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Riemannian Trust Region Methods for SC1 Minimization

Chenyu Zhang∗ Rufeng Xiao† Wen Huang‡ Rujun Jiang§

Abstract

Manifold optimization has recently gained significant attention due to its wide range of ap-
plications in various areas. This paper introduces the first Riemannian trust region method for
minimizing an SC1 function, which is a differentiable function that has a semismooth gradient
vector field, on manifolds with convergence guarantee. We provide proof of both global and local
convergence results, along with demonstrating the local superlinear convergence rate of our pro-
posed method. As an application and to demonstrate our motivation, we utilize our trust region
method as a subproblem solver within an augmented Lagrangian method for minimizing nons-
mooth nonconvex functions over manifolds. This represents the first approach that fully explores
the second-order information of the subproblem in the context of augmented Lagrangian methods
on manifolds. Numerical experiments confirm that our method outperforms existing methods.

1 Introduction

Manifold optimization has emerged as a significant research area due to its broad applicability in
various fields, including phase retrieval [5, 10], phase synchronization [7, 38], low-rank matrix comple-
tion [9, 50], principal component analysis [39, 40], and deep learning [13]. In a manifold optimization
problem, the feasible region is on a smooth manifold, such as a sphere or a Stiefel manifold. Extensive
research has been conducted in the past few decades on optimizing smooth objective functions on
manifolds [21, 26, 27, 51, 53], and [3] summarizes several classical algorithms in this field, such as
Newton’s method, line-search methods, and trust region methods. However, these methods encounter
challenges when the objective function becomes nonconvex. Hence, manifold optimization with a non-
convex objective function has become an active area of research in recent years [2, 11, 12, 29, 33].

In this paper, we consider an unconstrained nonconvex optimization problem on a manifold:

min
x∈M

ϕ(x) (1)

where ϕ is bounded below on a complete Riemannian manifold M, has a Lipschitz continuous and
locally directionally differentiable gradient field, but may not be twice differentiable. Particularly, we
will consider the case where ϕ is an SC1-function: a differentiable function that has a semismooth
gradient vector field. We defer the definition of semismoothness to Section 3. SC1 objective functions
are commonly encountered in various domains, including stochastic quadratic programs [46] and
nonlinear minimax problems [44].

1.1 Related Work

Semismooth Newton methods. For an SC1 problem (1) in a Euclidean space, semismooth New-
ton (SSN) methods have been widely applied [32, 45]. Recently, [17] extended the SSN methods
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to Riemannian manifolds. Then, the Riemannian semismooth Newton method was applied to solve
various optimization problems on manifolds. For instance, [19] applied it to solve a primal-dual opti-
mality system on a manifold, while [54] applied it to solve the subproblem of ALM on manifolds. In
both papers, the Newton system was solved inexactly, and a superlinear local convergence rate was
established.

Trust region methods. [2] extended trust region methods to Riemannian manifolds, and estab-
lished a superlinear convergence result similar to the Euclidean case. However, their smoothness
requirements for the objective function are strong, assuming ϕ is twice continuously differentiable
and its Hessian is Lipschitz continuous. For objective functions that may not be twice differentiable,
generalized Hessians have been considered for Euclidean trust region methods. [48] proposed a glob-
ally and superlinearly convergent trust region algorithm for the variational inequality problem, which
utilizes the D-gap function and its computable generalized Hessian. For the same problem, [52] also
proposed a trust region type method, which only switches to a trust region step when Newton’s step
fails to yield a sufficient decrease, thus avoiding the use of the trust region near a strict local minimum.
[31] considered a constrained convex SC1 problem, and similar to [52], their algorithm only resorts
to a trust region strategy when Newton’s step fails.

Problem (1) as subproblems in two methods. Recently, [18] and [54] extended augmented
Lagrangian methods to nonsmooth nonconvex manifold optimization and established convergence
guarantees, which motivates the research in this paper. However, neither of these papers incorporates
a full second-order method to solve the subproblem in the ALM; the former solves the subproblem
using the Riemannian gradient descent method, while the latter employs an SSN method that falls
back to the gradient descent method when encountering negative curvatures. For minimizing a com-
posite function over a manifold, [4] reformulated the objective function utilizing dynamic smoothing,
whose subproblem is also in form (1).

1.2 Contributions

In this paper, we introduce a novel Riemannian trust region method for minimizing SC1 functions on
Riemannian manifolds. We provide empirical evidence of the global convergence, local convergence
near nondegenerate local minima, and superlinear local convergence rate of our method under mild
conditions, adapted from its Euclidean counterpart. Our method represents is the first Riemannian
trust region approach to attain a provable superlinear local convergence rate without the need for
the objective function to be twice differentiable. Moreover, we relax the smoothness requirement
on the retraction to only necessitate a Hölder continuous differential, which aligns with the SC1

objective function. In contrast, the prior work [2] requires the retraction to have a Lipschitz continuous
differential for global convergence of the algorithm and to be twice continuously differentiable for the
algorithm’s superlinear local convergence rate. Furthermore, we provide a proof of the trust region’s
inactivity near a nondegenerate minimizer, which plays a crucial role in establishing the superlinear
local convergence rate. To the best of our knowledge, this is the first guarantee of the eventual
inactivity of the trust region for semismooth trust region methods, even within the framework of
Euclidean spaces.

As an important application, we employ our semismooth Riemannian trust region method to solve
the subproblem of the ALM on manifolds. Notably, our approach stands out as the first method to
fully exploit the second-order information of the ALM’s subproblem, thereby benefiting from the ad-
vantages offered by trust region methods over first-order methods and the Newton method, including
adaptive step-size and automatic detection of negative curvature. Through numerical experiments
on compressed models and sparse principal component analysis, we demonstrate that our proposed
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method outperforms existing methods, achieving better convergence performance, characterized by
faster convergence speed and improved objective function values.

1.3 Organization

This paper is organized as follows. In Section 2, we briefly review the basic concepts in Riemannian
manifold optimization and trust region methods, introducing tools required for our algorithms and
analysis. In Section 3, we present our Riemannian trust region method for minimizing an SC1 function
on a manifold. In Section 4, we establish the convergence results of our algorithm, including global
convergence, local convergence (including attraction property of nondegenerate local minimizers), and
superlinear local convergence rate. In Section 5, we present an application of our method, solving
subproblems of augmented Lagrangian methods on manifolds. Finally, we evaluate our algorithm
through multiple numerical experiments, including compressed modes and sparse principal component
analysis in Section 6.

2 Preliminaries

2.1 Riemannian Manifold Optimization

In this section, we provide a brief introduction to Riemannian manifold optimization, assuming
familiarity with basic concepts such as smooth manifolds, tangent spaces, and smooth mappings on
manifolds. Omitted definitions in this section and more details can be found in monographs such as
[6] and [3]. We summarize the notations on Riemannian manifold optimization we will use in Table 1.

In this paper, we focus on Riemannian manifolds, which are smooth manifolds equipped with an
inner product 〈·, ·〉x on the tangent space TxM varying smoothly with respect to x on the manifold
M. The family of inner products is called the Riemannian metric on the manifold. This paper deals
with general Riemannian manifolds, and we only consider their intrinsic properties and always use
the notation 〈·, ·〉x to refer to the Riemannian inner product.

The Riemannian metric also introduces a norm on the tangent space, defined by ‖ξ‖x =
√

〈ξ, ξ〉x
for any ξ ∈ TxM, and a distance on the manifold, defined by dist(x, y) = infγ

∫ 1
0 ‖γ′(t)‖γ(t)dt for all

x, y ∈ M, where the infimum is taken over all piecewise smooth curves γ : [0, 1] → M connecting
x and y. Throughout the paper, we will drop the subscript x of the Riemannian inner product and
norm if it is clear from the context.

In manifold optimization, we still need to return to linear spaces, like tangent spaces, to perform
various operations. However, unlike the Euclidean case, the tangent vectors at different points of a
manifold are not in the same tangent space. So we need a mapping to bridge different tangent spaces.
This is where the concepts of geodesics and parallel transports come into play.

Definition 1 (Parallel, geodesic, and parallel transport). Let γ : [0, 1] → M be a smooth curve.

• A vector field X is said to be parallel along γ if ∇γ′(t)X = 0 for any t ∈ [0, 1], where ∇ is the
Riemannian connection (Levi-Civita connection).

• γ is said to be geodesic if the field of its tangent vector γ′(t) is parallel along itself.

• For any ξ ∈ Tγ(0)M, there exists a unique parallel vector field Xξ along γ such that Xξ(0) = ξ.
The parallel transport operator along γ is defined by P 0→t

γ : ξ 7→ Xξ(t). When the curve is
geodesic and connects x, y, we denote Pxy := P 0→1

γ .

The parallel transport is an isometry that preserves the inner product, i.e., 〈Pxyξx, Pxyηx〉y =
〈ξx, ηx〉x for any tangent vectors ξx, ηx ∈ TxM. Hence, we can freely transfer vectors between different
tangent spaces using the parallel transport. From the tangent space to the manifold, geodesics
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Table 1 Notations

Notation Definition

M A complete Riemannian manifold
TxM The tangent space at x ∈ M

L(TxM) The set of linear operators from TxM to itself
R,N The set of all real numbers; the set of all natural numbers
R
k, E A vector space; a general Euclidean space

R
k
−,R

k
+ The set of elements in R

k with non-positive/non-negative components
Bδ(x) The ball with center p ∈ S and radius δ,

where p ∈ S can be x ∈ M, 0x ∈ TxM, idTxM ∈ L(TxM), etc.
x, y, z, p, q Points on manifolds
X,Y,Z Vector fields on manifolds
ξ, η, ζ, v Vectors in the tangent space

γ A piecewise smooth curve on manifolds
〈·, ·〉x , 〈·, ·〉 The Riemannian inner product on TxM
‖ · ‖x, ‖ · ‖ The Riemannian norm on TxM
‖ · ‖op The operator norm

dist(x, y) The distance between x, y ∈ M
df The differential of function f on manifolds

∇vX The Riemannian covariant derivative of X at t along v (γ′(t) = v)
∇ The Riemannian connection (Levi-Civita connection) on M

P t1→t2
γ The parallel transport along γ from t1 to t2
Pxy The parallel transport along the geodesic connecting from x to y
expx The exponential map at x ∈ M
Rx The retraction restrict to TxM

grad f The Riemannian gradient of f
Hess f The Riemannian Hessian of f
∂f, ∂X The Clarke subdifferential of function f ;

the Clarke generalized covariant derivative of the vector field X
Hxk ,Hk An element in the Clarke generalized covariant derivative ∂gradϕ(xk)

naturally introduce a local map called the exponential map defined as expx : ξ 7→ γ(1), where γ is a
unique geodesic such that γ(0) = x, γ′(0) = ξ, and dist(γ(0), γ(1)) = ‖ξ‖. The exponential map is a
local diffeomorphism, and we define the injective radius of x as follows:

injx(M) := sup{δ > 0 : expx is a diffeomorphism on Bδ(0x) ⊂ TxM}.

The global injective radius of the manifold is defined as inj(M) := infx∈M injx(M). The geodesically
convex normal neighborhood (or normal neighborhood for short) of x is a neighborhood NN(x) such
that for any y, z ∈ NN(x), there is a unique minimizing geodesic segment from y to z in M, and
the image of this geodesic segment lies entirely in NN(x). There is a nonempty geodesically convex
normal neighborhood at each point of a Riemannian manifold [35, Theorem 6.17]. We rely heavily
on the smooth diffeomorphism offered by the exponential map, both in the algorithms and analysis.
Therefore, throughout the paper, we restrict all neighborhoods of a point x to be within x’s geodesi-
cally convex normal neighborhood. This restriction is possible when we only consider a compact
subset Ω of the manifold. Thus the injective radius of Ω has a positive lower bound [19, 29], and
expx(B 1

2
inj(Ω)(0x)) ⊂ NN(x) for any x ∈ M. For example, any point on a unit sphere with Euclidean

metric has an injective radius of π and a geodesically convex normal neighborhood intBπ/2. In
addition, we assume that the manifold is complete, i.e., any locally defined geodesic can be extended
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to the entire real axis. This assumption ensures that the exponential map is well-defined on the entire
tangent space, and the shortest curve connecting two points is a geodesic (see [20]).

We now introduce some key tools related to functions on manifolds that will help us apply algo-
rithms to solve manifold optimization problems.

Definition 2 (Riemannian gradient and Hessian). For a function from M to R, its Riemannian
gradient at x is a unique tangent vector such that

〈grad f(x), ξ〉 = df(x)[ξ], ∀ξ ∈ TxM,

where df(x) is the differential of f at x; its Riemannian Hessian is an element in L(TxM), the set of
all linear operators from TxM to itself, such that

Hess f(x)[ξ] = ∇ξ grad f(x), ∀ξ ∈ TxM,

where ∇ is the Riemannian connection (Levi-Civita connection) on M.

