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ABSTRACT

The classical line search for learning rate (LR) tuning in the stochastic gradient
descent (SGD) algorithm can tame the convergence slowdown due to data-sampling
noise. In a federated setting, wherein the client heterogeneity introduces a slow-
down to the global convergence, line search can be relevantly adapted. In this
work, we show that a stochastic variant of line search tames the heterogeneity in
federated optimization in addition to that due to client-local gradient noise. To
this end, we introduce Federated Stochastic Line Search (FEDSLS) algorithm
and show that it achieves deterministic rates in expectation. Specifically, FEDSLS
offers linear convergence for strongly convex objectives even with partial client
participation. Recently, the extrapolation of the server’s LR has shown promises
for improved empirical performance for federated learning. To benefit from extrap-
olation, we extend FEDSLS to Federated Extrapolated Stochastic Line Search
(FEDEXPSLS) and prove its convergence. Our extensive empirical results show
that the proposed methods perform at par or better than the popular federated
learning algorithms across many convex and non-convex problems.

1 INTRODUCTION

Federated learning. Consider training a machine learning (ML) model w ∈ Rd on data scattered
over clients/nodes i ∈ [N ]. With limitations posed by volume, speed, governing policy, etc., on data
centralization, federated learning (FL) is a go-to approach to train the models over client-local data.
Formally, training w ∈ Rd in an FL setting is represented as minw∈Rd

{
f(w) := 1

N

∑N
i=1 f(w

i)
}

,

where wi ∈ Rd is a local copy of w ∈ Rd on the client i.

A basic algorithm for the federated optimization is federated averaging (FEDAVG) (McMahan et al.,
2017), where after several local SGD updates, clients synchronize at a node called server. FEDAVG
can be described as the following:

wi
t,k = wi

t,k−1 − ηit,kg(w
i
t,k−1) for k ∈ [K], with wi

t,0 = wt, (1)

wt+1 = wt − ηgt∆t, where ∆t =
1

|St|

|St|∑
i=1

{
∆i

t := wt − wi
t,K

}
, (2)

where wt denotes the server’s model after t synchronization rounds, also called the global model.
With wt communicated to clients, wi

t,k is the model state at client i ∈ [N ] after k local gradient
updates. St ⊆ [N ] is a subset of participating clients for the t-th round. ∆i

t := wt−wi
t,K denotes the

model update at client i due to K local gradient update steps, whereby, ∆t represents the synchronized
update to the model after t rounds; ηgt is the learning rate at the server. Convergence of FEDAVG
suffers from heterogeneity in clients’ data distribution, their participation frequency, drift in their
optimization trajectory, etc. To help mitigate these drawbacks, methods such as FEDPROX (Li et al.,
2020), SCAFFOLD (Karimireddy et al., 2020), etc. were proposed. Note that the update rule (2) for
wt by ∆t, often referred to as pseudo-gradient, is analogous to that of standard stochastic gradient
descent (SGD) algorithm (Robbins & Monro, 1951).

The server-side LR ηg naturally influences the performance of federated optimization. (Reddi
et al., 2021) noted that small client LRs ηit,k help reducing their drifts, wherein a larger server LR
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ηgt can address the incurred slowdown. However, (Malinovsky et al., 2023) showed that if the
clients’ objectives significantly differ then larger server LR does not help convergence. Subsequently,
FEDEXP (Jhunjhunwala et al., 2023) proposed using LR extrapolation drawing from projected convex

optimization (Pierra, 1984). An extrapolated ηg is upper-bounded by
∑

i∈St
∥∆i

t∥
2

2|St|(∥∆t∥2+ϵ) and is at least
1, where ϵ is a small positive constant to avoid the cases of division by 0. Li et al. (2024) proposed
FEDEXPROX by extending FEDEXP to incorporate proximal objectives on clients and showed linear
convergence for strongly convex objectives under an interpolation condition across clients.

The line search for LR is a classical strategy proposed by Armijo (1966) that ensures guaranteed
descent in function values by ensuring that f(wt+1) ≤ f(wt) − c∥∇f(wt)∥2 for a c > 0 for full
gradient descent. Vaswani et al. (2019) adapted it to sample-wise updates by a stochastic guarantee
of f(wt+1, ξ) ≤ f(wt, ξ)− c∥g(wt)∥2. They proved that under an interpolation condition generally
satisfied (Zhang et al., 2016) by models such as deep neural networks, SGD with ARMIJO line
search achieves the deterministic convergence rate, thereby a linear convergence for strongly convex
objectives. The deterministic rates achieved by SGD with stochastic line search is a direct result of
shielding the data sampling noise by c∥g(wt)∥2; we formally elaborate on it in Section 4. However,
it is interesting to note that interpolation itself is sufficient to ensure deterministic rates, as we discuss
in Section 4. Thus, it remains to investigate if ARMIJO scheme can provide expected descent without
an interpolation assumption. Nevertheless, with partial participation of clients St ⊆ [N ] resulting
in supplemented noise, it is imperative to translate the line search scheme to a federated setting.
However, implementing line search for ηg can not be direct because the server does not host any data
sample in a standard federated setting.

Therefore, we ask if introducing line search on the clients only can tame the noise-slowdown due to
both data sampling and partial client participation. Furthermore, motivated by the results of FEDEXP
and FEDEXPROX, if extrapolation can further improve such an FL algorithm. Our exploration
answers both these questions affirmatively. In this work, we introduce line search in federated
optimization and extend it to combine with extrapolation. Our contributions are summarized below.

1. Firstly, we strengthen and clarify the role of line search in SGD by relaxing the assumptions
of Vaswani et al. (2019) – we replace (a) sample-wise smoothness/convexity with standard
population-level (expected) smoothness/convexity of the objective, and (b) interpolation with a
weaker expected sufficiently accurate function-estimates for the stochastic functions used inside
the ARMIJO condition for line search.

2. Federated Stochastic Line Search (FEDSLS): We establish that the stochastic ARMIJO line-
search on clients directly influences the global model update on the orchestrating server. FEDSLS
provably offers deterministic rates for federated convergence even with partial participation of
clients, specifically, it provides linear convergence for strongly convex objectives in this setting.
Our convergence results requires an interpolation assumption only at the client-level model and
escapes a requirement for this assumption at the level of samples on each client.

3. Federated Extrapolated Stochastic Line Search (FEDEXPSLS): We extend FEDSLS to FED-
EXPSLS that incorporates extrapolation in ηg to harness its advantages. We prove that FEDEXP-
SLS provides the same convergence guarantees as FEDSLS under standard assumptions.

4. We perform extensive benchmarks to validate the empirical efficacy of the proposed algorithms.
Our benchmarks prove that FEDSLS and FEDEXPSLS outperform the competitors across a
variety of deep learning tasks.
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Figure 1: Efficacy of line search.

Figure 1 presents the results of a toy example to motivate a reader.
Similar to (Jhunjhunwala et al., 2023), we consider two clients each
optimizing a distinct local objective function defined as follows:

F1(w) = (w1 + w2 − 3)2, F2(w) = (w1 + 2w2 − 3)2.

It evidently highlights the benefits of combination of extrapolation
and line search in federated learning.

2 RELATED WORK

The motivations to alleviate the shortcomings of the baseline FEDAVG have led to development of a
rich landscape of FL algorithms, in many cases, directly inspired by the variants of SGD.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

The data and system heterogeneity across clients and the associated drifts between their optimiza-
tion dynamics and the server’s model’s trajectory poses primary challenge for FL. For this, FEDPROX
(Li et al., 2020) introduced a regularizer term: µ

2 ∥w
i − w∥2 in clients’ objectives with respect to

(w.r.t.) the global model making the client-local optimization proximal. Similarly, SCAFFOLD
(Karimireddy et al., 2020) introduced control variates at server and clients to check the client drifts.
FEDDYN (Durmus et al., 2021) proposed an additional regularization term for clients’ objectives
similar to FEDPROX. However, beyond a modified local objective, FEDPROX, SCAFFOLD, FEDDYN,
employ the same averaging-based synchronization as given in (2) and keep the server’s learning rate
ηg constant; often ηg = 1. Surely, they leave scope to tune ηg , including adapting it to ∆t updates.

Adaptive LR methods such as ADAGRAD (Duchi et al., 2011), ADAM (Kingma & Ba, 2015), and
YOGI (Zaheer et al., 2018), are a standard approach to improve SGD. Motivated by them, (Reddi et al.,
2021) employed these schemes to update rule (2) to propose FEDADAGRAD, FEDADAM, FEDYOGI
methods. Wu et al. (2023) introduced variance reduction to adaptive schemes to propose FAFED.
Wang et al. (2022) introduced communication compression and error-feedback to FEDADAM.

Beyond first order, the second-order: FEDDANE (Li et al., 2019) and FEDNEW (Elgabli et al., 2022),
and zeroth-order: (Qiu et al., 2023) model updates were also introduced to federated optimization.
Furthermore, MOON (Li et al., 2021) and FEDPROTO (Tan et al., 2022) proposed model contrastive
and prototype learning, respectively, in federated setting. Chatterjee et al. (2024) introduced con-
current updates on clients to harness their share-memory compute resources in a federating setting.
However, none of these algorithms used any variant of line search. As we introduce the stochastic
ARMIJO line search to FL, it is relevant to note other related efforts in non-federated setting.

Variants of line search. Classical (deterministic) line search methods include Wolfe conditions
that include Armijo/backtracking (Armijo, 1966) based on sufficient decrease and curvature/strong-
Wolfe curvature conditions (Wolfe, 1969) that add a curvature check and are standard for (L-)BFGS.
Goldstein (Goldstein & Price, 1967)-type bracketing rules and nonmonotone schemes (Grippo et al.,
1986; Zhang & Hager, 2004) that require the maximum/average of function values decrease have also
been suggested in the deterministic regime. In stochastic regimes, two broad line search families have
been explored stochastic Armijo tests (Vaswani et al., 2019; Paquette & Scheinberg, 2020; Cartis
& Scheinberg, 2018; Berahas et al., 2021; Jin et al., 2021) that replace exact function values with
mini-batch estimates and control acceptance of SGD step after line search, and probabilistic/Bayesian
(Mahsereci & Hennig, 2017) line search methods that impose Wolfe-like conditions in expectation
or with high probability. We adopt a stochastic ARMIJO-style rule embedded in SGD as the first
algorithm to offer line search for federated learning.

