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I. INTRODUCTION

Recent advances in machine learning and robotics have led
to remarkable progress in static manipulation tasks [13, 14]
and in the navigation of unstructured environments [7, 12].
Despite these strides, robots have remained confined to very
specific applications within each domain. To truly permeate our
everyday lives, we need robots that are general-purpose and
flexible enough to act autonomously in human environments.
For this, we need to bring these capabilities together. Mobile
manipulators are robots with mobile bases and manipulator
arms. In recent years, these platforms have developed the
necessary hardware capabilities. However, with their flexibility
comes a large action space, and their mobility means that they
are acting in large areas, spanning full apartments and a myriad
of objects with many possible interactions. As a result, the
input and output spaces combinatorially explode, making it an
open challenge to efficiently control these platforms.

In my research, I tackle these challenges both from the low-
level executability and the high-level reasoning in three inter-
connected lines of work: (i) I develop hybrid methods to execute
arbitrary end-effector motions based on known kinematics and
reinforcement learning (RL), (ii) I develop sample-efficient and
multimodal approaches for the exploration of unknown indoor
environments, and (iii) hierarchical methods that scale these
components to autonomously complete long-horizon tasks. The
resulting approaches achieve efficient, autonomous behavior in
large, real-world apartments and generalize to unseen tasks and
environments. Importantly, the methods I developed are fully
reactive and capable of acting in unexplored environments,
enabling work alongside and in collaboration with humans in
unstructured environments. By demonstrating their effectiveness
on a wide range of different robots, I ensure their generality
and usefulness. By making all tasks, benchmarks, and models
openly accessible, I hope to further progress the field.

II. LOW-LEVEL MOTION EXECUTION

Given their large control space, most existing approaches
are unable to produce efficient whole-body motions for mobile
manipulators. Instead, they restrict themselves to sequentially
move the base and the arm of the robot [19, 28]. As the
problem space increases, optimal control [18] struggles with
local optima while the planning times of motion planners [16]
quickly increase, making them unreactive and unsuitable for
dynamic environments such as working alongside humans.
End-to-end learning approaches either require infeasible

Fig. 1. I develop efficient, generalizable and reactive mobile-manipulation
policies that can act in and reason about unexplored environments.

amounts of data or learn solutions to very specific tasks [27],
requiring expensive retraining to solve even simple variations.

I proposed a hybrid method that combines RL with the kine-
matic models of the robot [8]. I decompose the problem into
an RL agent that controls the base of the robot, and an inverse
kinematics solver to complete the motions to achieve desired
end-effector motions. The aim of the RL agent is to move such
that, given arbitrary end-effector motions, kinematics remain
feasible at all times. I then extended this approach to incorporate
obstacles and control the speed of the task execution [9]. By
focusing on geometric modalities such as local occupancy maps,
we can train the agent in procedurally generated environments
without the need for an expensive simulator or real-world
data. The trained agent achieves zero-shot performance to the
real world, where it can solve complex, unseen tasks such as
opening doors while driving through the narrow door frame,
opening cabinets and drawers, and rearranging objects - while
avoiding dynamic obstacles, as shown in Figure 1.

While this is efficient, we may still want to collect large
datasets for the training of foundation models [17]. But teleop-
eration of these platforms is either cumbersome, as joysticks do
not have enough inputs to control the whole body, or expensive,
with specialized equipment such as Mobile-Aloha costing more
than 30,000 USD [6]. Instead, I infer end-effector motions from
existing inputs, such as joysticks or hand guidance, then connect
them with our RL agent. This results in a zero-cost whole-
body teleoperation that simplifies data collection, enables rapid
learning of mobile manipulation actions, and the first dynamic
approach for mobile kinesthetic teaching [11].

Since we can now learn performant policies, I then loop
back to the hardware design of modular mobile manipulators. I
introduce a concurrent design approach to optimize the mount-
ing parameters of arms on mobile platforms, utilizing Bayesian
Optimization to generate designs that lead to significantly
higher performance across mobile manipulation tasks [24].



III. EFFICIENT MULTI-MODAL INDOOR EXPLORATION

To navigate large, unexplored, human-centered environments,
agents have to build compact representations and integrate
short- and long-term reasoning. I proposed an approach that
unifies short- and long-term reasoning in a single model
by predicting long-term intentions together with short-term
continuous navigation commands [22]. This method is centered
around an extended semantic top-down map, which serves as
central memory. We train the agent to predict the direction
towards the next target, which is then communicated to an
RL agent that produces continuous control commands. While
existing methods relied on granular discrete actions [2, 26], our
approach can directly act in the continuous low-level action
space of the robot controller and achieves state-of-the-art results
on multi-object-search and zero-shot transfers to a real robot.