The problem we consider is not necessarily smooth; to obtain its second-order information, we
need the following definitions, which can be found in [17, 22].

Definition 3 (Lipschitz continuous vector field). A vector field X on M is said to be locally Lipschitz
continuous if for any x ∈ M, there exist a radius δx > 0 and a constant Lx > 0 such that

‖PyzX(y)−X(z)‖ 6 Lx dist(y, z), ∀y, z ∈ Bδx(x).

A function is said to be Lipschitz continuously differentiable if its gradient vector field is a Lipschitz
vector field with a global Lipschitz constant L and a global radius of neighborhood δ.

Definition 4 (Directional derivative). For a vector field X, its directional derivative at x ∈ M along
ξ ∈ TxM is defined as

∇X(x; ξ) := lim
t→0+

1

t

(
Pexpx(tξ),x

X(expx(tξ))−X(x)
)
.

X is said to be directionally differentiable at x if ∇X(x; ξ) exists for all ξ ∈ TxM.

If X is differentiable at x, then it is directionally differentiable, and ∇X(x; ξ) = ∇ξX(x) for all
ξ ∈ TxM.

In subgradient methods for manifold optimization, the elements in the Clarke subdifferential are
frequently used as generalized gradients [11, 24]. Similarly, we can define a generalized Hessian for
non-twice differentiable functions. [17, Theorem 3.2] states that locally Lipschitz continuous vector
fields on M are differentiable almost everywhere, allowing us to introduce the Clarke generalized
covariant derivative of such vector fields.

Definition 5 (Clarke generalized covariant derivative). The Clarke generalized covariant derivative
of a locally Lipschitz continuous vector field X at x ∈ M is defined as

∂X(x) := conv





H ∈ L(TxM) : ∃{xk} ⊂ DX , x = lim
k→∞

xk,

H = lim
k→∞

Pxkx∇X(xk)Pxxk



 ,

where DX is the collection of points on the manifold where X is differentiable. Since Hessians at
differentiable points are self-adjoint [36, Lemma 11.1], all elements in the Clarke generalized covariant
derivative, and their inverse (if exists), are self-adjoint.
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While elements in the Clarke generalized covariant derivative of the gradient field are not neces-
sarily Hessian operators, they possess desired properties that make them suitable replacements for
Hessian operators in our algorithms.

Proposition 1 ([17, Proposition 3.1]). Let ∂X be the Clarke generalized covariant derivative of a
locally Lipschitz continuous vector field X on M. The following statements are valid for any x ∈ M:

1. ∂X(x) is a nonempty, convex, and compact subset of L (TxM);

2. ∂X is locally bounded; that is, for any δ > 0, there exists C > 0 such that for all y ∈ Bδ(x) and
H ∈ ∂X(y), it holds that ‖H‖ ≤ C;

3. ∂X is upper semicontinuous at p; that is, for any scalar ε > 0, there exists δ > 0 such that for
all y ∈ Bδ(x), it holds that

Pyx∂X(y)Pxy ⊂ ∂X(x) +Bε(0),

where Bε(0) := {H ∈ L (TxM) : ‖H‖ < ε}. Consequently, ∂X is closed at x; that is, if limk→+∞ xk =
x,Hk ∈ ∂X (xk) for all k = 0, 1, . . ., and limk→+∞ PxkxHkPxxk = H, then H ∈ ∂X(x).

2.2 Trust Region Methods

Trust region methods are an extension of Newton’s method, which have better convergence proper-
ties and relax the convexity requirement by automatically detecting the negative curvature. For a
comprehensive discussion, we refer readers to monographs such as [41] and [14]. While trust region
methods share the same objective function as Newton’s method in the model problem, they possess
a trust region constraint. Specifically, for a smooth function ϕ in a Euclidean space E, a classical
trust region method (see [14]) often chooses the model problem at xk as

min
η∈E

mxk(η) := ϕ(xk) + 〈gradE ϕ(xk), η〉E +
1

2
〈HessE ϕ(xk)η, η〉E

s.t. ‖η‖E 6 ∆k,

(2)

where gradE, HessE , 〈·, ·〉E, and ‖ · ‖E are the Euclidean gradient, Hessian, inner product, and norm
respectively. After solving the model problem, a trust region method compares the actual decrease
and model decrease by computing the relative decrease ratio, which is used to determine the next
iteration point and trust region radius. We defer the implementation details of a trust region method
to the next section.

3 Semismooth Riemannian Trust Region Method

In this section, we present a semismooth Riemannian trust region method to solve the unconstrained
nonconvex problem on a manifold:

min
x∈M

ϕ(x),

where ϕ is bounded below on M, has a Lipschitz continuous and locally directionally differentiable
gradient field with a Lipschitz constant L, but may not be twice differentiable. To overcome the
absense of the Hessian, we utilize the Clarke generalized covariant derivative of the gradient field in
our trust region method. To ensure the super-linear local convergence rate, we require ϕ to be SC1,
i.e., impose the semismoothness condition on the Clarke generalized covariant derivative ∂ gradϕ.
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Definition 6 (Semismoothness [17]). Let X be a locally Lipschitz continuous vector field on M that
is directionally differentiable in a neighborhood of x ∈ M. X is said to be µ-order semismooth at x
with respect to its Clarke generalized covariant derivative, for µ > 0, if for any ε > 0, there exists
δ > 0 such that ∥∥X(x)− Pyx

(
X(y) +Hy exp

−1
y (x)

)∥∥ 6 εdist(x, y)1+µ,

for all y ∈ Bδ(x) and Hy ∈ ∂X(y), where exp−1
y is the inverse map of expy, which is well-defined at x

for any y in the normal neighborhood of x. When µ = 0, we simply say X is semismooth. Moreover,
if there exists C, δ > 0 such that

∥∥X(x)− Pyx
(
X(y) +Hy exp

−1
y (x)

)∥∥ 6 C dist(x, y)2,

for all y ∈ Bδ(x) and Hy ∈ ∂X(y), we say X is strongly semismooth.

For example, a piecewise smooth vector field X is strongly semismooth with respect to ∂X.
When solving manifold optimization problems iteratively, we typically do not compute the itera-

tion points directly on the manifold. Instead, we use Riemannian gradients and Hessians to calculate
iteration points on the tangent space and then retract them onto the manifold. The exponential map,
a distance-preserving smooth diffeomorphism between the tangent space and the manifold, ensures
that the retracted points preserve desirable properties, such as sufficient descent in the objective func-
tion. However, computing the exponential map can be challenging. To address this, we introduce
retractions, a class of mappings that approximate the exponential map and relax the requirement for
a distance-preserving smooth diffeomorphism.

Definition 7 (Retraction). A continuously differentiable mapping R : TM → M is called a retrac-
tion, if for any x ∈ M, it satisfies that

1. Rx(0x) = x,

2. dRx(0x) = idTxM,

where Rx is the restriction of R to TxM, 0x is the zero element of TxM, and dRx(0x) is the differential
(pushforward) of Rx at 0x.

The definition of a retraction shows that it provides a first-order approximation of the exponential
map, which also satisfies expx(0x) = x and d expx(0x) = idTxM. In other words, Rx needs to map
the point x + ξ in the tangent space back to the manifold in a way that preserves the distance
between the two points as a higher-order term compared to the magnitude of the tangent vector ξ.
This condition ensures that x+ ξ and Rx(ξ) exhibit similar properties. For example, if a continuous
objective function exhibits a sufficient decrease for x + ξ, it should also demonstrate an acceptable
decrease for Rx(ξ).

To achieve a quadratic local convergence rate, the retraction needs to be C2 [2, 3]. However, if the
gradient field of the objective function is not strongly semismooth, the quadratic local convergence
rate may not be obtained. Hence, to be more general and consistent with the semismoothness
condition, we only require the retraction to admit a Hölder continuous differential, rather than being
twice continuously differentiable.

Remark 1 (C1,ν retractions). We present two examples of C1,ν retractions, which are retractions
with a ν-order Hölder continuous differential, on the real coordinate space R

n. By introducing two
C2,ν Riemannian metrics, we naturally have their associated exponential maps as C1,ν retractions.
First, note that on R

n, a metric (a family of inner products) can be represented by a mapping
g : Rn → Sn+, where Sn+ is the set of positive definite matrices. The resulting inner product at p is
〈ξ, η〉x =

∑
i,j gij(p)ξiηj for any ξ, η ∈ TpM, where gij(p) is the (i, j)-th entry of g(p). Then, a toy
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example of a C2,µ metric on M = R
n is given by g(p) = f(p) · In, where f : Rn → R is C2,µ. An

example of an f ∈ C2,µ can be found in, e.g., [23, Example 1].
Another more general example is the induced metric on a hypersurface defined by a function graph

M =
{
(x, f(x)) | x ∈ R

n−1
}
, where f : Rn−1 → R. The Riemannian metric at p = (x, f(x)) ∈ M

induced by the Euclidean metric on R
n is gij(p) = δij + ∂if(x)∂jf(x), where δij is the Kronecker

delta [28, 34]. Therefore, if f is C3,µ, then g is C2,µ, and the exponential map associated with g is
C1,µ.

We have the following proposition for this class of retractions.

Proposition 2. Suppose the differential of Rx is ν-order Hölder continuous, i.e., there exists ν > 0
and C > 0 such that for any ξ1, ξ2 ∈ TxM, we have

‖PRx(ξ1)Rx(ξ2)dRx(ξ1)− dRx(ξ2)‖op 6 C‖ξ1 − ξ2‖
ν .

Then for any ξ ∈ TxM such that Rx(ξ), expx(ξ) ∈ NN(x), we have

dist(Rx(ξ), expx(ξ)) = O
(
‖ξ‖1+ν

)
.

Proof. For any ξ, define the curve γ : t 7→ Rx(tξ). For any smooth function f on the manifold, denote
f̂(t) = f(Rx(tξ)). By the mean value theorem, we know there exists τ ∈ [0, 1] such that

f̂(1) = f̂(0) + f̂ ′(τ)= f(x) +
〈
grad f(y), γ′(τ)

〉
= f(x) + 〈grad f(y),dRx(τξ)[ξ]〉 , (3)

where y = Rx(τξ), and dRx(τξ) : TxM → TyM. Then, we have

〈grad f(y),dRx(τξ)[ξ]〉 = 〈Pyx grad f(y), PyxdRx(τξ)[ξ]〉

= 〈grad f(x),dRx(0x)[ξ]〉+ 〈grad f(x), PyxdRx(τξ)[ξ]− dRx(0x)[ξ]〉︸ ︷︷ ︸
S1

+ 〈Pyx grad f(y)− grad f(x), PyxdRx(τξ)[ξ]〉︸ ︷︷ ︸
S2

.

By the Hölder continuity of dRx, S1 = O(‖ξ‖1+ν); and by the smoothness of f , ‖Pyx grad f(y) −
grad f(x)‖ = O(dist(x, y)) = O(‖ξ‖), and then S2 = O(‖ξ‖2). Then, using dRx(0x) = idTxM in
Definition 7, we get

〈grad f(y),dRx(τξ)[ξ]〉 = 〈grad f(x), ξ〉+O(‖ξ‖1+ν). (4)

Now let f(p) := dist(p, expx(ξ)). f is the radial distance function on NN(expx(ξ)) and is differen-
tiable on NN(expx(ξ)) \ {expx(ξ)} [35, Lemma 6.8]. The geodesic connecting Rx(ξ) and expx(ξ) is
unique and minimizing the distance given that both points are in NN(x). Thus, f is well-defined on
Rx(ξ). Combining (3) and (4) gives

dist(Rx(ξ), expx(ξ)) = f̂(1) = dist(x, expx(ξ)) + 〈grad f(x), ξ〉+O(‖ξ‖1+ν). (5)

Then, by [36, Theorem 6.32], the gradient of the Riemannian distance function gives

〈grad f(x), ξ〉 =
〈
γ′−(dist(x, expx(ξ))), ξ

〉
(6)

where γ− is the unit-speed geodesic from expx(ξ) to x. Let γ be the reverse curve of γ−, i.e., γ is the
same curve as γ− but with a reverse parametrization from x to expx(ξ). Then, we know that

γ′−(dist(x, expx(ξ))) = −γ′(0) = −
ξ

‖ξ‖
, (7)
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where the negative sign is due to the reverse parametrization of γ, and the normalization is because
γ and γ− are unit-speed geodesics. Combining (6) and (7) gives

〈grad f(x), ξ〉 = −‖ξ‖ = −

〈
ξ

‖ξ‖
, ξ

〉
= − dist(x, expx(ξ)). (8)

Combining (5) and (8) gives

dist(Rx(ξ), expx(ξ)) = O(‖ξ‖1+ν).

