical relations to detect Kasre-Ezafe; and se-089

mantical knowledge to disambiguate homographs.090

Therefore, unlike English G2P that uses words as091

input, Persian G2P needs a phrase-level or sentence-092

level input to achieve acceptable results. In this093

work, the main goal is to improve G2P accuracy094

and efficiency by employing sentence-level inputs.095

However, lack of data and evaluation standards ap-096

pear to be the main obstacles to achieving this goal.097

We try to overcome these challenges by provid-098

ing new training datasets and an evaluation bench-099

mark tailored for specific features of the Persian100

language. In this work, we introduce:101

• Four sentence-level Perian G2P datasets:102

machine-generated training data; manually la-103

beled training data; manually labeled evalu-104

ation data focusing on Kasre-Ezafe; manu-105

ally labeled evaluation data focusing on ho-106

mographs.107

• A new sentence-level Persian G2P model and108

a two-step training method for low-resource109

settings.110

• A new benchmark to unify Persian G2P evalu-111

ation.112

2 Related Work113

The initial G2P systems used lexicons to map114

words to pronunciations (Kim et al., 2015). How-115

ever, a comprehensive coverage of all words is116

not feasible as language varies over time, location,117

and usage domain. Therefore, rule-based meth-118

ods are employed alongside lexicons to alleviate119

this problem (Kłosowski, 2022; Řezáčková et al.,120

2021; Yamasaki, 2022). Although rule-based sys-121

tems address the OOV problem, they introduce new122

challenges: 1) designing rules requires language123

expertise; 2) the combination of all rules must be124

checked to ensure no out-of-language words are125

generated; 3) the rules might still not cover all126

words in the language (Bisani and Ney, 2008).127

Labeling words with phonetic labels is much128

easier compared to designing rules, leading to the129

use of probabilistic models to predict phoneme se-130

quences of words (Novak et al., 2012; Rao et al.,131

2015). With the success of Recurrent Neural Net- 132

works (RNNs) in machine translation, the com- 133

munity started using RNNs for G2P (Rao et al., 134

2015; Milde et al., 2017; Behbahani et al., 2016; 135

Wang et al., 2023), yielding superior results com- 136

pared to probabilistic models. Convolutional Neu- 137

ral Networks (CNNs) have also been explored to re- 138

duce computational costs and create more efficient 139

models, yet CNNs have lower accuracy compared 140

to RNNs (Yolchuyeva et al., 2019b; Wang et al., 141

2023). 142

Yolchuyeva et al. (2019c) show that transform- 143

ers have higher accuracy compared to RNNs and 144

CNNs while using fewer parameters. Addition- 145

ally, Sun et al. (2019) demonstrate that using an 146

ensemble of all three previously mentioned archi- 147

tectures and then transferring the knowledge to 148

a smaller transformer through knowledge distilla- 149

tion achieves superior results. Following the intro- 150

duction of transformers, attention has turned from 151

model architecture towards other methods to en- 152

hance performance. 153

Data Augmentation Complex models require 154

more training data, but generating G2P data is an 155

expensive endeavor that requires language exper- 156

tise. Data augmentation methods have been pro- 157

posed to address these issues by automatically gen- 158

erating data (Vesik et al., 2020; Huang et al., 2023). 159

In Vesik et al. (2020), a new set of words is col- 160

lected from Wikipedia articles and converted to 161

phoneme sequences (silver labels) using a model 162

trained on manually labeled data (golden labels). 163

In the second step, the model is trained on a com- 164

bination of silver and gold labels. Contrary to ex- 165

pectations that data augmentation should decrease 166

the error rate, it actually has reverse results. Ryan 167

and Hulden (2020) use recurrent subwords with 168

unchanging pronunciations in the data and concate- 169

nate them to create new words for training. This 170

method results in consistent error rate decrease for 171

extremely low-resource settings with 500 or fewer 172

words. However, this is not the case for languages 173

with more training data. 174

Multilingual and Transfer Learning (Milde 175

et al., 2017; Vesik et al., 2020; Zhu et al., 2022) use 176

multilingual training to reduce G2P errors. Milde 177

et al. (2017) use bilingual English-German train- 178

ing resulting in better performance for English but 179

worse performance for German. Vesik et al. (2020) 180

use multilingual training on 15 languages and show 181

that language similarity can positively affect re- 182
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sults, but similar alphabet (script) does not affect183

