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Abstract

We propose a framework in which users collaborate with machines to solve classification
tasks, aided by contrastive explanations. Among these, counterfactual explanations stand
out for their intuitiveness and effectiveness. However, long-standing challenges in counter-
factual generation involve the efficiency of the search process, the likelihood of generated
instances, their interpretability, and in some cases, the validity of the explanations them-
selves. In this work we address all these issues to present the first generative framework
suited for real time explainable interactive classification. Our method leverages a label dis-
entangled regularized autoencoder to achieve two complementary goals: generating likely
instances according to the learned distributions and promoting label discrimination to enable
precise control over the decision boundary. By modeling the class-conditional data distribu-
tion, the framework avoids computationally expensive gradient-based optimizations, instead
directly generating explanations based on the modelled counterfactual class distribution. A
user study on a challenging human-machine classification task demonstrates the approach’s
effectiveness in enhancing human performance, emphasizing the importance of contrastive
explanations.

1 Introduction

The advances of the past years in machine learning and the field of AI allowed models to improve drastically
in the most disparate tasks leading to these models being eventually able to overcome humans’ ability and
understanding in specific domains (Taigman et al., 2014; He et al., 2015; Esteva et al., 2017; Rajpurkar, 2017;
Matek et al., 2019). With this in mind, fostering synergistic collaboration between humans and AI has become
a priority to enhance users’ ability to tackle critical tasks. However, implementing environments where
humans and machine learning models work together to solve problems has proven to be highly challenging.
For this reason, Explainable AI arose from the need of transparency and to improve understanding of what
are known as black-box models (Gunning et al., 2019). With the goal of explaining the inner workings of deep-
learning models, researchers have provided users with many different techniques of post-hoc explanations.
Among these, counterfactuals consist of instances describing the necessary changes in input features that
alter the prediction to a predefined output (Molnar, 2022), and are especially appealing for a human decision
maker (Fernández-Loría et al., 2021). Counterfactual explanations should carry the following properties: i)
validity – the model prediction on the counterfactual instance needs to follow a predetermined class; ii)
interpretability – the explanatory instance should be interpretable, iii) likeliness – the explanation should be
representative of the counterfactual class distribution, iv) proximity – the counterfactual instance should be
similar to the original one.

Despite the appeal of counterfactual explanations, existing approaches have struggled in satisfying the desired
properties, especially likeliness (Poyiadzi et al., 2020; Dhurandhar et al., 2018), actionability (Guidotti
et al., 2019; Dhurandhar et al., 2019) or proximity (Guidotti, 2022) of the counterfactual being generated.
Efficiency in generation is another major problem of existing solutions (Farid et al., 2023; Wachter et al.,
2017; Kanamori et al., 2020) undermining the potential of explanations in real-time interactive settings.
Simultaneously, generative models in XAI are gaining attention for improving explanation quality (Schneider,
2024). Inspired by this, we propose a generative framework for interactive classification that leverages
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counterfactual explanations that satisfy the mentioned properties and that are computationally efficient, so
to allow a real-time collaboration with users.

Our framework builds upon the work of Zheng & Sun (2019) and utilizes a regularized autoencoder with a la-
tent space explicitly disentangled into label-relevant and label-irrelevant dimensions (hereafter referred to as
label disentangled for brevity). This allows to learn class-specific representations and enables the generation
of counterfactuals by simply trading-off the likelihood of the explanation according to the modelled counter-
factual label distribution with its proximity to the instance to explain. Likeliness of the output is assured
by the underlying generative model, validity is guaranteed by the explicit modeling of the decision boundary
between classes and proximity is additionally encouraged by combining label-relevant latent dimensions
with label-irrelevant ones, which are shared among classes. Efficiency is achieved by directly generating
explanations according to the learned counterfactual label distribution, thus sidestepping expensive gradient
based optimizations. Finally, interpretability of explanations is improved extracting interpretable concepts
associated to the latent dimensions and presenting the most relevant conceptual changes together with the
counterfactual image.

To the best of our knowledge, our contribution is the first approach to explainable interactive classification
suited for a real-time user interaction. We assess its effectiveness through a user study in which participants
tackle a challenging task in collaboration with our support system. The study results clearly demonstrate the
potential of our approach in enhancing human performance and highlight the crucial role of counterfactual
explanations in achieving these improvements.

2 Related work

Interactive Classification Interactive classification aims at improving users performance on classification
tasks by providing users feedback from an underlying machine learning model. Many user studies evaluate
the effect of model predictions or various explanatory techniques on users but such approaches lack an
interactive component in the study configuration (Bansal et al., 2021; Buçinca et al., 2021; Bussone et al.,
2015; Das & Chernova, 2020; Feng & Boyd-Graber, 2019; Guo et al., 2019; Kulesza et al., 2012; Lee et al.,
2019; Levy et al., 2021; Liu et al., 2021; Park et al., 2019; Alqaraawi et al., 2020; Bansal et al., 2021; Hohman
et al., 2018; Chromik et al., 2021; Weerts et al., 2019; Hase & Bansal, 2020; Ribeiro et al., 2018; Buçinca
et al., 2020; Cai et al., 2019a;b; Dodge et al., 2019; Kulesza et al., 2013; Lai & Tan, 2019). Other approaches
leverage contrastive explanations (De-Arteaga et al., 2020; Lucic et al., 2020; Binns et al., 2018; Ehrlich et al.,
2011; Lim et al., 2009; Wang & Yin, 2021; Cohen et al., 2021) but no approach has yet tackled interactive
classification for the image domain.

Contrastive explanations Contrastive explanations are among the most widely studied forms of ex-
planation. Prior work (Feghahati et al., 2020; O’Shaughnessy et al., 2020; Samangouei et al., 2018) has
demonstrated their effectiveness in enhancing the interpretability of AI models compared to other expla-
nation methods, while Dhuliawala et al. (2023) has shown that human users prefer them over alternative
forms of explanation. Motivated by these findings, we propose a framework specifically designed to sup-
port a novel and efficient technique for generating counterfactual examples. We introduce related work in
the field of counterfactual explanations and clarify what specific limitations of current approaches motivate
implementing our approach for the interactive classification setting. More precisely, contrastive explanations
aim at justifying a choice by rejecting the other viable options. Throughout the years, various techniques
have been proposed to achieve this goal (Prabhushankar et al., 2020; Wang & Wang, 2022; Jacovi et al., 2021;
Miller, 2021), with counterfactuals being the most popular option. With the growing use of Deep Generative
Models, such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and VAEs (Kingma &
Welling, 2013; Rezende et al., 2014), to explain model decisions, the most common approach has been to
progressively modify the input to reveal the most meaningful and interpretable changes (Feghahati et al.,
2020; Joshi et al., 2019; Liu et al., 2019; O’Shaughnessy et al., 2020; Samangouei et al., 2018; Szegedy et al.,
2013). However, these operations can be computationally intensive and often require complex gradient-based
optimizations, as seen in Poels & Menkovski (2022) or in Luss et al. (2021), where concepts extracted from a
disentangled VAE are central to the explanation process. This computational bottleneck hinders interactive
classification by significantly slowing down explanations generation, making real-time interaction impractical.
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To address this, we propose an alternative optimization technique that is both efficient and facilitates imme-
diate feedback from the machine. More recent approaches leverage knowledge of causal graphs (Pawlowski
et al., 2020; Ribeiro et al., 2023; Dash et al., 2022; Kocaoglu et al., 2017; Kladny et al., 2023) and propose
explanatory pipelines that allow direct causal interventions. In our proposal, we relax this requirement since
such information is rarely available in real-world datasets. Instead, we introduce a methodology that en-
hances applicability while maintaining a strong focus on interpretability, linking generated explanations to
learned concepts via a concept-relevance metric we present. This last component of our explanatory pipeline
is designed to tackle the main issue of works leveraging denoising diffusion probabilistic models (DDPMs)
(Ho et al., 2020; Song et al., 2020) for counterfactual explanations (Jeanneret et al., 2022; 2023; Augustin
et al., 2022; Farid et al., 2023). More precisely, despite the exceptional performance of DDPMs that allows
generation of very realistic counterfactuals, the resulting explanations are not clear regarding which features
have been changed and how changes reflect in the target model seriously undermining their interpretability.

Generative AI and disentanglement Disentanglement plays a central role in the framework we propose,
in terms of both learning disentangled latent representations and disentangling between label-relevant and la-
bel-irrelevant dimensions in the latent space. We now present current approaches and limitations of research
in this field that can apply to our proposal. Disentangled feature representations, or high level generative
factors in disjoint subsets of the feature dimensions, carry many desirable properties such as intervention and
interpretability (Kumar et al., 2017; Bengio et al., 2013). An important results comes from Locatello et al.
(2019) who show that it is not always possible to construct disentangled embedding spaces as the problem is
inherently unidentifiable without additional assumptions such as observed variables (Hyvärinen & Pajunen,
1999; Kazhdan et al., 2020) or tuples of observations that differ in only a limited number of components
(Locatello et al., 2020). Leemann et al. (2023) argue that concept discovery should be identifiable and propose
two provably identifiable concept discovery methods for components that are not correlated or do not follow
a Gaussian distribution. Unsupervised approaches that leverage VAEs (Higgins et al., 2017; Kumar et al.,
2017; Chen et al., 2018; Kim & Mnih, 2018) instead incorporate additional regularization components or
derive alternative ELBO formulations. Not surprisingly, a body of works exploiting classification losses to
encourage a disentangled latent representations at a label level already exists (Dhuliawala et al., 2023; Ding
et al., 2020; Zheng & Sun, 2019). However, the two contributions of Dhuliawala et al. (2023) and Ding
et al. (2020) are conceived for classification and cannot generate new instances, while the one of Zheng
& Sun (2019) can perform generation but is designed to optimize quality of generated images exploiting
high-dimensional latent spaces, making it unsuited for interpretable concept extraction.

