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Abstract

Learning to detect and encode temporal regularities (TRs) in events is a prerequisite
for human-like intelligence. These regularities should be formed from limited event
samples and stored as easily retrievable representations. Existing event embeddings,
however, cannot effectively decode TR validity with well-trained vectors, let alone
satisfy the efficiency requirements. We develop Noether Embedding (NE) as the
first efficient TR learner with event embeddings. Specifically, NE possesses the
intrinsic time-translation symmetries of TRs indicated as conserved local energies
in the embedding space. This structural bias reduces the calculation of each TR
validity to embedding each event sample, enabling NE to achieve data-efficient TR
formation insensitive to sample size and time-efficient TR retrieval in constant time
complexity. To comprehensively evaluate the TR learning capability of embedding
models, we define complementary tasks of TR detection and TR query, formulate
their evaluation metrics, and assess embeddings on classic ICEWS14, ICEWS18,
and GDELT datasets. Our experiments demonstrate that NE consistently achieves
about double the F1 scores for detecting valid TRs compared to classic embeddings,
and it provides over ten times higher confidence scores for querying TR intervals.
Additionally, we showcase NE’s potential applications in social event prediction,
personal decision-making, and memory-constrained scenarios.

1 Introduction

Recall the last time you went to a restaurant but waited for half an hour after ordering dishes. You
probably knew something was wrong and may have called the waitperson for help. This behavior
is guided by the temporal regularity (TR) of ‘order dishes –(about 10 minutes)–> have meals’
stored in your brain as schemas (Ghosh & Gilboa, 2014). Such TRs play a significant role in
enabling humans to exhibit flexible out-of-distribution and systematic generalization abilities (Goyal
& Bengio, 2022), and are directly learned from experience through a statistical accumulation of
common event structures (Pudhiyidath et al., 2020), as shown in Figure 1. Since there exist enormous
potential TRs due to a large number of event types and time intervals, detecting valid TRs from all
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potential ones is therefore necessary, serving as a prerequisite capability for humans to form more
complex event schemas in the brain to support downstream cognitive functions (Schapiro et al., 2017;
McClelland et al., 1995). To attain human-level abilities in event scenarios, it is crucial to possess
two fundamental properties when learning TRs. Firstly, TRs should be formed from even a limited
number of experiences, which humans achieve since childhood (Pudhiyidath et al., 2020). Secondly,
TRs should be stored as representations that can be instantly retrieved given appropriate cues, which
is a central feature of human memory (Chaudhuri & Fiete, 2016).

Figure 1: Illustration of TR learning. TRs indicate temporal associations invariant to time shifts, and
are learned from event items through statistical accumulation.

It remains an open problem to jointly achieve the data-efficient formation and time-efficient retrieval of
1-1 TRs with event embeddings, although embedding models have achieved outstanding performance
in various tasks such as event completion and event prediction (Cai et al., 2022; Zhao, 2021). Classic
event embeddings can only encode patterns such as inversion and composition and decode the fitted
event occurrences for better performance in completion tasks (Xu et al., 2020b; Wang et al., 2020;
Messner et al., 2022). However, we aim to encode TRs by directly training the embeddings of each
event sample and decode TRs by calculating well-trained embeddings without first decoding the fitted
event occurrences. Our primary challenge in achieving such a counterintuitive function is to design
the inductive bias that automatically integrates the event statistics of each potential TR over time.

Symmetry governs regularities in nature (Tanaka & Kunin, 2021), long before Noether proved the
equivalence between symmetries and conservation laws in a physical system (Noether, 1918). Inspired
by Noether’s theorem, we develop Noether Embedding (NE) with the intrinsic time-translation
symmetries of TRs indicated as conserved local energies in the embedding space. Calculating the
event statistics of each potential TR is therefore converted to reducing the training loss of all event
embeddings. This allows the direct revelation of TR validity by decoding the corresponding local
energies through calculating well-trained embeddings after training convergence.

Contributions are twofold. Firstly, we develop NE which for the first time jointly achieves the data-
efficient formation and time-efficient retrieval of TRs solely by embedding event samples. Secondly,
we define complementary tasks of TR detection and TR query, formulate their evaluation metrics, and
adopt classic datasets for evaluations, aiming at complete evaluations of embeddings’ TR learning
capabilities. Both our tasks and method generalize to arbitrary forms of structured events.

2 Problem Formalization

2.1 Definitions

Temporal Regularity (TR) An event item q can generally be represented by the basic symbolic
form of (ev, t), where ev is the event type, and t is the discrete occurrence time. Building on the
interpretations from cognitive science literature (Ghosh & Gilboa, 2014; Pudhiyidath et al., 2020),
we formally define TRs as temporal associations that remain invariant to time shifts:

(evb, t) → (evh, t+ τ) ∀t ∈ Ta (1)

evb ̸= evh, t, t+ τ respectively refer to the body and head event type and their occurrence time. Ta

refers to the complete collection of the absolute time points in the whole event set, and τ denotes the
relative time. Note that τ = 0 indicates the synchrony of body and head event occurrences.
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For example, a TR could be: Whenever someone orders dishes in a restaurant, he or she will have
meals in around ten minutes, where τ = 10.

Metrics for TR Validity Since real-world data often contain noise, we introduce an adaptive
△ = [τ(1 − η), τ(1 + η)] to replace τ when evaluating statistically learned temporal regularities
from events. For an evaluated TR abbreviated as tr : (evb, evh, τ, η), if an event q : (ev, t) satisfies
that ev = evb, we denote it as b(q; tr); if ev = evh, we denote it as h(q; tr). We define the support
of a TR as the number of event pairs respectively satisfying the body and head:

sp(tr) = n(b(q; tr) ∧ h(q′; tr) ∧ (t′ − t) ∈ △(τ, η)) (2)
∧ denotes ‘and’, ∈ denotes ‘in’, and q : (ev, t), q′ : (ev′, t′) refer to arbitrary two different events in
the event set. Note that when calculating sp(tr), we can only count one event once and in one pair to
avoid overcounting when events occur in consecutive periods.