the knowledge transfer. Zhu et al. (2022) demon-184

strate that massively multilingual models trained185

on 99 languages can perform as well as unilingual186

ones. They further explore the effect of the level187

of tokenization in G2P and find that character-level188

tokenization performs better compared to subword-189

level models. Furthermore, they showe that using190

the multilingual model as a starting point to train191

on a new language performs better compared to a192

model pretrained on masked language modeling193

(MLM).194

Similar to Zhu et al. (2022), Dong et al. (2022)195

and Řezáčková et al. (2021) explore MLM pre-196

training for G2P models. In Řezáčková et al.197

(2021), subword-level MLM pretraining on sen-198

tences is done before subword-level G2P training,199

resulting in lower error rates compared to RNN-200

based G2P. Dong et al. (2022) train BERT on201

character-level MLM for isolated words. The re-202

sulting BERT model is once used as the encoder203

of a transformer-based G2P model, and in another204

instance, BERT embeddings are combined with205

the encoder’s self-attention and decoder’s encoder-206

decoder attention. It is shown that for medium-207

resource languages, fusing BERT embeddings in208

attention has the best performance, and for low-209

resource languages, BERT as encoder performs210

best.211

Another approach to transfer learning is multi-212

task training, explored by Ploujnikov and Ra-213

vanelli (2022) and Wang et al. (2021), where214

a combination of G2P with homograph disam-215

biguation and grapheme-phoneme alignment is216

used respectively to train G2P models, leading217

to better performance on English G2P compared218

to RNN-based G2P. Deri and Knight (2016); Pe-219

ters et al. (2017); Li et al. (2022) strive to adapt220

high-resource G2P models for low-resource lan-221

guages. Deri and Knight (2016) have collected222

G2P data for 85 high-resource languages and 229223

low-resource languages, where low-resource data224

is only used for evaluation. They define lang2lang225

and phone2phone metrics to measure linguistic and226

phonetic distance between languages, and for each227

low-resource language, the nearest high-resource228

language is used to create a model for the respec-229

tive low-resource language. The adaptation is done230

in two ways: adapting the output and adapting the231

training data using the phone2phone metric to find232

the nearest high-resource phoneme to each low-233

resource phoneme.234

Peters et al. (2017) use the data introduced by 235

Deri and Knight (2016) to train a multilingual 236

model on all high-resource and low-resource lan- 237

guages by adding a prefix to the input indicating 238

the language. Their results show improvement on 239

low-resource languages but not on high-resource 240

languages compared to the previous work. They 241

also investigated model embeddings and mention 242

there is considerable alignment between phoneme 243

embeddings and the phone2phone metric. How- 244

ever, there is no correlation between language pre- 245

fix embeddings and the lang2lang metric, meaning 246

generalizing the multilingual model to new lan- 247

guages using the prefix embedding won’t be an 248

option. Li et al. (2022) train a model for each of 249

260 languages that had enough training data. Then 250

for each of the 600 low-resource languages, an en- 251

semble of k nearest languages is used, where the 252

nearest languages are found based on the language 253

family tree. The results show an improvement in 254

error rates compared to models trained on English- 255

only, multilingual, and nearest language data. 256

Context-based Models For many languages like 257

Chinese, one of the main challenges of sentence- 258

level G2P is homograph disambiguation. Previous 259

works have attempted to incorporate context in their 260

models to overcome the homograph disambigua- 261

tion challenge. For instance, Kim et al. (2023) use 262

a window of the input for Chinese G2P. Řezáčková 263

et al. (2021), Huang et al. (2023), and Ploujnikov 264

and Ravanelli (2022) use sentence-level input for 265

English G2P. In addition, Rezaei et al. (2022) and 266

Behbahani et al. (2016) use context at the phrase 267

and sentence levels, respectively, for Persian G2P. 268

Furthermore, Zhao et al. (2022) employ context em- 269

bedding in transformer-based G2P to reduce output 270

errors caused by typos in the input. 271

3 Persian Language 272

Persian, an Indo-European language, uses the Ara- 273

bic script, which originates from the Semitic lan- 274

guage family with a vastly different phonetic sys- 275

tem. This leads to inconsistencies between the 276

written and spoken forms of Persian, resulting in 277

a lack of orthographic transparency. Orthographic 278

transparency is achieved when each grapheme cor- 279

responds to one and only one phoneme, and vice 280

versa (Miangah and Vulanovic, 2021). In Persian, 281

each consonant can be represented by up to four 282

different graphemes, and given that short vowels 283

are typically not written, each grapheme can corre- 284
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spond to up to four different pronunciations. Con-285