Deterministic regularized autoencoders Deterministic regularized autoencoders (RAE) were first in-
troduced by Ghosh et al. (2019) as alternative decoder regularization schemes with respect to the original
noise injection mechanism first proposed in the VAE formulation. Such models require an additional density
estimation step to be able to sample latent codes to be reconstructed. Alternative more complex unsuper-
vised approaches (Saseendran et al., 2021; Böhm & Seljak, 2020; Ghose et al., 2020) have been proposed
over the years to side-step ex-post density estimation by shaping the latent space according to a uni-modal
or multi-modal distribution. Being unsupervised, these approaches do not allow to perform disentanglement
at a label level, which is essential for counterfactual explanations. Our approach builds on these ideas and
adapts them to the supervised setting.

3 Method overview

In this section we present an overview of the methodology we propose. More precisely, our framework is
centered around a label disentangled RAE that simultaneously learns a generative process and a classification
task. This allows class distributions to guide both the label predictions and their explanatory process. (For
simplicity, we will refer to this framework as the disentangled RAE moving forward). On the other hand,
the goal of the explanatory component of the framework is to answer contrastive questions such as: Why
P rather than Q? Where P is a fact and Q is an hypothetical alternative, or foil (Miller, 2021). In the
context of interactive multi-label classification, P corresponds to the machine’s prediction, and Q represents
a user-choice. To provide an explanation, we generate a counterexample that the model would classify as Q,
highlighting the contrast with P. We show that this can be efficiently achieved to allow real-time interaction
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with a novel counterfactual generation technique that operates under the assumption that data follows a
mixture of Gaussian distributions—an assumption explicitly supported and enforced by our approach. The
corresponding counterfactual search process thus consists in three steps: i) identification of a set of candidate
counterfactuals according to the criteria of proximity and likeliness; ii) extraction of the expected value of
the set under the alternative class distribution as the generated counterfactual; iii) computation of the top-k
most impactful changes in the latent space as interpretable concept changes explaining the counterfactual.
This framework aims at capitalizing on the following advantages:

• Proximity: Our method optimizes the trade-off between likeliness and proximity in the latent space.
Additionally, explanations share part of their latent representation with the original instance, en-
suring a natural connection between the two;

• Interpretability: Extracting interpretable concepts via latent traversal allows to provide an intelligible
feedback to users in terms of relevant components of the visual counterfactual explanation;

• Validity: the assumptions of the predictive model are coherent with the ones of the chosen explana-
tory technique, allowing full control over the predictive mechanism;

• Likeliness: learning the latent-space data distribution allows for fast, efficient and likely counterfac-
tuals generation with the methodology we propose.

The full interactive classification pipeline, shown in Figure 1(a), also displays the explanatory process, which
can be divided in three main steps: an encoding step, a counterfactual search step and a decoding step. In
the following, we describe the generative model and the training methodology we employ, we present the
novel counterfactual generating technique and illustrate the findings of the user study we conducted.

4 Denoising Disentangled Regularized Autoencoders

The generative model in our explanatory pipeline consists of a disentangled regularized autoencoder. Our ar-
chitecture, shown in Figure 1(b), includes a label-relevant encoder ENCs(·), that leverages label supervision
to map inputs to a latent representation that follows a mixture of Gaussians. Additionally, the architecture
features a label-irrelevant encoder ENCu(·), which uses adversarial classification to learn high-level gener-
ative factors shared across labels. Training occurs in two stages. First, label-relevant and label-irrelevant
dimensions are jointly used for reconstruction by the decoder DEC(·). We refer to this intermediate model
as deterministic disentangled autoencoder, as it is not suited for generation. In the second stage, we extract
latent representations and employ a noise injection mechanism to create a smooth latent space. We leverage
the auxiliary model to handle the noise and achieve decoder regularization by reconstructing denoised repre-
sentations. We now introduce the necessary background, and then present the deterministic and generative
training procedures.

4.1 Background

VAEs are a type of parametric model following an encoding qϕ(z|x) and decoding pθ(x|z) mechanism, trained
with the goal of maximizing likelihood of evidence through its lower bound (ELBO):

log p(x) ≥ Eqϕ(z|x)[log pθ(x|z)]−Dkl(qϕ(z|x) ∥ p(z)) (1)

where ϕ and θ are the parameters of the encoder and decoder respectively. According to such formulation,
Eqϕ(z|x)[log pθ(x|z)] is the reconstruction loss (LREC), which encourages encoded inputs to be decoded with
fidelity, and DKL(qϕ(z|x) ∥ p(z)) is the Kullback-Leibler divergence between the output of the recognition
model qϕ(z|x) and the prior latent distribution p(z). The former is extracted from the encoder, which returns
mean µϕ(x) and variance Σϕ(x) parameters through which the latent code z is sampled for every input x,
while the latter is typically modelled as a standard Gaussian.

The ELBO objective can be extended to incorporating classification terms as in Zheng & Sun (2019), with
the idea of disentangling the latent space via label supervision. A common choice is to exploit the Gaussian
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Figure 1: a) Our interactive explainable classification pipeline, consisting of the encoding, counterfactual
search and decoding steps; b) Denoising disentangled regularized autoencoder architecture.

mixture framework of Wan et al. (2018) who propose to apply an alternative loss LGM to the latent repre-
sentation zi of instance xi with label yi. The first component of the loss is a Gaussian classification term
and a the second one is a likelihood regularization term responsible of efficiently shaping the latent space
according to a mixture of Gaussian distributions:

LGM = − 1
N

∑
c

∑
i

I(yi = c) log N (zi;µyi , I)p(yi)∑
c

N (zi;µc, I)p(c)
+N log N (zi;µyi , I) (2)

where the mean µc parameters are encoding statistics accumulated during training while assuming identity
covariance matrices.

4.2 Training Deterministic Disentangled Autoencoders

The first stage of training combines reconstruction, classification, and regularization objectives to efficiently
shape the label-specific latent space as a mixture of Gaussians, achieving strong classification performance
while encouraging a smooth latent structure. For the label-irrelevant loss, focused on learning high-level
representations shared across classes, we apply Gaussian classification to the output of the label-irrelevant
encoder within the Gaussian mixture framework. The key difference is that the posterior class probabilities
are expected to follow a uniform distribution:

LuGM = − 1
N

∑
i

∑
c

1
|C|

log N (zi;µc, I)p(c)∑
c

N (zi;µc, I)p(c)
+N log N (zi; 0, I) (3)

The final loss is defined as follows:

LDET = LREC + λsLGM + λuLuGM (4)

The pseudocode of the training procedure is shown in Algorithm 3 in Appendix C.1. In the following we
show how to transition from a deterministic to a generative model.

4.3 From Deterministic to Generative Disentangled Autoencoders

The deterministic disentangled autoencoder model is not suited for generation. For this reason, and inspired
by highly performing DDPMs (Ho et al., 2020), we propose an alternative approach to latent space smoothing
based on denoising autoencoders. We argue that with a single noise injection step it is possible to effectively
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transition from a deterministic to generative model. We treat noise as a hyper-parameter and the structure
of the already learned latent space significantly simplifies the regularization task. More precisely, we process
stochastic representations with an auxiliary model MAUX : DECAUX ◦ ENCAUX and reconstruct denoised
latent representations. Given latent dimension z, noise ϵ ∼ N (0, I) and noise parameter σ we define:

σϵ̂ = z + σ · ϵ−DECAUX(ENCAUX(z + σ · ϵ))
LrecAUX = σ2∥ϵ− ϵ̂∥2

2 (5)

The denoising autoencoder reconstruction loss is optimized jointly with the one of the decoder:

LGEN = Lrec
AUX + LREC (6)

The pseudocode of the training procedure is shown in Algorithm 4 in Appendix C.1.

5 Counterfactual Generation

In the previous section we showed how to train a deep generative model with a Gaussian classifier that labels
instances according to their label-relevant latent representation. Now we present our proposal to generate
counterfactuals explaining the predictions to human users. With regard to the counterfactual search process,
this only applies to label-relevant dimensions and we optimize latent distances under a validity constraint
The underlying assumption is that optimization in the latent space will naturally translate to the input
space. This alignment occurs when distances in the input space are accurately mirrored in the latent
space, with reconstruction quality and the model’s classification performance serving as reliable indicators
of this condition. We start defining a set called counterfactual candidates whose elements optimize the
trade-off betwee likeliness and proximity in the latent space. We then compute the expected value of
these candidates according to the counterfactual class distribution and present it as the counterfactual
explanation. This sidesteps the need for the user to specify (non-trivial) likelihood or distance thresholds for
selecting the required counterfactual. To further enhance interpretability of the counterfactual explanation,
we complement it with the most relevant concept changes. After training, concepts are extracted by human
annotators in a post-hoc manner via latent traversals on the learned latent dimension. At explanation time,
we return the concepts that were altered the most in generating the counterfactual (see Figure 1(a) for an
illustration). These steps are further detailed in the following.

5.1 Counterfactual Candidates

We start by describing the formal properties of a candidate counterfactualwhile a graphical representation
of the set of counterfactual candidates for an instance can be found in Figure 2(left).
Definition 1 (properties of counterfactual candidates). Let x be an instance with encoding z0 predicted as
class y∗ with distribution centroid µy∗ . An instance zcf belongs to the set of counterfactual candidates C for
the label ycf with centroid µycf

, if ∄ z ̸= zcf ∈ Rd that satisfies P1 ∧ P2, where:

P1 : argmin
y
∥z − µy∥2

2 = ycf

P2 : ∥z − z0∥2
2 ≤ ∥zcf − z0∥2

2 ∧ ∥z − µycf
∥2

2 ≤ ∥zcf − µycf
∥2

2

P1 ensures the validity of the candidate counterfactual, i.e., the fact that it is always predicted as the
alternative class. P2 ensures the non-existence of a strictly better counterfactual in the latent space.

It is straightforward to see that all the points that lie on the segment S1 from z0 to µycf
and satisfy the first

condition are counterfactual candidates. These should be complemented with the points on the segment of
the decision boundary DB between class y∗ and ycf that goes from the intersection between DB and S1
(Icf ) to the orthogonal projection of z0 on DB (ProjDB(z0)).
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Proposition 1 (Set of counterfactual candidates). Given an instance x′ with latent encoding z0 predicted
as class y∗, the set of counterfactual candidates C for label ycf consists of:

1. the points on the segment S1 from z0 to µycf
predicted as ycf

SC
1 = {(1− t)z0 + tµycf

| t ∈ [0, 1] ∧ P1} (7)

2. the points on the segment connecting the intersection Icf between S1 and the decision boundary DB
with the closest point to z0 predicted as ycf

S2 = {(1− t)Icf + tProjDB(z0) | t ∈ [0, 1]} (8)

Please refer to the Appendix B.1 for the proof. We proceed showing how to extract the expected counter-
factual from this set of candidates.
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Figure 2: Visualisation of the set of candidates we take in consideration (left) and of the latent space
manipulations necessary to compute the expected counterfactual (right).