Investigating the object search literature, we identify a heavy
reliance on zero-shot deployment of ground-truth trained RL
policies with pretrained semantic perception models. How-
ever, this results in a large performance drop. As remedy, I
incorporate uncertainty measures into the temporal aggregation
and found decisions to make the policies aware that they are
acting on imperfect perception [20]. This not only significantly
decreases the perception gap at deployment time, but can also
be incorporated without any additional finetuning or retraining.

Sound serves as a major communication signal in our world,
be it spoken word or audio alarms such as a ringing telephone.
To act in our world, robots need to leverage these signals.
In my work [29], we extend existing audiovisual navigation
tasks [3, 4] and strongly increase their complexity by designing
audio-specific distractors, noise sources, and the first dynamic
audio-navigation task in which the agent has to catch moving
sound-emitting targets. We then introduce a method to integrate
audio signals with the geometric information inherent in top-
down maps through a spatial audio encoder. This resulted in
strongly increased generalization to unheard sounds and a first
and second place in the CVPR Soundspaces Challenges.

IV. HIGH-LEVEL REASONING

To complete long-term tasks, we require an additional level
of reasoning to coordinate behaviors over long spatial and tem-
poral distances. Existing ObjectNav work focuses on freely ac-
cessible objects out in the open [1, 21, 5]. But in human environ-
ments, we cannot expect these assumptions to hold. We take the
next step by introducing an interactive search task in which the
robot has to open doors to free pathways or search through cabi-
nets and drawers to find the objects of interest. To address these
new challenges, we build on top of our previously introduced
semantic map memory [22] and design an object-centric action
space in which detected instances serve as navigation points. I
developed HIMOS [23], a hierarchical RL approach that learns
to trade off the costs and benefits of object interactions and
explorations. Lastly, by training with imperfect manipulation
subpolicies, the agent learns a re-trial behavior if subpolicies
do not succeed. The resulting agent readily transfers to the
real world, where its modularity enables us to replace the sub-
policies with completely unseen real-world versions of them.

Fig. 2. Interleaving mobile manipulation with efficient scene representations
and high-level reasoning to solve complex tasks over long-horizons.

While RL can learn good decision-making with enough train-
ing data, large language models were shown to absorb a lot of
knowledge about human environments and be capable of high-
level reasoning. However, so far, this has remained restricted to
game-like environments, static table-top manipulation, or fully
observable scenes [25, 14, 15]. It remains a challenge to reason
over partially observed large scenes. In [10], I developed a
graph-based scene understanding approach that scales to large
apartments and can be tightly coupled with motion execution.
We then introduce a knowledge extraction that encodes scene
graphs into structured textual representations for a large
language model (LLM). An overview is depicted in Figure 2.
We show that this representation results in well-grounded
reasoning from the language model. In contrast to previous
work, the approach scales to many objects, and all components
can be built up dynamically as the agent explores the scene.

V. FUTURE WORK

Feedback and Re-trial: Robots will never achieve perfect
success on all tasks they attempt and neither do humans.
The range of possible failure reasons is almost unlimited.
Therefore, to achieve high reliability, we need to understand
failure reasons, to then be able to react to them and either
re-try or change plans. If the door does not open because
it is locked, we need to react differently than if we failed to
grasp the handle. To address this challenge, I plan to focus
on multi-modal models that can summarize high-dimensional
information across visual, audio, and force sensing. I then
aim to develop tight feedback loops between perception and
reasoning that enable event-based reactions.

Bridging Decision Making Frameworks: LLMs are good
at reasoning about tasks that are well represented within
their training data but may be less optimal for robot-specific
aspects. On the other hand, RL can learn near-optimal policies
if we can simulate them many times. Lastly, planning methods
exceed in known environments if given enough budget.
I plan to develop methods that draw on the strengths of
these frameworks. As a first step, I plan to investigate the
interweaving of RL and LLMs for embodied tasks, translating
tasks into abstract plans via LLMs and then leveraging RL
to translate them into actionable items.

General Open-set Tasks: While we are able to complete
most combinations of rearrangements and articulated object
interactions, completely arbitrary tasks require further, often
unforeseeable reasoning and motion capabilities. I plan to
research flexible approaches that leverage language and graph-
based methods to model arbitrarily structured tasks.
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