sequently, to manage this complexity and enable286

Persian G2P, the task is divided into three subtasks:287

OOV G2P, Kasre-Ezafe detection, and homograph288

disambiguation.289

3.1 OOV G2P290

In this task, the goal is to predict the phoneme se-291

quence of new words not seen in the training data.292

Namnabat and Homayounpour (2006) employ a293

combination of neural networks and rule-based sys-294

tems to perform this task using a modified ver-295

sion of the FarsDat data (further explained in Sec-296

tion 4.1). Behbahani et al. (2016) and Rezaei et al.297

(2022) use RNN and transformer models, respec-298

tively, on their own modified versions of FarsDat299

to perform OOV G2P.300

3.2 Kasre-Ezafe Detection301

From a grammatical perspective, Kasre-Ezafe is302

a feature that connects words in the noun group,303

adjective group, and prepositional group, thereby304

creating larger structures within the hierarchical305

structure of a sentence (Bijankhan, 2006). Al-306

though Kasre-Ezafe lacks intrinsic meaning, it sig-307

nificantly influences the syntactical relations and308

semantics of a sentence. With the introduction of309

Peykare (Bijankhan et al., 2011), a Part-of-Speech310

(POS) tagging dataset that includes an exclusive311

label for Kasre-Ezafe, many studies have focused312

on detecting Kasre-Ezafe as a binary classifica-313

tion task, which can be considered a subtask of314

POS tagging. Methods used for this binary clas-315

sification include Classification and Regression316

Tree (CART) (Koochari et al., 2006), genetic algo-317

rithms (Shamsfard and Noferesti, 2014), Maximum318

Entropy (ME), Conditional Random Field (CRF),319

Statistical Machine Translation (SMT) (Asghari320

et al., 2014), RNNs based on gated recurrent units321

(Rezaei et al., 2022) and long short-term memory,322

CNNs, BERT, and XLMRoBERTa (Doostmoham-323

madi et al., 2020).324

3.3 Homograph Disambiguation325

An important aspect of Persian natural language326

processing involves understanding the morpholog-327

ical, phonological, syntactical, and semantical re-328

lations among words (Bijankhan and Moradzade,329

2004). Based on these relations, three categories330

of words are defined: 1) homonyms, which have331

the same written and spoken form but different332

meanings; 2) homophones, which have different333

written forms and meanings but similar pronunci- 334

ation; and 3) homographs, which are written the 335

same but have different meanings and pronuncia- 336

tions (these words may share the same POS tag 337

or not). Additionally, there are Persian words that 338

can be read with different pronunciations without 339

changing their meaning, though the tone of speak- 340

ing changes considerably. In TTS and G2P systems, 341

accurately identifying the correct spoken form of 342

these words and homographs based on context is es- 343

sential for generating natural and intelligible output. 344

Rezaei et al. (2022) employ an RNN-based model 345

to perform homograph disambiguation on homo- 346

graph words that take different POS tags; This is 347

the only work on Persian homograph disambigua- 348

tion. 349

3.4 Discussion 350

Although previous works on OOV G2P have mod- 351

ified and used the FarsDat data for training and 352

evaluating their proposed methods, none of these 353

works have published their datasets. This has led to 354

a lack of resources for training Persian G2P mod- 355

els and the absence of a benchmark for comparing 356

these methods. A similar issue exists in homo- 357

graph disambiguation, as there has not been any 358

publicly available data for this task in the Persian 359

language. For Kasre-Ezafe detection, the introduc- 360

tion of Peykare provided a foundation for research. 361

However, not all studies use the same proportion 362

of Peykare for evaluating their models, making it 363

difficult to compare their results. Furthermore, al- 364

though the proposed models have achieved over 365

99% accuracy on Peykare, they still struggle to pro- 366

vide high-quality output in real-world applications. 367

Another unaddressed issue in Persian G2P is 368

that the previously explored subtasks overlap sig- 369

nificantly. To solve these subtasks, the model needs 370

to reach an understanding of the language on dif- 371

ferent levels. According to Tenney et al. (2019), 372

Language Models (LMs) exhibit signs of syntacti- 373

cal understanding in lower layers and semantical 374

understanding in higher layers. Therefore, we ar- 375

gue that although each of these subtasks requires a 376

specific level of language understanding, training 377

an LM to address all tasks in a multitask manner 378

might improve performance on all tasks. This is 379

because they are highly correlated and unlikely to 380

interfere with each other’s training. Furthermore, a 381

single E2E model is more parameter-efficient and 382

easier to tune and train compared to a multi-module 383

model that has a specific model for each subtask. 384
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Dataset Sentences Unique Words Avg. Word/Sent. Avg. Char/Sent.

machine generated 5,375,235 1,054,620 25.26 126.46
farsdat aligned 909 4,954 28.12 144.28
kasre eval 257 1,624 12.79 65.20
homograph eval 269 1,667 13.40 63.24

Table 1: Statistics of the proposed datasets, including number of sentences, number of unique words, Average word
per sentence and average character per sentence.