In terms of theoretical guarantees, before our paper, two existing works offer linear convergence
rates for strongly convex objectives: the FEDLIN algorithm (Mitra et al., 2021) and FEDEXPROX of
(Li et al., 2024). FEDLIN achieves linear ergodic convergence – convergence of function of averaged
model over iterates – for smooth and strongly convex objectives with full gradient updates and full
client participation. In the stochastic setting, FEDLIN maintains a standard sublinear convergence
even for strongly convex objectives. By contrast, our method provides a linear convergence even
with the stochastic gradient updates and partial client participation. The experimental performance
of FEDLIN is not known beyond a basic linear regression on a small dataset. As mentioned before,
FEDEXPROX offers deterministic rates similar to us. Our experimental results in Section 5 show that
FEDEXPSLS outperforms FEDEXPROX in many cases.

3 ALGORITHM AND ASSUMPTIONS

The interface for the FEDSLS and FEDEXPSLS algorithms is given as a pseudo-code in Algorithm
1. We refer to Vaswani et al. (2019)’s algorithm as SGD-ARMIJO. The complete SGD-ARMIJO
(Algorithm 2), FEDSLS (Algorithm 4), and FEDEXPSLS (Algorithm 5) are given in Appendixes A
and B. Essentially, each client conducts local gradient update using SGD-ARMIJO method, while the
server opts to extrapolate its LR. We now state some standard assumptions:
Assumption 1 (Smoothness). The functions fi are L-smooth, i.e., for all x, y ∈ Rd, it holds that
fi(y) ≤ fi(x) +∇fi(x)⊤(y − x) + L

2 ∥y − x∥2. It is straightforward to prove that f as a sum of
L-smooth functions is also L-smooth.
Assumption 2 (Convexity). When needed, we specify that the functions fi are convex, i.e., for all
x, y ∈ Rd, fi(y) ≥ fi(x) +∇fi(x)⊤(y − x). Therein, f is also convex.
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Algorithm 1 A framework for FEDSLS and FEDEXPSLS methods.

1: initialize w0

2: for each round t = 0, 1, . . . , T − 1 do
3: St ← (random set of S clients); Server sends wt to clients i ∈ St in parallel
4: for each client i ∈ St do
5: for k = 1, 2, . . . ,K do
6: wi

t,k ← SGD−ARMIJO(wi
t,k−1)

7: end for
8: ∆i

t ← wt − wi
t,K

9: end for
10: ∆t =

1
S

∑
i∈St

∆i
t; ηgt ← max

{
1,

∑
i∈St

∥∆i
t∥

2

2|St|(∥∆t∥2+ϵ)

}
if FEDEXPSLS else ηg if FEDSLS;

11: wt+1 ← wt − ηgt∆t

12: end for
13: return wT

Assumption 3 (Strong- Convexity). When needed, we specify that the functions fi are µ− strongly
convex, i.e., for all x, y ∈ Rd, it holds that fi(y) ≥ fi(x) +∇fi(x)⊤(y − x) + µ

2 ∥y − x∥2. Therein,
f is also µ− strongly convex.

We also lay out the following additional assumptions which we use in the discussions but are not
assumed for our theoretical results:
Assumption 4 (Bounded Variance). We assume that the variance of git,k(w) is bounded by a constant
σ2, given as E[∥git,k(w)−∇fi(w)∥2] ≤ σ2.

Assumption 5 (Bounded Gradient dissimilarity). The norm of the clients’ gradient averaged across all
clients for all w ∈ Rd is bounded as 1

N

∑N
i=1 ∥∇fi(w)∥2 ≤ G2+B2∥∇f(w)∥2, for G ≥ 0, B ≥ 1.

If fi are convex, then the bound can be relaxed to 1
N

∑N
i=1 ∥∇fi(w)∥2 ≤ G2+2LB2(f(w)−f(w∗)).

4 CONVERGENCE RESULTS

Definition 1 (Armijo Condition). For the k-th step in the t-th communication round, the Armijo
condition for the local objective functions fi at a sample ξk with a constant c > 0 is given by

fi(w
i
t,k, ξk)− fi(w

i
t,k−1, ξk) ≤ −cηit,k∥gi(wi

t,k−1)∥2. (3)

4.1 DETERMINISTIC RATES FOR SGD

Here we discuss how ARMIJO condition mitigates the effect of the bias term in convergence of
SGD and retrieves deterministic GD rates in expectation. For brevity, we drop the subscript t and
superscript i here as we are looking at the SGD updates at a single client for local rounds.

Denote the loss function for i-th client performing SGD update by fi(w) :=
1
Mi

∑Mi

m=1 fi(w, ξ
m),

where ξm denotes the m-th sample and Mi is the total number of samples for the client i. The
stochastic gradient gi(w) := ∇fi(w, ξ) is the unbiased estimator of the full gradient E[gi(w)] =
∇fi(w). We first give a few definitions.
Definition 2 (Sample-wise Interpolation). For a sum of functions problem, if there exists a w∗ ∈ Rd

such that fi(w∗, ξm) = infw fi(w, ξ
m) for all m = 1, 2, . . . ,Mi, then interpolation holds, i.e.,

gi(w
∗) = ∇fi(w∗, ξm) = 0

We now define the notion of expected sufficiently accurate stochastic estimates for a single local
solver to analyze SGD by reformulating the probabilistically sufficiently accurate function estimate
definition in Paquette & Scheinberg (2020).

Definition 3 (κi
f -accurate function). For c > 0 as in definition 1 and for 0 < κi

f <
c

2ηlmax

, the

stochastic function estimates fi(wi
k−1, ξk) and fi(w

i
k, ξk), at the sample ξk drawn independently

4
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at random at step k, of the true functions fi(w
i
k−1) and fi(w

i
k), respectively, are κi

f - accurate
in expectation with respect to the current iterate wi

k−1, step-size ηik, and the stochastic gradient
gi(w

i
k−1) := ∇fi(wi

k−1, ξk) for a sample ξk if it holds that

E
[
|fi(wi

k−1, ξk)− fi(w
i
k−1)|

∣∣Fk−1

]
≤ κi

f E
[
(ηik)

2∥gi(wi
k−1)∥2

∣∣Fk−1

]
,

E
[
|fi(wi

k, ξk)− fi(w
i
k)|
∣∣Fk−1

]
≤ κi

f E
[
(ηik)

2∥gi(wi
k−1)∥2

∣∣Fk−1

]
,

where Fk−1 is the filtration that accounts for all the randomness due to stochastic function and
gradient estimates up to step (k−1).

Define κf := max
i∈[N ]

κi
f . Thus, fi ∀i ∈ [N ] is κf -accurate in expectation.

Remark 1. For linear least-squares loss function, the interpolation condition trivially satisfies the
assumption that the function estimates are sufficiently accurate in expectation, since LHS=RHS= 0
as fi(w∗, ξ) = 0 = f(w∗) for any ξ and gi(w

∗) = 0. Thus, in this particular case, interpolation is a
stronger condition than the assumption that function estimates are sufficiently accurate in expectation.

For ηl < 1
2L , for smooth and convex objectives, classical SGD iterates satisfy (see, Appendix A.1)

E [fi(w̄k)− inf fi] ≤
1

2ηlK(1− 2ηlL)
∥w0 − w∗∥2 +

ηlσ
∗
f

(1− 2ηlL)︸ ︷︷ ︸
bias term

, (4)

where σ∗
fi

:= infw∗∈argmin fi E∥gi(w∗) − ∇fi(w∗)∥2 and inf f denotes a lower bound for
f(w),∀w ∈ Rd. It is easy to see that the performance of SGD slows down compared to GD
due to the presence of the bias term which depends on variance of the gradient noise. We now present
a result of SGD with ARMIJO line-search, which depicts how ARMIJO condition allows overcome
this bias without sample-wise interpolation.

Theorem 1. Let the objective function for the i-th device fi be L-smooth and convex, the function
estimates in ARMIJO line-search are κf sufficiently accurate in expectation. For c > 1

2 + κfηlmax
,

SGD with ARMIJO Line search (3) achieves the convergence rate of deterministic gradient descent in
expectation as

E [fi(w̄k)− inf fi] ≤
c̃

(2c̃− 1)ηlmax
K
∥w0 − w∗∥2 (5)

where c̃ := c− 2κfηlmax
and w̄k = 1

K

∑K
k=1 wk−1.

Note that when c > 1
2 , the rate given by the bound in (5) is satisfied unlike classical SGD, where the

LR is tuned manually, which is similar to the results given by Vaswani et al. (2019).

Comparing (4) and (5), we can see that Armijo condition aids in mitigating the effect of gradient
noise. These results highlight the explicit benefit of the ARMIJO condition in stochastic settings.
We defer the complete proof to Appendix A.1, where we also discuss the cases for other analytical
classes of functions. Motivated by this insight, we use ARMIJO line search in Federated Learning to
mitigate the effect of client drift and gradient noise.

4.2 TOWARDS DETERMINISTIC RATES IN FEDERATED LEARNING

We now discuss the impact of SGD-ARMIJO, when implemented as client-local solver. The SGD

updates at a client i after K local steps is written as wi
t,K = wt −

∑K
k=1 η

i
t,k gi(w

i
t,k−1). The

theoretical results correspond to the partial participation of clients. For brevity, we
∑

k to denote∑K
k=1,

∑
i to denote

∑N
i=1, and

∑
i∈St

denotes summation over i ∈ St. We define a filtration Ft

that contains all the randomness up to the evaluation of the global update wt. We now state the
assumption of sufficient accurate function estimates in expectation for the federated setting, a natural
extension of Definition 3.