5.2 Counterfactual as Expectation over Candidates

In the following section we define a technique to compute the expected value of the counterfactual candidates,
which will be returned as a counterfactual explanation. We argue that such counterfactual intrinsically
optimizes the trade-off between the likelihood of the explanation and the distance from the instance to
explain in the latent space. More precisely, the expectation is a point of equilibrium as the weights of in-
stances with more proximity and the weights of more likely instances balance out. Problematically, computing
such expectation has no closed form solution, and a large number of samples from a multivariate normal
distribution is necessary to estimate it. We thus derive specific conditions under which such estimate can be
reduced to a fast and efficient sampling from a univariate distribution.

In our derivations we treat expected value computations separately for SC
1 and S2, and return a density-based

weighted sum of the two as the final counterfactual (more details in Appendix B.2.2):

zcf1 = ESC
1

[z] ; zcf2 = ES2
[z] ; zcf = w1zcf1 + w2zcf2

with w1 =
N (zcf1 ;µycf

, I)
N (zcf1 ;µycf

, I) +N (zcf2 ;µycf
, I) and w2 = 1− w1 (9)
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Methods like Monte Carlo Integration require a considerable number of samples to produce accurate es-
timates, since the density of points vanishes as the dimensions of the distributions increase. In order to
speed-up the expected values estimation of equation 9, we propose an alternative sampling technique that
achieves accurate results while being computationally efficient. More precisely, we note that if a generic
segment S is parallel to a one of the axis, computing the corresponding expectation significantly simplifies.
Proposition 2 (Expectation along a segment parallel to an axis). Let a = (c, c, ..., c, ad) and b =
(c, c, ..., c, bd) ∈ Rd be two points aligned along the last axis. Let S = {(1 − t)a + tb | t ∈ [0, 1]} be the
segment connecting them, and Z(t) = (1 − t)ad + t(bd) the function of the last component of the segment.
In addition, let fZ(z) = fZ1,Z2,...,Zd

(z) be the density function of the underlying distribution of the expecta-
tion. The expected value of the elements in S according to an isotropic Gaussian is a vector with unchanged
components except for the last one, computed as:

ES[z] =
(
c, c, ..., c,

∫ 1

0
Z(t)fZd

(Z(t))dt
/∫ 1

0
fZd

(Z(t))dt
)

(10)

Please refer to Appendix B.2.1 for the proof. This expectation still has no closed form solution, but it is
much cheaper to estimate as it requires univariate samples only. In the following we show how to extend
this convenient result to segments that are not parallel to one of the axis.

5.3 Enabling One-Dimensional Sampling with Spatial Rotations

Unfortunately, segments SC
1 and S2 are never simultaneously parallel to the last axis. However, rotating an

isotropic Gaussian preserves the point densities, as distances are not affected by rotations. We can thus
define a rotation matrix R to map a generic segment S into a segment which is parallel to the last axis.
More precisely, given a and b reference points in the space connected by a segment S, we define a sequence of
invertible rotations with respect to m = a+b

2 , given the segment direction vector v = b−a. Each rotation will
vanish the angle between the current component and the base vector of the next one, so to achieve our goal
in d− 1 steps as depicted in Algorithm 1 (please refer to Appendix C.2 for additional details). To invert the
rotations and map back to the original space, we simply store the rotation matrices and gradually update z
as z ← RTi (z −m) + m, where RTi is the transpose of the rotations matrices presented in inverse order of
computation. We name this inverse procedure Rotate−1. This procedure allows us to rotate the original
label-relevant latent space, compute expectations with sampling on the rotated space, and map the expected
value back to the original space without loss of information. This motivates embedding the latent space in a
Gaussian-mixture, as other distributions would not allow to compute expectations via fast one-dimensional
sampling. We now present the methodology we employ to boost the interpretability of proposed explanations
through interpretable concept changes.

Algorithm 1 Rotation Algorithm
Rotate(·;m, v)
Input: m, v, vector to map to rotated space z

1: zr ← z
2: for i = 0 to d− 1 do
3: θ ← atan2(vi, vi+1)
4: R← I
5: Ri,i ← cosθ
6: Ri,i+1 ← −sinθ
7: Ri+1,i ← sinθ
8: Ri+1,i+1 ← cosθ
9: zr ← (zr −m) ·R+m

10: end for
11: return zr
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5.4 Concept-based Explanations

After training, we extract class-relevant concepts by traversing the latent space with each class medoid. This
approach relies on a human annotator to identify the meaningful changes applied to input images when only a
single dimension is altered at a time. Notably, this procedure enables the assignment of interpretable concepts
to the model’s learned latent representations without requiring direct supervision on these generative factors
during training. One challenge is that constructing disentangled embedding spaces is not always feasible, as
the problem is inherently unidentifiable without additional assumptions or supervision, which our approach
deliberately avoids. To support our methodology, we conduct a qualitative analysis and present a latent
traversal plot to illustrate how variations along individual latent dimensions, while keeping the others fixed,
affect the model’s generated output. Furthermore, the plot provides evidence that these changes are linked
to interpretable concept variations in the model’s generations. We encourage the reader to refer to Appendix
F for further details. As result, during the counterfactual search step, we identify the top-k most relevant
latent dimensions for counterfactual generation and return the associated concepts. We quantify relevance
score of a latent dimension as a likelihood-based squared difference:
Definition 2. Let x be an instance with latent encoding z0 predicted as class y∗ with distribu-
tion centroid µy∗ . Let zcf be counterfactual encoding for an alternative class ycf . Let py(z) =
[N (z1;µy,1, 1),N (z2;µy,2, 1), . . . ,N (zd;µy,d, 1)] be a vector of univariate densities for the single latent di-
mensions of z according to a label y. Let Φ(y, z) = z ⊙ py(z) be the Hadamard product between latent
dimensions and their label-specific densities. The relevance scores of the latent dimensions for the counter-
factual explanation are computed as follows:

scf = (Φ(y∗, z0)− Φ(ycf , zcf ))⊙ (Φ(y∗, z0)− Φ(ycf , zcf )) (11)

The relevance score consists in the weighted squared differences between original and counterfactual encodings
along each dimension. More precisely, each latent of the original encoding is weighted by its likelihood
according to the predicted label distribution and each latent of the counterfactual encoding is weighted by
its likelihood according to the counterfactual class distribution. This ensures that out-of-distribution com-
ponents of the instance to explain do not affect too heavily the automatic process of concept retrieval, which
could reduce clarity of the textual components of explanations. We finally return the top-k most relevant
concept changes associated to the top-k latent dimensions in terms of relevance scores.

5.5 The Counterfactual Generation Algorithm

In the following section we assemble the various components presented so far into the full counterfactual
generation process, presented in Algorithm 2. Given an instance x predicted as having label y∗ and a user-
provided counterfactual label ycf ̸= y∗, the explanatory pipeline consists of: 1) encoding the instance to
explain x in zs and zu; 2) rotating the SC

1 and S2 segments to align them on the last axis and sampling their
expectations; 3) computing the expected counterfactual zcf in latent space by averaging the expectations from
the segments; 4) Extracting top-k most relevant concept changes, 5) concatenating the label-relevant and
label-irrelevant latent representations and decoding the resulting latent vector into the final counterfactual
explanation xcf .

This procedure ensures explanations naturally connect to the original instance by sharing label-irrelevant
factors, maintaining proximity. Efficient expected value estimation via sampling guarantees in-distribution
outputs, and linking visual explanations to concept changes enhances interpretability, allowing users to focus
on the relevant components of the explanation.

6 Experiments

6.1 Quantitative Evaluation

We quantitatively assess the quality of counterfactuals generated for the BloodMNIST dataset by our pro-
posed framework and we carry an ablation study comparing with versions of our approach with missing

9
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Algorithm 2 Explanation Algorithm
Input: x, y∗, ycf , k, instance to explain, prediction, counterfactual class and number of concepts.
Encode instances and extract label relevant and label irrelevant encodings
1: zs ← ENCs(x)
2: zu ← ENCu(x)
Rotate space to compute expectations along SC

1 and S2 sets of candidate counterfactuals
3: m1 ← (zs + µycf

)/2; v1 ← (µycf
− zs)

4: S1 ← {(1− t)Rotate(µycf
;m1, v1) + tRotate(zs;m1, v1)} | t ∈ [0, 1] ∧ P1}

5: zcf1 ← Rotate−1(ESC
1
[z];m1)

6: m2 ← (µy∗ + µycf
)/2; v2 ← (µycf

− µy∗)
7: S2 ← {(1− t)Rotate(zs;m2, v2) + tRotate(projP (zs);m2, v2)} | t ∈ [0, 1]}
8: zcf2 ← Rotate−1(ES2 [z];m2)
Compute expected counterfactual as density based weighted sum
9: w1 ← N (cf1;µycf

, I)/(N (cf1;µycf
, I) +N (cf2;µycf

, I))
10: zcf ← w1zcf1 + (1− w1)zcf2

Extract concepts according to relevance metric
11: scf ← (Φ(y∗, zs)− Φ(ycf , zcf ))⊙ (Φ(y∗, zs)− Φ(ycf , zcf ))
12: Concepts← Extract(scf , k)
Concatenate latent dimensions and decode to generate the explanation
13: xcf ← DEC(MAUX([zu; zcf ]))
14: return xcf , Concepts

various components of the explanatory pipeline. In addition, we leverage the FID, COUT, and S3 metrics
to evaluate Likeliness, validity and proximity of generated explanations. Overall, our proposal delivers com-
petitive performance. In conclusion, since our approach enables efficient counterfactual generation using a
gradient-free optimization process, we present a generation-times comparison plot. The results demonstrate
that our technique is more efficient, while other methods struggle to meet the real-time performance require-
ments necessary for user interaction. We invite the reader to Appendix D for a detailed illustration of the
obtained results.