4 Datasets385

To address the issues discussed in Section 3.4, we386

propose two datasets for training Persian G2P at the387

sentence level, aiming to overcome all mentioned388

challenges using a single LM. These datasets in-389

clude a manually labeled dataset (“farsdat aligned”)390

and an automatically labeled dataset (“machine391

generated”). Additionally, we propose two evalua-392

tion datasets, “homograph eval” and “kasre eval”,393

to benchmark Persian G2P models. “homograph394

eval” consists of challenging sentences that include395

homographs, while “kasre eval” contains challeng-396

ing sentences featuring Kasre-Ezafe. Statistics and397

data samples for all proposed datasets are available398

in Table 1 and Table 6 respectively.399

4.1 FarsDat Aligned400

FarsDat (Bijankhan et al., 1994) is an ASR dataset401

where the recorded speech of all participants is402

accompanied by phoneme labels generated by lan-403

guage experts. Although FarsDat can be a great404

source for Persian G2P, the transcripts are not405

cross-checked with the speech, and the phoneme406

sequence is generated based on participants’ ut-407

terances, leading to misalignment between the408

grapheme and phoneme sequences. Additionally,409

participants come from different regions of Iran410

with varying accents, resulting in inconsistencies411

in word pronunciation. Furthermore, some of the412

texts read by participants require college-level read-413

ing, which not all participants can properly handle.414

In response, utterances of five participants with415

Tehrani accents and college-level or higher edu-416

cation were chosen to create a G2P dataset. First,417

each sentence of the transcripts was aligned with its418

phoneme sequence. If a full sentence was skipped419

by the participant, it was removed from the tran-420

script. We then examined the words and modi-421

fied the phoneme sequences if a word was mispro-422

nounced or a completely different word was pro-423

nounced instead. Furthermore, all words ending424

with Kasre-Ezafe were labeled with the token “1” 425

added to the end of their phoneme sequence. This 426

token serves as an indicator of Kasre-Ezafe occur- 427

rence and distinguishes such words from those that 428

naturally end with the /e/ phoneme. 429

4.2 Machine Generated 430

We used “farsdat aligned” to train a sentence- 431

level G2P model, with the results available in Ap- 432

pendix A indicating that the data was insufficient 433

to train a Persian G2P model. Therefore, following 434

Vesik et al. (2020), we augmented the data using 435

existing G2P models and used “farsdat aligned” 436

for model tuning. Furthermore, G2P models are 437

sensitive to data domain (for more information on 438

G2P data size and domain, refer to the pilot exper- 439

iments in Appendix A). Therefore, to provide a 440

corpus that covers both formal and informal ver- 441

sions of contemporary Persian, we sampled text 442

from Peykare (Bijankhan et al., 2011), Miras (Sa- 443

beti et al., 2018), and Naab (Sabouri et al., 2022) 444

including five million sentences after removing du- 445

plicates. Before generating phoneme sequences for 446

each sentence, the sampled text was cleaned us- 447

ing the pre-processing script introduced by Sabouri 448

et al. (2022), and the results were normalized using 449

Parsivar1 to reduce the error rate during automatic 450

phoneme sequence generation. Finally, the best cur- 451

rent G2P model introduced by Rezaei et al. (2022) 452

was used to generate phoneme sequences for the 453

sampled sentences. This model also generates “1” 454

for words ending with Kasre-Ezafe. 455

4.3 Evaluation Data 456

To benchmark Persian G2P models regarding all 457

existing challenges, we provide two evaluation 458

datasets, “homograph eval” and “kasre eval” con- 459

taining challenging cases of homograph disam- 460

biguation and Kasre-Ezafe detection, respectively. 461

The challenging test cases include sentences that 462

1https://github.com/ICTRC/Parsivar
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previous G2P models failed to predict accurately463