Assumption 6. For some 0 < κi
f <

c

2ηlmax

, the stochastic function estimates fi(wi
t,k−1, ξ

i
k) and

fi(w
i
t,k, ξ

i
k), at the sample ξik drawn independently at random at local round k in t-th global round, of

5
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the true functions fi(wi
t,k−1) and fi(w

i
t,k), respectively are κi

f - accurate in expectation with respect
to the current iterate wi

t,k−1, step-size ηit,k and gi(w
i
t,k−1) := ∇fi(wi

t,k−1, ξ
i
k) for a sample ξik, i.e.,

E
[
|fi(wi

t,k−1, ξ
i
k)− fi(w

i
t,k−1)|

∣∣F i
t,k−1

]
≤ κi

f E
[
(ηit,k)

2∥gi(wi
t,k−1)∥2

∣∣F i
t,k−1

]
E
[
|fi(wi

t,k, ξ
i
k)− fi(w

i
t,k)|

∣∣F i
t,k−1

]
≤ κi

f E
[
(ηit,k)

2∥gi(wi
t,k−1)∥2

∣∣F i
t,k−1

]
where F i

t,k−1 denote the σ-algebra containing Ft and all local randomness of client i up to step k−1.

Define κf := max
1,...,N

κi
f , thus for some 0 < κf <

c

2ηlmax

, the assumption of κf -accurate function in

expectation holds.

We now present Lemma 1 that highlights that client-local SGD-ARMIJO alleviates the requirement
for heterogeneity bound in federated setting.
Lemma 1. Under assumption 6, there exists c′ := (c− 2κfηlmax

) > 0, equivalently, κf < c
2ηlmax

,
such that ARMIJO line-search (3) yields∑

k,i

E
[
∥∇fi(wi

t,k−1)∥2
]
≤ max

{
L

2(1− c)
,

1

ηlmax

}
1

c′

(
f(wt)− E

[∑
i∈St

1

S
fi(w

i
t,K)

])
. (6)

The proof is deferred to Appendix E.

ARMIJO line search vs. bounded heterogeneity The standard bounded heterogeneity as-
sumption 5 for the iterate wi

t,k−1 at t, k step can be given as 1
N

∑
i,k E

[
∥∇fi(wi

t,k−1)∥2
]
≤

G2 + B2
∑

k E
[
∥∇f(wi

t,k−1)∥2
]
, for G ≥ 0, B ≥ 1. Comparing it to (6), we can see that

ARMIJO line search provides another upper bound for the same quantity and thus, we can prove the
results without needing assumption 5. However, it is difficult to resolve the term

∑
i∈St

1
S fi(w

i
t,K)

to the global objective function at some known argument. To resolve this, we need to adapt the
client-wise interpolation assumption for our results.
Remark 2. In the special case, fi ≡ f for all i ∈ [N ] (i.e., G = 0, B ≥ 1), a case stronger than i.i.d.
data , then due to the convex (or strongly convex) nature of functions, Jensen’s inequality enables
carrying the clients’ objective’s descents to the global objective when the global learning rate ηgt ≤ 1.
Thus, in that case for convex objectives, the descent in the global function comes for free. However,
descent can’t be guaranteed for non-convex objectives.
Assumption 7 (Client-wise interpolation). There exists w∗ ∈ Rd such that ∇fi(w∗) = 0 for all
i ∈ {1, 2, . . . , N}.

With assumptions 6 and 7, ARMIJO line search enables a simplified convergence analysis of the
proposed algorithms FEDSLS and FEDEXPSLS. It allows for control of the client drift using an
objective gap between the current global iterate and the averaged local objectives after k local
ARMIJO line search calls– f(wt)− 1

S

∑
i∈St

fi(w
i
t,K), rather than relying on auxiliary bias terms

that obtained using bounded heterogeneity and bounded variance of the clients’ gradients. This
structural advantage is the reason we are able to achieve convergence rates comparable to those in
the deterministic full-participation setting, despite the presence of partial client participation and
stochastic gradient updates. However, we need the interpolation regime (client-wise) to translate the
average of local objectives 1

S

∑
i∈St

fi(w
i
t,k) to the global objective evaluated at some value. While

under interpolation, one can relate fi(wt)− 1
s

∑
i∈St

fi(w
i
t,K) to the optimality gap f(wt)− f(w∗).

Note that Li et al. (2024) also achieved linear rates for strongly convex objectives. At the core of their
approach lies the proximal term in the client objectives. An exact solution of the proximal problem
largely provides the foundation for mitigating the bias term in convergence error upper-bound that
we used the ARMIJO condition for. They extended their results in (Anyszka et al., 2024) to show that
FEDEXPROX achieves linear convergence for Polyak-Lojasiewicz objectives.

4.3 CONVERGENCE OF FEDSLS

We now describe the convergence results of FEDSLS for convex, strongly convex and non-convex
classes of objective functions.

6
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Theorem 2 (fi are convex). Let the functions fi satisfy the assumptions 1, 2, 6 and 7. For a constant
global learning rate ηgt = ηg and client learning rate ηlmax

<
2c−ηg

(KL+4κf )
, FEDSLS achieves the

convergence rate for average of iterates as

E[f(w̄t)− f(w∗)] ≤ c′

(2c′ − ηg −KLηlmax
)ηgηlmax

KT
∥w0 − w∗∥2 (7)

where w̄t =
1
T

∑T−1
t=0 wt and c′ := c− 2κfηlmax

, such that c′ > 0.

The proof of Theorem 2 is included in Appendix C in the supplementary. Theorem 2 shows a
sublinear convergence for convex problems.

Theorem 3 (fi are strongly convex). Let the functions fi satisfy the assumptions 1, 3, 6 and 7. For a
constant global learning rate ηgt = ηg such that ηg ≤ 2

ηlmaxµK
, client learning rate ηlmax

<
2c−ηg

KL+4κf
,

FEDSLS algorithm satisfies

E∥wT − w∗∥2 ≤
(
1− ηgηlmax

µK

2

)T

∥w0 − w∗∥2.

The proof of Theorem 3 is included in the supplementary in Appendix C. Theorem 3 shows a linear
convergence for strongly-convex problems.

Theorem 4 (fi are non-convex). Let functions fi satisfy the assumptions 1, 6 and 7.For ηlmax ≥
8c′

2T−1

η2
gLK+

√
(η2

gLK)2+ηgL2K2 16c′
2T−1

, FEDSLS achieves the convergence rate

min
t=0,..., T−1

E[∥∇f(wt)∥2] ≤
2L(ηlmax

LK + ηg)

c′
E[f(w0)− f(w∗)],

where c′ := c− 2κfηlmax
> 0.

The details are included in Appendix C in the supplementary. Theorem 4 shows a sub-linear
convergence for non-convex problems.

4.4 CONVERGENCE OF FEDEXPSLS

We now describe the convergence results of FEDEXPSLS for convex, strongly convex and non-convex
classes of objective functions.

Theorem 5 (fi are convex). Suppose a function fi satisfy assumption 1 2, 6 and 7. For global
learning rate ηgt as computed in FEDEXPSLS constrained to lie in [1, ηgmax ], client learning rate
ηlmax < 2c′−1

KL+4κf
, FEDEXPSLS achieves the convergence rate for average of iterates as

E [f(w̄t)− f(w∗)] ≤ c′

(2c′ − ηlmaxKL− 1)ηlmaxηgmaxKT
∥w0 − w∗∥2,

where w̄t =
1
T

∑T
t=1 wt and c′.

The proof of Theorem 5 is included in Appendix C in the supplementary. Theorem 5 shows a
sublinear convergence for convex problems.

Theorem 6 (fi are strongly convex). Let the functions fi satisfy assumption 1, 3, 6 and 7. For
a global learning rate ηgt computed in FEDEXPSLS constrained to lie in [1, ηgmax ] such that
ηgmax

≤ 2
ηlmaxµK

, client learning rate ηlmax
< 2c−1

KL+4κf
, the last update of FEDEXPSLS satisfies

E∥wT+1 − w∗∥2 ≤
(
1− ηgηlmax

µK

2

)T+1

∥w0 − w∗∥2.

The proof of Theorem 6 is included in the supplementary in Appendix C in the supplementary.
Theorem 6 shows a linear convergence for strongly-convex problems.
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Theorem 7 (fi are non-convex). Let the functions fi satisfy assumption 1, 6 and 7. For a global
learning rate ηgt computed in FEDEXPSLS constrained to lie in [1, ηgmax

] and local learning rate

bound ηlmax
≥

8c′
2T−1

ηgmaxLK+
√

(ηgmaxLK)2+ηgmaxL
2K2 16c′

2T−1

, FEDSLS achieves the convergence rate

min
t=0,..., T−1

E[∥∇f(wt)∥2] ≤
2L(ηlmaxLK + 1)

c′
E[f(w0)− f(w∗)],

where c′ := c− 2κfηlmax
> 0.

The details are included in Appendix C in the supplementary. Theorem 7 shows a sub-linear
convergence for non-convex problems.

5 EXPERIMENTS AND NUMERICAL RESULTS

In this section, we conduct comprehensive evaluation of the proposed federated optimizers by
experimentally comparing their performance against established federated algorithms: FEDAVG,
FEDEXP, FEDEXPROX. We also include FEDADAM in the benchmarks for language model and in a
high heterogeneity case. The objective is to demonstrate that FEDEXPSLS leads to faster convergence
and improved stability during training in communication rounds.

Datasets and Architecture: We evaluated the proposed algorithms on a diverse set of benchmarks
that cover image classification and text prediction tasks. Our experiments involved four combination
of datasets (Caldas et al., 2018) and models: (a) CIFAR-10 with ResNet-18, (b) CIFAR-100 with
ResNet-18, (c) FEMNIST with Multi-Class Logistic Regression, and (d) SHAKESPEARE
with Long Short-Term Memory (LSTM).