6.2 User Study

To the best of our knowledge, our proposal is the first interactive classification framework that leverages an
interpretable counterfactual generating technique that operates without concept supervision while enabling
real time collaboration with users Average generation time for a single counterfactual with our method is
in-fact 1.214 ± 0.045 seconds and Gaussian classification ensures 100% validity on generated explanations,
as it allows to exploit linear decision boundaries to identify candidates guaranteed to respect property 1
of Definition 1. In addition, we facilitate the interaction step by eliminating the need for hyper-parameter
configuration, thereby reducing potential confusion for non-expert users. More precisely, while an alternative
approach would be to generate explanations based on a predefined likelihood value, our method offers a more
user-friendly solution by automatically identifying an optimal value for this hyperparameter. This eliminates
the need for non-expert users to select it without a clear understanding of its impact on the generated ex-
planations. For a detailed analysis of how this hyperparameter choice affects explanation quality, we invite
readers to refer to Appendix D. For these reasons we consider a challenging human-machine classification
task with real-time feedback from the machine counterpart the most natural test-bed for our proposal. In
the following sections we present the experiment designed to assess the effectiveness of our explanations and
present the corresponding empirical findings.

6.2.1 Study design

We design an experiment with the goal of answering the following research questions:

RQ1: Can explanations improve users performance in solving the task?

10



Under review as submission to TMLR

RQ2: Can users spot machine errors in presence of explanations?
RQ3: Do explanations cause more user misatkes?

We focused on a multiclass image classification task, namely identifying the cell type of a blood cell image,
using the BloodMNIST dataset introduced by Yang et al. (2023). The task is very challenging for a non-
expert human, because of the poor resolution of the images and the difficulty in clearly identifying distinctive
patterns per-class. Figure 9 in Appendix F reports the medoid image for the eight different cell types in
the dataset. We trained our model on a 70-10-20 train-validation-test split, coarsely optimizing the hyper-
parameters on the validation set (Appendix E.1). The resulting classifier achieves 91% accuracy on the
test-set. We extracted a subset of 20 images from the test set to be presented to the user in the study. To
address RQ2 and RQ3 while maintaining a manageable number of questions for the user, we included in
this subset five images where the model is wrong. The accuracy of the trained model users interact with is
therefore 75%, while the average accuracy of non-expert users is 27%, as will be shown in the following.

Prediction: Immature granulocytes

Nucleus size: bigger
Contours: less polished
Membrane size: bigger

Color: more intense
Size: bigger

Prediction: NeutrophilCounter example for: Monocyte Counter example for: Eosinophil

Figure 3: Examples of model prediction and counterfactual explanation for an alternative (user predicted)
class. Concepts highlight the most relevant changes from the original image to the counterfactual.

We designed three experimental study variants to evaluate non-expert user performance in a cell type pre-
diction task: no machine support (None), machine-predicted label (Label), and machine-predicted label
with counterfactual explanation (Label+Explanation). Each variant involved 50 unique, English-speaking
participants recruited via Prolific. Participants underwent brief preparatory training (Figure 15, Appendix
H.4) before predicting the cell types of 20 test images. For each prediction, users were provided with the
image and reference examples of all cell types (Figure 16, Appendix H.5). In None, participants received no
machine feedback, serving as a baseline for human performance. In Label, users initially made their own
predictions, as in None. If the machine disagreed, they were given the option to confirm their prediction,
accept the machine’s label, or select another. Label+Explanation extended Label by including a counter-
factual explanation in case of disagreement: a counterfactual image resembling the original but predicted
with the user-specified label, along with the top-3 concept changes required for this outcome (Figure 3).
Additional details on the interface and study are in Appendix H.5.

6.2.2 Results

To answer our research questions we extract the following statistics: i) accuracy (ACC) before and after
machine feedback, ii) agreement rate (AGR) with the machine before and after feedback, iii) accuracy
against the machine (ACCAM), i.e., accuracy on instances where a user does not comply with the machine,
iv) machine induced errors (MIE), namely errors made by users who initially provided correct answers,
with respect to how many times the machine feedback altered their decisions. We invite readers to refer
to Appendix H.1 for additional details on how ACCAM and MIE statistics are computed. All statistics
are computed individually for each of the 50 study participants and Table 1 shows mean and standard
deviation (sd) of the observed values. Results (Table 1) confirm the task’s difficulty for non-experts, as
participants in None struggled significantly. Notably, accuracy before feedback significantly improved in
Label and Label+Explanation (p-values respectively of 5.275e−8 and 3.12e−14), suggesting that interacting
with the machine provided implicit training (see Appendix H.3 ). Machine feedback also significantly boosted

11
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Types of feedback ACCs (%) AGRs (%) ACCAM (%) MIE (%)
Before feedback After feedback Before feedback After feedback

None 26.73 ± 8.46 - - - - -
Label 50.60 ± 12.19 63.99 ± 10.45 43.90 ± 9.96 70.80 ± 13.97 24.80 ± 21.64 16.24 ± 13.20
Label+Explanation 51.63 ± 11.06 69.08 ± 8.39 41.96 ± 10.55 78.57 ± 13.92 29.14 ± 22.20 16.49 ± 13.55
p-values - 0.004 - 0.003 0.163 0.463

Table 1: Comparison of users’ performance across different settings. Reported values represent mean and sd
of statistics computed individually for each of the 50 study participants.

overall accuracy, with the best results in Label+Explanation, where explanations helped up to 12% of users
outperform the machine.The hypothesis that accuracy after feedback in Label+Explanation is higher than
in Label was statistically confirmed via a t-test (p = 0.004). In addition, agreement rates were highest with
explanations suggesting better trust and calibration of when to rely on feedback. The hypothesis that agree-
ment after feedback in Label+Explanation is higher than in Label was statistically confirmed via a t-test
(p = 0.003). Crucially, no evidence of over-reliance was observed, as users didn’t alter correct predictions
more often with explanations than without. The hypothesis that MIE in Label+Explanation is the same as
in Label was not rejected in a t-test (p = 0.463). In conclusion, performance variability across participants
highlights the overall task’s complexity.
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Figure 4: Comparison of correlation plots between the two settings of our experiment. Correlation signifi-
cantly decrease in presence of explanations and slopes of regression lines become flatter.

We conclude investigating the relationship between a user final score (ACCaf) and their skill level, intended
as accuracy before feedback (ACCbf), as well as initial agreement (AGRbf) which measures how many
explanations a user is exposed to. Figure 4 shows correlation plots and Pearson’s coefficients for the Label
and Label+Explanation variants. Without explanations, ACCbf and AGRbf strongly predict final users
scores as a consequence of the good performance of the machine. With explanations, this link weakens.
Explanations seem to have the potential to flatten final scores, as the slope of regression lines suggest,
therefore enabling users of varying skill levels to excel. See Appendix H.2 for a detailed discussion of
feedback helpfulness across experimental settings.

In conclusion, our findings suggest affirmative answers to RQ1 and a negative answer to RQ3. We highlight
that, although a t-test fails to reject the hypothesis that ACCAM is the same in Label+Explanation and
Label (p = 0.163), the slightly higher ACCAM value, combined with higher agreement levels, provides a weak
but suggestive indication in favor of an affirmative answer to RQ2, albeit not conclusively. Additionally,
despite considerable variance in user performance due to the complexity of the task, we can confidently assert
that the explanations provided are beneficial across all user skill levels, demonstrating their overall utility.
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7 Limitations and Future Work

The key requirement of our approach is that the latent space follows a multivariate Gaussian distribution. If
this condition is not met, expectations cannot be efficiently computed using one-dimensional sampling. Ap-
plying our method in such cases may result in out-of-distribution generations and low-quality explanations,
both in terms of likeliness and interpretability. Although this requirement can be met, using the Gaussian-
Mixture Loss from Wan et al. (2018), it restricts the applicability of our approach to this specific class of
models. Moreover, interpretable concepts traversal requires largely compressed latent spaces, as too complex
structures can be challenging for users to comprehend, and this can hinder reconstruction quality for more
complex input spaces. A potential solution is to condition latent diffusion models on RAE outputs to ob-
tain refined counterfactuals, or directly on RAE’s semantically meaningful latent representations. However,
certain domains may not permit concept extraction, even with larger-scale models. Finally, we investigated
the capabilities of our proposal within a single-stage interactive setting. Given that our approach is tailored
for real-time collaboration, exploring potential improvements in interpretability through multi-stage interac-
tions represents a significant future direction for our work. Exploring these directions while preserving the
efficiency required for real-time interaction is an important avenue for future research.

8 Conclusion

We introduced the first framework for real-time interactive classification in the image domain, integrating
interpretable counterfactual explanations. Our framework is built upon a novel explanatory approach that
ensures the critical properties of likeliness, validity, and proximity, while also facilitating the efficient genera-
tion of counterfactuals. To validate our proposal, we conducted a user study assessing its effectiveness using
a real-world dataset, where participants collaborated with the underlying model to perform a classification
task. The results highlighted that explanations are beneficial for users of all skill levels, demonstrating
the interpretability and practical utility of the provided machine feedback. Furthermore, the study under-
scored the essential role of explanations in enhancing user understanding and trust, showcasing their pivotal
contribution to achieving clear and actionable insights.

Broader Impact Statement

This study was conducted in compliance with the TMLR Code of Ethics. All participants provided informed
consent before taking part in the study. The study involved the collection of anonymized data, ensuring that
no personally identifiable information (PII) was recorded or stored at any point. Participants were informed
about the purpose of the research, the voluntary nature of their participation, and their right to withdraw
at any time without penalty. No sensitive personal information was collected, and all responses were kept
confidential. The data were processed and analyzed solely for the purposes of this research and will not be
used for any other purpose.