in addition to sentences that are hard for humans to464

correctly read at first glance. All words that have465

homographs are labeled with the token “2,” and all466

words ending with Kasre-Ezafe are labeled with467

the token “1” in the phoneme sequence. As a result,468

in addition to evaluating G2P models based on their469

error rate in OOV G2P, we can also assess their per-470

formance in Kasre-Ezafe detection and homograph471

disambiguation.472

5 Experimental Setup473

To address the challenges previously discussed and474

provide a Persian end-to-end G2P model (GE2PE),475

we propose a byte-level transformer with one sen-476

tence as input. To mitigate the lack of data re-477

sources during training, we implement a two-step478

training process that optimizes the use of manu-479

ally labeled data (“farsdat aligned”). In the follow-480

ing sections, we offer detailed explanations of our481

model architecture, baselines, proposed training482

methods, and evaluation metrics.483

5.1 Models484

Following Zhu et al. (2022), we use ByT5 (Xue485

et al., 2022), a text-to-text transformer with input486

tokenized at the byte level. The byte level tokeniza-487

tion makes the model flexible enough to handle new488

words which frequently occurs in low resource G2P.489

To be able to train a single model on all Persian490

G2P subtasks, context is needed. Therefore, in-491

stead of using isolated words as input, similar to492

Řezáčková et al. (2021), we use a complete sen-493

tence as input. Considering the lack of data and494

computational resources, the number of blocks in495

the encoder and decoder of ByT5 is reduced to496

two in each. We tried other transformer architec-497

tures as well which results can be found in our pilot498

experiments in Appendix A.499

The proposed model is compared to the state-500

of-the-art Persian G2P model (Rezaei et al., 2022)501

which uses a 4x4 transformer on words for OOV,502

and two GRU networks on a window of five words503

for Kasre-Ezafe detection and homograph disam-504

biguation. Their model is trained on all FarsDat505

data (100 participants) modified by authors includ-506

ing 42,000 sentences and one million words. We507

also compare our model with the best version of508

Persian G2P (ByT5-small) among the multilingual509

and monolingual models provided by Zhu et al.510

(2022).511

5.2 Training Method 512

Similar to Vesik et al. (2020), we first combined 513

the two proposed datasets, “farsdat aligned” and 514

“machine generated”, using the best ratio (manu- 515

ally labeled:machine generated = 1:4) proposed by 516

Fadaee and Monz (2018). However, the model’s 517

output was not intelligible until we reached a ra- 518

tio of 1:20. At this ratio, the model repeated 519

the frequent errors present in the “machine gen- 520

erated” data and no improvement based on “farst- 521

dat aligned” was observed (output samples in Ap- 522

pendix A). This outcome aligned with the findings 523

of Vesik et al. (2020), where using silver labels 524

mixed with gold labels resulted in worse perfor- 525

mance. 526

To maximize the effect of “farsdat aligned” and 527

reduce the errors caused by the noise in “machine 528

generated”, we take insight from Ratle et al. (2010), 529

and first train the model on “machine generated” 530

data, then finetune it on “farsdat aligned.” To avoid 531

overfitting on noisy data, since “machine generated” 532

contains errors in phoneme sequences, we use the 533

“farsdat aligned” validation set during the first train- 534

ing step. This way, training can be stopped as soon 535

as the model starts learning the noise. 536