Using the retraction, we can first solve the model problem of a trust region method on the tangent
space and then map the iteration point back onto the manifold. The model problem of a Riemannian
trust region method can be defined similarly to (2) using the Riemannian gradient, Hessian, inner
product, and norm [2]. However, the objective function ϕ we consider may not necessarily be twice
differentiable. As a result, we propose replacing the Hessian in the model problem with an arbitrary
element in the Clarke generalized covariant derivative of the gradient vector field. That is, at each
iteration, we choose an arbitrary Hk ∈ ∂ gradϕ(xk)

1and define the model problem as follows:

min
η∈TxkM

mxk(η) := ϕ(xk) + 〈gradϕ(xk), η〉 +
1

2
〈Hkη, η〉

s.t. ‖η‖ 6 ∆k.

(9)

After solving the model problem, we compare the descent in the objective function with that of
the model function by computing the relative decrease ratio:

ρk =
ϕ(xk)− ϕ(Rxk(ηk))

mxk(0)−mxk(ηk)
, (10)

where ηk is the (approximate) solution to the model problem (9), and R is the chosen retraction.
If ρk is relatively large, we accept Rxk(ηk) as the next iteration point. The remaining steps of our
semismooth Riemannian trust region method are the same as in a vanilla trust region method [41].
We present our algorithm in Algorithm 1.

For the model problem, any approximate method with an appropriate termination condition can
be used. For example, we use the truncated conjugate gradient (TCG) method [47, 49] with the
following stopping criterion

‖rj+1‖ 6 ‖r0‖min{‖r0‖
θ, ε}, (11)

where ε, θ > 0. For completeness and convenience of subsequent analysis, we present the TCG
method in Algorithm 2. Besides stopping criterion (11), Algorithm 2 also terminates when one of two
truncation conditions (lines 3 and 8) is satisfied and returns the truncated tangent vector ηk = ξj+τδj,
with τ calculated as follows:

τ(ξj , δj ,∆k) =
−〈ξj, δj〉+

√
〈ξj , δj〉

2 +
(
∆2
k − 〈ξj , ξj〉

)
〈δj , δj〉

〈δj , δj〉
. (12)

1Note that we sometimes use Hx to represent an element in ∂ gradϕ(x) to make it more self-explanatory. Thus,
Hxk

and Hk both represent an element in ∂ gradϕ(xk).
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Algorithm 1: Semismooth Riemannian Trust Region Method

1 parameters ∆̄ > 0,∆0 ∈ (0, ∆̄), and ρ′ ∈ [0, 1/4)
2 input initial point x0 ∈ M
3 for k = 0, 1, . . . do

4 Obtain ηk by approximately solving the model problem (9), e.g., using Algorithm 2
5 Compute ρk using (10)
6 if ρk < 1/4 then

7 ∆k+1 =
1
4∆k

8 else if ρk > 3/4 and ‖ηk‖ = ∆k then

9 ∆k+1 = min{2∆k, ∆̄}
10 else

11 ∆k+1 = ∆k

12 end

13 if ρk > ρ′ then

14 xk+1 = Rxk(ηk)
15 else

16 xk+1 = xk
17 end

18 end

Algorithm 2: Steihaug-Toint Truncated Conjugate Gradient Method

1 Let ξ0 = 0, r0 = gradϕ(xk), δ0 = −r0
2 for j = 0, 1, 2, . . . do

3 if 〈δj ,Hkδj〉 6 0 then

4 return ηk = ξj + τδj , where τ is computed using (12)
5 end

6 Let αj = 〈rj , rj〉 / 〈δj ,Hkδj〉
7 Let ξj+1 = ξj + αjδj
8 if ‖ξj+1‖ > ∆k then

9 return ηk = ξj + τδj , where τ is computed using (12)
10 end

11 Let rj+1 = rj + αjHkδj
12 if stopping criterion (11) is met then

13 return ηk = ξj+1

14 end

15 Let βj+1 = 〈rj+1, rj+1〉 / 〈rj, rj〉
16 Let δj+1 = −rj+1 + βj+1δj
17 end

4 Convergence Analysis

In this section, we present the convergence results of our semismooth Riemannian trust region method
(Algorithm 1). We prove three classical results that are applicable to a smooth Euclidean trust region
method. The first is the global convergence theorem (Theorem 1), which shows that the algorithm
converges to a stationary point for any initial point. The second is the local convergence theorem
(Theorem 2), which demonstrates that nondegenerate local minimizers form basins of attraction.
Finally, Theorem 3 establishes the super-linear local convergence rate of our algorithm.
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4.1 Global Convergence

Before presenting the global convergence theorem, we need some essential lemmas. Since both the
model problem (9) and Algorithm 2 are defined in a Euclidean space, the first two lemmas apply to
our algorithm without requiring any modification.

Lemma 1 (TCG properties [47, Theorem 2.1]). Let {ξi}
j
i=0 be the first j+1 tangent vectors generated

by Algorithm 2 with j + 1 iterations and ηk be the returned tangent vector. Then we have

1. If the truncation conditions and the termination condition are not met, there exists j such that

ξj+1 = η∗ = H−1
k (− gradϕ(xk)),

where Hk is the (general/approximated) Hessian passed to the algorithm, and η∗ is the minimum
point of m.

2. Algorithm 2 is a descent algorithm, i.e., m(ξ0) > m(ξ1) > · · · > m(ξi) > · · · > m(ξj) > m(ηk) >
m(η∗).

3. The norm of ξi is monotonically increasing, i.e., ‖ξ0‖ 6 ‖ξ1‖ 6 · · · 6 ‖ξi‖ 6 · · · 6 ‖ξj‖ 6

‖ηk‖ 6 ‖η∗‖.

Lemma 2 (Cauchy decrease inequality [41, Lemma 4.3]). Let ηk be the tangent vector returned by
Algorithm 2, then the decrease in the model problem (9) satisfies

mxk(0)−mxk(ηk) >
1

2
‖ gradϕ(xk)‖min

{
∆k,

‖ gradϕ(xk)‖

‖Hxk‖

}
.

The following lemma, Taylor’s theorem, is of utmost importance in our analysis. While there exist
several forms and variations of Taylor’s theorem on manifolds, we will only present the ones that are
relevant to our analysis. Some other variations can be found in [3, 8, 25].

Lemma 3 (Taylor). Suppose ϕ ∈ C1(M) has a Lipschitz gradient field and x, y ∈ M. Let γ :
[0, 1] → M be a geodesic from x to y. Then, there exist τ1, τ2 ∈ [0, 1], and Hτ2 ∈ ∂ gradϕ(γ(τ2))
such that

ϕ(y) − ϕ(x) =
〈
P τ1→0
γ gradϕ(γ(τ1)), γ

′(0)
〉
, (13)

ϕ(y)− ϕ(x) =
〈
gradϕ(x), γ′(0)

〉
+

1

2

〈
P τ2→0
γ Hτ2P

0→τ2
γ γ′(0), γ′(0)

〉
, (14)

Furthermore, we have

ϕ(y)− ϕ(x) =
〈
gradϕ(x), γ′(0)

〉
+O(dist(x, y)2), (15)

ϕ(y)− ϕ(x) =
〈
gradϕ(x), γ′(0)

〉
+

1

2

〈
Hxγ

′(0), γ′(0)
〉
+ o(dist(x, y)2), (16)

for some Hx ∈ ∂ gradϕ(x).
Similarly, for Lipschitz and directionally differentiable vector field X, there exist τ3 ∈ [0, 1], Hτ3 ∈

∂ gradϕ(γ(τ3)), and Hx ∈ ∂ gradϕ(x) such that

X(y) = P 0→1
γ

[
X(x) + P τ3→0

γ Hτ3P
0→τ3
γ γ′(0)

]
, (17)

∥∥X(y)− P 0→1
γ

[
X(x) +Hxγ

′(0)
]∥∥ = o(dist(x, y)). (18)

11



Proof. For (13), let γ be the geodesic from x to y and define ϕ̂ := ϕ ◦ γ. Then by the first-order
expansion of ϕ̂, there exists τ1 ∈ [0, 1] such that

ϕ(y) = ϕ̂(1) = ϕ̂(0) + ϕ̂′(τ1) =ϕ(x) +
〈
gradϕ(γ(τ1)), γ

′(τ1)
〉

=ϕ(x) +
〈
P τ1→0
γ gradϕ(γ(τ1)), γ

′(0)
〉
,

where the last equality is from the fact that the tangent vector of a geodesic is parallel along itself
(see Definition 1).

For the proof of (14), please refer to [54, Lemma 4.1]. Let L be the Lipschitz constant of ϕ’s
gradient as in Definition 3; by (13), we have

∥∥ϕ(y)− ϕ(x)−
〈
gradϕ(x), γ′(0)

〉∥∥ =
∥∥〈(P τ1→0

γ gradϕ(γ(τ1))− gradϕ(x)
)
, γ′(0)

〉∥∥

6
∥∥P τ1→0

γ gradϕ(γ(τ1))− gradϕ(x)
∥∥ ‖γ′(0)‖

6 L dist(γ(τ1), x)‖γ
′(0)‖

6 L dist(x, y)2,

which gives (15). By the upper-semicontinuity of the Clarke generalized covariant derivative (Propo-
sition 1), for any ε > 0, when y is near x, there exist Hx ∈ ∂ gradϕ(x) and an operator B whose
operator norm is no greater than 1, such that

P τ2→0
γ Hτ2P

0→τ2
γ = Hx + εB.

Therefore ∥∥∥∥ϕ(y)− ϕ(x)−
〈
gradϕ(x), γ′(0)

〉
−

1

2

〈
Hxγ

′(0), γ′(0)
〉∥∥∥∥

(14)
6

1

2

∥∥〈(P τ2→0
γ Hτ2P

0→τ2
γ −Hx

)
γ′(0), γ′(0)

〉∥∥

6
1

2
‖P τ2→0

γ Hτ2P
0→τ2
γ −Hx‖‖γ

′(0)‖2

6
ε

2
dist(x, y)2.

By the arbitrariness of ε, we get (16). Equations (17) and (18) can be derived similarly.

We now present the global convergence theorem, which mirrors [2, Theorem 4.4]. However, in [2],
two additional assumptions are made on the retraction R. We could also adopt the same assumptions
and then [2, Theorem 4.4] directly applies to our setting, as it does not require the second-order
differentiability of ϕ. Nonetheless, we provide a proof of our theorem with only one assumption: the
Hölder continuity of the retraction’s differential. This requirement is strictly weaker than the radially
Lipschitz continuity assumption made in [2, Definition 4.1].

Theorem 1 (Global convergence). Let {xk} be the sequence generated by Algorithm 1 with ρ′ ∈ [0, 14).
Suppose on the level set {x ∈ M : ϕ(x) 6 ϕ(x0)}, {Hk} is uniformly bounded. Then we have

lim inf
k→∞

‖ gradϕ(xk)‖ = 0. (19)

Moreover, if ρ′ ∈ (0, 14) and the retraction R has a ν-Hölder continuous differential, we have

lim
k→∞

‖ gradϕ(xk)‖ = 0. (20)

Proof. Our proof is adapted from that of [1, Theorem 4.2 and 4.4]. For (19), we only need to reestab-
lish the claim that the trust region radius has a positive lower bound if lim infk→∞ ‖ gradϕ(xk)‖ 6= 0.