To facilitate the reproducibility of our results, we provide detailed information in the Appendix of this
paper. This includes proofs of all propositions presented, a comprehensive description of the model archi-
tecture and of its training hyper-parameters and thorough explanations of all the algorithms used. Ad-
ditionally, the Appendix contains information about the user study design and implementation. In con-
clusion, the source code of our implementation can be found at: https://anonymous.4open.science/r/
Interpretable-counterfactuals-real-time-C8D3/. These efforts are intended to support researchers in
replicating our methodology and verifying the robustness of our findings.
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A Appendix

B Mathematical proofs

B.1 Counterfactual Candidates

To better follow our proof, first let us introduce once again the properties of counterfactual candidates of
Definition 1:

Let x0 be an instance with encoding z0 predicted as class y∗ with distribution centroid µy∗ . An instance zcf
belongs to the set of counterfactual candidates C for the label ycf with centroid µycf

, if ∄ z ̸= zcf ∈ Rd that
jointly satisfies P1 ∧ P2, where:

P1 : argmin
y
∥z − µy∥2

2 = ycf

P2 : ∥z − z0∥2
2 ≤∥ zcf − z0∥2

2 ∧ ∥z − µycf
∥2

2 ≤∥ zcf − µycf
∥2

2

Counterfactual candidates should optimize a trade-off between likeliness and proximity under a validity
constraint. More precisely, likeliness is measured as the euclidean distance between a point and the coun-
terfactual class mean. The motivation is that, under diagonal covariance assumption Σ = σ2I, this distance
is proportional to the negative log-likelihood according to the counterfactual class distribution:

N (z, µ, σ2I) = 1
(2πσ2) d

2
exp

(
− 1

2σ2 ∥z − µ∥
2
2

)
− log(N (z, µ, σ2I)) = 1

2σ2 ∥z − µ∥
2
2 + c ∝ ∥z − µ∥2

2

According to the definition we provided, identifying candidates is trivial with the use of triangle inequality.
Follows that all points satisfying P1 and laying on the segment S1 from z0 to µycf

are counterfactual
candidates. This allows to omit the majority of points in space that satisfy the first property in favor of a
point in S1. Problematically, some points in S1 are not predicted as the counterfactual class. This allows the
existence of valid candidates according to P1 that cannot be discarded because they are equivalently distant
from z0 with respect to some points in S1 that do not satisfy P1. In the following we prove that when this
happens an infinitesimal approximation of the best possible valid points according to P2 is obtained with
the segment S2. This is the part of the decision boundary DB between class y∗ and ycf that goes from
the intersection between DB and S1 (Icf ) to the orthogonal projection of z0 on DB (ProjDB(z0)). More
precisely we define segments S1 and S2 as below:

S1 = {(1− t)z0 + tµycf
| t ∈ [0, 1]}

S2 = {(1− t)Icf + tProjDB(z0) | t ∈ [0, 1]}

And our proof is structured as follows:

1. We identify the set of points in S1 that are at least as distant to z0 as ProjDB(z0) but fail to satisfy
P1, which we name S̸C

1 .

2. For any point zS ∈ S̸C
1 we construct the set of points ZDB where zDB ∈ ZDB if zDB ∈ DB and

∥zS − z0∥2
2 = ∥zDB − z0∥2

2

3. We identify the best point z∗
DB ∈ ZDB according to P2

4. We show that this point belongs to S2

5. We identify the region of space O containing the points that are better than z∗
DB according to P2
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6. We show that the points in O are all on the same side of the decision boundary

7. We prove this side is not associated to counterfactual class prediction.

The last point allows us to conclude that, for the given value of ∥zS − z0∥2
2, no valid point according to P1 is

better than z∗
DB according to P2. Therefore z∗

DB ∈ C. In the following we further detail the different steps
of the proof.

B.1.1 Definition of S̸C
1

To begin our proof let us consider the following setting. Let µy∗ and µycf
be the mean vectors of the original

and counterfactual label distributions in the latent space respectively. The segment Sµ is the segment
connecting them. The decision boundary DB between the two according to diagonal covariance matrix
assumption Σ = σ2I is a hyper-plane perpendicular to Sµ. Finally the intercept Iµ between Sµ and DB is
given by: Iµ = µycf

+µy∗

2 . According to our setting we define the segment S̸C
1 as follows:

S̸C
1 = {zS ∈ S1 : ∥zS − z0∥2

2 < ∥Icf − z0∥2
2 ∧ ∥zS − z0∥2

2 > ∥ProjDB(z0)− zs∥2
2} (12)

Intuitively, any point z that satisfies P1 must be at least at distance ∥ProjDB(z0)−zs∥2
2 to z0 as ProjDB(z0)

is the closest point in DB to z0. In addition, if ∥zs − z0∥2
2 < ∥Icf − z0∥2

2 the point zs ∈ S1 does not satisfy
P1.

B.1.2 Definition of points on the Decision Boundary for a given zS ∈ S̸C
1

Let us denote by H(za, zb) the hyperspherical set of points z : ∥z − za∥2
2 = ∥zb − za∥2

2. Also, for any point
zS ∈ S̸C

1 , all the points z : ∥z−z0∥2
2 = ∥zs−z0∥2

2 lay on a hyper-sphere. Let us denote ZDB(K) the intersection
between the collection of points in the set K and DB: ZDB(K) = K ∩DB. Let us now fix a value for zS .
We can denote the set of points zDB that belong to DB and are equally distant to z0 as zS as follows:

Zz0
DB = ZDB(H(z0, zs))

B.1.3 Optimal z∗
DB according to P2

Let us define the points in H(µycf
, zS) that belong to DB:

Zycf

DB = ZDB(H(µycf
, zS))

According to P2, the best point z∗
DB ∈ Zz0

DB , as all points in Zz0
DB are equally distant to z0 by definition, is

the one such that:

z∗
DB = argmin

zDB∈ Zz0
DB

∥zDB − µycf
∥2

2

In addition we have that if Zycf ∗
DB = ZDB(H(µycf

, z∗
DB)) , then :

|Zycf ∗
DB ∩ Zz0

DB | = 1 (13)

More precisely, Zz0
DB and Zycf

DB are hyper-spheres of d − 1 dimensions centered respectively in ProjDB(z0)
and Iµ because DB ⊥ Sµ. Since fixing zs is equivalent to fixing the radius rzo of Zz0

DB , we want to find the
minimum rycf

of Zycf

DB such that Zz0
DB ∩ Zycf

DB ̸= ∅. This leaves us with the trivial optimum radius r∗
ycf

of
Zycf ∗
DB such that Zz0

DB is tangent to Zycf ∗
DB . The point of tangency is exactly z∗

DB .
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B.1.4 Proof that z∗
DB ∈ S2

We showed that the optimal zDB∗ ∈ Zz0
DB is such that the two hyper-spheres of points on the decision

boundary are tangent. We now show that the point z∗
DB belongs to S2. More precisely, since the point

where two hyper-spheres are tangent lays on the segment connecting the centroids, z∗
DB will belong to the

segment Stan connecting Iµ and ProjDB(z0).

Stan = {(1− t)ProjDB(z0) + tIµ | t ∈ [0, 1]} (14)

which is the segment on the decision boundary that collects all the values of z such that two hyper-spheres
ZDB(H(µycf

, z)) and ZDB(H(z0, z)) are tangent. Moreover, the point Icf also belongs to Stan as: 1) by defini-
tion it is on the decision boundary, 2) H(z0, Icf ) is tangent to H(µycf

, Icf ). More precisely, the last condition
ensures that H(z0, Icf ) ∩H(µycf

, Icf ) = Icf ∈ DB. This implies that ZDB(H(z0, Icf )) ∩ ZDB(H(µycf
, Icf ) =

Icf and therefore ZDB(H(z0, Icf )) is tangent to ZDB(H(µycf
, Icf ) in Icf . Follows that if I ∈ Stan then:

Stan = {(1− t)ProjDB(z0) + tIcf | t ∈ [0, 1]} ∪ {(1− t)Iµ + tIcf | t ∈ [0, 1]}

or:

Stan = S2 ∪ {(1− t)Iµ + tIcf | t ∈ [0, 1]} (15)

Finally, since z∗
DB ∈ Stan, then z∗

DB ∈ S2 as ∥z∗
DB − z0∥2

2 < ∥Icf − z0∥2
2 and every element in the other

component is at least distance ∥Icf − z0∥2
2 to z0.

B.1.5 Strictly better points than z∗
DB according to P2

We showed that out of all the points in Zz0
DB the best possible choice according to P2 is z∗

DB ∈ S2. We now
show how to find the region O of points that are better or equal than z∗

DB according to P2 to prove that
P1 is never true in this region. More precisely, the region of points that are simultaneously closer to z0 and
µycf

than z∗
DB is trivially identified as the intersection between the areas of the hyper-spheres H(z0, z

∗
DB)

and H(µycf
, z∗
DB):

Az0 = {z ∈ Rd : ∥z − z0∥2
2 ≤ ∥z∗

DB − z0∥2
2}

Aycf
= {z ∈ Rd : ∥z − µfcf

∥2
2 ≤ ∥z∗

DB − µfcf
∥2

2}
O = Az0 ∩ Aycf

(16)

In addition, |O| > 1 since the two hyper-spheres are not tangent as z∗
DB /∈ S1 which is the segment connecting

z0 and µycf
.