5.3 Evaluation Metrics 537

Phoneme Error Rate (PER) and Word Error Rate 538

(WER) are the two metrics used in G2P evaluation. 539

In PER, the Levenshtein distance is calculated at 540

the character level, while in WER, the same dis- 541

tance is calculated at the word level. If the number 542

of substitutions, insertions, and deletions are de- 543

noted as S, I , and D respectively, and the number 544

of reference phonemes (or words for WER) is rep- 545

resented by N , then the error rate is calculated as: 546

ErrorRate =
S + I +D

N
(1) 547

In addition to these metrics, we use the “1” token 548

to identify words ending with Kasre-Ezafe. Con- 549

sidering the low frequency of these words, we cal- 550

culate recall and precision to evaluate the model’s 551

ability to detect Kasre-Ezafe. For evaluating the 552

model’s performance on homograph disambigua- 553

tion, we first minimize the Levenshtein distance 554

to find a word-level alignment between the refer- 555

ence phoneme sequence and the predicted phoneme 556

sequence. Then, based on the “2” tokens, homo- 557

graphs are identified, and accuracy in homograph 558

disambiguation is reported as the ratio of homo- 559
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Model PER% WER%

silver GE2PE 3.75 17.97
GE2PE 2.92 14.83
(Rezaei et al., 2022) 2.96 16.69

Table 2: average of PER and WER on both “kasre eval”
and “homograph eval” datasets.

graphs that were predicted correctly, where "cor-560

rectly" means having zero PER.561

6 Results562

In the first experiment, we compare our proposed563

model to the multi-module model introduced by564

Rezaei et al. (2022) on the “kasre eval” and “homo-565

graph eval” datasets. In the second experiment, we566

compare our proposed model to the multi-lingual567

model presented by Zhu et al. (2022) using the test568

set provided in their paper2. This comparison is569

because the multi-lingual model is trained solely570

on isolated words and is not capable of processing571

sentence-level Persian inputs.572

To assess the effectiveness of our training573

method in maximizing the impact of manually la-574

beled data, we calculated PER and WER for both575

evaluation datasets in the first experiment. The re-576

sults, summarized in Table 2, indicate that our two-577

step training approach not only surpasses the silver578

GE2PE model (the model solely trained on “ma-579

chine generated”) but also outperforms the multi-580

module model. It is notable that our proposed581

model has only one-sixth of the parameters of the582

multi-module model and was trained on just 900583

manually labeled sentences.584

Table 3 presents the evaluation results for Kasre-585

Ezafe detection and homograph disambiguation.586

The results show improvements in both tasks com-587

pared to the multi-module model. Specifically,588

some sentences in the “kasre eval” dataset require589

the entire sentence context for accurate Kasre-590

Ezafe detection, whereas the multi-module model591

uses only a five-word window. This broader con-592

text utilization likely contributes to our model’s593

superior performance in this task.594

Unlike Kasre-Ezafe detection, there is no explicit595

token in the phoneme sequence of the training data596

to indicate the occurrence of homographs. Thus,597

our model was not explicitly trained for homograph598

2https://github.com/lingjzhu/CharsiuG2P/blob/
main/data/test/fas.tsv

Model Kasre-Ezafe Homograph
Rec.% Prec.% Acc.%

GE2PE 73.93 74.97 61.86
(Rezaei
et al., 2022)

69.90 69.72 58.44

Table 3: Kasre-Ezafe detection and homograph disam-
biguation results based on “kasre eval” and “homograph
eval” datasets.