Experimental Setup For training across different algorithms, we distributed CIFAR-10 and CIFAR-
100 over 100 clients as in (Jhunjhunwala et al., 2023). The number of clients for FEMNIST and
SHAKESPEARE are selected as in (Caldas et al., 2018). In each training round, we uniformly
sample 20 clients without replacement within a round, but with replacement across rounds. We
compute mini-batch gradients on each client using a fixed batch size of 50. The number of local
epochs is fixed at K = 20 for all experiments. To introduce heterogeneity in the data distribution
across clients, we employ a Dirichlet distribution with a concentration parameter α = 0.3 (Caldas
et al., 2018), which is standard in the existing experimental benchmarks (Karimireddy et al., 2020).
The training loss is calculated as the average of the losses reported by the participating clients in each
round, aggregated over 5 runs using different random seeds. All experiments were performed on
NVIDIA A6000 GPUs with 48 GB onboard memory. Wherever required, we performed grid search
for hyperparameter tuning.
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Figure 2: Training loss v/s Communication Rounds
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Figure 3: Test Accuracy v/s Communication Rounds

Table 1: Comparison of Training Loss

Method CIFAR-10 CIFAR-100 FEMNIST SHAKESPEARE
FEDAVG 0.57 ± 0.01 2.07 ± 0.02 2.25 ± 0.00 1.81 ± 0.01
FedExp 0.38 ± 0.01 1.44 ± 0.02 2.19 ± 0.00 2.12 ± 0.02
FedExpSLS 0.13 ± 0.01 0.5 ± 0.05 1.6 ± 0.01 1.66 ± 0.03
FedExpProx 0.43± 0.06 1.35 ± 0.13 1.57± 0.001 2.03 ± 0.03
FEDSLS 0.41± 0.03 1.12 ± 0.05 1.65 ± 0.002 1.69 ± 0.001

Table 2: Comparison of Test Accuracy

Method CIFAR-10 CIFAR-100 FEMNIST SHAKESPEARE
FEDAVG 76.8 ± 0.54 40.94±0.38 47.90 ±0.09 47.67 ±0.01
FEDEXP 82.09 ± 0.56 50.24±0.34 48.68 ± 0.21 47.81 ± 0.23
FEDEXPSLS 87.29 ± 0.6 50.23±3.37 60.92±0.42 50.37 ± 0.03
FEDEXPROX 81.79 ± 1.48 52.13±2.18 58.13 ±3.06 48.56 ± 0.12
FEDSLS 82.75 ± 0.81 46.53±0.6 58.47 ± 0.12 49.94 ± 0.35

Our code is available at https://anonymous.4open.science/r/
FederatedLineSearch-B663/README.md.

Analysis of Results The results of the experiments are shown as comparative training loss and test
accuracy in Figures 2 and 3. We also present the numerical results with standard deviation in Tables
1 and 2. Across all experiments, FEDEXPSLS consistently outperforms other algorithms. As an
exception to this trend, for the CIFAR-100 dataset, FEDEXPROX marginally does better in terms of
test accuracy. The high class count (100 classes) in CIFAR-100 introduces greater heterogeneity,
which favors the performance of FEDEXPROX. We evaluated FEDADAM for CIFAR-100 and
SHAKESPEARE datasets that involve higher heterogeneity and language models, respectively.
However, in both cases it overwhelmingly underperforms. We also counted the number of retries in
both FEDSLS and FEDEXPSLS to check the overhead for descent guarantees. However, in no case
we found the numbers higher than 2 in any round of training, which promises a very light overhead.
Our experimental results comprehensively back the algorithmic efficacy of our algorithms.

6 CONCLUSION AND DISCUSSION

In this paper we introduced two new federated learning algorithms. The algorithm FEDSLS provides
convergence rates similar to deterministic gradients even with partial participation of clients. Our
work uncovers that a line search scheme for the client-local stochastic gradient updates can tame the
effect of heterogeneity thus removing the requirement for an explicit bound on the same. Practically,
the line search addresses the slow down due to partial client participation, in addition to the data and
system-induced heterogeneity. The algorithm FEDEXPSLS empirically outperforms the state-of-the-
art methods across deep learning tasks. Our approach motivates exploring and extending line search
to future federated optimization algorithms.
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A ARMIJO LINE SEARCH ALGORITHM

Algorithm 2 gives the pseudo-code for SGD with ARMIJO line-search implemented via the call
SGD-ARMIJO

(
wi

k−1, η, ηl,max, δ, b, k, opt
)

for k = 1, 2, . . . ,K, where wi
k−1 is the state of the

model at (k−1)-th local round on a client with loss function fi; ηlmax is an upper bound on the step
size η, δ is the scaling/reset factor, b is the minbatch size , and opt is the reset policy. The line-search
scheme is stochastic because the Armijo condition 3 is evaluated on a minibatch (potentially of size
1) to compute function fi and its gradient. We include the SGD algorithm with ARMIJO line-search 2
from the point of view of a client (Vaswani et al., 2019).

Algorithm 2 SGD−ARMIJO(wi
k−1, η, ηlmax , δ, b, k, opt).

Input: ηlmax
, b, c the ARMIJO parameter, β the backtracking factor, δ > 1, and opt

Output: wi
k

1: bk ← sample mini-batch of size b
2: η ← RESET/β
3: repeat
4: η ← β · η
5: w̃i

k ← wi
k−1 − η∇fi(wi

k−1, bk)

6: until fi(w̃i
k, bk) ≤ fi(w

i
k−1, bk)− c · η∥∇fi(wi

k−1, bk)∥2 ▷ Armijo Line Search
7: wi

k ← w̃i
k

8: return wi
k

The RESET method, given in Algorithm 3, heuristically resets η based on the handle opt at every
gradient update step. Taking ηlmax

= ηk−1 could be one strategy where we start dampening the
step-size from the last achieved state. However, it can increase the backtracking. This method can
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implement various heuristics that appeared in the literature: (Nocedal & Wright, 1999).Chapter 3.
The heuristic line search is an active area of research with new developments such as a new variant of
Goldstein Line search by Neumaier & Kimiaei (2024).

Algorithm 3 RESET

Input: η, ηlmax
, b, k, δ > 1, and opt

Output: wi
k

1: if k = 1 then
2: return ηlmax

3: else if opt = 0 then
4: η ← η
5: else if opt = 1 then
6: η ← ηlmax

7: else if opt = 2 then
8: η ← η · δ

b
n

9: end if
10: return η

A.1 DISCUSSION ON DETERMINISTIC LEARNING RATE

The convergence rate of SGD is slower in comparison to GD due to the effect of the variance of
stochastic gradients. This leads to SGD requiring a larger number of epochs to achieve the same
error tolerance in comparison to GD. In the following section, we explore how line-search using
ARMIJO rule mitigates this effect of variance and allows us to achieve deterministic rates for SGD in
expectation.

Let us consider fi to be the loss function for the i-th device performing an SGD update. In stochastic
setting, fi is defined as fi(w) := 1

M

∑M
m=1 f(w, ξ

m), where ξm denotes the m-th sample and M
is the total number of samples for the device. The stochastic gradient gi(w) := ∇fi(w, ξ) is the
unbiased estimator of the full gradient E[gi(w)] = ∇fi(w). In this section, we drop the subscript t
and superscript i from the model updates at a client wi

t,k and write it as wi
k instead, as we are looking

at the SGD updates at a single client for local rounds.

We first state a few prerequisites for our discussion.

Definition 4 (Interpolation). For a sum of functions problem, if there exists a w∗ ∈ Rd such that
fi(w

∗, ξm) = infw fi(w, ξ
m) for all m = 1, 2, . . . ,M , then interpolation holds.

Lemma 2 (Variance transfer). Define σ∗
fi

:= infw∗∈argmin fi E∥gi(w∗) − ∇fi(w∗)∥2. If each
f(w, ξm) is convex and L-smooth, then for every w ∈ Rd, we have

E∥gi(w)∥2 ≤ 4L(fi(w)− inf fi) + 2σ∗
fi

The SGD update can be written as: wi
k = wi

k−1 − ηikgi(w
i
k−1), where ηik is the learning rate, wi

k−1

is the SGD update at (k−1)-th step. The proof of classical SGD for convex objectives fi with a fixed
learning rate ηik = ηl using first-order convexity and lemma 2 gives the following bound:

E
[
∥wi

k − w∗∥2|wk−1

]
≤ ∥wi

k−1 − w∗∥2 + 2ηl⟨∇fi(wi
k−1), w

i
k−1 − w∗⟩+ E

[
∥gi(wi

k−1)∥2|wk−1

]
≤ ∥wi

k−1 − w∗∥2 + 2ηl(2ηlL− 1)(fi(w
i
k−1)− inf fi) + 2η2l σ

∗
fi

≤ ∥wi
k−1 − w∗∥2 − 2ηl(1− 2ηlL)(fi(w

i
k−1)− inf fi) + 2η2l σ

∗
fi (8)

for 0 < ηl <
1
2L . Averaging on both sides for k = 1, 2, . . . ,K, rearranging the terms and substituting

w̄i
k = 1

K

∑K
k=1 w

i
k−1 after using Jensen’s inequality, we obtain

E
[
fi(w̄

i
k)− inf fi

]
≤ 1

2ηl(1− 2ηlL)K
∥wi

0 − w∗∥2 + ηl
(1− 2ηlL)

σ∗
fi︸ ︷︷ ︸

bias term

(9)
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The bias term in 9 represents the slowdown in convergence compared to deterministic GD. This term
can be subsumed under the interpolation condition 4, when σ∗

fi
= 0, the rate obtained in Equation 9

is that of deterministic GD. (Vaswani et al., 2019) et al. retrieved the deterministic GD rates for SGD
using ARMIJO line-search in expectation under the interpolation condition. This does not actually
reflect the benefit of using ARMIJO line-search.