We respectively define the standard confidence, head coverage, and general confidence of a TR as:

sc(tr) =
sp(tr)

n(b(tr))
, hc(tr) =

sp(tr)

n(h(tr))
, gc(tr) =

2
1

sc(tr) +
1

hc(tr)

(3)

n(b(tr)), n(h(tr)) respectively represent the number of events q : (ev, t) satisfying ev = evb, ev =
evh in the event set. Here we borrow the metrics sc, hc, gc generally used in the rule mining field
(Galárraga et al., 2015) to ensure fair and reasonable evaluations. We modify them by introducing
an adaptive τ with η to evaluate TR validity. Intuitively, standard confidence sc can be viewed as
the probability that the head event will occur within time t+△ once a body event occurs at time t,
whose statistical sufficiency is supported by sp. hc and gc can be interpreted similarly.

Above some sp, the higher the gc, the more valid a TR is. For a potential TR tr : (evb, evh, τ, η) with
fixed event types evb, evh and ratio η, its general confidence can be written as a function of τ : gc(τ).

2.2 Tasks

For a fixed η in △, a potential TR can be an arbitrary (evi, evj , τ), where i, j ∈ P, τ ∈ Tr (P is the
set of event types, Tr is the set of relative time points). Therefore, we define the two complementary
tasks below to comprehensively evaluate the TR learning capabilities of event embeddings.

TR Detection For a query (evb, evh), its ground truth confidence gcg = max
τ∈Tr

gc(τ). Queries whose

gcg ≥ θ are considered to imply valid TRs that reveal good regularities, while queries whose gcg < θ
are considered to imply invalid TRs, where θ is a fixed threshold.

The task of TR detection is to identify valid TRs from all tested ones. The model is expected to
determine whether a query (evb, evh) implies a valid TR. The F1 score of all judgments is reported.

TR Query Only queries that imply valid TRs are considered for testing. The ground truth relative
time τg is set as what maximizes gc(τ) in computing gcg . The model outputs τ ′.

The task of TR query is to output the correct τ ′ = τg for valid TRs. For each tested query (evb, evh),
a ratio r′ = gc(τ ′)

gcg
is computed. The averaged ratio r of all queries is reported.

3 Noether Embedding

3.1 Inspirations from Noether’s Theorem

Noether’s theorem In 1915, mathematician Emmy Noether proved one of the most fundamental
theorems in theoretical physics: every differentiable symmetry of the action of a physical system with
conservative forces has a corresponding conservation law. Specifically, time-translation symmetry
corresponds to energy conservation.

TRs indicate time-translation symmetries An event pair (evb, t) → (evh, t+ τ) can be regarded
as a mapping of the body and the head event type over t with a parameter τ . Therefore, ideal TRs
indicate the invariance of such mappings under the transformation of time translation since the
mapping holds ∀t ∈ Ta for TRs.
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Construct embeddings with conserved local energies Denote q(t; ev) as the embedding of each
event sample, and g(q(t; evb), q(t+ τ ; evh)) as the local energy of a corresponding body-and-head
event pair of a potential TR. If g is innately conserved, meaning that g = g(τ ; evb, evh) is invariant to
t, it indicates time-translation symmetry. We can then use the value of g to approximate TR validity
after training each event embedding q(t; ev). A more strict correspondence between NE variables
and those in a physical system is shown in Appendix A.1.1.

Noether-Inspired structural biases Accordingly, the enabling factors of NE can be summarized
as follows: (i) the event embedding q should be constructed to make each local energy g remain
invariant to t; (ii) the training loss should be designed to make the value of g approximate TR validity;
(iii) the local energy g should be used as the decoding function. We thus construct NE as below.

Figure 2: Illustration of NE. Solid lines and purple graphs in the middle jointly represent the data
flow of NE. The red graphs below and the blue ones above demonstrate cases of a TR with significant
temporal regularities and a TR with no. It is shown that each decoding result reveals an integrated
temporal association of its relevant event pairs separated in time.

3.2 NE’s Framework and Formulas

Framework As illustrated in Figure 2, NE uses a distributed storage of complex vectors to learn
TRs. At the encoding stage, the event items are converted to NE representations through embedding
each event sample, where TR validity is automatically calculated and stored in the embedding space.
At the decoding stage, given each query (evb, evh), potential TRs are detected and queried by directly
calculating their relevant embeddings to derive the corresponding decoding results g(τ).

The Encoding Stage
q(t; ev) = u(ev) ◦ r(t) (4)

In the event embedding above, ◦ denotes the Hadmard (or element-wise) product. u(ev), r(t) ∈ Cd

are complex vectors where u(ev) = v(ev)
||v(ev)|| , v(ev) ∈ Cd, r(t) = eiωt, ω ∈ Rd, and d is the

dimension of vectors. Each event type ev corresponds to an independently trainable vector of u(ev),
while ω is a global time vector for r(t) of all event embeddings. Note that the d ωs in ω are fixed to
a certain distribution. The event embedding q(t; ev) can thus be depicted as a rotation of event-type
vectors u(ev) by time r(t) in the d-dimensional complex space.

The score function and loss function of each event sample are defined as follows:

f(t; ev) =

d∑
i=1

Real(q(t; ev))i (5)

L(ξ;Cp, Cn) = (
1√
d
f(ξ)− Cp)

2 +
1

N

∑
(
1√
d
f(ξ′)− Cn)

2 (6)

We denote ξ as a positive event sample and ξ′s as its generated negative samples whose number is
N . For a positive sample ξ : (ev, t) , its negative samples ξ′s are the whole set of {(ev, t′ ̸= t)}
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where t′ ∈ Ta. Cp, Cn are two different constants for positive and negative samples, respectively.
Cp, Cn ∈ [−1, 1] because ||u(ev)|| = 1, and we generally set Cp = 1, Cn = 0.