12



For the remaining proof, please refer to [1, Theorem 4.2]. Similar to the proof of (13) in Lemma 3,
let γ be the curve such that γ(t) = Rxk(tηk). Then, there exists τ ∈ [0, 1] such that

ϕ(Rxk(ηk))− ϕ(xk) =
〈
gradϕ(γ(τ)), γ′(τ)

〉

= 〈gradϕ(γ(τ)),dRxk (τηk)[ηk]〉

=
〈
Pγ(τ)xk gradϕ(γ(τ)), Pγ(τ)xkdRxk(τηk)[ηk]

〉
. (21)

By the Hölder continuity of dRxk , there exist C1 > 0 and ν > 0 such that

‖dRxk(0xk)− Pγ(τ)xkdRxk(τηk)‖op 6 C1‖τηk‖
ν . (22)

By the Lipschitz continuity of gradϕ and Proposition 2, there exists C2 > 0 such that

‖ gradϕ(xk)− Pγ(τ)xk gradϕ(γ(τ))‖

6L dist(xk, Rxk(τηk))

6L dist(xk, expxk(τηk)) + L dist(expxk(τηk), Rxk(τηk))

6L(τ‖ηk‖+ C2‖τηk‖
1+ν) (23)

Plugging (22) and (23) back into (21) gives

ϕ(Rxk(ηk))− ϕ(xk)

=
〈
Pγ(τ)xk gradϕ(γ(τ)) − gradϕ(xk), Pγ(τ)xkdRxk(τηk)[ηk]

〉

+
〈
gradϕ(xk), (Pγ(τ)xkdRxk(τηk)− dRxk(0xk))[ηk]

〉
+ 〈gradϕ(xk), ηk〉

6L(τ‖ηk‖+C2‖τηk‖
1+ν)‖Pγ(τ)xkdRxk(τηk)‖op‖ηk‖

+ ‖ gradϕ(xk)‖·C1‖τηk‖
ν ·‖ηk‖+ 〈gradϕ(xk), ηk〉

6L(‖ηk‖+ C2‖ηk‖
1+ν)(1 + C1‖τηk‖

ν) · ‖ηk‖

+C1‖ gradϕ(xk)‖‖ηk‖
1+ν + 〈gradϕ(xk), ηk〉

6(C3 + C1‖ gradϕ(xk)‖)‖ηk‖
1+ν + 〈gradϕ(xk), ηk〉 ,

where C3 := L(∆̄1−ν + C2∆̄)(1 + C1∆̄
ν) > L(‖ηk‖

1−ν + C2‖ηk‖)(1 + C1‖τηk‖
ν) because ‖ηk‖ 6 ∆̄

and τ ∈ [0, 1], where ∆̄ is the radius cap of the trust region specified in Algorithm 1. Let β be the
uniform upper bound of {Hk}. By the definition of the model problem (9), we have

|mxk(ηk)− ϕ(Rxk(ηk))| 6

∣∣∣∣
1

2
〈ηk,Hkηk〉

∣∣∣∣+ |ϕ(xk) + 〈gradϕ(xk), ηk〉 − ϕ(Rxk(ηk))|

6
β

2
‖ηk‖

2 + (C3 + C1‖ gradϕ(xk)‖)‖ηk‖
1+ν

6 (C1‖ gradϕ(xk)‖+ C4)‖ηk‖
1+ν ,

where C4 = C3 + β∆̄1−ν/2. Then, by Lemma 2, we get

|ρk − 1| =

∣∣∣∣
mxk(ηk)− ϕ(Rxk(ηk))

mxk(0)−mxk(ηk)

∣∣∣∣ 6
(C1‖ gradϕ(xk)‖+ C4)‖ηk‖

1+ν

1
2‖ gradϕ(xk)‖min

{
∆k,

‖ gradϕ(xk)‖
‖Hk‖

} .

Suppose the lim infk→∞ ‖ gradϕ(xk)‖ 6= 0, then there exist ε > 0 andK ∈ N such that ‖ gradϕ(xk)‖ >

ε for all k > K. Then, for any k > K, we have

|ρk − 1| 6
C5‖ηk‖

1+ν

min {∆k, ε/β}
,
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where C5 = 2(C1 + C4/ε). Let ∆̃ = min{ε/β, (2C5)
−1/ν}. When ∆k 6 ∆̃, we have min{∆k, ε/β} =

∆k, and

|ρk − 1| 6
C5∆

1+ν
k

∆k
6 C5∆̃

ν
6

1

2
,

which indicates that ρk > 1/2 > ρ′. Therefore, by the trust region radius update rule, we can conclude

∆k+1





> ∆k, if ∆k 6 ∆̃;

>
1
4∆̃, if ∆k > ∆̃.

That is, we establish the positive lower bound for the trust region radius: min{∆K , ∆̃/4}.
For (20), we only need to reestablish the claim that there exist positive constants C and δ such

that for all x ∈ M and ξ ∈ TxM with ‖ξ‖ 6 δ, the following inequality holds:

‖ξ‖ > C dist(x,Rx(ξ)).

This claim is a direct consequence of Proposition 2. Specifically, there exist C1 > 0 and ν > 0 such
that

dist(x,Rx(ξ)) 6 dist(x, expx(ξ)) + dist(expx(ξ), Rx(ξ))

6‖ξ‖+ C1‖ξ‖
1+ν .

Choose δ small enough such that C1δ
ν 6 1, and we obtain

dist(x,Rx(ξ)) 6 2‖ξ‖,

which implies that ‖ξ‖ > 1/2 dist(x,Rx(ξ)) for all x ∈ M and ξ ∈ TxM with ‖ξ‖ 6 δ. Please refer
to [1, Theorem 4.4] for other parts of the proof.

In the statement of the theorem, we require that {Hk} is uniformly bounded. This seemingly
strong condition holds under a mild assumption; we state it as a corollary.

Corollary 1. If there exists k ∈ N such that the level set {x ∈ M : ϕ(x) 6 ϕ(xk)} is compact, then
{Hk} is uniformly bounded due to the local boundedness of the Clarke generalized covariant derivative
(see Proposition 1). Consequently, the condition required by Theorem 1 is met.

Remark 2. Theorem 1 does not require the semismoothness of the gradient field of the objective
function. Here, we only utilize the Lipschitz continuity of ϕ’s gradient field. One can also prove
the global convergence under a weaker assumption that the objective function is C1 and satisfies a
modified Kurdyka-Łojasiewicz condition on the manifold, for example, using techniques proposed in
[42].

4.2 Local Convergence

Theorem 1 states that the algorithm converges to some stationary point, which may not necessarily be
a local minimizer. Our next goal is to demonstrate that if the algorithm operates near a nondegenerate
local minimizer, it will be attracted to that local minimizer. To this end, we first introduce the
definition of a nondegenerate local minimizer and then present some results highlighting how they
shape the landscape of their neighborhoods.

Definition 8 (Nondegenerate local minimizer). We say x∗ is a nondegenerate local minimizer of ϕ,
if gradϕ(x∗) = 0 and Hx is postive definite for any Hx ∈ ∂ gradϕ(x∗).

In Theorem 1, we assume a uniform upper norm bound for {Hk}. In the next lemma, we will
demonstrate that near a nondegenerate local minimizer, ∂ gradϕ automatically has some uniform
bounds, not only on its norm, but also on its eigenvalues and the norm of its inverse.
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Lemma 4 (Local uniform bounds of the Clarke generalized covariant derivative). For a nondegenerate
local minimizer x∗ of ϕ, there exist λ1, λ2 > 0 and δ > 0 such that

λ1 6 min {〈ξ,Hξ〉 : H ∈ ∂ gradϕ(x), x ∈ Bδ(x
∗), ‖ξ‖ = 1} ,

λ2 > max {‖H‖ : H ∈ ∂ gradϕ(x), x ∈ Bδ(x
∗)} ,

λ−1
1 > max

{
‖H−1‖ : H ∈ ∂ gradϕ(x), x ∈ Bδ(x

∗)
}
.

Proof. For any x ∈ M and any postive definite H ∈ ∂ gradϕ(x), H and H−1 are self-adjoint (see
Definition 5). Thus, we have

min
‖ξ‖=1

〈ξ,Hξ〉 =λmin(H) = (λmax(H
−1))−1 = ‖H−1‖−1,

max
‖ξ‖=1

〈ξ,Hξ〉 =λmax(H) = ‖H‖,

where λmin(H) and λmax(H) are the smallest and the largest eigenvalues of H, respectively. By
item 1 in Proposition 1, ∂ gradϕ(x∗) is compact. Then, since all elements in ∂ gradϕ(x∗) are positive
definite and λmin and λmax are continuous functions on L(Tx∗M), there exist λ∗1, λ

∗
2 > 0 such that

λ∗1 = min{λmin(H) : H ∈ ∂ gradϕ(x∗)},

λ∗2 = max{λmax(H) : H ∈ ∂ gradϕ(x∗)}.

By item 3 in Proposition 1, ∂ gradϕ(x∗) is upper-semicontinuous. Let ε = λ∗1/2. Then there exists
δ1 > 0 such that for any H ∈ ∂ gradϕ(x) and x ∈ Bδ1(x

∗), there exist Ĥ ∈ ∂ gradϕ(x∗) and an
operator B with norm no greater than 1 such that

Pxx∗HPx∗x = Ĥ +
λ∗1
2
B.

Thus, for any ξ ∈ Tx∗M\ {0}, we have

〈ξ, Pxx∗HPx∗xξ〉 =
〈
ξ, Ĥξ

〉
+
λ∗1
2

〈ξ,Bξ〉 > λ∗1 〈ξ, ξ〉 −
λ∗1
2

〈ξ, ξ〉 =
λ∗1
2

〈ξ, ξ〉 .

Therefore λmin(H) = λmin(Pxx∗HPx∗x) > λ∗1/2. By the arbitrariness of H and x, we get

min {λmin(H) : H ∈ ∂ gradϕ(x), x ∈ Bδ1(x
∗)} > λ1 :=

λ∗1
2
.

Similarly, we can obtain

max {λmax(H) : H ∈ ∂ gradϕ(x), x ∈ Bδ1(x
∗)} 6 λ2 := λ∗2 +

λ∗1
2
.

From the above bounds, we know that elements of ∂ gradϕ(x) near x∗ are positive definite, and
we have

max{‖H−1‖ : H ∈ ∂ gradϕ(x), x ∈ Bδ(x
∗)} 6 λ−1

1 .

Corollary 2. A nondegenerate local minimizer is an isolated local minimizer.

Proof. Let x∗ be a nondegenerate local minimizer. By (17) in Lemma 3 and Lemma 4, there exists
a neighborhood U of x∗ such that for any x ∈ U ,

gradϕ(x) = P 0→1
γ [gradϕ(x∗) + P τ→0

γ HτP
0→τ
γ γ′(0)] = P τ→1

γ HτP
0→τ
γ γ′(0) 6= 0,

where γ is a geodesic joining x∗ and x, τ ∈ [0, 1], and Hτ ∈ ∂ gradϕ(γ(τ)). Therefore, x∗ is the only
stationary point in U .
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Corollary 3. Let x∗ be a nondegenerate local minimizer of ϕ. Let λ1, λ2, and neighborhood U be
specified in Lemma 4. We have the following relationship for any x ∈ U :

λ1 dist(x, x
∗) 6 ‖ gradϕ(x)‖ 6 λ2 dist(x, x

∗).

Proof. By (17) in Lemma 3, there exists τ ∈ [0, 1] such that

‖ gradϕ(x)‖=‖ gradϕ(x∗) + P τ→0
γ Hγ(τ)P

0→τ
γ γ′(0)‖=‖P τ→0

γ Hγ(τ)P
0→τ
γ γ′(0)‖,

where γ is the geodesic connecting x, x∗. Then, by Lemma 4, we get

‖ gradϕ(x)‖

{
> min‖ξ‖=1 ‖Hγ(τ)ξ‖‖γ

′(0)‖ > λ1 dist(x, x
∗),

6 max‖ξ‖=1 ‖Hγ(τ)ξ‖‖γ
′(0)‖ 6 λ2 dist(x, x

∗).

We will now present and prove the local convergence theorem. Our proof is adapted from [2,
Theorem 4.12].

Theorem 2 (Local convergence). Let x∗ be a nondegenerate local minimizer of ϕ. Suppose the
retraction R has a ν-Hölder continuous differential near x∗. Then there exists a neighborhood U of
x∗ such that for any x0 ∈ U , {xk} generated by Algorithm 1 converges to x∗.

Proof. By Corollary 2, there exists δ0 > 0 such that x∗ is the only local minimizer in Bδ0(x
∗). By

Lemma 4, there exist c1, δ1 > 0 such that ‖H−1‖ 6 c1 for any H ∈ ∂ gradϕ(x) and x ∈ Bδ1(x
∗).

Moreover, by Corollary 3, there exist c2, δ2 > 0 such that ‖ gradϕ(x)‖ 6 c2 dist(x, x
∗) for any

x ∈ Bδ2(x
∗). Since Bδ0(x

∗) is compact, by Proposition 2, there exist c3, δ3 > 0 such that for any
x ∈ Bδ0(x

∗) and ξ ∈ Bδ3(0x), we have

dist (Rx(ξ), x) 6 dist(Rx(ξ), expx(ξ)) + dist(expx(ξ), x)

6O(‖ξ‖1+ν) + ‖ξ‖ ≤ c3‖ξ‖. (24)

Let δ4 = min{δ0, δ1, δ2,
δ3
c1c2

}. Then let

δ =
δ4

c1c2c3 + 1
. (25)

Since ϕ is continuous and x∗ is an isolated local minimizer by Corollary 2, there exists a level set
L = {x ∈ M : ϕ(x) 6 ϕ(x∗) + ε} such that L ∩ Bδ4(x

∗) ⊂ Bδ(x
∗). Let U = L ∩ Bδ4(x

∗). For any
x0 ∈ U , let η∗ = H−1

0 gradϕ(x0). Then, we have

‖η∗‖ 6 ‖H−1
0 ‖‖ gradϕ(x0)‖ 6 c1c2 dist(x0, x

∗) 6 c1c2δ 6 c1c2δ4 6 δ3. (26)

By Lemma 1, ‖η0‖ 6 ‖η∗‖ 6 δ3. Therefore, we have

dist(x0, x1) = dist(x0, Rx0(η0))
(24)
6 c3‖η0‖ 6 c3‖η

∗‖
(26)
6 c3c1c2δ

(25)
= δ4 − δ,

which indicates that

dist(x1, x
∗) 6 dist(x1, x0) + dist(x0, x

∗) 6 (δ4 − δ) + δ = δ4.