We now discuss how ARMIJO condition subsumes the bias term in SGD and retrieves deterministic
GD rates in expectation. We begin with the assumption of expected sufficiently accurate stochastic
estimates for a single local solver to analyze SGD. Note that Fk−1 is the filtration that accounts for
all the randomness due to stochastic function and gradient estimates up to step (k−1).

Assumption 8. Define κf := max
i∈[N ]

κi
f . We assume that for some 0 < κf <

c

2ηlmax

, the assumption

fi ∀i ∈ [N ] are κf -accurate in expectation.
Theorem 8. Let the objective function for the i-th device fi be L-smooth and convex, and Assump-
tion 8 holds. For c > 1

2 + κfηlmax
, SGD with ARMIJO Line search (3) achieves the convergence rate

of deterministic gradient descent in expectation as

E [fi(w̄k)− inf fi] ≤
c̃

(2c̃− 1)ηlmax
K
∥w0 − w∗∥2

where c̃ := c− 2κfηlmax
and w̄k = 1

K

∑K
k=1 wk−1.

Proof. Let wi
k be the iterate at the k-th step for a device i running SGD update and ηl is the learning

rate returned by ARMIJO line search condition 3

∥wi
k − w∗∥2 = ∥wi

k−1 − w∗∥2 − 2⟨ηik gi(w
i
k−1), w

i
k−1 − w∗⟩+ ∥ηikgi(wi

k−1)∥2

Taking the expectation on both sides conditioned on filtration Fk−1

E
[
∥wi

k − w∗∥2|Fk−1

]
≤ ∥wi

k−1 − w∗∥2 + 2E
[
⟨ηik gi(w

i
k−1), w

∗ − wi
k−1⟩|Fk−1

]︸ ︷︷ ︸
Term 1

+E
[
(ηik)

2∥gi(wi
k−1)∥2|Fk−1

]
We first handle Term 1 as

E
[
⟨ηik gi(w

i
k−1), w

∗ − wi
k−1⟩|Fk−1

]
= E

[
⟨ηl gi(wi

k−1), w
∗ − wi

k−1⟩1{⟨gi(wi
k−1),w

∗−wi
k−1⟩>0}|Fk−1

]
+ E

[
⟨ηik gi(w

i
k−1), w

∗ − wi
k−1⟩1{⟨gi(wi

k−1),w
∗−wi

k−1⟩≤0}|Fk−1

]
≤ E

[
⟨ηik gi(w

i
k−1), w

∗ − wi
k−1⟩1{⟨gi(wi

k−1),w
∗−wi

k−1⟩>0}|Fk−1

]
≤ ηlmaxE

[
⟨gi(wi

k−1), w
∗ − wi

k−1⟩|Fk−1

]
= ηlmax⟨∇fi(wi

k−1), w
∗ − wi

k−1⟩ (10)

Using Equation 10 and convexity of fi, we obtain

E
[
∥wi

k − w∗∥2|Fk−1

]
≤ ∥wi

k − w∗∥2 − 2ηlmax(fi(w
i
k−1)− inf fi) + E

[
(ηik)

2∥gi(wi
k)∥2|Fk−1

]
(11)

Since ηik is returned by ARMIJO line search condition 3, thus it satisfies

fi(w
i
k, ξk)− fi(w

i
k−1, ξk) ≤ −cηik∥gi(wi

k)∥2 (12)

Rearranging and taking expectation on both sides of equation 12 conditioned on Fk−1

E
[
(ηik)

2∥gi(wi
k)∥2|Fk−1

]
≤ 1

c
E
[
ηik(fi(w

i
k−1, ξk)− fi(w

i
k, ξk))|Fk−1

]
≤ ηlmax

c
E
[
(fi(w

i
k−1, ξk)− fi(w

i
k, ξk))|Fk−1

]
≤ ηlmax

c
E
[
(fi(w

i
k−1, ξk)− fi(w

i
k−1) + fi(w

i
k−1)− fi(w

i
k, ξk) + fi(w

i
k)− fi(w

i
k))|Fk−1

]
≤ ηlmax

c
E
[
fi(w

i
k−1)− fi(w

i
k)) + 2κf (η

i
k)

2∥gi(wi
k−1)∥2|Fk−1

]
(13)
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where the last inequality is obtained using assumption 8. Rearranging the terms, we obtain(
1− 2κfηlmax

c

)
E
[
(ηik)

2∥gi(wi
k)∥2|Fk−1

]
≤ ηlmax

c
E
[
fi(w

i
k−1)− fi(w

i
k))|Fk−1

]
Choosing κf < c

2ηlmax
,

E
[
(ηik)

2∥gi(wi
k)∥2|Fk−1

]
≤ ηlmax

c− 2κfηlmax

E
[
fi(w

i
k−1)− fi(w

i
k))|Fk−1

]
(14)

Substituting equation 14 in equation 11, we obtain

E
[
∥wi

k − w∗∥2|Fk−1

]
≤ ∥wi

k−1 − w∗∥2 − 2ηlmax(fi(w
i
k−1)− inf fi) +

ηlmax

c− 2κfηlmax

E
[
(fi(w

i
k−1)− fi(w

i
k))|Fk−1

]
≤ ∥wi

k − w∗∥2 − (fi(w
i
k)− inf fi)

(
2ηlmax

− ηlmax

c− 2κfηlmax

)
Rearranging and summation on both sides for k = 1, . . . ,K and taking expectation again on both
sides

E [fi(w̄k)− inf fi] ≤
c̃

(2c̃− 1)ηlmax
K
∥w0 − w∗∥2, (15)

for c > 1
2 + κfηlmax

, c̃ := c− 2κfηlmax
and w̄k = 1

K

∑K
k=1 wk−1.

Comparing Equations 9 and 15, we can see that the ARMIJO condition subsumes the effect of gradient
noise. Moreover, as seen previously, under the interpolation condition, SGD behaves like GD. Thus,
ARMIJO allows SGD to behave like GD without the interpolation condition. Similarly, we can recover
a linear rate for strongly convex objectives using the definition of µ-strongly convex objectives
(µ > 0) for SGD updates implemented with ARMIJO line-search.

Now, we discuss the case for non-convex objectives.

Theorem 9. Let the objective function for the i-th device fi be L-smooth and non-convex, and
Assumption 8 holds. For c > 2κfηlmax , SGD with ARMIJO Line search 3 achieves the convergence
rate of deterministic gradient descent in expectation as

min
k∈[K]

E∥∇fi(wi
k−1)∥2 ≤

(
1

ηlmax

+
L

2c̃

)
1

K
((fi(w0)− fi(w

∗))

where c̃ := c− 2κfηlmax
.

Proof. Using the definition of L-smoothness

fi(w
i
k)− fi(w

i
k−1) ≤ −ηik⟨∇fi(wi

k−1), gi(w
i
k−1)⟩+

L

2
∥ηik gi(w

i
k−1)∥2

Taking expectation on both sides, conditioned on Fk−1

E
[
fi(w

i
k)− fi(w

i
k−1)|Fk−1

]
≤ −E

[
ηik ⟨∇fi(wi

k−1), gi(w
i
k−1)⟩|Fk−1

]︸ ︷︷ ︸
Term 1

+
L

2
E
[
(ηik)

2∥gi(wi
k−1)∥2|Fk−1

]
We first handle Term 1 as

−E
[
ηik ⟨∇fi(wi

k−1), gi(w
i
k−1)⟩|Fk−1

]
= −E

[
ηik ⟨∇fi(wi

k−1), gi(w
i
k−1)⟩1{⟨∇fi(wi

k−1),gi(w
i
k−1)⟩>0}|Fk−1

]
− E

[
ηik ⟨∇fi(wi

k−1), gi(w
i
k−1)⟩1{⟨∇fi(wi

k−1),gi(w
i
k−1)⟩≤0}|Fk−1

]
≤ −E

[
ηik ⟨∇fi(wi

k−1), gi(w
i
k−1)⟩⟩1{⟨∇fi(wi

k−1),gi(w
i
k−1)⟩≤0}|Fk−1

]
= −E

[
ηik⟨∇fi(wi

k−1), gi(w
i
k−1)⟩|Fk−1

]
(16)

≤ −ηlmax
∥∇fi(wi

k−1)∥2 (17)
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Notice that Equation 16 holds true when ∇fi(wi
k−1), gi(w

i
k−1)⟩ ≤ 0. The last inequality is true

since ⟨∇fi(wi
k−1), gi(w

i
k−1)⟩ ≤ 0 in Equation 16. Using Equation 17, we obtain

E
[
fi(w

i
k)− fi(w

i
k−1)|Fk−1

]
≤ −ηlmax

∥fi(wi
k−1)∥2 +

L

2
E
[
(ηik)

2∥gi(wi
k−1)∥2|Fk−1

]
(18)

Since ηik is returned by ARMIJO line search condition 3, thus it satisfies

fi(w
i
k, ξk)− fi(w

i
k−1, ξk) ≤ −cηik∥gi(wi

k−1)∥2 (19)

Rearranging and taking expectation on both sides of equation 19

E
[
(ηik)

2∥gi(wi
k−1)∥2|Fk−1

]
≤ 1

c
E
[
ηik(fi(w

i
k−1, ξk)− fi(w

i
k, ξk))|Fk−1

]
≤ ηlmax

c
E
[
(fi(w

i
k−1)− fi(w

i
k)) + 2κf (η

i
k)

2∥gi(wi
k−1)∥2|Fk−1

]
For κf < c

2ηlmax

E
[
(ηik)

2∥gi(wi
k−1)∥2|Fk−1

]
≤ ηlmax

c− 2κfηlmax

E
[
(fi(w

i
k−1)− fi(w

i
k))|Fk−1

]
(20)

Substituting equation 20 in equation 18, we obtain

E
[
fi(w

i
k)− fi(w

i
k−1)|Fk−1

]
≤ −ηlmax∥fi(wi

k−1)∥2 +
Lηlmax

2(c− 2κfηlmax)
E
[
(fi(w

i
k−1)− fi(w

i
k))|Fk−1

]
Rearranging and putting c̃ := c− 2κfηlmax

∥∇fi(wi
k−1)∥2 ≤

(
1

ηlmax

+
L

2c̃

)
E
[
(fi(w

i
k)− fi(w

i
k+1)|wi

k

]
Summation on k = 1, . . . ,K on both sides and taking expectations again∑

k∈[K]

E∥∇fi(wi
k−1)∥2 ≤

(
1

ηlmax

+
L

2c̃

)
E
[
(fi(w0)− fi(w

i
K)
]

min
k∈[K]

E∥∇fi(wi
k−1)∥2 ≤

(
1

ηlmax

+
L

2c̃

)
1

K
((fi(w0)− fi(w

∗)) (21)

for c̃ > 0.