Until the training converges, events and TRs form a distributed storage, which includes the global
time vector of ω and trainable event type vectors u(ev). At the decoding stage, no training but only
the inference of vectors is conducted, as described below.

The Decoding Stage The decoding function for a query (evb, evh) is:

g(τ) = ||ub − uh ◦ r(τ)||2 (7)

ub,uh are the event type vectors respectively of evb, evh. τ is traversed through set Tr of the relative
time points such as Tr : {−τmax, ..., 0, ..., τmax} to plot the decoding results. min

τ∈Tr

g(τ) is computed,

which is compared with a global threshold gth to decide whether a potential TR is valid or not (for
TR detection). For a valid TR, the τ ′ which minimizes g(τ), τ ∈ Tr is selected as the model output
of the relative time (for TR query).

Since r(t + τ) = r(t) ◦ r(τ), r(t) ◦ r(t) = 1,∀t ∈ Ta, the decoding function exactly indicates
the conserved local energy: g(τ) = ||ub − uh ◦ r(τ)||2 = ||ub ◦ r(t) − uh ◦ r(t + τ)||2 =
||qb(t) − qh(t + τ)||2,∀t ∈ Ta. This indicates that g = g(τ ; evb, evh) is invariant to t, and the
conserved energy g of arbitrary two event samples is of a quadratic form in the embedding space.

3.3 Why NE is Efficient

Briefly speaking, the Fourier-like representations enable NE’s large-capacity storage for TR validity
and event occurrences, serving as a prerequisite for NE to learn TR effectively. The Noether-inspired
structural biases further leads to NE’s efficient TR learning capabilities. Here we only illustrate the
effect of the structural biases. The reasons why NE learns TR effectively is explained in Appendix A.2.

Data-efficiency by Encoding Translation Symmetries The invariance of g(τ) to t means that the
value of g(τ) is determined by a competitive effect between sample pairs across time. Considering
event sample pairs (evb, t), (evh, t+ τ) with varying t in the embedding space, if a sample pair are
both positive or both negative samples, they will decrease g(τ) since their score functions are mapped
to the same constant. Otherwise, they will increase g(τ). Since g(τ) is invariant to t, g(τ) is trained
to balance these two forces. Therefore, the value of g(τ) after training convergence is generally
determined by the ratio of sample pairs with increasing or decreasing forces. g(τ) is thus insensitive
to the number of sample pairs that are both positive. This results in a data-efficient TR formation in
NE, even with limited event occurrences from which to learn a TR.

Time-efficiency by Decoding Conserved Energies By calculating g(τ) = ||ub−uh ◦r(τ)||2, τ ∈
Tr, we enable efficient TR querying for each query (evb, evh). This process has a constant time
complexity since Tr is an arbitrary user-selected set of relative time points, and the vector dimension
d can be effectively handled using GPUs. Importantly, the querying time is independent of the number
of events in the entire event set and the relevant event occurrences supporting the queried TR.

4 Experiment

It is important to highlight that in our evaluation, we initially compare NE and classic embeddings in
terms of learning effectiveness (Section 4.2), without considering the efficiency requirements. As
classic embeddings are shown to be ineffective in learning TRs, we then focus on demonstrating the
learning efficiency of NE in Section 4.3.

4.1 Experimental Setting

Dataset A temporal knowledge graph (TKG) comprises (s, p, o, t) quadruples (Leblay & Chekol,
2018), where s, p, o, t represent the subject, predicate, object, and time. TKG is widely used in a
variety of fields to represent global political events (Trivedi et al., 2017), financial incidents (Yang
et al., 2019), user-item behaviors (Xiao et al., 2020), etc. Notably, ICEWS (Boschee et al., 2015) and
GDELT (Leetaru & Schrodt, 2013) are two popular data sources for TKG research (Cai et al., 2022).
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In our experiments, we use ICEWS14 and ICEWS18, the same as in (Han et al., 2020). They contain
global political events in 2014 and 2018, and we denote them as D14 and D18, respectively. We also
use the GDELT released by (Jin et al., 2019) , which contains global social events from 2018/1/1 to
2018/1/31. In the experiments, we denote each (s, p, o) triple as a specific event type ev. It is worth
mentioning that alternative settings, such as representing each predicate p as an event type ev, are
also applicable to our model.

Model Implementation For NE, d = 400, Cp = 1, Cn = 0 and the global time vector ω is set as

ωk = (2π×ωmax)
k
d −1

Ta
, k = 0, 1, ..., d− 1, where Ta is the number of absolute time points, and ωmax

is a tunable hyperparameter set as 600. The training details are in Appendix B.1. We compare NE
with six classic and vastly different TKG embeddings, DE-SimplE (Goel et al., 2020), TeRo (Xu
et al., 2020b), ATiSE (Xu et al., 2020a), TNTComplex (Lacroix et al., 2020), BoxTE (Messner et al.,
2022), and TASTER (Wang et al., 2023) with their original parameter settings and d = 400 the same
as NE. We set the queried time set Tr = {1−Ta, ..., 0, ..., Ta − 1} at the decoding stage. In this way,
only one query needs to be decoded between each (evi, evj) and (evj , evi), i ̸= j.

Adaptations. All baselines can only output their score function f ′(t) to decode event occurrences
but cannot directly decode TR validity by g(τ) as NE does. For comparison, we add an interface

g′(τ) =
∑

t,t+τ∈Ta f ′
b(t)f

′
h(t+τ)∑

t∈Ta f ′
b(t)·

∑
t∈Ta f ′

h(t)
to these models that indirectly compute TR validity from the decoded

event occurrences. We also evaluate NE with g′(τ) to show the validity of g′(τ) itself.