B.1.6 Classification of O

Given that any point that is an improvement to z∗
DB is in O, we show that the elements in this region

are all on the same side of the decision boundary. If this holds, we can show that they are all predicted
as a different label with respect to the counterfactual class and this would ensure that no better point
than z∗

DB that satisfies P1 exists. More precisely, to prove that all elements in O are on the same side
of the decision boundary we need to prove that DB does not intersect the region O, as DB is linear. To
achieve this, given Oz0

H = O ∩ H(z0, z
∗
DB) ∩ DB and Oycf

H = O ∩ H(µycf
, z∗
DB) ∩ DB, we can equivalently

show that: |Oz0
H ∪ Oycf

H | = 1 or that DB touches the two hyper-spheres in the region O in a single shared
point and therefore does not intersect it. In that regard, remind that Zz0

DB and Zycf ∗
DB are the intersections

with the decision boundary of H(z0, zS) and H(µycf
, z∗
DB). It is trivial to see that Oz0

H = O ∩ Zz0
DB and

Oycf

H = O ∩ Zycf ∗
DB . Given that z∗

DB ∈ Oz0
H and z∗

DB ∈ Oycf

H , if all the points in O are better or equal to z∗
DB

according to P2 then O ∩ Zz0
DB = O ∩ Zycf ∗

DB = z∗
DB as z∗

DB optimizes P2 for Zz0
DB . This allows to conclude

that:

Oz0
H = Oycf

H = {z∗
DB} (17)

|Oz0
H ∪Oycf

H | = 1 (18)

or that all elements in O are assigned the same class label by the model.
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B.1.7 Proof z∗
DB ∈ C

Since the points in O all share the same model prediction, we conclude our proof by taking a point inside O
for which we know the model decision. This allows us to extend that same decision to all points in O. More
specifically, as O contains all the points that are better or equal to z∗

DB according to P2, the original point
zS ∈ S1 that violets P1 will belong to O. This is because zS is equivalently distant to z0 while according to
triangle inequality being closer to µcf . This proves that all points in O are not predicted as the counterfactual
class and violate P1. We conclude that ∄ z ̸= z∗

DB ∈ Rd : P1 ∧ P2 or z∗
DB is a counterfactual candidate:

z∗
DB ∈ C (19)

B.1.8 On the Validity of points in S2

We are aware that points on the decision boundary are technically a violation of P1. Even though this is true,
we still consider them as an infinitesimal approximation of the points that would change the model prediction.
Simplifying further our setting, let µycf

= (c, c, ..., c, µy∗,d) and µycf
= (c, c, ..., c, µycf ,d) the mean vectors of

the original label distribution and the counterfactual class distribution. The segment Sµ connecting them is
parallel to the last axis: Sµ ∥ e(d) where e(d) is the basis vector of the last dimension. The decision boundary
DB between the two according to identity covariance matrix assumption is a hyper-plane perpendicular
to Sµ: DB ⊥ Sµ. Finally the intercept Iµ between Sµ and DB is given by: Iµ = (c, c, ..., c, µycf ,d+µy∗,d

2 ).
According to this setting we have:

fM(z∗
DB + ϵed) = ycf for ϵ ≈ 0, ϵ ∈ R+

As a global result, any infinitesimal change perpendicular to the decision boundary would result in the model
predicting the counterfactual label.

B.2 Expected Counterfactual

In the following we present mathematical derivations regarding the computation of the expected counterfac-
tual.

B.2.1 Expectation along a segment parallel to an axis

We show that the expected value of elements in a segment S, which lies parallel to the last axis, can be
computed using single-dimensional sampling (as depicted by equation 10), assuming the elements belong to
a space Rd where they follow an isotropic Gaussian distribution:

ES [z] =
(
c, c, ..., c,

∫ 1

0
Z(t)fZd

(Z(t))dt
/∫ 1

0
fZd

(Z(t))dt
)

proof : Take two points aligned along the last axis a = (c, c, ..., c, ad) and b = (c, c, ..., c, bd) ∈ Rd, with
c, ad, bd ∈ R and ad < bd and the segment S connecting them S = {(1 − t)a + (t)(b) | t ∈ [0, 1]}. Any
point z ∈ S can be expressed as a function of t: Z(t) = (1 − t)a + (t)(b). More precisely any coordinate
of any point z ∈ S can be expressed as a function of the corresponding components of a and b and t:
Zi(t) = (1 − t)ai + t(bi). If the underlying distribution of the points in S is an isotropic Gaussian we can
factorize the density as follows:

fZ1,...,Zd
(z1, ..., zd) =

d∏
i

fZi
(zi)

And the expected value becomes:

ES [z] =

∫ 1

0
Z(t)fZ(Z(t))dt∫ 1

0
fZ(Z(t))dt

=

∫ 1

0
Z(t)

d∏
i=1

fZi
(Zi(t))dt

∫ 1

0

d∏
i=1

fZi
(Zi(t))dt
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But:
d∏
i=1

fZi
(Zi(t)) = fZd

(Zd(t))
d−1∏
i=1

fZi
(c)

and: ∫ 1

0
Z(t)

d∏
i=1

fZi
(Zi(t))dt

∫ 1

0

d∏
i=1

fZi
(Zi(t))dt

=

d−1∏
i=1

fZi
(c)
∫ 1

0
Z(t)fZd

(Zd(t))dt

d−1∏
i=1

fZi
(c)
∫ 1

0
fZd

(Zd(t))dt

=

∫ 1

0
Z(t)fZd

(Zd(t))dt∫ 1

0
fZd

(Zd(t))dt

To conclude our proof we have that for a given t value Z(t) is a vector of the form (c, c, ..., c, Zd(t)) and we
can write:

ES [z] =
( ∫ 1

0
cfZd

(Zd(t))∫ 1

0
fZd

(Zd(t))dt
, ...,

∫ 1

0
cfZd

(Zd(t))∫ 1

0
fZd

(Zd(t))dt
,

∫ 1

0
Zd(t)fZd

(Zd(t))dt∫ 1

0
fZd

(Zd(t))dt

)

=
( c

∫ 1

0
fZd

(Zd(t))∫ 1

0
fZd

(Zd(t))dt
, ...,

c

∫ 1

0
fZd

(Zd(t))∫ 1

0
fZd

(Zd(t))dt
,

∫ 1

0
Zd(t)fZd

(Zd(t))dt∫ 1

0
fZd

(Zd(t))dt

)

=
(
c, ..., c,

∫ 1

0
Zd(t)fZd

(Zd(t))dt∫ 1

0
fZd

(Zd(t))dt

)

Proving that to estimate the last component, which is the only one whose value is modified, we can resort
to one-dimensional sampling.

In conclusion, the clear advantage is that eliminating other dimensions significantly increases the probability
of sampling within the desired interval removing the complexity of combinatorial effects. More precisely,
dimensionality has no influence on the effectiveness of our approach, whereas it poses a problem for other
sampling-based methods, as it causes probability densities to vanish due to factorization.

B.2.2 Expected Candidate Computation

Given two generic segments S1 = {(1 − t)a1 + (t)(b1) | t ∈ [0, 1]} and S2 = {(1 − t)a2 + (t)(b2) | t ∈ [0, 1]}
and a1, b1, a2, b2 ∈ Rd, The expected value of elements in the segments equals:

ES1,S2
[z] = w1ES1

[z] + w2ES2
[z]

with w1 =

∫ 1

0
fZ(Z1(t))dt∫ 1

0
fZ(Z1(t))dt+

∫ 1

0
fZ(Z2(t))dt

and w2 = 1− w1

where Z1(t) = (1− t)a1 + tb1 and Z2(t) = (1− t)a2 + tb2

This formulation requires an additional Monte-Carlo estimator of the probabilities of the segments and for
efficiency in our derivations we approximate the quantity with:

z1 = ES1
[z] ; z2 = ES2

[z] ; z = w1z1 + w2z2

with w1 = N (z1;µy1 , I)
N (z1;µy1 , I) +N (z2;µy1 , I) and w2 = 1− w1
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It is worth noticing that in our setting we would have N (Z1(t);µ, I) > N (Z2(t);µ, I)∀t ∈ [0, 1] therefore:

∫ 1

0
fZ(Z1(t))dt≫

∫ 1

0
fZ(Z2(t))dt

which inevitably transfers to the mean densities:

N (z1;µy1 , I)≫ N (z2;µy1 , I)

Thus, we can conclude that the approximation for the expected value is suitable:

∫ 1

0
fZ(Z1(t))dt∫ 1

0
fZ(Z1(t))dt+

∫ 1

0
fZ(Z2(t))dt

≈ N (z1;µy1 , I)
N (z1;µy1 , I) +N (z2;µy1 , I) (20)

B.2.3 Expected Counterfactual Violations of P2

The expected counterfactual can violate the second property of counterfactual candidates defined as:

P2 : ∥z − z0∥2
2 ≤ ∥zcf − z0∥2

2 ∧ ∥z − µycf
∥2

2 ≤ ∥zcf − µycf
∥2

2

This is because the expected counterfactual consists in an interpolation of points in SC
1 and S2 which inevitably

returns a point that belongs to neither segment. Given a generic segment S = {(1− t)a+ (t)(b) | t ∈ [0, 1]}
with a, b ∈ Rd and two additional points c = t0a + (1 − t0)b that belongs to S and d ∈ Rd we define the
interpolation between c and d as c1 = w1c+ (1− w1)d. The distance between the interpolation c1 and any
point in the segment S is given by:

∥ (1− t)a+ (t)(b)− (1− t0)a− (t0)(b)− (1− w1)d ∥2
2

which allows us to bound the distance between the interpolation c1 and the segment S with at least:

∥ (1− t0)a+ (t0)(b)− (1− t0)a− (t0)(b)− (1− w1)d ∥2
2

∥ (1− w1)d ∥2
2= (1− w1)2 ∥ d ∥2

2 (21)

Recall from 20 that the weight associated to the expected value of SC
1 appraoches one implying that 1− w1

approaches zero. This allows us to conclude that, while the expected counterfactual slightly violates the P2
property of counterfactual candidates, this violation is negligible due to the inherent relationship between
SC

1 and S2.

C Algorithms

C.1 Training Algorithms

We minimize this loss of 4 following the procedure depicted in Algorithm 3. We encode inputs to extract
label-relevant and label-irrelevant dimensions and compute the corresponding classification and regularization
components of the loss. Follows that latents are concatenated and decoded to compute reconstruction loss
before the update-step of model parameters. Procedure iterates until convergence.
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Algorithm 3 Deterministic Training
Procedure: DetTrain(λs, λu, n)
while not convergence do

for i = 0 to n do
{x, y} ∼ D
zs ← ENCs(x)
zu ← ENCu(x)
x̃← DEC([zs; zu])
L ← LREC + λsLGM + λuLuGM
ψ, ϕ, π

+← −∇ψ,ϕ,πL
end for

end while

Algorithm 4 Generative Training
Procedure: GenTrain(σ, n)
while not convergence do

for i = 0 to n do
{x, y} ∼ D; ϵ ∼ N (0, I)
zs ← ENCs(x) + σ · ϵ
zu ← ENCu(x) + σ · ϵ
zaux ← ENCAUX([zs; zu])
z̃ ← DECAUX(zaux)
x̃← DEC(z̃)
L ← Lrec

AUX + LREC

θ, ω, π
+← −∇θ,ω,πL

end for
end while

The procedure of our second stage of training is depicted in Algorithm 4. We encode latent representations
to extract label-relevant and label-irrelevant codes. Through reparametrization trick we inject noise to both
representations. We now introduce our auxiliary model which takes as input the concatenation of these
noisy latents and is trained to denoise them. We compute the auxiliary loss component as in equation 5
and reconstruct original inputs from the denoised representations. Finally the loss of 6 is computed and
parameters updated. This procedure iterates until convergence.