Thus, we can see that for objective classes of convex and non-convex objectives, using the ARMIJO
line-search technique mitigates the effect of variance and the convergence rate for SGD is improved
to match its deterministic counterpart in expectation. Motivated by this insight, we use ARMIJO line
search in Federated Learning to mitigate the effect of client drift and gradient noise.

B MODEL UPDATE ALGORITHMS FOR FEDERATED LEARNING

B.1 FEDSLS WITH ARMIJO LINE SEARCH

We describe the algorithm for FEDSLS- as run by a server orchestrating N clients in Algorithm
4. Server initializes the global model w0 and sends it to all clients. A random subset of S clients
is selected in each global communication round. The local model of each participating client is
initialized to the current global model, and each client runs a local optimizer for K rounds. Step
8 of FEDSLS (Algorithm 4) calls SGD-ARMIJO method (see Algorithm 2), which essentially uses
ARMIJO line-search for SGD updates at each client for each k-th round. After K local rounds, the
pseudogradient ∆t,i for each client is computed and sent to the server to obtain a global pseudogradi-
ent ∆t, which is then used for a gradient step-like update at the server to evaluate the next global
model wt+1.

B.2 FEDEXPSLS WITH ARMIJO LINE SEARCH

We now describe the FEDEXPSLS Algorithm 5. In FEDEXPSLS, each participating client calls
SGD−ARMIJO line-search, and the global model is updated using server-side extrapolated learning
rate (Jhunjhunwala et al., 2023) computed using squared norms of local and global pseudogradients.
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Algorithm 4 FEDSLS
Server Input: initial global estimate w0, total N clients, sampled clients St, where |St| = S, batch
size b, maximum bound for local learning rate ηlmax

, global step-size ηgt = ηg ≤ 1
Output: global model update wT

1: for synchronization round t = 0, 1, . . . , T−1 do
2: server sends wt to all clients
3: St ← random set of S clients
4: for each i ∈ St in parallel do
5: wi

t,0 ← wt

6: for k = 1, 2, . . . ,K do
7: wi

t,k ← SGD−ARMIJO(wi
t,k−1, η, ηlmax

, δ, b, k, opt)
8: end for
9: ∆i

t ← wt − wi
t,K

10: end for
11: ∆t ← 1

S

∑
i∈St

∆t,i

12: wt+1 ← (wt − ηgt∆t)
13: end for
14: return wT

Algorithm 5 FEDEXPSLS algorithm.
Server Input: initial global estimate w0, total N clients, sampled clients St, where |St| = S, batch
size b, maximum bound for local learning rate ηlmax

, global step-size ηgt = ηg ≤ 1
Output: global model update wT

1: for each round t = 0, 1, 2, . . . , T−1 do
2: Server sends wt to all clients
3: St ← random set of S clients;
4: for each client i ∈ St in parallel do
5: wi

t,0 ← wt

6: for local round k = 1, 2, . . . ,K do
7: wi

t,k ← SGD−ARMIJO(wi
t,k−1, η, ηlmax , δ, b, k, opt)

8: end for
9: ∆i

t ← wt − wi
t,K

10: end for
11: ∆t =

1
S

∑
i∈St

∆i
t

12: ηgt ← max

{
1,

∑
i∈St

∥∆i
t∥

2

2|St|(∥∆t∥2+ϵ)

}
13: wt+1 ← wt − ηgt∆t

14: end for
15: return wT

C PROOFS FOR FEDSLS

We can’t apply the law of iterated expectations for reducing the Armijo line for stochastic functions to
formulate an Armijo condition for the true function at that iterate. This is because the use of the same
minibatch to evaluate the iterate and the function value at that iterate to check if the Armijo condition
is satisfied. This gives the motivation that function estimate at a sample is actually a biased estimate
of the true function. Thus, we adopted the notion of expected sufficiently accurate function estimates.

Lemma 3. Under assumption 6, there exists c′ := (c− 2κfηlmax
) > 0, equivalently, κf < c

2ηlmax
,

such that ARMIJO line-search (3) yields an expected decrease in the local objective fi,

E

[
1

S

∑
i∈St

(
fi(w

i
t,K)− fi(wt)

)]
≤ −c′

S
E

 ∑
k,i∈St

(ηit,k)
2∥gi(wi

t,k−1)∥2 | Ft

 (22)
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Proof. Consider, the ARMIJO line-search (3) for some c > 0 as given below:

fi(w
i
t,k, ξk)− fi(w

i
t,k−1, ξk) ≤ −cηit,k∥gi(wi

t,k−1)∥2

fi(w
i
t,k)− fi(w

i
t,k−1) ≤ −cηit,k∥gi(wi

t,k−1)∥2 + (fi(w
i
t,k)− fi(w

i
t,k, ξk)) + (fi(w

i
t,k−1, ξk)− fi(w

i
t,k−1))

Summation over k ∈ [K] and averaging over i ∈ St and taking expectations on both sides conditioned
on filtration Ft gives

E

 1

S

∑
k,i∈St

(
fi(w

i
t,k)− fi(w

i
t,k−1)

) ∣∣∣∣Ft

 ≤ −cE
 1

S

∑
k,i∈St

ηit,k∥gi(wi
t,k−1)∥2 | Ft


+ E

 1

S

∑
k,i∈St

(fi(w
i
t,k)− fi(w

i
t,k, ξk)) | Ft


+ E

 1

S

∑
k,i∈St

(fi(w
i
t,k−1, ξk)− fi(w

i
t,k−1)) | Ft


Asm 6
≤ −cE

 1

S

∑
k,i∈St

ηit,k∥gi(wi
t,k−1)∥2 | Ft


+ 2κfE

 1

S

∑
k,i∈St

(ηit,k)
2∥gi(wi

t,k−1)∥2 | Ft


≤ − (c− 2κfηlmax)

S
E

 ∑
k,i∈St

(ηit,k)
2∥gi(wi

t,k−1)∥2 | Ft


where c′ := (c− 2κfηlmax

) > 0, when κf < c
2ηlmax

.

Lemma 4. Under the assumption 7 and 6, the model drift from the global update wt to local updates
per client after K local steps wi

t,K across all clients i for the FEDSLS algorithm is bounded as∑
i

E
[
∥wt − wi

t,K∥2
]
≤ ηlmaxNK

c′
E [(f(wt)− f(w∗))] , (23)

where c′ > 0.

Proof. Using Lemma 3, we obtain

E

[
1

S

∑
i∈St

(
fi(w

i
t,K)− fi(wt)

) ∣∣∣∣Ft

]
≤ −c′

S
E

 ∑
k,i∈St

ηit,k∥gi(wi
t,k−1)∥2

∣∣∣∣Ft


≤ − c′

N

∑
k,i

E
[
ηit,k∥gi(wi

t,k−1)∥2
∣∣Ft

]
≤ − c′

N

∑
k,i

E

[
1

ηit,k
∥ηit,kgi(wi

t,k−1)∥2
∣∣∣∣Ft

]

≤ − c′

ηlmaxN

∑
k,i

E
[
∥wi

t,k−1 − wi
t,k∥2

∣∣Ft

]
≤ − c′

ηlmax
N

∑
k,i

E
[
∥wi

t,k−1 − wi
t,k∥2

∣∣Ft

]
,
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where we used ηit,k ≤ ηlmax
. Expanding over k = 1, . . . ,K on right-hand side

E

[
1

S

∑
i∈St

(
fi(w

i
t,K)− fi(wt)

) ∣∣∣∣Ft

]
≤ − c′

ηlmax
N

E

[∑
i

(
∥wt − wi

t,1∥2 + ∥wi
t,1 − wi

t,2∥2

+ . . .+ ∥wi
t,K−1 − wi

t,K∥2
) ∣∣Ft

]
≤ − c′

ηlmaxNK

∑
i

E
[
∥wt − wi

t,K∥2
∣∣Ft

]
Last inequality is obtained using the fact ∥wt − wi

t,K∥2 ≤ K
∑

k ∥wi
t,k−1 − wi

t,k∥2. We obtain∑
i

E
[
∥wt − wi

t,K∥2
∣∣Ft

]
≤ ηlmax

NK

c′
E

[
1

S

∑
i∈St

(
fi(wt)− fi(w

i
t,K)

) ∣∣∣∣Ft

]
Under assumption 7 on fi(w

∗) ≤ fi(w) for all w ∈ Rd, we obtain∑
i

E
[
∥wt − wi

t,K∥2
∣∣Ft

]
≤ ηlmax

NK

c′
E

[
1

S

∑
i∈St

(fi(wt)− fi(w
∗))

∣∣∣∣Ft

]

≤ ηlmaxNK

c′
E
[
(f(wt)− f(w∗))

∣∣∣∣Ft

]
(24)

Taking the expectation again gives the result.

Lemma 5. Under assumptions 7 and 6, the updates of FEDSLS have bounded drift using ARMIJO
line-search

1

N

∑
i,k

E
[
∥wt − wi

t,k−1∥2
]
≤ ηlmax

K2

c′
E [(f(wt)− f(w∗))] .