Evaluation Details We select (evb, evh)s for tests whose event occurrences of evb and evh are
both ≥ 2. Otherwise, their supports (sp in Definition 2) will be too small for evaluating TR validity.
We set η = 0.1 in △s for strict evaluations and take the upper integer △ = [τ − ⌈τη⌉, τ + ⌈τη⌉].
Note that in the extreme situation where body and head event occurrences both = 2, stochastic
noises are still quite unlikely to interfere with the evaluation of TR validity since η = 0.1 is strict.
Only forward or reverse queries ((evb, evh)s whose sb = sh, ob = oh or sb = oh, ob = sh for
(s, p, o, t) quadruples) are tested for better interpretability without sacrificing generality. We set
θ = 0.8 to distinguish between valid and invalid TRs. The fact that TRs whose gcg ∼ 0.8 are of a
tiny percentage of all tested TRs adds to the rationality of such metrics. Ablations where θ = 0.7, 0.9
are in Appendix B.3.3.

In comparative studies with baselines 4.2, we report the highest F1 in TR detection by tuning the
global threshold gth (defined in Section 3.2) after embedding the whole event set to achieve full
evaluations. We also remove TRs whose τg = 0 for TR query because they account for most valid
TRs but can hardly reflect the query difficulty. In NE’s demonstration studies 4.3 4.4, we first use
D14 to derive the global threshold gth with the highest F1 in TR detection and then apply the same
gth for evaluating NE’s performance in D18. This setting better demonstrates NE’s practicality.

4.2 Comparisons of Learning Effectiveness

Table 1: Statistical results on ICEWS14, ICEWS18, and GDELT

Embedding TR Detection (F1) TR Query (r)
D14 D18 GDELT D14 D18 GDELT

TNTComplEx 0.26 0.18 0.08 0.08 0.08 0.01
DE-SimplE 0.22 0.20 - 0.09 0.09 -
TASTER 0.18 0.15 0.08 0.09 0.09 0.00
TeRo 0.43 0.64 0.16 0.08 0.08 0.01
BoxTE 0.40 0.40 0.18 0.08 0.08 0.01
ATISE 0.40 0.44 0.18 0.08 0.08 0.01

NE with g′(τ) 0.78 0.79 0.48 0.85 0.83 0.83
NE with g(τ) 0.82 0.83 0.51 0.87 0.86 0.85

Performances Table 10 shows that NE with g(τ) has an overwhelming advantage over all baselines
with g′(τ), both in detecting valid TRs and querying the relative time on all evaluated datasets. The
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excellent performance of NE with g′(τ) indicates that g′(τ) itself is valid and thus guarantees fair
comparisons. It is worth noting that NE is intrinsically different from all existing baselines because
only NE can directly decode TR validity by g(τ). In contrast, baselines can only decode event
occurrences f ′(t) from which to indirectly calculate TR validity (such as by g′(τ)). Detailed results
of precision and recall rates with error bars are reported in Appendix B.2.

(a) Decoding distribution of NE (b) g(τ)s of NE (c) Aligned f(t)s of models

Figure 3: Illustrations of NE or baselines

Discussion Figure 3(a) shows NE’s decoding distribution gm = min
τ∈Tr

g(τ) by each query’s ground

truth gcg = max
τ∈Tr

gc(τ). It can be observed that the decoded conserved local energy accurately reveals

the TR validity, which enables NE to successfully distinguish between valid and invalid TRs, as
demonstrated in the case shown in Figure 3(b). Table 10 shows that baselines with g′(τ) still perform
poorly. This is mainly because their f(t)s do not fill well. Specifically, Figure 3(c) illustrates that
TNTComplEx has much noise in its f ′(t) compared to NE. The reason is that baseline models are
generally designed to achieve good performance in the completion task and, therefore, over-apply the
generalization capabilities of distributed representations, which hinders the fit of event occurrences.

4.3 NE’s Superior Learning Capabilities

(a) TR detection by n (b) TR query by n (c) TR query by τg

Figure 4: Grouped performances of NE

Data Efficiency In Figure 4(a) and 4(b), we group TRs by their number n of relevant events. It
is shown that NE accurately detects valid TRs and reports correct τs with only two event pairs as
positive samples. This performance is comparable to humans, able to form temporally associative
memories with minimal experience (Hudson et al., 1992; Bauer & Mandler, 1989; Schapiro et al.,
2017). Note that the maximum group in the test has n > 400, while we only show groups with
n ≤ 40 for display considerations.

Time Efficiency As explained in 3.3, NE’s specific decoding function g(τ) enables NE to retrieve
TRs in a constant time complexity by vector computations. Calculating g′(τ) of classic embeddings,
however, requires an additional time complexity relevant to Ta (the number of absolute time points).

Storage Efficiency In addition to the data-efficient and time-efficient properties, NE is, in fact, also
a storage-efficient memory for TRs and event occurrences. Here is a detailed analysis:
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The storage of NE vectors, denoted as S(NE), can be calculated as follows: S(NE) = S(ev −
vector) + S(time − vector) = 2 ∗ N ∗ d ∗ 64bit + 2 ∗ d ∗ 64bit. In our experiments, we used
torch.LongTensor and N represents the number of event-type vectors. On the other hand, the storage
of exact counting, denoted as S(CT ), can be calculated as follows: S(CT ) = S(TR)+S(event) =
N2 ∗ Ta ∗ log2(n/N)bit + N ∗ (n/N) ∗ log2(Ta)bit. Here, n represents the number of all event
occurrences. We reserved the storage accuracy of TR validity to effectively distinguish different
values, resulting in approximately log2(n/N)bit for each TR validity (evb, evh, τ).