Since the Algorithm 1 is a descent algorithm, we have x1 ∈ L∩Bδ4(x
∗) = U . By induction, we know

that {xk} ⊂ U and thus converges to the only minimizer x∗ by the descent property of Algorithm 1.
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4.3 Local Convergence Rate

In this section, we prove the superlinear local convergence rate of our algorithm. We first state two
essential geometric laws on manifolds. Recall that our discussion are in some normal neighborhoods.

Lemma 5 (Consecutive exponential maps [35, Proposition 15.28]). For any two vectors ξ1, ξ2 ∈ TxM,
we have

dist
(
expx(ξ1 + ξ2), expy(Pxyξ2)

)
= O(‖ξ1‖‖ξ2‖),

where y = expx(ξ1). Or equivalently, for any z, we have

dist(expx(ξ1 + ξ2), z) = dist(expy(Pxyξ2), z) +O(‖ξ1‖‖ξ2‖).

Corollary 4. For any two vectors ξ1, ξ2 ∈ TxM, we have

|dist(expx(ξ1), expx(ξ2))− ‖ξ1 − ξ2‖| = O(‖ξ1‖‖ξ2‖).

Proof. First, we note that

‖ξ1 − ξ2‖ = dist(y, expy(Pxy(ξ2 − ξ1))),

where y = expx(ξ1). Then by the triangle inequality, we get

|dist(expx(ξ1), expx(ξ2))− ‖ξ1 − ξ2‖|

=
∣∣dist(y, expx(ξ2))− dist(y, expy(Pxy(ξ2 − ξ1)))

∣∣

6dist(expx(ξ2), expy(Pxy(ξ2 − ξ1)))

=dist(expx(ξ1 + (ξ2 − ξ1)), expy(Pxy(ξ2 − ξ2))).

Therefore, by Lemma 5, we get

|dist(expx(ξ1), expx(ξ2))− ‖ξ1 − ξ2‖| = O(‖ξ1‖‖ξ2 − ξ1‖).

Symmetrically, we have

|dist(expx(ξ1), expx(ξ2))− ‖ξ1 − ξ2‖| = O(‖ξ2‖‖ξ2 − ξ1‖).

Combining the above two equations gives

|dist(expx(ξ1), expx(ξ2))− ‖ξ1 − ξ2‖|

6O (min {‖ξ1‖‖ξ2 − ξ1‖, ‖ξ2‖‖ξ2 − ξ1‖})

6O
(
min

{
‖ξ1‖‖ξ2‖+ ‖ξ1‖

2, ‖ξ1‖‖ξ2‖+ ‖ξ2‖
2
})

=O
(
‖ξ1‖‖ξ2‖+min

{
‖ξ1‖

2, ‖ξ2‖
2
})

6O (‖ξ1‖‖ξ2‖+ ‖ξ1‖‖ξ2‖)

=O (‖ξ1‖‖ξ2‖) .

This corollary can also be derived from the cosine law on manifolds; see [16, Lemma 2.4].
Proving the superlinear local convergence rate of a trust region method requires demonstrating

that the trust region will eventually become inactive. Once this is established, one can expect the
superlinear convergence rate due to the trust region step being precisely Newton’s step. However,
previous work on Euclidean semismooth trust region methods either makes the inactivity of the trust
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region an assumption [48], or directly uses Newton’s step near a nondegenerate local minimizer [52].
In this paper, we prove the inactivity of the trust region without any additional assumptions.

The challenge in showing the inactivity of the trust region stems from the non-twice differentiabil-
ity of the objective function, which makes it difficult to show that the model error is a second-order
infinitesimal of the step-size, i.e., |m(η)−ϕ(η)| = o(‖η‖2). For twice differentiable objective functions,
this condition automatically holds. However, for objective functions with only a semismooth gradient
field, it is not as obvious, as the diameter of ∂ gradϕ(x) is not an infinitesimal of the step-size. That
is, the disparity between the generalized Hessian in m and the one in the Taylor expansion of ϕ can
be significant in terms of operator norm. Nonetheless, we can establish a variation of this condition
for a semismooth trust region method near a nondegenerate local minimizer with a slight detour. The
key lies in recognizing that, due to its semismoothness (Definition 6), the diameter of the ∂ gradϕ(x)
acting on certain directions can be well controlled. We now present the lemma on this condition.

Lemma 6 (Model error condition). Let x∗ be a nondegenerate local minimizer of ϕ. Let {xk} → x∗

be a sequence generated by Algorithm 1. Suppose gradϕ is semismooth at x∗ and the retraction R has
a ν-Hölder differential near x∗. Then, near x∗, we have

∣∣mxk(ηk)− ϕ(expxk(ηk))
∣∣ = o(‖ηk‖(‖ηk‖+ ‖ gradϕ(xk)‖)).

Or equivalently,

lim
k→∞

∣∣mxk(ηk)− ϕ(expxk(ηk))
∣∣

‖ηk‖(‖ηk‖+ ‖ gradϕ(xk)‖)
= 0.

Proof. By (16) in Lemma 3, there exists Ĥk ∈ ∂ gradϕ(xk) such that

ϕ(expxk(ηk)) = ϕ(xk) + 〈gradϕ(xk), ηk〉+
1

2

〈
Ĥkηk, ηk

〉
+ o(‖ηk‖

2).

Also, at each iteration, we arbitrarily choose an Hk ∈ ∂ gradϕ(xk) for the model problem (9). There-
fore, we have

mxk(ηk)− ϕ(expxk(ηk)) =
1

2

〈
(Hk − Ĥk)ηk, ηk

〉
+ o(‖ηk‖

2). (27)

When ϕ is twice differentiable, ∂ gradϕ(xk) only contains one element, then the condition automat-
ically holds. For a SC1 function ϕ, we want to control the diameter of ∂ gradϕ(xk) in some way.
Suppose k is sufficiently large such that x∗ is in the normal neighborhood of xk and subsequent itera-
tion points. Then, we can define ζk = exp−1

xk
(x∗). For any ε > 0 in Definition 6, since {xk} converges

to x∗, we know that for a sufficiently large k, we have

∥∥∥(Hk − Ĥk)ζk

∥∥∥ =
∥∥∥(gradϕ(x∗)− Pxkx∗(gradϕ(xk) +Hkζk))−

(gradϕ(x∗)− Pxkx∗(gradϕ(xk) + Ĥkζk))
∥∥∥

6

∥∥∥ gradϕ(x∗)− Pxkx∗(gradϕ(xk) +Hkζk)
∥∥∥

+
∥∥∥gradϕ(x∗)− Pxkx∗(gradϕ(xk) + Ĥkζk)

∥∥∥

6 2εdist(xk, x
∗)1+µ. (28)

By letting ε approach zero and using dist(xk, x
∗) = ‖ζk‖, we get

lim
k→∞

∥∥∥(Hk − Ĥk)ζk

∥∥∥
‖ζk‖

= 0,
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which can be equivalently expressed as ‖(Hk − Ĥk)ζk‖ = o(‖ζk‖). We can interpret this as the
diameter of ∂ gradϕ(xk) applied on ζk is controled by ‖ζk‖. Then, by the triangle inequality, we have

〈
(Hk − Ĥk)ηk, ηk

〉
6

∥∥∥(Hk − Ĥk)ηk

∥∥∥ ‖ηk‖

6

∥∥∥(Hk − Ĥk)(ηk − ζk)
∥∥∥ ‖ηk‖+

∥∥∥(Hk − Ĥk)ζk

∥∥∥ ‖ηk‖

=
∥∥∥(Hk − Ĥk)(ηk − ζk)

∥∥∥ ‖ηk‖+ o(‖ηk‖‖ζk‖). (29)

When {xk} converges to x∗, the difference {dist(xk, xk+1)} also shrinks to zero. Therefore, for
any ε in item 3 of Proposition 1, for a sufficiently large k, we have

Pxkxk+1
∂ gradϕ(xk)Pxk+1xk ⊂ ∂ gradϕ(xk+1) +Bε(0).

That is, there exist operators B, B̂ ∈ L(Txk+1
M) and Ak+1, Âk+1 ∈ ∂ gradϕ(xk+1) such that

‖B‖, ‖B̂‖ 6 ε and

Pxkxk+1
HkPxk+1xk = Ak+1 +B, Pxkxk+1

ĤkPxk+1xk = Âk+1 + B̂.

Then we have
∥∥∥(Hk − Ĥk)(ηk − ζk)

∥∥∥

6

∥∥∥(Ak+1 − Âk+1)Pxkxk+1
(ηk − ζk)

∥∥∥+
∥∥∥(B − B̂)Pxkxk+1

(ηk − ζk)
∥∥∥

6

∥∥∥(Ak+1 − Âk+1)ζk+1

∥∥∥
︸ ︷︷ ︸

G1

+
∥∥∥(Ak+1 − Âk+1)(Pxkxk+1

(ζk − ηk)− ζk+1)
∥∥∥

︸ ︷︷ ︸
G2

+ 2ε‖ηk − ζk‖︸ ︷︷ ︸
G3

, (30)

where we used two triangle inequalities. By the arbitrariness of ε, we know G3 = o(‖ηk − ζk‖) =
o(‖ζk‖+ ‖ηk‖). Then similar to (28), we have G1 = o(‖ζk+1‖). We are left with G2. By Corollary 4,
we have

∥∥Pxkxk+1
(ζk − ηk)− ζk+1

∥∥ =dist(expxk+1
(Pxkxk+1

(ζk − ηk)), expxk+1
(ζk+1))

+O(‖ζk − ηk‖‖ζk+1‖). (31)

Recall that ζk+1 = exp−1
xk+1

(x∗). By Lemma 5, we have

dist(expxk+1
(Pxkxk+1

(ζk − ηk)), expxk+1
(ζk+1))

=dist(expxk+1
(Pxkxk+1

(ζk − ηk)), x
∗)

=dist(expxk(η
′
k + (ζk − ηk)), x

∗) +O(‖η′k‖‖ζk − ηk‖) (32)

where η′k = exp−1
xk

(xk+1). Applying ζk = exp−1
xk

(x∗) and Lemma 5 again, we get

dist(expxk(η
′
k + (ζk − ηk)), x

∗)

=dist(expxk(ζk + (η′k − ηk)), x
∗)

=dist(expx∗(Pxkx∗(η
′
k − ηk)), x

∗) +O(‖ζk‖‖η
′
k − ηk‖)

=‖Pxkx∗(η
′
k − ηk)‖+O(‖ζk‖‖η

′
k − ηk‖)

=‖η′k − ηk‖+O(‖ζk‖‖η
′
k − ηk‖). (33)
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Finally, by Corollary 4 and Proposition 2, we have

‖η′k − ηk‖ =dist(xk+1, expxk(ηk)) +O(‖η′k‖‖ηk‖)

6 dist(xk+1, Rxk(ηk)) + dist(Rxk(ηk), expxk(ηk)) +O(‖η′k‖‖ηk‖)

6 0 +O(‖ηk‖
1+ν) +O(‖η′k‖‖ηk‖). (34)

Recall that {dist(xk, xk+1)} converges to zero. Thus, {η′k} also converges to zero. This fact together
with (34) gives

‖η′k − ηk‖ = o(‖ηk‖) and ‖η′k‖ = O(‖ηk‖). (35)

Combining (31–33) and (35) gives
∥∥Pxkxk+1

(ζk − ηk)− ζk+1

∥∥
=O(‖ζk − ηk‖‖ζk+1‖) +O(‖η′k‖‖ζk − ηk‖) +O(‖ζk‖‖η

′
k − ηk‖) + o(‖ηk‖)

=o(‖ζk − ηk‖) + o(‖ζk − ηk‖) + o(‖ζk‖) + o(‖ηk‖)

=o(‖ηk‖+ ‖ζk‖),

which further gives ‖ζk+1‖ = O(‖ηk‖+ ‖ζk‖). Then for G1 and G2 in (30), we have

G1 = o(‖ηk‖+ ‖ζk‖), G2 = ‖Ak+1 − Âk+1‖ · o(‖ζk‖+ ‖ηk‖).