C.2 Rotation Algorithm

We describe the algorithm we use to rotate the space so that the segment S connecting z and z′ is parallel to
the last-axis. More precisely, given inputs z of dimensionality d, v = z′−z direction vector and the reference
point m = (z + z′)/2 (left unchanged by rotations), our algorithm returns the point zr that corresponds to
z in the rotated space.

Algorithm 5 Rotation Algorithm
Rotate(·;m, v)
Input: m, v, vector to map to rotated space z

1: zr ← z
2: for i = 0 to d− 1 do
3: θ ← atan2(vi, vi+1)
4: R← I
5: Ri,i ← cosθ
6: Ri,i+1 ← −sinθ
7: Ri+1,i ← sinθ
8: Ri+1,i+1 ← cosθ
9: zr ← (zr −m) ·R+m

10: end for
11: return zr

When a direction vector’s components are all simultaneously zero except for the last one the vector becomes
parallel to the last axis. Based on this observation, we define an iterative procedure that progressively zeros
out each dimension and aligns the corresponding axis. Once the second-to-last dimension is processed, the
vector will be fully parallel to the last axis and the procedure completed. More precisely, given a direction
vector v, for each dimension i we compute the angle θ between vi and e(i+1) using θ = atan2(vi, vi+1), where
e(i+1) is the basis vector of the (i+ 1)-th dimension. This angle defines the rotation needed to zero out the
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current dimension. Once θ is computed, we construct a rotation matrix R that affects only the i-th and
(i+ 1)-th dimensions, leaving the rest unchanged. To achieve this we combine the identity matrix with the
standard 2d rotation matrix for the indices of interest. The vector z is then transformed by multiplying it
with the rotation matrix R, effectively zeroing out the i-th dimension. This process is repeated iteratively
for d− 1 steps, progressively aligning the vector with the final axis.

D Quantitative Evaluation

D.1 Counterfactual Quality

In the following, we quantitatively assess the quality of counterfactuals generated for the BloodMNIST
dataset by our proposed framework and competitors. As a baseline, we compare it to the method introduced
by Luss et al. (2021), which, to the best of our knowledge, is the only other interpretable counterfactual
generation framework that operates without concept supervision. In addition, to conduct an ablation study,
we compare our approach with simpler approaches. The first approach generates counterfactuals by in-
terpolating between the instance to be explained and the mean representation of the counterfactual class,
ensuring the model’s confidence reaches specific thresholds (0.6, 0.8, 0.9). The second approach discards
label-irrelevant encoding, relying solely on a label-relevant encoder (SLR), which inevitably compromises
the proximity of the generated explanations. We leverage the FID, COUT, and S3 metrics to evaluate vari-
ous desiderata of counterfactual explanations. The FID score (Heusel et al., 2017), typically used to evaluate
the quality of generative models, quantifies the realism of the generated counterfactuals. The COUT score
(Khorram & Fuxin, 2022) focuses on the confidence of the model in the original and counterfactual classes,
providing insight into the effectiveness of the counterfactual explanation. Finally, the S3 (Jeanneret et al.,
2023) metric, which leverages the SimSiam self-supervised learning framework (Chen & He, 2021), compares
the cosine similarities between the SimSiam encodings of the original and counterfactual instances.

Method FID COUT S3

OURS 131.21 0.90 0.81
CEM-MAF 173.61 0.85 0.87
Interpolation (0.6) 264.79 0.22 0.63
Interpolation (0.8) 162.81 0.68 0.84
Interpolation (0.9) 135.44 0.83 0.81
SLR 133.15 0.94 0.69

Table 2: Comparison of counterfactual generation methods using various metrics to assess the likeliness,
proximity, and impact of explanations on model confidence.

In Table 2 we present the methods along with their corresponding scores for each metric. While the FID
score is relatively high across all methods, our approach achieves the best FID score. These high values
are primarily due to the constrained latent spaces used by the methods, which produce counterfactuals
that are clearly distinguishable from the original images. However, the results from our user study provide
strong evidence that the generated counterfactuals are both actionable and informative. Our method also
achieves the second-highest COUT score, surpassed only by the approach that models exclusively label-
relevant dimensions. This is due to the ability of that approach to modify more latent dimensions during
optimization, resulting in instances that are closer to the mean of the counterfactual label distribution..
Overall results indicate that our approach generates impactful perturbations of the original instances so to
achieve counterfactual explanations with high model confidence. The best S3 score is achieved by CEM-MAF,
which excels in this category due to its design focused on optimizing proximity. Overall, our approach delivers
competitive performance, outperforming competitors in FID metric and obtaining valuable results on COUT
score while performing slightly worse on the S3 metric. Simpler approaches, as expected, show lower FID and
COUT scores, although interpolation with a confidence threshold of 0.8 surpasses our method S3 metric. The
variability in the results of the interpolation approaches raises the question of what the model’s confidence
value should be, as it is difficult to generalize because this value depends on the model’s learned decision
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boundary. As a result, hyper-parameter tuning becomes a critical requirement for interpretability. Our
approach, however, demonstrates better overall performance and eliminates the need for hyper-parameter
tuning, making it a more favorable choice. This is particularly crucial in real-time user interaction settings,
where automating the counterfactual generation process is essential.

D.2 Generation Times

Our approach enables efficient counterfactual generation using a gradient-free optimization process, which
offers a significant computational advantage over existing techniques. Specifically, the computational cost
of our method depends solely on the dimensionality of the input latent vector, making the generation time
independent of the complexity of the underlying model architecture. This contrasts with gradient-based
optimization methods, where the depth of the model can dramatically slow down the convergence of the
counterfactual generation process. In Table 3, we present a comparison of generation times between our
method and the competing approach of (Luss et al., 2021). The results demonstrate that our technique is
more efficient, while other methods struggle to meet the real-time performance requirements necessary for
user interaction.

Method OURs CEM-MAF (k values)
k=1 k=3 k=5

Generation time (s) 1.21 ± 0.05 15.87 ± 1.86 24.16 ± 11.05 31.08 ± 14.21

Table 3: Comparison of generation times for our method and CEM-MAF for different values of hyperparam-
eter k which controls the model confidence on the counterfactual prediction.

Table 3 shows the substantial efficiency gains offered by our approach, revealing that generation times are
often insufficient, if not entirely inadequate, for providing real-time feedback, even when using basic and
shallow neural network architectures. This issue is exacerbated in more complex domains as depicted in
Figure 5 where generation times for different model architecture depths are compared. In contrast, our
method preserves its efficiency independently from such complexities.
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Figure 5: Comparison for generation times at varying of number of layers of a resnet architecture.
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D.3 Implementation Details

To implement the approach of Luss et al. (2021) we trained a Convolutional Neural Network classifier and
Disentangled Inferred Priors Variational Autoencoder (Kumar et al., 2017) as their proposal suggests. The
architectures of the two models were identical to the encoding and decoding blocks implemented for our
Denoising Disentangled Regularized Autoencoder (Table 4) with the only exception that the classifier latent
dimension was 8 (number of classes) and the DIP-VAE latent dimension was 10. In addition, we set all hyper-
parameters as the proposed values in the popular repository https://github.com/Trusted-AI/AIX360.
Specifically, the number of iterations was set to 250. If a valid counterfactual was not obtained within this
limit, we permitted the algorithm to continue running until the first valid counterfactual was generated. The
value of k represents the difference in log-probabilities the model associates to the user asked class and the
second most plausible class for the counterfactual explanation. The approach of Luss et al. (2021) returns
explanations for which this difference is at least k , with a common choice being k = 5. Intuitively, the
optimization process slows down as the value of k increases because achieving a higher model confidence in
predicting a different class than the original necessitates progressively larger perturbations to the input.

E Training

E.1 Optimization and Architectures

We train our model on BloodMNIST dataset introduced by (Yang et al., 2023). It contains 17092 images
of blood cells belonging to 8 different classes. We use a 70-10-20 train-validation-test split and optimize
hyper parameters with the use of the validation set. For training, we use Adam optimizer with α = 0.001,
β1 = 0.9 and β2 = 0.999. With regard to the other hyper-parametrs, in the first stage of training we use
λs = 10, λu = 10. The first was picked to avoid over-fitting by means of the validation set. With the second
parameter we instead obtain a reasonable trade-off between learning meaningful high-level generative factors
and adversarial classification performance. In the second stage of training we introduce noise according to
σ = 0.1. More precisely, we empirically notice that a desirable trade-off between reconstruction quality
and latent smoothing is obtained with this value. The factors that primarily affect this are learned latent-
structure and size of latent space. Below we show architectures of the models implemented.

Encoder Decoder
input x ∈ R28×3×3 input x ∈ R20

3x3 conv, 32 filters, batchnorm, relu Dense 200 units, relu
3x3 conv, 32 filters, batchnorm, relu Dense 200 units, relu
2x2 maxpool, stride 2 Dense 8*8*64 units
3x3 conv, 64 filters, batchnorm, relu 3x3 trans conv, 64 filters, batchnorm, relu
3x3 conv, 64 filters, batchnorm, relu 3x3 trans conv, 64 filters, batchnorm, relu
Dense 200 units, relu 2x2 upsample
Dense 200 units, relu 3x3 trans conv, 32 filters, batchnorm, relu
Dense 15 for zs, 5 for zu 3x3 trans conv, 3 filters

Table 4: Architecture for Encoder (ENC(·)) and Decoder (DEC(·))

Auxiliary Encoder Auxiliary Decoder
input x ∈ R20 input x ∈ R12

Dense 64 units, relu Dense 16 units, relu
Dense 32 units, relu Dense 32 units, relu
Dense 16 units, relu Dense 64 units, relu
Dense 12 output units Dense 20 output units

Table 5: Architectures for auxiliary encoder (ENCAUX(·)) and decoder (DECAUX()·)
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E.2 Latent Space

Here we present the structure of the latent space learned by the model. as depicted in 6 the label-relevant
dimensions are mapped to a label-relevant space and class is indistinguishable according to label-irrelevant
dimensions which follow an Isotropic Gaussian.
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Figure 6: Learned latent structure. Gaussian mixture for label-relevant and isotropic gaussian for label-
irrelevant dimensions.