For the ICEWS14 and ICEWS18 datasets, where d = 400, Ta = 365, and n = 90730, 468558, N =

50295, 266631, we calculated the compression ratio S(CT )
S(NE) of NE as 421 and 2336, respectively.

This remarkable capability of NE can be attributed to the fact that it separately stores the information
of TR validities (evb, evh, τ) using event-type vectors and a global time vector. By representing the
common information of related TRs efficiently in memory, NE achieves a compression ratio that is
approximately linear to the number of event types.

Flexibility In Figure 4(c), we group valid TRs by their golden τgs. NE is shown to be flexible for
learning TRs with τs varying broadly, comparable to humans with stable memory codes for various
time intervals in the hippocampus (Mankin et al., 2012).

4.4 NE’s Wide Potential Use

(a) Case 1

(b) Case 2

Figure 5: Social event prediction

(a) Event occurrences

(b) TR validity

Figure 6: Personal decision making

Potential Use in Social Event Prediction In D18, NE successfully reports 21010 valid TRs with
an F1 score of 0.83. The encoding stage takes around 1 hour, while decoding only takes less than 1
minute. Cases are presented below and in Figure 5, with additional cases available in Appendix B.4.

(1) Case 1. Citizen (India) will Reject to Narendra Modi (events in day 23, 122, and 168) in around
87 days whenever Narendra Modi Appeal for diplomatic cooperation (such as policy support) to
Citizen (India) (events in day 102, 200, and 264).

(2) Case 2. Russia will Meet at a ‘third’ location with Ukraine (events in day 31 and 138) in around
136 days whenever Ukraine Use conventional military force to Russia (events in day 161 and 288).

Since the TRs mined can generalize across time, the results above imply NE’s potential use in both
reliable and interpretable event predictions urgently needed in the big data era (Zhao, 2021).
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Potential Use in Personal Decision Making Consider an intelligent machine that has visited a
restaurant four times, with the occurrence time of each event episode used as input for NE, as shown
in Figure 6(a). After training all events, the decoded TR validity min

τ∈Tr

g(τ) is transformed linearly

and demonstrated in Figure 6(b). Despite the recurrent TRs on the slash that can be set aside, valid
TRs such as ‘order dishes –(about 10 minutes)–> have meals’ are well distinguished from invalid
ones such as ‘order dishes –(about 5 minutes) –> look at the floor’.

Combining NE with front-end methods that take unstructured videos as input and output event items
in the form of (ev, t), and with back-end methods that use the decoded valid TRs to guide decision-
making, NE has the potential to aid intelligent machines in surviving in changing environments by
generalizing from little experience, just as human beings (Goyal & Bengio, 2022; Xue et al., 2018).

Potential Use in Memory-constrained Scenarios As discussed in 4.3, NE approximately reduces
the required storage space from M2 to M in our experimental settings, where M is the number
of event types. Therefore, NE holds significant potential for applications in memory-constrained
scenarios like the edge. This is important when M is large, which is usual in the big-data era.

4.5 Ablation Studies

Here we demonstrate ablation studies of loss constants Cp, Cn and time vector ω, while those for
dimension d and event type vector u are shown in Appendix B.3.

Table 2: NE on ICEWS14 in different Cp and Cn settings

Cp

Cn TR Detection (F1) TR Query (r)
0.4 0.2 0 -0.2 -0.4 0.4 0.2 0 -0.2 -0.4

1 0.78 0.80 0.82 0.81 0.80 0.86 0.87 0.87 0.87 0.87
0.8 0.64 0.67 0.79 0.80 0.80 0.85 0.86 0.86 0.87 0.86
0.6 0.29 0.40 0.68 0.79 0.79 0.44 0.82 0.86 0.86 0.85
0.4 0.18 0.31 0.49 0.76 0.79 0.12 0.35 0.84 0.84 0.81
0.2 0.53 0.19 0.27 0.71 0.78 0.27 0.05 0.28 0.79 0.71

Loss Constants Table 2 shows that NE performs optimally when Cp = 1 and Cn = 0. In fact, as
Cp approaches 1, the g(τ) of perfect TRs (gc(τ) = 1, η = 1) is enforced to converge to its minimum
0. This global constant for all potential TRs in the embedding space allows g(τ) to reveal TR validity
better. In terms of Cn, setting it to 0 results in negative samples occupying the largest embedding
space. Since negative samples comprise most of all trained event samples, this setting improves the
fit of negative samples and optimizes NE’s performance.

Table 3: NE on GDELT with different ωmaxs

ωmax 1 5 10 50 100 200 400 600 800

TR Query (r) 0.15 0.93 0.92 0.85 0.85 0.85 0.85 0.85 0.85
TR Detection (F1) 0.22 0.45 0.55 0.56 0.54 0.53 0.53 0.51 0.53

Maximal Frequency Coefficient Table 3 shows that NE performs optimally with different values
of ωmax, respectively, in the TR detection and query task.

Table 4: NE on the three datasets with increasing events, and with different distributions of {ωk}

D14 (90730 events) D18 (468558 events) GDELT (2278405 events)

{ωk} linear exponential linear exponential linear exponential

TR Query (r) 0.81 0.82 0.75 0.82 0.24 0.85
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Frequency Distribution Table 4 shows that the larger the dataset, the more exponential distribution

(ωk = (2π×ωmax)
k
d −1

Ta
, k = 0, 1, ..., d − 1) surpasses linear distribution (ωk = 2π×k×ωmax

d×Ta
, k =

0, 1, ..., d − 1) with the same parameters of d = 400, ωmax = 600. This suggests that real-world
event occurrences depend more on low-frequency terms than high-frequency ones.