Since {xk} converges to x∗, by Lemma 4, {Ak+1, Âk+1} are uniformly bounded. Also, by Corollary 3,
we have

‖ζk‖ = ‖ exp−1
xk

(x∗)‖ = dist(xk, x
∗) = O(‖ gradϕ(xk)‖).

Therefore, combining (27), (29) and (30) gives

|mxk(ηk)− ϕ(expxk(ηk))| 6 o(‖ηk‖(‖ηk‖+ ‖ gradϕ(xk)‖)).

Remark 3. We remark that the above lemma holds for Euclidean trust region methods as the Eu-
clidean space is also a Riemannian manifold. However, the derivation for the Euclidean case is notably
more straightforward, because G2 in (30) vanishes as a result of Pxkxk+1

(ζk−ηk) = ζk+1 in Euclidean
spaces. Consequently, proof subsequent to (30) vanishes in the Euclidean setting. While on a Rieman-
nian manifold with a general retraction, the process is much more involved due to the non-vanishing
G2.

The next lemma shows that the trust region will eventually be inactive. For a C2 objective
function and retraction, one can easily get |m(ηk) − ϕ(R(ηk))| = O(‖ gradϕ(xk)‖‖ηk‖

2), and then
the result follows (see [1]). However, in our setting, we need Proposition 2 and Lemma 6 to tackle
the non-twice differentiability of the objective function and retraction, respectively.

Lemma 7 (Inactivity of trust region). Let x∗ be a nondegenerate local minimizer of ϕ. Let {xk} → x∗

be a sequence generated by Algorithm 1. If gradϕ is semismooth at x∗ and the retraction R has a
ν-Hölder differential near x∗, we have

lim
k→∞

ρk = 1.

Proof. In this proof, without confusion, we omit the subscript xk in mxk , Rxk , and expxk . First by
the Taylor equation (13) and Proposition 2, we have

|ϕ(exp(ηk))− ϕ(R(ηk))| =
∣∣〈P τ→0

γ gradϕ(γ(τ)), γ′(0)
〉∣∣

6
∥∥P τ→0

γ gradϕ(γ(τ))
∥∥ ‖γ′(0)‖

=
∥∥P τ→0

γ gradϕ(γ(τ))
∥∥ dist(exp(ηk), R(ηk))

6
∥∥P τ→0

γ gradϕ(γ(τ))
∥∥ · o(‖ηk‖), (36)
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where γ is the geodesic from exp(ηk) to R(ηk), and τ ∈ [0, 1]; Then we decompose the norm in (36):
∥∥P τ→0

γ gradϕ(γ(τ))
∥∥

6
∥∥P τ→0

γ gradϕ(γ(τ))−Pxk exp(ηk) gradϕ(xk)
∥∥+‖Pxk exp(ηk) gradϕ(xk)‖ (37)

6L dist(γ(τ), xk) + ‖ gradϕ(xk)‖ (38)

6L(dist(γ(τ), exp(ηk)) + dist(exp(ηk), xk)) + ‖ gradϕ(xk)‖ (39)

=Lτ dist(R(ηk), exp(ηk)) + L‖ηk‖+ ‖ gradϕ(xk)‖

=Lτ · o(‖ηk‖) + L‖ηk‖+ ‖ gradϕ(xk)‖, (40)

where (37) and (39) use the triangle inequality, (38) uses the Lipschitzness of gradϕ and L is the
Lipschitz constant as in Definition 3, and (40) is by Proposition 2. Combining (36), (40), and Lemma 6
gives

|m(ηk)− ϕ(R(ηk))| 6|m(ηk)−ϕ(exp(ηk))|+ |ϕ(exp(ηk))−ϕ(R(ηk))|

=o(‖ηk‖(‖ηk‖+ ‖ gradϕ(xk)‖)). (41)

Since {xk} converges to x∗, by Lemma 4, {Hk} and {H−1
k } are uniformly bounded; let their

operator norm uniform upper bounds be β1, β2 respectively. Now we denote ζk := gradϕ(xk) and
η∗k := −H−1

k ζk. By Lemma 1, ‖ηk‖ 6 ‖η∗k‖ 6 β2‖ζk‖. Putting these back to (41) gives

|m(ηk)− ϕ(R(ηk))| = o(‖ζk‖ · ‖ηk‖).

By Lemma 2, putting the above equation back to ρk − 1 gives

|ρk − 1| 6
2 · o(‖ζk‖ · ‖ηk‖)

‖ζk‖min{∆k, ‖ζk‖/β1}
.

When the denominator is ∆k, since ‖ηk‖ 6 ∆k, we have

|ρk − 1| 6
2 · o(‖ζk‖ ·∆k)

‖ζk‖ ·∆k
→ 0, k → ∞.

Otherwise, when the denominator is ‖ζk‖/β1, since ‖ηk‖ 6 β2‖ζk‖, we have

|ρk − 1| 6
2β1β2 · o(‖ζk‖

2)

‖ζk‖2
→ 0, k → ∞.

In conclusion, we have
lim
k→∞

|ρk − 1| = 0,

which gives limk→∞ ρk = 1.

To the best of our knowledge, Lemma 7 is the first result on the eventual inactivity of the trust
region of trust region methods for SC1 problems, even for the Euclidean case. We are now ready to
prove the algorithm’s superlinear local convergence rate.

Theorem 3 (Local convergence rate). Let x∗ be a nondegenerate local minimizer of ϕ. Let {xk} →
x∗ be a sequence generated by Algorithm 1. If the retraction is ν-order Hölder differentiable in a
neighborhood of x∗, gradϕ(x) is µ-order semismooth at x∗, Algorithm 2 uses (11) as the stopping
criterion, then there exist c,K > 0 such that for any k > K,

dist(xk+1, x
∗) 6 cdist(xk, x

∗)1+min{θ,ν,µ}.

Specifically, if R ∈ C1,1, gradϕ(x) is strongly semismooth at x∗, and θ = 1 in (11), we have

dist(xk+1, x
∗) 6 cdist(xk, x

∗)2.
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Proof. First, by Proposition 2, there exists K1, c1 > 0 such that for any k > K1, we have

dist(xk+1, x
∗) = dist(x∗, Rxk(ηk))

6 dist(x∗, expxk(ηk)) + dist(expxk(ηk), Rxk(ηk))

6 dist(x∗, expxk(ηk)) + c1‖ηk‖
1+ν . (42)

Suppose K1 is sufficiently large such that x∗ is in the normal neighborhood of xk and subsequent
iteration points. Then, we can define ζk := exp−1

xk
(x∗). By Corollary 4, there exists c2 > 0 such that

dist(x∗, expxk(ηk)) = dist(expxk(ζk), expxk(ηk)) 6 ‖ηk − ζk‖+ c2‖ζk‖‖ηk‖. (43)

Let η∗k := −H−1
k gradϕ(xk). Then we have

‖ηk − ζk‖ = ‖ηk − η∗k + η∗k − exp−1
xk

(x∗)‖

6 ‖ηk − η∗k‖+ ‖H−1
k gradϕ(xk) + exp−1

xk
(x∗)‖. (44)

By Lemma 4, there exists K2 > 0 and β2 > 0 such that {H−1
k }k>K2

is uniformly bounded by β2.
Also, by the semismoothness of gradϕ(x) at x∗, there exists K3 > 0 such that for any k > K3,

‖H−1
k gradϕ(xk) + exp−1

xk
(x∗)‖ 6 ‖H−1

k ‖‖ gradϕ(xk) +Hk exp
−1
xk

(x∗)‖

6 β2 dist(xk, x
∗)1+µ. (45)

At last, we need to bound ‖ηk − η∗k‖. By Lemma 7, there exists K4 > 0 such that for any k > K4,
the trust region is inactive. Then the trust region radius will reach the radius cap set in Algorithm 1,
i.e., ∆k = ∆̄ > 0. On the other hand, by Lemma 1 we have

lim
k→∞

‖ηk‖ 6 lim
k→∞

‖η∗k‖ 6 lim
k→∞

‖H−1
k ‖‖ gradϕ(xk)‖ 6 β2 lim

k→∞
‖ gradϕ(xk)‖ = 0.

Therefore, the second truncation condition in Algorithm 2 (line 8) shall not be met. Moreover, by
Lemma 4, the elements in ∂ gradϕ(x) when x is near x∗ are positive definite (say k > K4). Therefore,
the first truncation in Algorithm 2 (line 3) shall not be met. All in all, for k > K4, Algorithm 2
terminates using (11), making the final residual satisfy rj = r0+Hkηk = gradϕ(xk)+Hkηk. Therefore,

‖ηk − η∗k‖ = ‖H−1
k (Hkηk + gradϕ(xk))‖ = ‖H−1

k rj‖
(11)
6 β2‖r0‖

1+θ,

where r0 = gradϕ(xk) and θ > 0 are set in Algorithm 2. Again, by Lemma 4, let β1 be the operator
norm uniform upper bound of {Hk} when k > K4. By Corollary 3, we have

‖ηk − η∗k‖ 6 β2‖ gradϕ(xk)‖
1+θ

6 β2β
1+θ
1 dist(x∗, xk)

1+θ. (46)

Let K = max{K1,K2,K3,K4}. Combining (42–46) gives

dist(xk+1, x
∗) 6c1‖ηk‖

1+ν + c2‖ηk‖dist(xk, x
∗)

+ β2(1 + β1+θ1 ) dist(xk, x
∗)min {1+θ,1+µ}. (47)

Similar to (46), we also have ‖ηk‖ 6 ‖η∗k‖ 6 β2‖ gradϕ(xk)‖ 6 β2β1 dist(xk, x
∗). Plugging this back

into (47) gives

dist(xk+1, x
∗) 6 β2

(
c1β

ν
2β

1+ν
1 + c2β1 + (1 + β1+θ1 )

)
dist(xk, x

∗)1+min {θ,ν,µ}.

Finally, letting c = β2

(
c1β

ν
2β

1+ν
1 + c2β1 + (1 + β1+θ1 )

)
, we get the result.
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5 Application: Solving Augmented Lagrangian Method Subproblem

Our primary motivation for proposing a semismooth Riemannian trust region method is to develop
a new technique tailored for solving the subproblem of an augmented Lagrangian method (ALM) on
manifolds. In this section, we briefly review ALM on manifolds and formulate its subproblem in the
form of (1). Then, in Section 6, we assess the performance of Algorithm 1 as the subproblem solver
for ALM on manifolds.

We consider the following optimization problem

min
x∈M

f(x) + g(h1(x)) s.t. h2(x) 6 0,

where M is a Riemannian manifold, f, h1, h2 are continuously differentiable on M with Lipschitz con-
tinuous differentials, and g is convex and lower semicontinuous. Recently, [18] and [54] proposed two
manifold inexact augmented Lagrangian methods to tackle this problem with convergence guarantee.
By introducing two new variables, we get the reformulation:

min
x,y,z

f(x) + g(y) + δRn
−
(z)

s.t. x ∈ M, y = h1(x), z = h2(x),

where δRn
−
(z) is the indicator function which equals 0 if z 6 0 and +∞ otherwise, replacing the

inequality constraint. Then the augmented Lagrangian function of the reformulation is

Lσ(x, y, z, λ, γ) =f(x) + g(y) + δRn
−
(z) + λT (h1(x)− y) + γT (h2(x)− z)

+
σ

2
‖h1(x)− y‖22 +

σ

2
‖h2(x)− z‖22

=f(x) + g(y) + δRn
−
(z) +

σ

2

∥∥∥∥h1(x)− y +
λ

σ

∥∥∥∥
2

2

+
σ

2

∥∥∥h2(x)− z +
γ

σ

∥∥∥
2

2
−

‖λ‖22 + ‖γ‖22
2σ

.

The idea of ALM is to solve the minimization problem of Lσ with respect to x, y, and z respectively
in each step. We then use the Moreau envelope to further simplify the subproblem. Using partial
minimization, we have

min
y
Lσ = min

y
g(y) +

σ

2

∥∥∥∥h1(x) +
λ

σ
− y

∥∥∥∥
2

2

=Mσ
g

(
h1(x) +

λ

σ

)
,

min
z
Lσ = min

z
δRn

−
(z) +

σ

2

∥∥∥h2(x) +
γ

σ
− z

∥∥∥
2

2
=Mσ

δRn
−

(
h2(x) +

γ

σ

)
,

where Mσ
g and Mσ

δRn
−

are Moreau envelopes defined as follows:

Mσ
ψ (u) := min

x

{
ψ(x) +

σ

2
‖u− x‖22

}
.