Model Original Modified
PER WER PER WER

silver GE2PE 7.02 32.20 5.17 24.00
GE2PE 9.04 36.00 7.19 28.40
(Zhu et al.,
2022)

12.28 51.20 - -

Table 4: PER and WER on original and modified ver-
sions of Zhu et al. (2022)’s test set.

disambiguation. Nevertheless, the language under- 599

standing gained through the G2P training process 600

appears to enhance its performance in this task. 601

PER and WER are reported on Zhu et al. 602

(2022)’s original test set for the multi-lingual base- 603

line, silver GE2PE, and GE2PE models in Table 4. 604

Although both versions of our proposed model 605

outperform the baseline, the error rates are much 606

higher compared to previous test sets, and surpris- 607

ingly, silver GE2PE performs better than GE2PE. 608

To better understand this phenomenon, we exam- 609

ined frequent errors for these models. Interest- 610

ingly, the most frequent error occurred with words 611

starting with a vowel in their phoneme sequence. 612

However, no syllable can start with a vowel in the 613

Persian language. Therefore, we modified the data 614

and addressed this issue by adding the / ’/ conso- 615

nant to the start of the phoneme sequence for all 616

words starting with a vowel. The error rates on the 617

modified test set are reported in Table 4. 618

After addressing this issue, we compared the 619

frequent errors of silver GE2PE and GE2PE, with 620

samples of this comparison found in Table 5. Five 621

categories of errors were identified in the outputs: 622

1) wrong short vowel prediction, 2) correct predic- 623

tion but erroneous data, 3) late stop-token genera- 624

tion (only in GE2PE), 4) generating /’i/ instead of 625

/yi/ (only in GE2PE), and 5) wrong Kasre-Ezafe 626

generation (only in silver GE2PE). 627

The main reasons GE2PE performed worse than 628
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Table 5: Error samples occurring in experiments using Zhu et al. (2022)’s test set, categorized based on their
occurrence in silver GE2PE and GE2PE outputs.