Proof. Recall that the local update made on client i is wi
t,k = wi

t,k−1 − ηit,kgi(w
i
t,k−1), where ηit,k

is obtained using ARMIJO line-search. Thus,

1

N

∑
i,k

∥wt − wi
t,k−1∥2 =

1

N

∑
i,k

∥∥∥∥∥∥
k−1∑
j=1

ηit,jgi(w
i
t,j−1)

∥∥∥∥∥∥
2

≤ 1

N

∑
i,k

(k − 1)

k−1∑
j=1

(
ηit,j
)2 ∥∥gi(wi

t,j−1)
∥∥2 . (25)

Using ARMIJO rule, we have c
ηi
t,k

∥∥∥ηit,kgi(wi
t,k−1)

∥∥∥2 ≤ fi(w
i
t,k−1, ξ

i
k)− fi(w

i
t,k, ξ

i
k), thus we can

write

c
(
ηit,k
)2 ∥∥gi(wi

t,k−1)
∥∥2 ≤ ηit,k

(
fi(w

i
t,k−1, ξ

i
k)− fi(w

i
t,k, ξ

i
k)
)

≤ ηlmax

((
fi(w

i
t,k−1, ξ

i
k)− fi(w

i
t,k−1)

)
−
(
fi(w

i
t,k, ξ

i
k)− fi(w

i
t,k)
)

+
(
fi(w

i
t,k−1)− fi(w

i
t,k)
))

. (26)

Taking expectation on both sides of Equation (26) conditioned on Ft and using assumption 6, we
obtain

cE
[(
ηit,k
)2 ∥∥gi(wi

t,k−1)
∥∥2 ∣∣∣Ft

]
≤ ηlmax

(
E
[
fi(w

i
t,k−1, ξ

i
k)− fi(w

i
t,k−1)

∣∣∣Ft

]
− E

[
fi(w

i
t,k, ξ

i
k)− fi(w

i
t,k)
∣∣∣Ft

]
+E

[
fi(w

i
t,k−1)− fi(w

i
t,k)
∣∣∣Ft

])
≤ 2κfηlmax

E
[(
ηit,k
)2 ∥∥gi(wi

t,k−1)
∥∥2 ∣∣∣Ft

]
+ ηlmax

E
[
fi(w

i
t,k−1)− fi(w

i
t,k)
∣∣∣Ft

]
.

Thus, for c′ > 0 i.e., κf < c
2ηlmax

, we have

E
[(
ηit,k
)2 ∥∥gi(wi

t,k−1)
∥∥2 ∣∣∣Ft

]
≤ ηlmax

c′
E
[
fi(w

i
t,k−1)− fi(w

i
t,k)
∣∣∣Ft

]
, (27)
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Taking expectation on both sides of Equation (25) conditioned on Ft and substituting Equation (27)

1

N

∑
i,k

E
[
∥wt − wi

t,k−1∥2
∣∣∣Ft

]
≤ 1

N

∑
i,k

(k − 1)

k−1∑
j=1

E
[(
ηit,j
)2 ∥∥gi(wi

t,j−1)
∥∥2 ∣∣∣Ft

]

≤ ηlmax

c′N

∑
i,k

(k − 1)

k−1∑
j=1

E
[
fi(w

i
t,j−1)− fi(w

i
t,j)
∣∣∣Ft

]
≤ ηlmax

c′N

∑
i,k

(k − 1)E
[
fi(wt)− fi(w

i
t,k−1)

∣∣∣Ft

]
.

Using the descent property of ARMIJO line-search E[fi(wi
t,k−1)|Ft] ≥ E[fi(wi

t,K)|Ft] for all k from
Lemma 3, we obtain

1

N

∑
i,k

E
[
∥wt − wi

t,k−1∥2
∣∣∣Ft

]
≤ ηlmax

K2

c′N

∑
i

E
[
fi(wt)− fi(w

i
t,K)

∣∣∣Ft

]
Under assumption 7, the inequality becomes

1

N

∑
i,k

E
[
∥wt − wi

t,k−1∥2
∣∣∣Ft

]
≤ ηlmaxK

2

c′
E
[
f(wt)− f(w∗)

∣∣∣Ft

]
.

C.1 PROOF FOR CONVEX OBJECTIVES

We now give the convergence proof for convex functions.
Theorem 10 (Restatement from Section 4: For constant server step-size). Let the functions fi satisfy
the assumptions 1, 2, 7 and 6. For a constant global learning rate ηgt = ηg and client learning rate
ηlmax <

2c−ηg

(KL+4κf )
, FEDSLS achieves the convergence rate for average of iterates as

E[f(w̄t)− f(w∗)] ≤ c′

(2c′ − ηg −KLηlmax)ηgηlmaxKT
∥w0 − w∗∥2 (28)

where w̄t =
1
T

∑T−1
t=0 wt and c′ := c− 2κfηlmax

, such that c′ > 0.

Proof.

∥wt+1 − w∗∥2 = ∥wt − ηg∆t − w∗∥2

= ∥wt − w∗∥2 + ηg
2∥∆t∥2 − 2ηg⟨∆t, wt − w∗⟩

Taking the expectation on both sides

E[∥wt+1 − w∗∥2
∣∣Ft] = ∥wt − w∗∥2 + ηg

2E
[
∥∆t∥2

∣∣Ft

]︸ ︷︷ ︸
A1

+2ηgE[⟨∆t, w
∗ − wt⟩

∣∣Ft]︸ ︷︷ ︸
A2

(29)

We first resolve A1 by using lemma 4 under interpolation regime,

A1 = ηg
2E
[
∥∆t∥2

∣∣Ft

]
= ηg

2E

∥∥∥∥∥ 1S ∑
i∈St

(wt − wi
t,K)

∥∥∥∥∥
2 ∣∣Ft


≤ ηg

2E

[
1

S

∑
i∈St

∥∥(wt − wi
t,K)

∥∥2 ∣∣Ft

]

≤
η2g
N

∑
i

E
[∥∥(wt − wi

t,K)
∥∥2 ∣∣Ft

]
≤

η2gηlmaxK

c′
E
[
f(wt)− f(w∗)

∣∣Ft

]
, (30)
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where c′ := (c− 2κfηlmax
) > 0. We now resolve A2,

A2 = 2ηgE[⟨∆t, w
∗ − wt⟩

∣∣Ft]

= 2ηgE

〈 1

S

∑
k,i∈St

ηit,kgi(w
i
t,k−1), w

∗ − wt

〉∣∣Ft


=

2ηg
N

∑
k,i

E
[
⟨ηit,kgi(wi

t,k−1), w
∗ − wt⟩

∣∣Ft

]
=

2ηg
N

∑
k,i

E
[
ηit,k⟨gi(wi

t,k−1), w
∗ − wt⟩1{⟨gi(wi

t,k−1),w
∗−wt⟩≥0}

∣∣Ft

]
+

2ηg
N

∑
k,i

E
[
ηit,k⟨gi(wi

t,k−1), w
∗ − wt⟩1{⟨gi(wi

t,k−1),w
∗−wt⟩<0}

∣∣Ft

]
=

2ηg
N

∑
k,i

ηlmaxE
[
⟨gi(wi

t,k−1), w
∗ − wt⟩1{⟨gi(wi

t,k−1),w
∗−wt⟩≥0}

∣∣Ft

]
+

2ηg
N

∑
k,i

E
[
ηit,k⟨gi(wi

t,k−1), w
∗ − wt⟩1{⟨gi(wi

t,k−1),w
∗−wt⟩<0}

∣∣Ft

]
Now since,

ηit,k ⟨gi(wi
t,k−1), w

∗ − wt⟩1ηi
t,k ⟨gi(wi

t,k−1),w
∗−wt⟩≤0 ≤ 0

=⇒ E[ηit,k ⟨gi(wi
t,k−1), w

∗ − wt⟩1ηi
t,k ⟨gi(wi

t,k−1),w
∗−wt⟩≤0

∣∣Ft] ≤ E[0
∣∣Ft]

So, we have
A2 = 2ηgE[⟨∆t, w

∗ − wt⟩
∣∣Ft]

≤ 2ηg
1

N

∑
i∈[N ]

K∑
k=1

ηlmaxE[⟨gi(wi
t,k−1), w

∗ − wt⟩1{⟨gi(wi
t,k−1),w

∗−wt⟩≥0}
∣∣Ft]

≤ 2ηg
1

N

∑
i∈[N ]

K∑
k=1

ηlmaxE[⟨gi(wi
t,k−1), w

∗ − wt⟩
∣∣Ft]

where the last inequality is due to the fact that- ⟨gi(wi
t,k−1), w

∗ − wt⟩1{⟨gi(wi
t,k−1),w

∗−wt⟩≥0} ≤
⟨gi(wi

t,k−1), w
∗ − wt⟩ as indicator function 1{.} ≤ 1. Thus, we can now bound A2 as

A2 = 2ηgE[⟨∆t, w
∗ − wt⟩

∣∣Ft]

≤ 2ηg
1

N

∑
i∈[N ]

K∑
k=1

ηlmaxE[⟨gi(wi
t,k−1), w

∗ − wt⟩
∣∣Ft]

= −2ηgηlmax

N

〈∑
i,k

E[∇fi(wi
t,k−1)|Ft], wt − w∗

〉
= −2ηgηlmax

N

∑
i,k

E[
〈
∇fi(wi

t,k−1), wt − wi
t,k−1 + wi

t,k−1 − w∗〉∣∣Ft]

=
2ηgηlmax

N

∑
i,k

E[−
〈
∇fi(wi

t,k−1), w
i
t,k−1 − w∗〉+ 〈∇fi(wi

t,k−1), w
i
t,k−1 − wt

〉∣∣Ft]

convexity

≤ 2ηgηlmax

N

∑
i,k

E[
(
fi(w

∗)− fi(w
i
t,k−1)