E.3 Sampling

After regularization with the noise injection mechanism, our model is suited for sampling. We extract
distribution parameters for the label-relevant encodings and sample according to diagonal-covariance distri-
butions. Label irrelevant encodings follow instead an isotropic gaussian. We show few examples of results
with unconditional (Figure 7) and conditional sampling (Figure 8).

Figure 7: Unconditional sampling. To achieve this labels are treated as a random variable and sampled.
Finally a new image is obtained from the conditional random label distribution.
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Eosinophil

Platelet

Erythroblast

Neutrophil

Lymphocyte

Immature
granulocytes

Basophil

Monocyte

Figure 8: Conditional sampling. Each row corresponds to a different class.
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F Concept Extraction

In the following we show an example of the concept-traversal plots we exploit to extract interpretable
concepts. Latent traversal plots are obtained gradually twisting (increasing or decreasing) a latent dimension
while keeping the other elements fixed. These modified representations are reconstructed and the effect of
changing a single dimension can be observed. This allows to leverage a human annotator to potentially
associate concepts to generative factors by describing how reconstructions change at the varying of the
latent. More specifically we traverse the latent space using class medoids (real instance whose encoding was
closest to the corresponding latent mean 9) to capture label-relevant concepts.

Basophil Eosinophil Erythroblast
Immature

granulocytes

Lymphocyte Monocyte Neutrophil Platelet

Figure 9: Class medoids

in Figure 10 we present the plot for the medoid of class Erythroblast. It is intuitive that certain dimensions,
such as the first, control the darkness of the image, while others, like the third and last, influence the size
of the membrane. The shape of the nucleus appears to be modulated by the fourth dimension, and the
overall cell size is affected by the eighth and fourteenth dimensions. This reasoning can be extended to
all generative factors. Once each dimension is associated with a specific concept, the process is complete,
making the concepts ready for explanation.
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Figure 10: Latent traversal plot of the 15 label-relevant dimensions for Erythroblast.
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Furthermore, we provide additional evidence for the meaningfulness of the learned latent space through a
small study involving five external human annotators. Specifically, we asked the annotators to examine the
rows of Figure 10 and identify the conceptual change they perceived in the images. We report the results
using a disagreement matrix among annotators.

A1 A2 A3 A4 A5
A1 0.0000 0.3333 0.2000 0.3333 0.0667
A2 0.3333 0.0000 0.2667 0.2667 0.2667
A3 0.2000 0.2667 0.0000 0.2667 0.1333
A4 0.3333 0.2667 0.2667 0.0000 0.2667
A5 0.0667 0.2667 0.1333 0.2667 0.0000

Table 6: Disagreement Matrix between Annotators (A). Disagreement quantifies the proportion of elements
in the sequences where two annotators assigned different labels. It is computed as the number of differing
elements at corresponding positions divided by the total sequence length.

We conclude this brief analysis by noting that the average negative entropy of the assigned labels for each
latent dimension was 0.42. Since an entropy of 0.72 would correspond to an agreement among four out of
five annotators, this result further supports the meaningfulness of the learned latent space.

G Counterfactuals

We provide additional examples of the counterfactuals and concepts generated with our technique for a
qualitative analysis in Figure 11. Explanatory images are clear, in-distribution and differences are evident.
It is worth mentioning that blurriness in the generated output is due to the compressed latent representation
and not to our counterfactual generating technique. This could be of incentive to couple our proposal with
more powerful generative models. On the other hand, sharing the label-irrelevant latent dimensions evidently
ensures a conceptual similarity as original images and explanations tend to share high level generative factors
like inclination or position of the cell in the image. Associated concepts appear clear, pertinent and correctly
depict the most relevant changes applied to the input to obtain the explanation. In that regard, the choice
of the number of concepts to present is crucial. If the number is too high, certain concepts may capture
insignificant variations, reducing the interpretability of the explanations and potentially confusing users.

H Experiment

H.1 Statistics

We expand on the metrics of ACCAM and MIE presented in the experiment results of our contribution.
More precisely, ACCAM consists of the accuracy of users on instances for which they do not follow the
machine suggestion. Recall from the study design section 6.2.1 that users observe the machine prediction in
the Label setting and additional explanations in the Label+Explanation setting when their first prediction
is not the same as the one of the machine. We now call ŷi the model prediction on i-th instance and ŷHi the
final prediction of human user on i-th instance after feedback. We call ndiff the number of instances where
users final prediction differs from the one of the machine. This is defined as follows:

ndiff =
n∑
i=1

1(ŷi ̸= yHi )
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Figure 11: Examples of the generated counterfactuals.

We call nACCAM the number of instances where users final prediction is correct but this differs from the one
of the machine. This is defined as follows:

nACCAM =
n∑
i=1

1(ŷi ̸= yHi ∧ yHi = yi)

where yi is the true label of i-th instance. We can now present ACCAM measure:

ACCAM = nACCAM
ndiff

(22)

The MIE statistic is instead computed as the number of instances where users were originally correct and
wrongly changed their choice after seeing machine feedback. We call the original users predictions on the
i-th instance before the optional machine feedback as yHi,bf and we define the number of instances where
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users were originally correct as n+
H :

n+
H =

n∑
i=1

1(yi = yHi,bf )

We now define nMIE as follows:

nMIE =
n∑
i=1

1(yi = yHi,bf ∧ yi ̸= yHi )

We conclude presenting the MIE statistic:

MIE = nMIE

n+
H

(23)

H.2 Helpfulness of Explanations

From the correlation plots in Figure 4, it appears evident that predictions provided users of an additional
help linearly across skill levels. In contrast to this, explanations seem to have the potential to flatten final
scores, as the slope of regression line suggests, therefore allowing users across all skill levels to perform well
on the task.

Table 7: Density imbalance Scores across skill levels
Variables Density imbalance Scores

Q1 (b-l) Q2 (b-r) Q3 (u-r) Q4 (u-l)
ACCbf, ACCaf −0.073 −0.415 0.224 0.668
AGRbf, ACCaf 0.198 −0.277 0.129 0.583

To further investigate this phenomenon, we present in Figure 12 Gaussian density plots of the data points
and analyze quadrant-wise density imbalance scores. Specifically, we overlay the data points from the scatter
plots in Figure 4 for both versions of our experiment, highlighting regions of space using a Gaussian kernel
density estimate to visualize the prevalence of data from either the Label or Label+Explanation version
of the user study. By dividing the plane into four quadrants, we identify regions where: (i) low-skill users
receive little help (bottom-left, Q1), (ii) high-skill users receive little help (bottom-right, Q2), (iii) high-skill
users receive substantial help (top-right, Q3), and (iv) low-skill users receive substantial help (top-left, Q4).
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Figure 12: Gaussian densities plots. The coloring depicts the prevalence of points from Label experiment
or Label+Explanation experiment. The latter presents points associated with greater help for less skilled
users.
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The red predominance in the upper-left quadrant of both plots is evident while bottom-left and upper-
right quadrants appear to be equally shared. On the other hand the bottom-right quadrants appears to
be mostly blue dominated. This is further supported by the quadrant-wise density imbalance scores of
Table 7 where values of the indicator range from 1 to 0 and positive values indicate red dominance while
negative values blue dominance. This analysis demonstrates that providing explanations, rather than just
model predictions, significantly helped less skilled users achieve competitive performance scores and further
validates our proposal.

H.3 Machine Feedback as a User Training Mechanism

To better understand the impact of explanations on users’ ability to complete the task, we analyze the pattern
of cumulative errors. Examining cumulative errors helps reveal how mistakes are distributed as the number
of interactions with the model increases. In Figure 13, we present the experimental results across all three
settings. Notably, in the None setting, errors appear to be evenly distributed across questions. In contrast,
the Label and Label+Explanation settings exhibit a distinct pattern, with error rates increasing initially
but leveling off significantly after a few interactions with the model. The data reveals that the majority of
errors occur within the first 12 questions (nearly half of the experiment), while the last 7 questions account
for only 12% of the total mistakes. This strongly indicates the presence of a training effect driven by the
interactive framework, especially as the decline in errors occurs immediately after the peak error rate, which
coincides with more frequent model interactions.
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Figure 13: Cumulative proportion of errors made by users across questions. In the None setting, errors are
evenly distributed across questions, while in the Label and Label+Explanation settings, users progressively
reduce their mistakes, with errors diminishing significantly after sufficient interactions with the model.
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H.4 User Study Preparatory Stage

Given the inherent difficulty of the task users are tackling and given most non-expert users are not familiar
with blood cell images, each participant goes through a brief training stage before the beginning of the
experiment. In addition, in the Label and Label+Explanation versions of our experiment, users receive
an introduction to what the interactive stage consists. For the Label+Explanation version we show this
procedure in Figure 14. The training, depicted in Figure 15, consists in showing users images and the
corresponding label. More precisely, the first column presents class medoids, while the remaining three
columns are populated by random samples from that class. With this, we provide users with a prototypical
observation together with information about the variability inherent to each class. In that regard, class
medoids consist in the real images whose latent representation was closest to the corresponding latent class
mean.
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Model prediction: Neutrophil Counter example for: Eosinophil

Color: more red
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Figure 14: Explanation provided to users of the interactive process
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Figure 15: Training session for users.
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H.5 Interface

We present the user interface for the Label variant of our experiment and the Label+Explanation variant of
our experiment. In both variants users are presented a question in the form depicted in Figure16. In case of
agreement with the model users jump to the next question after being informed. In the case of disagreement
with the model, for the Label version, the interface is presented in Figure 17. For the Label+Explanation
version of the experiment the interface for disagreement is shown in Figure 18.
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Figure 16: Question example
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Figure 17: Example of disagreement interface for Label version of the experiment
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Model prediction: Erythroblast Counter example for: Lymphocyte

Membrane size: smaller
Nucleus size: bigger

Figure 18: Example of disagreement interface for Label+Explanation version of the experiment
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