Once the optimal x is given, these two subproblems (the y-subproblem and the z-subproblem) can
be directly solved using proximal operators, and their solutions are given by

y = argminyLσ = proxg/σ

(
h1(x) +

λ

σ

)
,

z = argminzLσ = proxδRn
−

/σ

(
h2(x) +

γ

σ

)
= projRn

−

(
h2(x) +

γ

σ

)
.
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Then the problem minx,y,z Lσ is equivalent to solving the following problem:

x = argmin
x∈M

{
ϕ(x, σ, λ, γ) := f(x) +Mσ

g

(
h1(x) +

λ

σ

)
+Mσ

δRn
−

(
h2(x) +

λ

σ

)}
. (48)

Since Moreau envelopes Mσ
g and Mσ

δRn
−

have Lipschitz continuous gradient but may not necessarily

be twice differentiable, the x-subproblem (48) is captured by (1), and is the most difficult part of
the problem. Hence, we usually refer to problem (48) by the subproblem of ALM. For reference, we
present the ALM using our trust region method as a subproblem solver in Algorithm 3. We also
remark that both Mσ

g composed with h1 and Mσ
δRn

−

composed with h2 have semismooth gradient field

on manifiold M.

Remark 4. For objective functions of the form ϕ =
∑K

k=1 ϕk, we can use K :=
⋃K
k=1 ∂ gradϕk in

place of ∂ gradϕ as the generalized Hessian, if the former is easier to compute. Notably, if gradϕk
is semismooth w.r.t. ∂ gradϕk, then gradϕ is semismooth w.r.t. K ⊃ ∂ gradϕ [54, Proposition 4.4].
For the results in Sections 4.2 and 4.3 to hold using K, we need to assume all elements in K(x∗) are
positive definite for a nondegenerate local minimizer x∗, then the proof falls through similarly.

[18] solves the subproblem using the Riemannian gradient descent method, while [54] employs
a semismooth Newton method that falls back to the gradient descent method when encountering
negative curvatures. It is worth noting that neither of them incorporates a full second-order method
to solve the subproblem in the ALM, whereas our trust region method does.

Algorithm 3: Manifold Inexact Augmented Lagrangian Framework

1 input x0 ∈ M, λ0 ∈ R
m, γ0 ∈ R

n
+, σ0 > 0, α, τ ∈ (0, 1), κ > 1, {εk} ⊂ R+ converging to 0.

Initialize y0 = proxg/σ0(h1(x0) + λ0/σ0), z0 = projRn
−

(h2(x0) + γ0/σ0). Choose a constant

L̄ > max{Lσ0(x0, y0, z0, λ0, γ0), f(x̄) + g(h1(x̄))}, where x̄ ∈ M is any feasible point.
2 for k = 1, 2, . . . do

3 Inexactly solve the x-subproblem (48): find xk ∈ M such that ‖ gradϕk(xk)‖ 6 εk and
ϕk(xk) 6 L̄, where ϕk(·) := ϕ(·, σk, λk, σk). Then update yk = proxg/σk(h1(xk) + λk/σk)

and zk = projRn
−

(h2(xk) + γk/σk).

4 Update λk+1 = λk + σk(h1(xk)− yk) and γk+1 = γk + σk(h2(xk)− zk).
5 Update δk = max{‖h1(xk)− yk‖2, ‖h2(xk)− zk‖2}.
6 if δk 6 τδk−1 then

7 σk+1 = σk.
8 else

9 σk+1 = max{κσk, ‖λk+1‖
1+α
2 , ‖γk+1‖

1+α
2 }.

10 end

11 end

6 Numerical Experiments

In this paper, we conducted a performance evaluation of our algorithm on two distinct problem do-
mains: compressed modes (CM) [43] and sparse principal component analysis (SPCA) [56]. To assess
the effectiveness of our approach, we compared our results against several state-of-the-art algorithms:
SOC [33], ManPG [11, ManPG-Ada (Algorithm 2)], ALMSSN [54], accelerated ManPG (AManPG)
[30], accelerated Riemannian proximal gradient (ARPG) [29], and manifold inexact augmented La-
grangian method (MIALM) [18].
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Our algorithm was implemented using the manopt package1 in MATLAB and executed on a
standard PC equipped with an AMD Ryzen 7 5800H with Radeon Graphics CPU and 16GB RAM.
In our experimental results, we use “ALMSRTR” to represent our algorithm. To ensure statistical
significance, we conducted 20 independent instances for each parameter setting and reported the
average experimental results.

6.1 Compressed Modes in Physics

The compressed modes (CM) problem is a mathematical physics problem that focuses on obtaining
sparse solutions for a specific class of problems, such as the Schrödinger equation in quantum mechan-
ics. To induce sparsity, the wave function undergoes L1 regularization, leading to compact support
solutions known as compressed modes.

Following the framework proposed by [11], the CM problem can be formulated as

min
P∈St(n,r)

{
tr
(
P THP

)
+ µ‖P‖1

}
,

where St(n, r) := {P ∈ R
n×r : P TP = Ir} is the Stiefel manifold and µ is a regularization parameter.

For additional details, readers may refer to [43]. Our experimental setup was consistent with that of
[54]. In our experiments, we employ the retraction described in Algorithm 1, which utilizes the QR
decomposition method introduced in [3, Example 4.1.3]. Additionally, to maintain consistency, we
employ QR decomposition in ALMSSN in the subsequent experiments.

Implementation details. It is worth noting that SOC considers an equivalent problem, which can
be expressed as follows:

min
X,Q,P∈Rn×r

tr
(
P THP

)
+ µ‖X‖1

s.t. X = P,Q = P,QTQ = Ir.

The Lagrangian of the equivalent problem is given by:

LS(Q,P,X,Γ,Λ) = tr
(
P THP

)
+ µ‖X‖1 + tr

(
ΓT (Q− P )

)
+ tr

(
ΛT (X − P )

)
,

where P,X ∈ R
n×r and Q ∈ St(n, r). Therefore, the termination conditions for SOC are as follows:

‖Q− P‖∞
max {‖Q‖F , ‖P‖F }+ 1

+
‖X − P‖∞

max {‖X‖F , ‖P‖F }+ 1
≤ 5× 10−7,

∥∥gradQ LS
∥∥
∞

‖Q‖F + 1
+

‖∇PLS‖∞
‖P‖F + 1

+
minG∈∂XLS

‖G‖∞
‖X‖F + 1

≤ 5× 10−5.

Similar to MIALM and ALMSSN, our algorithm translates the problem to

min
P,Q∈Rn×r

{
tr
(
P THP

)
+ µ‖Q‖1

}
,

s.t. P = Q,P ∈ St(n, r).

The Lagrangian is given by LN (P,Q,Λ) = tr
(
P THP

)
+ µ‖Q‖1 + tr

(
ΛT (P −Q)

)
, where Q ∈ R

n×r

and P ∈ St(n, r). We terminate these three algorithms when the following conditions hold:

‖P −Q‖∞
max {‖P‖F , ‖Q‖F }+ 1

≤ 5× 10−7,

‖gradP LN‖∞
‖P‖F + 1

+
minG∈∂QLN

‖G‖∞

‖Q‖F + 1
≤ 5× 10−5.

(49)

1https://www.manopt.org/index.html
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Following the same termination criterion as [54], we terminate ManPG, AManPG, and ARPG when
t−1 ‖V∗‖∞ / (‖P‖F + 1) ≤ 5× 10−5, where

V∗ = argmin
V ∈TP St(n,r)

{〈
gradP tr

(
P THP

)
, V

〉
+

1

2t
‖V ‖2F + ‖P + V ‖1

}
.

We adopt the notation PPV to represent the projection of a vector V ∈ R
n×r onto TP St(n, r). Since

−V∗/t ∈ 2PP (HP ) + µPP (∂ ‖P + V∗‖1), this termination criterion serves as an approximation of
the first-order optimality condition for the CM problem, namely, the condition 0 ∈ 2PP (HP ) +
µPP (∂ ‖P‖1).

The implementations of ManPG, AManPG, ARPG, and SOC in our study are consistent with
the approaches employed in [54]. We directly utilize the same codes and parameters as described in
that particular work. Similarly, for MIALM, we adopt the codes and parameters provided in [18],
while the codes and parameters of ALMSSN are based on the specifications presented in [54]. In our
experimentation, we establish termination criteria based on predefined conditions, and additionally,
we terminate all six methods if the number of iterations exceeds 30,000.

In Algorithm 3, the sequence εk is set to εk = 0.8k, and the initial value of σ0 is set to 1. The dual
variable λ0 is initialized as a null matrix, while the primal variable x0 is randomly generated using the
same procedure as the other algorithms. The parameter τ is set to 0.99, and the initial value of the
parameter κ is chosen as 1.25. The initial maximum number of iterations in Algorithm 1 is set to 40
for n ≥ 500 and 60 for n < 500, where n represents the data dimension. Both the maximum number
of iterations of Algorithm 1 and the value of κ are adaptively adjusted during the iteration based on
the accuracy of the current iteration. The maximum number of iterations for Algorithm 2 used to
solve the model problem in Algorithm 1 is set to 300. In Algorithm 1, we set ∆̄ = 10, ∆0 = 0.01,
and ρ′ = 0.1. During our experiments, we noticed that ManPG exhibited notably slow performance
when n = 500, which led us to implement a 120-second time limit for the algorithm’s termination.

We present the results of our experiments in Table 2 and visualize them in Figure 1. The findings
in Table 2 indicate that all algorithms achieve similar objective function values across different set-
tings. However, in the majority of cases, our proposed method demonstrates superior computational
efficiency, suggesting its practical advantage. From Figure 1, we observe that first-order algorithms
encounter limitations in achieving the desired termination condition, particularly when r is large.
In contrast, our method, which consistently leverages second-order information, exhibits improved
convergence compared to both first-order and second-order algorithms that do not consistently utilize
second-order information, even for large r. This underscores the superiority of our method, which
relies on the consistent utilization of second-order information.

6.2 Sparse Principal Component Analysis

This section presents the results of our experiments on the sparse principal component analysis
(SPCA) problem. SPCA is a widely used technique in data analysis that offers better interpretability
compared to traditional principal component analysis. It achieves this by incorporating lasso regu-
larization, which produces modified principal components with sparse loadings. The SPCA problem
can be formulated as follows:

min
P∈St(n,r)

{
−tr

(
P TATAP

)
+ µ‖P‖1

}
,

where St(n, r) := {P ∈ R
n×r : P TP = Ir} represents the Stiefel manifold, and A ∈ R

p×n is the data
matrix with p observations and n variables.

To evaluate the efficacy of our proposed algorithm, we conducted a comparative evaluation against
ALMSSN, AManPG, ARPG, and SOC, utilizing a high level of accuracy. To ensure reliable conver-
gence, we set the termination threshold at 5 × 10−8 for synthetic data and 5 × 10−7 for real data.
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Table 2 Comparison of CM. Significant results are presented in bold. The setting for (n, r, µ) = (1000, 20, 0.1)
remains fixed, while one of the dimensions varies. The ManPG approach refers to the adaptive version proposed
by [11] (ManPG-Ada). LS-I denotes the ALMSSN technique with the first line-search method introduced by
[54], while LS-II utilizes the second line-search method proposed by [54].

ManPG AmanPG ARPG SOC MIALM LS-I LS-II ALMSRTR

Running time (s)
n 200 23.61 5.76 9.16 2.91 20.93 1.58 2.06 1.30

500 115.56 13.95 13.27 7.15 24.11 5.05 7.61 4.80

1000 69.03 12.70 15.59 22.68 12.11 14.19 12.97 9.71

1500 62.00 59.74 50.38 48.56 70.28 29.28 34.99 21.69

2000 42.02 46.15 49.50 46.71 73.64 29.56 26.98 20.03

r 10 14.64 13.88 13.28 16.60 30.24 51.76 8.96 11.61
15 33.49 10.54 12.93 14.95 8.39 47.95 10.39 8.39

25 91.43 23.43 23.48 26.61 54.02 15.36 17.48 14.00

30 86.31 28.11 27.07 22.09 29.51 10.18 13.06 13.35
µ 0.05 93.51 16.05 14.16 6.72 8.74 6.06 6.72 7.07

0.15 57.12 18.55 21.45 31.57 25.97 12.97 14.41 11.84

0.20 51.48 13.70 21.62 34.21 23.88 19.24 19.73 10.68

0.25 36.41 12.65 22.14 35.83 13.48 53.62 30.18 12.47

Loss function value
n 200 14.18 14.18 14.18 14.18 14.18 14.17 14.17 14.16

500 18.63 18.63 18.63 18.63 18.63 18.63 18.63 18.63
1000 23.37 23.36 23.36 23.36 23.36 23.36 23.36 23.36
1500 26.97 26.86 26.86 26.86 26.86 26.86 26.86 26.86
2000 29.98 29.74 29.74 29.74 29.74 29.74 29.74 29.74

r 10 10.77 10.74 10.74 10.74 10.74 10.74 10.74 10.74
15 16.51 16.46 16.46 16.46 16.46 16.46 16.46 16.46
25 32.01 32.00 32.00 32.00 32.00 32.00 32.00 32.00
30 42.95 42.93 42.93 42.94 42.94 42.92 42.92 42.93

µ 0.05 15.15 15.14 15.14 15.14 15.14 15.14 15.14 15.14
0.15 31.05 31.01 31.01 31.01 31.01 31.01 31.01 31.01
0.20 38.32 38.27 38.27 38.28 38.27 38.27 38.27 38.27
0.25 45.36 45.26 45.26 45.29 45.26 45.26 45.26 45.26

The termination condition remains consistent with the preceding section, with the exception that we
substitute H with −ATA.