silver GE2PE were errors 3 and 4, caused by “fars-629

dat aligned” features. This dataset contains only630

long sentences, which biases the model towards631

longer outputs and delays the generation of the632

stop token. This can be mitigated by including iso-633

lated words and short sentences in the training data.634

Furthermore, two consecutive "y" in grapheme can635

be read as /yi/ or /’i/, but the latter is the old Persian636

standard used in FarsDat, while the former is the637

modern standard. This error can be corrected by638

editing “farsdat aligned” to follow modern Persian639

standards. Another significant issue is type 2 er-640

rors, which highlight the low quality of the only641

available public Persian G2P resource.642

7 Conclusion643

With the recent growth of high-resource TTS sys-644

tems, the G2P module has been removed from the645

pipelines, and speech has been generated using646

graphemes in an E2E manner. However, phonemes647

are still needed to generate natural and intelligi-648

ble speech for low-resource languages. Although649

G2P is mainly used for these languages in real650

world applications, little work has been done on651

low-resource G2P. In this work, we emphasized652

the need for new data resources and conversion ap-653

proaches for Persian, a low-resource language, and654

provided new datasets for training and evaluating655

Persian G2P with regard to three important Persian656

G2P challenges: OOV, Kasre-Ezafe detection, and657

homograph disambiguation. Additionally, a new658

E2E model was introduced to address these Per-659

sian G2P challenges and serve as a baseline for the660

newly proposed datasets.661

Although using the proposed data, model, and662

training method led to state-of-the-art results in663

OOV, Kasre-Ezafe detection, and homograph dis-664

ambiguation, there is still room for improvement.665

The current work uses maximum likelihood loss 666

to train the model for all tasks. However, adding a 667

task-specific loss for Kasre-Ezafe detection can fur- 668

ther improve the results. Future work can also focus 669

on augmenting data for homograph disambiguation 670

and using task-specific loss for homograph disam- 671

biguation as well. These enhancements can further 672

improve the results of the two tasks without any 673

changes to the model architecture or training pro- 674

cedure. 675

Limitations 676

FarsDat is a valuable resource for providing gold 677

labels for the G2P task. However, in this study, 678

we were only able to modify the data of five par- 679

ticipants with the Tehrani accent. Modifying the 680

data of all 100 participants would not only enhance 681

the current model’s output quality but also enable 682

the development of G2P models for various Iranian 683

accents of Persian. 684

Furthermore, we did not apply any specific loss 685

function for each task during training, relying in- 686

stead on the additional tokens added for Kasre- 687

Ezafe. Although these tokens might implicitly train 688

the model on different tasks, an explicit training 689

method could yield better results. Additionally, due 690

to limited computational resources, we were unable 691

to test other architectures for the defined multi-task 692

objective. 693

It is also important to note that low PER and 694

WER and high accuracy in Kasre-Ezafe detection 695

and homograph disambiguation do not guarantee 696

the intelligibility of the output. For example, if 697

one phoneme of a word is generated incorrectly, 698

the audience might still infer the intended word 699

based on the remaining phonemes or the context, 700

or they might interpret it as an entirely different 701

word or meaning. The quality and usability of these 702

8



systems can only be accurately assessed when used703

in a TTS pipeline in practice.704
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A Pilot Experiments956

A.1 Data Experiments957

We first trained the 2x2 ByT5 transformer on “fars-958

dat aligned”. However, the output was completely959

irrelevant to the input (e.g., "@/z @/ran @/san960

@/n @/n @/san @/n @/san @/n @/..."). In the961

second attempt, the same model was trained on962

4,000 sentences from the Miras corpus combined963

with “farsdat aligned”, but the same results were964

observed (e.g., " h/mcen m/re1 m/re1 m/re1 m/re1965

m/re1 mare1 ..."). Finally, with 20,000 sentences966

from Miras and 10 epochs of training, we were able967

to generate reasonable outputs. The PER and WER968

on the validation set of the machine-generated data969

were 2.7% and 7.8%, respectively.970

To evaluate the quality of the machine-generated971

data, we tested the model on in-domain (News)972

and out-of-domain data. Interestingly, the model973

could not generate the stop token in time for Per-974

sian poems and literary text where standard gram-975

matical rules are not followed (e.g., the verb can976

appear anywhere in the sentence instead of at the 977

end). As a result, we decided to sample data from 978

multiple sources (Miras, Peykare, Naab) with dif- 979

ferent styles (News, history, literary, etc.). Another 980

observation was that among multiple characters 981

used for each Persian grapheme, the multi-module 982

model (Rezaei et al., 2022) used for generating 983

the machine-generated data recognized only one 984

of the characters and ignored any other character 985

appearing in the input. Furthermore, the multi- 986

module model falsely generated Kasre-Ezafe when 987

space was used instead of half-space. Therefore, 988

we added text normalization to our preprocessing 989

pipeline to ensure the highest quality output using 990

the multi-module model. 991

A.2 Model Architecture 992

Due to a lack of computational resources, we ran 993

the experiment for only two architectures, 3x1 and 994

2x2 ByT5 transformers. The 2x2 architecture per- 995

formed well, as reported in section 6. However, 996

in the 3x1 configuration, although all the words in 997

the phoneme sequence were valid Persian words, 998

they were completely irrelevant to the input (e.g., 999

"@/mma @in ra b/raye mixah/m bud v/ nohs/d v/ 1000

@..." instead of "midanim hoquqe1 to boxor n/mir 1001

@/st @/mma d/r @iran beman"). This could be 1002

due to using only one block in the decoder. As a 1003

result, we chose to use the 2x2 architecture. 1004

A.3 Implementation Details 1005

We used a ByT5 model with 2 encoder blocks 1006

and 2 decoder blocks. The input and output sizes 1007

are 512 tokens, and the number of neurons in the 1008

feed-forward network is 512. There are 6 attention 1009

heads, and the size of vectors in the attention mech- 1010

anism is 64. The training batch size is set to 25 1011

with gradient accumulation equal to 2. The initial 1012

learning rate is set to 5e-4 with a cosine learning 1013

rate scheduler. The number of beams during infer- 1014

ence is set to 5 for beam search. All experiments 1015

were run using Kaggle cloud resources (P100 GPU 1016

and 12 gigabytes of RAM) with the random seed 1017

equal to 1625. We were only able to run the exper- 1018

iment once due to lack of resources (each exper- 1019

iment takes 30 to 40 hours). All datasets used in 1020

this work are public datasets and the multi-module 1021

model (Rezaei et al., 2022) was used with the con- 1022

sent of authors. 1023
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Table 6: Samples of the proposed datasets, grapheme sequences and their corresponding phoneme sequence.
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