5 Related Work

Event Schema Induction In the natural language processing (NLP) field, a significant research
focus is on inducing event schemas from text (Huang et al., 2016; Li et al., 2021), including from
language models (Dror et al., 2022), to support downstream applications such as search, question-
answering, and recommendation (Guan et al., 2022). These NLP methods aim to organize known
event regularities already given as priors for the extracting algorithm (such as extracting ‘earthquake
-> tsunami’ from the sentence ‘An earthquake causes a tsunami.’) and focus on the schemas for
use. In contrast, our tasks are designed to learn event regularities directly from experience without
supervision. Specifically, the only prior models know is whether an event occurs, and models are
required to detect valid TRs from all potential ones and report the correct relative time of valid TRs.

Temporal Rule Mining Various temporal rules are mined from event sets to reveal regularities in
industry, security, healthcare, etc (Segura-Delgado et al., 2020; Chen et al., 2007; Yoo & Shekhar,
2008; Namaki et al., 2017). Although the search methods used discover event regularities directly
from events without supervision, both the mined rules and source events are generally stored as
symbolic representations in list form. In contrast, by applying event embeddings, NE is a distributed
and approximate memory for both TRs and event items. NE strikes a balance between storage
efficiency and storage accuracy compared to exact counting, as detailedly discussed in 4.3.

Embedding Models of Structured Data Within all embedding models of static and temporal
knowledge graphs (Chen et al., 2020; Cai et al., 2022; Wang et al., 2020; Messner et al., 2022), three
are most related to NE. RotatE (Sun et al., 2019) represents each entity and relationship as a complex
vector to model relation patterns on knowledge graphs, and TeRo (Xu et al., 2020b) represents time
as a rotation of entities to model time relation patterns on temporal knowledge graphs. While both
RotatE and TeRo introduce complex vectors for better completion performance, NE first explores
using complex vectors for TR detection in events. In particular, the specific use of complex vectors
in RotatE encodes inverse relations and in TeRo encodes asymmetric and reflexive relations. NE,
instead, apply rotating complex unit vectors to encode time-translation symmetries of all potential
TRs. IterE (Zhang et al., 2019) construct a decodable embedding model to discover rules for better
knowledge graph completion performance. While we take functional inspiration from IterE that
embedding models can jointly encode data and decode regularities, we focus on event data and
define the new problems of TR detection and TR query. Specifically, while IterE focuses on discrete
variables, NE focuses on the continuous variable of time that involves Fourier-like transformations.

To summarize, TR detection and TR query focus on achieving human-like schema learning capabilities
rather than pursuing better support for NLP applications like the event schema induction task.
Meanwhile, NE leverages the advantages of distributed representations over symbolic ones of search
methods in temporal rule mining and is distinct from existing embedding models of structured data.

6 Conclusion

We have developed NE which for the first time enables data-efficient TR formation and time-efficient
TR retrieval simply through embedding event samples. We have formally defined the tasks of TR
detection and TR query to comprehensively evaluate the TR learning capabilities of embedding
models. We have demonstrated NE’s potential use in social event prediction, personal decision-
making, and memory-constrained scenarios. We hope that we have facilitated the development of
human-like event intelligence.

One limitation of NE is that when the vector dimension d is set much lower than the number
of absolute time points Ta, significant performance degradation of NE will occur as observed in
the GDELT experiment. Future research is needed to improve this weakness. The privacy issues
potentially brought about by TR detection and the causality of TRs should also be handled properly.
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Appendix

A Theoretical Illustrations

A.1 Interdisciplinary Correspondences

A.1.1 Physical Correspondence

Considering each event type as a particle, the event embedding q(t; ev) can be viewed as its gen-
eralized coordinate at time t in the d-dimensional complex embedding space. Suppose that each
two particles evb, evh are connected by a spring with the force linear to their distance, their poten-
tial energy can then be expressed as ||qb(t) − qh(t + τ)||2, where τ is a parameter. As q(t; ev)
changes with time, its kinetic energy also changes and can be viewed as being driven by external
nonconservative forces. Using the extended Noether’s theorem, we can see that the work of external
forces and the kinetic energy offset, leading to a conserved quantity of time-translation symmetry
that only includes the potential energy instead of the total energy. The inductive bias of Noether Em-
bedding exactly enforces that such local potential energies are innately conserved, which means that
||qm(tk)− qn(tk + τr)||2 = ||qm(ts)− qn(ts + τr)||2,∀evm, evn ∈ P, tk, ts ∈ Ta, τr ∈ Tr, where
P,Ta,Tr refer to the set of event types, absolute time points, and relative time points, respectively.

A.1.2 Biological Correspondence

The formation of TRs relies on two central functions, namely measurement and integration. The
measurement function involves comparing the temporal distance between each two events. It is
claimed that Laplace transformation exists in the hippocampus for representing time (Howard et al.,
2014). Specifically, the population of temporal context cells (or referred to as ramping cells (Tsao
et al., 2018)) in the lateral entorhinal cortex is discovered to code time with a variety of rate constants
(Bright et al., 2020). r(t) in NE functionally corresponds to such a cell population, which stores the
rate distribution in vector ω of r(t). The integration function aggregates event pairs separated in time
to form TRs. Statistical learning for schema formation is reported to occur in the pathway connecting
EC to CA1 in the hippocampus (Schapiro et al., 2017). In NE, we achieve the same function through
the time-translation symmetry introduced by r(t): r(t+ τ) = r(t) ◦ r(τ), r(t) ◦ r(t) = 1,∀t ∈ Ta.

A.2 Revelation of TR Validity

A.2.1 Effectiveness in TR Query

NE is an effective method for TR query due to its distributed storage of cross-correlations.

The score function f(t) describes the occurrences of each event type, where its value is mapped to
Cp for time points implying event occurrences and Cn for those that do not. The support sp(τ) of
two event types evb, evh can be then approximated by calculating the time-lagged cross-correlation
Rfb,fh(τ) =

∑
t,t+τ∈Ta

fb(t)fh(t+ τ) after training convergence.