Due to not meeting our accuracy requirements or exhibiting excessively long runtimes, we ex-
cluded ManPG and MIALM from our experiments. The parameters and codes used for ALMSSN are
consistent with those reported in [54]. To ensure a high level of accuracy, we incorporated several
enhancements into the AManPG and ARPG codes. Our primary modification focused on refining the
subproblem solution, aiming to improve overall accuracy. Furthermore, we introduced specific mod-
ifications to the AManPG code to address situations where its accuracy remains almost unchanged
after a certain iteration number. The parameters employed for AManPG aligned with those docu-
mented in [30], while the parameters for ARPG corresponded to those specified in [29]. For SOC, we
maintained consistency by employing the parameters and code outlined in [54].

In Algorithm 3, we set εk = 0.95k and τ = 0.9. The initial value of κ is set to 1.25. In Algorithm
1, the maximum number of iterations is set to 50 when n < 2000, 70 when 2000 ≤ n < 3000, and 90
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Fig. 1. Comparisons of CM with (n, µ) = (500, 0.05) and r = 20, 30, 40. The shifted loss represents the
difference between the loss function value Fk and the minimum of the values obtained at the termination
of each algorithm. The second line displays the termination conditions, which are the sum of the left-hand
components in (49) for our algorithm and ALMSSN, as well as their respective counterparts for the other
algorithms, plotted against time. ALMSSN_LS1 denotes the ALMSSN technique with the first line-search
method introduced by [54], while ALMSSN_LS2 utilizes the second line-search method proposed by [54].

when n ≥ 3000. Both the maximum number of iterations and the value of κ are adaptively adjusted
during each iteration based on the accuracy of the current iteration. The remaining parameters in
our algorithm are consistent with those in the CM algorithm.

The data matrix A is generated using two different methods:

(1) Synthetic. The data matrix A is randomly generated using the method described in [54].
Various ill-conditioned matrices A ∈ R

50×n can be obtained in different dimensions.

(2) Real. The data matrix A is selected from real datasets. The gene expression datasets
Arabidopsis and Leukemia are obtained from [37]. Additionally, the NCI 60 dataset Staunton
is chosen from [15]. Finally, the yeast eQTL dataset, known as realEQTL, is selected from [55].

Our experimental findings unveiled the potential failure of AManPG in cases where the solution
of the Lyapunov equation [30, Equation (15) in Section 3] is non-unique or non-existent, even when
utilizing the original unmodified code. To ensure a fair and equitable comparison among algorithms,
we excluded scenarios where AManPG may encounter such challenges. Additionally, we observed that
ARPG frequently terminated prematurely without achieving the desired accuracy due to its stopping
criteria.

The results obtained from our experiments with synthetic data are presented in Table 3 and
visualized in Figure 2. The outcomes obtained from real data are reported in Table 4. It proved to be
challenging to achieve convergence of SOC and ARPG towards the termination condition threshold,
whereas our proposed method consistently exhibited convergence properties akin to second-order
algorithms. In terms of objective function values, our method demonstrated superior performance
in almost all experiments. With the exception of AManPG, which was specifically designed for the
SPCA problem, our method generally exhibited the lowest time consumption. These results serve
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as compelling evidence for the effectiveness of our second-order algorithm, which leverages second-
order information, and its superiority over alternative algorithms in tackling the SPCA problem.
The experimental results further reinforce the assertion made in the previous section regarding the
exceptional performance of our algorithm in similar problem domains.

7 Conclusion

In this work, we have proposed a trust region method for minimizing an SC1 function on a Riemannian
manifold. We have established our method’s global convergence, local convergence near nondegen-
erate local minima, and superlinear local convergence rate under relaxed smoothness requirement
on the objective function and retraction. We have also provided the first theoretical guarantee of
trust region’s inactivity near nondegenerate local minima for trust region methods applying to SC1

functions, which is also new in the Euclidean case. To demonstrate the superiority of our method,
we have applied it to solve the subproblem of the augmented Lagrangian method on manifolds and
performed extensive numerical experiments. Our results show that our proposed method outperforms
existing state-of-the-art methods, achieving better convergence performance.
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Fig. 2. Comparisons of SPCA with synthetic data, (n, r, µ) = (1000, 20, 1.00), and three different ATA. The
definitions in this figure are similar to those in Figure 1.
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Table 3 Comparison of SPCA with synthetic data. Bold numbers indicate superior results. The data matrix
A ∈ R

50×n. The tuple (n, r, µ) = (2000, 20, 1.00), with one of the elements varying.

AManPG ARPG SOC LS-I LS-II ALMSRTR

Running time(s)
n 500 15.02 56.77 34.25 6.82 6.52 5.89

1000 21.32 74.65 99.26 14.66 12.83 10.80

1500 30.18 86.53 212.87 26.75 22.17 17.60

2000 31.28 77.78 365.03 36.24 29.46 27.08

2500 36.34 84.11 535.88 51.38 42.45 38.08
3000 42.09 79.32 768.18 67.21 47.13 54.81

r 5 1.47 16.54 226.60 14.88 7.76 8.79
10 4.96 8.06 298.78 25.07 18.19 21.18
15 17.19 23.30 337.94 31.18 24.61 22.50
25 45.01 163.72 405.76 51.50 40.36 33.31

µ 0.25 45.87 57.965 369.03 91.646 109.44 70.67
0.50 33.01 42.74 369.25 52.09 51.33 37.94
0.75 38.32 59.69 369.09 34.41 32.88 33.27
1.25 34.75 91.48 368.12 34.28 29.67 37.43

Loss function:
{
−tr

(
P TATAP

)
+ µ‖P‖1

}

n 500 -347.78 -347.75 -346.87 -347.59 -347.59 -349.15

1000 -762.22 -762.19 -761.43 -761.90 -761.90 -763.53

1500 -1209.59 -1209.53 -1209.42 -1209.70 -1209.70 -1211.15

2000 -1621.05 -1621.37 -1620.70 -1621.05 -1621.05 -1622.98

2500 -2082.34 -2082.72 -2080.97 -2082.82 -2082.82 -2084.18

3000 -2516.72 -2516.77 -2515.30 -2517.06 -2517.06 -2518.69

r 5 -1520.36 -1520.33 -1520.32 -1520.47 -1520.47 -1520.42
10 -1630.61 -1630.62 -1630.35 -1630.36 -1630.36 -1631.21

15 -1631.77 -1631.73 -1631.46 -1632.13 -1632.13 -1633.14

25 -1606.38 -1606.50 -1605.76 -1606.85 -1606.85 -1607.78

µ 0.25 -1873.23 -1873.18 -1870.19 -1873.26 -1873.26 -1873.39

0.50 -1781.25 -1781.05 -1779.03 -1781.27 -1781.27 -1781.89

0.75 -1700.87 -1700.10 -1699.01 -1700.12 -1700.12 -1701.46

1.25 -1555.04 -1555.02 -1555.26 -1555.56 1555.56 -1557.73
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Table 4 Comparison of SPCA with real data. Bold numbers indicate superior results. The slash / indicates
that the value of the termination condition at the maximum number of iterations is still greater than 10−3,
indicating that the manifold constraint is not fully satisfied and the loss function value is meaningless. It should
be noted that our algorithm ALMSRTR meets the threshold of the termination condition for all settings in
this table.

Dataset (n, r, µ) AManPG ARPG SOC LS-I LS-II ALMSRTR

Running time(s)

Arabidopsis

(834, 10, 0.50) 14.16 28.58 34.83 37.32 11.44 9.93

(834, 10, 0.25) 6.05 28.14 34.64 27.88 27.22 7.14
(834, 15, 0.50) 22.16 36.37 45.09 30.73 30.31 19.17

(834, 15, 0.25) 19.50 43.30 44.67 38.73 36.21 23.46

Leukemia

(1255, 10, 0.50) 12.98 29.21 97.25 14.33 11.76 18.83
(1255, 10, 0.25) 8.02 35.22 96.83 33.36 57.98 13.94
(1255, 15, 0.50) 16.18 48.22 109.90 55.04 46.51 21.79
(1255, 15, 0.25) 33.65 45.83 109.13 49.12 64.99 21.46

realEQTL

(1260, 10, 0.50) 37.00 35.23 96.64 40.47 40.53 9.99

(1260, 10, 0.25) 36.37 35.43 97.10 64.28 65.10 38.91
(1260, 15, 0.50) 50.30 50.17 111.09 55.80 59.05 41.13

(1260, 15, 0.25) 49.73 49.75 111.13 136.97 140.96 31.08

Staunton100

(1517, 10, 0.50) 9.35 37.50 150.69 10.19 10.10 10.15
(1517, 10, 0.25) 9.59 37.09 149.28 44.03 48.41 8.78

(1517, 15, 0.50) 7.85 44.25 163.09 24.41 20.19 40.04
(1517, 15, 0.25) 21.08 51.93 162.80 29.52 30.56 33.25

Staunton200

(2455, 10, 0.50) 16.83 39.68 450.72 98.19 24.75 29.02
(2455, 10, 0.25) 7.99 43.35 451.48 70.53 80.20 37.96
(2455, 15, 0.50) 19.26 61.04 461.16 62.75 55.36 70.18
(2455, 15, 0.25) 44.01 54.17 461.32 91.42 60.66 35.24

Loss function:
{
−tr

(
P TATAP

)
+ µ‖P‖1

}

Arabidopsis

(834, 10, 0.50) -65867.82 -65867.73 -65864.81 -65867.42 -65867.42 -65867.51
(834, 10, 0.25) -65922.30 -65922.30 -65938.12 -65922.14 -65922.14 -65922.31

(834, 15, 0.50) -72553.02 -72552.31 -72546.44 -72552.46 -72552.46 -72553.54

(834, 15, 0.25) -72633.64 -72633.51 -72629.79 -72633.59 -72633.59 -72634.14

Leukemia

(1255, 10, 0.50) -53787.19 -53787.27 -53780.28 -53787.02 -53787.02 -53787.26
(1255, 10, 0.25) -53854.00 -53854.00 -53849.77 -53853.94 -53853.94 -53854.03

(1255, 15, 0.50) -60108.81 -60109.28 -60101.74 -60109.03 -60109.03 -60109.76

(1255, 15, 0.25) -60208.75 -60208.81 -60203.91 -60208.78 -60208.77 -60209.07

realEQTL

(1260, 10, 0.50) -191911.63 -191911.63 / -191912.62 -191912.62 -191912.85

(1260, 10, 0.25) -191972.26 -191972.26 / -191972.76 -191972.76 -191972.88

(1260, 15, 0.50) -207390.14 -207390.16 / -207390.17 -207390.17 -207390.61

(1260, 15, 0.25) -207477.62 -207477.61 / -207477.65 -207477.65 -207477.87

Staunton100

(1517, 10, 0.50) -37081.99 -37080.75 -37080.17 -37081.82 -37081.82 -37082.06

(1517, 10, 0.25) -37147.01 -37147.02 -37146.08 -37147.54 -37147.54 -37147.66

(1517, 15, 0.50) -42827.91 -42827.66 -42822.76 -42827.88 -42827.88 -42828.22

(1517, 15, 0.25) -42926.71 -42926.59 -42923.03 -42926.59 -42926.59 -42926.68

Staunton200

(2455, 10, 0.50) -43880.94 -43880.94 -43878.25 -43880.78 -43880.78 -43880.98

(2455, 10, 0.25) -43962.73 -43962.73 -43960.11 -43962.68 -43962.68 -43962.73

(2455, 15, 0.50) -50790.16 -50790.20 -50779.81 -50790.27 -50790.27 -50790.29

(2455, 15, 0.25) -50912.84 -50912.86 -50905.02 -50912.65 -50912.65 -50912.93
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