Denote F (ω) as the Fourier expansion of f(t). Awaring that in NE, f(t) =
∑d

j=1 Real(u ◦ eiωt)j ,
we can see that the encoding stage enables a d-dimensional Fourier-like expansion for each f(t). The
time vector ω provides the expansion basis and u stores the coefficients as F (ω)s.

By Fourier expansions, the corresponding correlation R′
fb,fh

(τ) =
∫ +∞
−∞ fb(t)fh(t + τ)dt =∫ +∞

−∞ Fb(ω)Fh(ω)e
iωτdω. In NE, g(τ) = ||ub−uh ◦r(τ)||2 = 2−2

∑d
j=1 Real(ub ◦uh ◦ eiωτ )j .

Therefore, each g(τ) reveals exactly the fitted time-lagged cross-correlation and is thus proportional
to the support sp(τ) of a TR. This guarantees NE’s effectiveness in TR query.

A.2.2 Effectiveness in TR Detection

Notations Within all event samples trained for a potential TR, suppose that m event pairs share
the same relative time of τ , where m1 pairs are both positive or both negative samples. In each
remaining m2 = m−m1 pair, one is a positive sample while the other is a negative one. Denote that
M = {1, 2, ...,m},M1 = {i1, i2, ..., im1},M2 = {j1, j2, ..., jm2}. There exists such least upper
bound η that ( 1√

d
f(t; ev)− C)2 < η for the score functions of all 2m samples, where C = Cp, Cn.
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Denote that ai = (cos(ω1ti), cos(ω2ti), ..., cos(ωdti), sin(ω1ti), sin(ω2ti), ..., sin(ωdti))
T , i ∈

M, where d is the dimension of NE vectors, ti is time of the ith body event in m sample pairs. Denote
that in the decoding function, ub − uh ◦ r(τ) = α− iβ where α,β are both real vectors, and x =
(α1,α2, ...,αd,β1,β2, ...,βd)

T . Denote that c1 = max
i∈M1

(cos(ai,x))
2, c2 = min

j∈M2

(cos(aj ,x))
2.

Using the trigonometric inequality, we can derive the following conclusions:

Theorem 1 Within the m1 sample pairs, if c1 > 0, then g(τ) < 4η
c1

.

Theorem 2 Within the m2 sample pairs, if c2 > 0 and |Cp − Cn| > 2
√
η, then g(τ) >

(|Cp−Cn|−2
√
η)2

c2
.

Implications d, Ta,ω, Cp, Cn jointly result in the probability distributions of c1, c2, where c1, c2 >
0 is generally guaranteed by experimental settings. Two conclusions can then be drawn from the
two theorems. (1) Convergence. We can see from theorem 1 that g(τ) → 0 as η → 0. This implies
that the g(τ) of perfect TRs (gc(τ) = 1, η = 1) will converge to its minimum of 0. (2) Competition.
Since g(τ) is invariant to t, comparing these two theorems also tells us about the competing effect
of well-trained sample pairs for the value of g(τ), generally affected by the ratio m1

m2
. These two

conclusions, along with the fact that g(τ) is proportional to the support sp(τ) (as illustrated in A.2.1),
jointly make g(τ) reveal the TR validity gc(τ) and thus guarantees NE’s effectiveness in TR detection.

It is worth noting that d is generally set as d > Ta to control the values of c1, c2, where Ta is the
number of absolute time points of the whole event set. Otherwise, NE’s TR detection performance
will be interfered. For example, if d ≪ Ta, then d ≪ m in most cases. It will thus be very likely that
c1 = 0 so that theorem 1 can not be applied in NE.

B Experimental Supplements

B.1 Training Details

All models are trained for 100 epochs on each dataset using the Adagrad optimizer (with a learning
rate of 0.01) and the StepLR learning rate scheduler (with a step size of 10 and gamma of 0.9). The
experiments are conducted on a single GPU (GeForce RTX 3090). The hyper-parameters of NE are
fine-tuned using a grid search to achieve relatively optimal results.

B.2 Main Results with Error Bars

To ensure the reliability of the results, the experiments are repeated three times, and the error bars are
derived accordingly. Table 5 and 6 show that the main results are quite stable with small error bars.
Note that the precision and recall rates in Table 6 correspond exactly to the F1 scores in Table 5. The
reason why the recall rate of NE is lower than that of TASTER is that we report the highest F1 score
of each model in comparative studies by tuning their respective global threshold, denoted as gth. As
the F1 score is calculated as the harmonic mean of precision and recall rates, TASTER achieves its
highest F1 score by reporting many false positives, resulting in a relatively high recall rate but an
extremely low precision rate.

B.3 Additional Ablations

Unless otherwise specified, the experiments below adopt the original parameter settings as described
in the main text.

B.3.1 Normalization of Event Type Vectors

Table 7 demonstrates that normalized event type vectors slightly outperform unnormalized ones in
the TR detection task.
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Table 5: TR detection by F1 scores and TR query by confidence ratios

Embedding TR Detection (F1) TR Query (r)
D14 D18 GDELT D14 D18 GDELT

TNTComplEx 0.26±0.01 0.18±0.00 0.08±0.01 0.08±0.00 0.08±0.00 0.01±0.00
DE-SimplE 0.22±0.00 0.20±0.00 - 0.09±0.00 0.09±0.00 -
TASTER 0.18±0.00 0.15±0.00 0.08±0.00 0.09±0.00 0.09±0.00 0.00±0.00
TeRo 0.43±0.02 0.64±0.01 0.16±0.00 0.08±0.00 0.08±0.00 0.01±0.00
BoxTE 0.40±0.01 0.40±0.02 0.18±0.01 0.08±0.00 0.08±0.00 0.01±0.00
ATISE 0.40±0.01 0.44±0.01 0.18±0.01 0.08±0.00 0.08±0.00 0.01±0.00

NE with g′(τ) 0.78±0.00 0.79±0.00 0.48±0.00 0.85±0.00 0.83±0.00 0.83±0.00
NE with g(τ) 0.82±0.00 0.83±0.00 0.51±0.00 0.87±0.00 0.86±0.00 0.85±0.00

Table 6: TR Detection by precision and recall rates

Embedding Precision Recall
D14 D18 GDELT D14 D18 GDELT

TNTComplEx 0.22±0.01 0.11±0.00 0.04±0.00 0.33±0.02 0.50±0.01 1.00±0.01
DE-SimplE 0.16±0.00 0.14±0.00 - 0.35±0.03 0.33±0.00 -
TASTER 0.10±0.00 0.08±0.00 0.04±0.00 0.99±0.01 0.99±0.01 0.97± 0.03
TeRo 0.51±0.04 0.91±0.01 0.20±0.04 0.37±0.02 0.49±0.00 0.14±0.02
BoxTE 0.40±0.02 0.39±0.05 0.15±0.01 0.41±0.02 0.41±0.02 0.22±0.03
ATISE 0.35±0.01 0.49±0.03 0.15±0.01 0.47±0.01 0.40±0.00 0.21±0.01

NE with g′(τ) 0.99±0.00 0.98±0.00 0.90±0.00 0.64±0.00 0.66±0.00 0.32±0.00
NE with g(τ) 0.99±0.00 0.99±0.00 0.83±0.00 0.70±0.00 0.72±0.00 0.37±0.00

B.3.2 Dimension of Embedding Vectors

Table 8 and 9 demonstrate that d scarcely affects the performance of NE as long as it is more than
some certain value. It is worth noting that NE’s detection performance in GDELT may be further
improved with larger values of ds, as illustrated in A.2.2, because Ta = 2976 in GDELT, which is
much larger than the tested dimensions.

B.3.3 Threshold for Valid TRs

In the main text, the threshold for distinguishing valid and invalid TRs is chosen as θ = 0.8. Here we
report NE’s results on D14 with varying θs in Table 10. It is shown that NE still has an overwhelming
advantage over all baselines.

B.4 Mined TRs

Additional cases of mined TRs are shown in Table 11 as below.
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Table 7: F1 of NE on ICEWS14 with different event type vectors

Normalized Unnormalized
F1 0.82 0.80

Table 8: NE on GDELT with different dimensions

d 100 200 300 400 500

TR Query (r) 0.83 0.84 0.85 0.85 0.84
TR Detection (F1) 0.22 0.45 0.50 0.51 0.51

Table 9: NE on ICEWS14 with different dimensions

d 50 100 200 400 600 800

TR Query (r) 0.81 0.86 0.87 0.87 0.87 0.87
TR Detection (F1) 0.29 0.55 0.76 0.82 0.83 0.83

Table 10: Statistical results with different thresholds θ on ICEWS14

Embedding Detection(F1) Query(r)
θ=0.7 θ=0.8 θ=0.9 θ=0.7 θ=0.8 θ=0.9

TNTComplEx 0.29 0.26 0.25 0.07 0.08 0.06
DE-SimplE 0.28 0.22 0.21 0.09 0.09 0.21
TASTER 0.28 0.18 0.17 0.09 0.09 0.08
TeRo 0.35 0.43 0.40 0.08 0.08 0.06
BoxTE 0.38 0.40 0.41 0.08 0.18 0.06
ATISE 0.28 0.35 0.33 0.08 0.08 0.06

NE with g′(τ) 0.63 0.78 0.80 0.81 0.85 0.86
NE with g(τ) 0.71 0.82 0.84 0.87 0.87 0.87
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Table 11: Cases of Mined TRs from ICEWS18

Body Event Head Event
gc sp

sb pb ob sh ph oh τ

North
Korea

Threaten
with

military
force

South
Korea

North
Korea

Make em-
pathetic
comment

South
Korea 87 0.86 3

Bahrain

Reduce or
break
diplo-
matic

relations

Foreign
Affairs
(United
States)

Bahrain Consult

Foreign
Affairs
(United
States)

0 0.86 3

Japan Host a
visit

Yoshitaka
Shindo

Yoshitaka
Shindo

Make a
visit Japan 0 1 7

Government
(Syria)

Sign
formal

agreement

Armed
Rebel
(Syria)

Armed
Rebel
(Syria)

Sign
formal

agreement

Government
(Syria) 0 1 5

Protester
(Thailand)

Make
statement Thailand Protester

(Thailand)

Defy
norms,

law

Military
(Thailand) 129 0.86 3

China
Make pes-
simistic

comment
Japan China Host a

visit
Yasuo

Fukuda 148 0.83 5

Court
Judge
(India)

Express
intent to

cooperate

Citizen
(India)

Citizen
(India) Accuse Villager

(India) 132 0.83 5

Kim
Jong-Un

Appeal for
diplo-
matic

coopera-
tion (such
as policy
support)

South
Korea

South
Korea

Engage in
diplo-
matic

coopera-
tion

Iran 27 0.86 3

South
Korea

Make pes-
simistic

comment

North
Korea Canada

Sign
formal

agreement

South
Korea 68 0.86 3

China

Appeal for
diplo-
matic

coopera-
tion (such
as policy
support)

Malaysia South
Korea

Express
intent to

settle
dispute

China 111 0.86 3

Iraq Host a
visit

Massoud
Barzani

Mohammad
Javad
Zarif

Consult Massoud
Barzani 57 0.86 3

Japan

Appeal for
diplo-
matic

coopera-
tion (such
as policy
support)

Thailand Citizen
(Thailand)

Fight with
small

arms and
light

weapons

Thailand 118 0.86 3
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