)
+
〈
∇fi(wi

t,k−1), w
i
t,k−1 − wt

〉∣∣Ft]

smoothness
≤ 2ηgηlmax

N

∑
i,k

E[
(
fi(w

∗)− fi(w
i
t,k−1)

)
+
(
fi(w

i
t,k−1)− fi(wt) +

L

2
∥wt − wi

t,k−1∥2
)∣∣Ft]

≤ 2ηgηlmax
KE[

(
f(w∗)− f(wt)

)∣∣Ft] +
ηgηlmax

L

N

∑
i,k

E[∥wt − wi
t,k−1∥2

∣∣Ft] (31)
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Substituting Equations (30) and (31) in Equation (29) and taking expectations on both sides

E[∥wt+1 − w∗∥2] ≤ E[∥wt − w∗∥2] +
η2gηlmax

K

c′
E [f(wt)− f(w∗)] + 2ηgηlmax

KE[
(
f(w∗)− f(wt)

)
]

+
ηgηlmax

L

N

∑
i,k

E[∥wt − wi
t,k−1∥2] (32)

Using Lemma 5

E[∥wt+1 − w∗∥2] ≤ E[∥wt − w∗∥2] + ηg
2ηlmax

K

c′
E [f(wt)− f(w∗)]− 2ηgηlmax

KE[
(
f(wt)− f(w∗)

)
]

+
ηgη

2
lmax

K2L

c′
E [(f(wt)− f(w∗))] (33)

E[∥wt+1 − w∗∥2] ≤ E[∥wt − w∗∥2]− ηgηlmaxKE [f(wt)− f(w∗)]

(
2− ηg

c′
− 1

c′
KηlmaxL

)
(34)

Rearranging the terms and assuming ηlmax
<

2c′−ηg

KL , we obtain(
2c′ − ηg −KLηlmax

c′

)
ηgηlmaxKE[f(wt)− f(w∗)] ≤ E[∥wt − w∗∥2]− E[∥wt+1 − w∗∥2]

Averaging over t = 0, . . . , T − 1 and using Jensen’s inequality

E[f(w̄t)− f(w∗)] ≤ c′

(2c′ − ηg −KLηlmax)ηgηlmaxKT
E[
(
∥w0 − w∗∥2]− ∥wT − w∗∥2

)
]

≤ c′

(2c′ − ηg −KLηlmax)ηgηlmaxKT
∥w0 − w∗∥2, (35)

where w̄t =
1
T

∑T−1
t=0 wt.

C.2 PROOF FOR STRONGLY CONVEX OBJECTIVES

The proof for strongly convex functions follows similarly to the proof for convex objectives.
Theorem 11 (Restatement from Section 4). Let the functions fi satisfy the assumptions 1, 3, 7
and 6. For a constant global learning rate ηgt = ηg such that ηg ≤ 2

ηlmaxµK
, client learning rate

ηlmax
<

2c−ηg

KL+4κf
, FEDSLS algorithm satisfies

E∥wT − w∗∥2 ≤
(
1− ηgηlmax

µK

2

)T

∥w0 − w∗∥2.

Proof.
∥wt+1 − w∗∥2 = ∥wt − ηg∆t − w∗∥2

= ∥wt − w∗∥2 + ηg
2∥∆t∥2 − 2ηg⟨∆t, wt − w∗⟩

Taking the expectation on both sides
E[∥wt+1 − w∗∥2

∣∣Ft] = ∥wt − w∗∥2 + ηg
2E
[
∥∆t∥2

∣∣Ft

]︸ ︷︷ ︸
B1

+2ηgE[⟨∆t, w
∗ − wt⟩

∣∣Ft]︸ ︷︷ ︸
B2

We first resolve B1 by using Lemma 4 for c′ := c− 2κfηlmax
> 0,

B1 = ηg
2E
[
∥∆t∥2

∣∣Ft

]
= ηg

2E

∥∥∥∥∥ 1S ∑
i∈St

(wt − wi
t,K)

∥∥∥∥∥
2 ∣∣Ft


≤ ηg

2 1

N

∑
i

E
[∥∥(wt − wi

t,K)
∥∥2 ∣∣Ft

]
≤ ηg

2ηlmax
K

c′
E
[
f(wt)− f(w∗)

∣∣Ft

]
(36)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

We now resolve B2 using perturbed strong convexity (Karimireddy et al., 2020) using µ ≤ L

B2 = 2ηgE[⟨∆t, w
∗ − wt⟩

∣∣Ft] ≤ −
2ηgηlmax

N

〈∑
i,k

E[∇fi(wi
t,k−1)|Ft], wt − w∗

〉
= −2ηgηlmax

N

∑
i,k

E[
〈
∇fi(wi

t,k−1), wt − wi
t,k−1 + wi

t,k−1 − w∗〉∣∣Ft]

=
2ηgηlmax

N

∑
i,k

E[−
〈
∇fi(wi

t,k−1), w
i
t,k−1 − w∗〉+ 〈∇fi(wi

t,k−1), w
i
t,k−1 − wt

〉∣∣Ft]

Using Asm 3
≤ 2ηgηlmax

N

∑
i,k

E[
(
fi(w

∗)− fi(w
i
t,k−1)

)
− µ

2
∥wi

t,k−1 − w∗∥2

+
〈
∇fi(wi

t,k−1), w
i
t,k−1 − wt

〉∣∣Ft]

smoothness
≤ 2ηgηlmax

N

∑
i,k

E[
(
fi(w

∗)− fi(w
i
t,k−1)

)
− µ

4
∥wt − w∗∥2

∣∣Ft]

+
2ηgηlmax

N

∑
i,k

E[
(
fi(w

i
t,k−1)− fi(wt) +

L+ µ

2
∥wt − wi

t,k−1∥2
)∣∣Ft]

≤ 2ηgηlmax
KE[

(
f(w∗)− f(wt)

)∣∣Ft]−
ηgηlmaxµK

2
E[∥wt − w∗∥2

∣∣Ft]

+
2ηgηlmax

L

N

∑
i,k

E[∥wt − wi
t,k−1∥2

∣∣Ft] (37)

Combining Equations (36) and (37) and taking expectations on both sides

E[∥wt+1 − w∗∥2] ≤ E[∥wt − w∗∥2] + ηg
2ηlmaxK

c′
E [f(wt)− f(w∗)] + 2ηgηlmax

KE[
(
f(w∗)− f(wt)

)
]

− ηgηlmax
µK

2
E[∥wt − w∗∥2] + ηgηlmax

L

N

∑
i,k

E[∥wt − wi
t,k−1∥2] (38)

Using Lemma 5

E[∥wt+1 − w∗∥2] ≤
(
1− ηgηlmax

µK

2

)
E[∥wt − w∗∥2] + ηg

2ηlmax
K

c′
E [f(wt)− f(w∗)]

− 2ηgηlmax
KE[

(
f(wt)− f(w∗)

)
] +

ηgK
2η2lmax

L

c′
E [(f(wt)− f(w∗))]

E[∥wt+1 − w∗∥2] ≤
(
1− ηgηlmax

µK

2

)
E[∥wt − w∗∥2]− ηgηlmax

KE [f(wt)− f(w∗)]

(
2− ηg

c′
− Kηlmax

L

c′

)
For ηlmax

≤ 2c′−ηg

KL , the term 2c′−ηg−ηlmaxKL
c′ ηgηlmax

KE[f(wt) − f(w∗)] becomes non-negative,
thus resulting bound is given as

E[∥wt+1 − w∗∥2 ≤
(
1− ηgηlmax

µK

2

)
E[∥wt − w∗∥2]. (39)

Recursion over t = 0, . . . , T − 1 under the assumption ηg ≤ 2
ηlmaxµK

E[∥wT − w∗∥2 ≤
(
1− ηgηlmax

µK

2

)T

E[∥w0 − w∗∥2]
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C.3 PROOF FOR NON-CONVEX OBJECTIVES

Theorem 12 (Restatement from Section 4). Let functions fi satisfy the assumptions 1, 7 and 6.For

ηlmax
≥

8c′
2T−1

η2
gLK+

√
(η2

gLK)2+ηgL2K2 16c′
2T−1

, FEDSLS achieves the convergence rate

min
t=0,..., T−1

E[∥∇f(wt)∥2] ≤
2L(ηlmax

LK + ηg)

c′
E[f(w0)− f(w∗)],

where c′ := c− 2κfηlmax
> 0.

Proof. Using the smoothness of f

f(wt+1) ≤ f(wt) + ⟨∇f(wt), (wt+1 − wt)⟩+
L

2
∥wt+1 − wt∥2

Taking expectations on both sides conditioned on Ft and bounding the inner product term similar to
the proof in convex cases, we obtain

E[f(wt+1) | Ft] ≤ f(wt)− ηg
〈
∇f(wt),E[∆t | Ft]

〉
+

Lηg
2

2
E[∥∆t∥2 | Ft]

≤ f(wt)− ηgηlmax

〈
∇f(wt),

1

N

∑
i,k

∇fi(wi
t,k−1)

〉
+

Lηg
2

2
E[∥∆t∥2 | Ft]

≤ f(wt)− ηgηlmax
K

〈
∇f(wt),

1

NK

∑
i,k

∇fi(wi
t,k−1)−∇f(wt) +∇f(wt)

〉
+

Lηg
2

2
E[∥∆t∥2 | Ft]

≤ f(wt)− ηgηlmax
K

〈
∇f(wt),

1

NK

∑
i,k

∇fi(wi
t,k−1)−∇f(wt)

〉

− ηgηlmaxK∥∇f(wt)∥2 +
Lηg

2

2
E[∥∆t∥2 | Ft]

≤f(wt) + ηgηlmaxK

〈
∇f(wt),

1

NK

∑
i,k

(
∇fi(wt)−∇fi(wi

t,k−1)
)〉

− ηgηlmax
K∥∇f(wt)∥2 +

Lηg
2

2
E[∥∆t∥2 | Ft]

CS Inq.

≤ f(wt) + ηgηlmaxK
∥∥∥∇f(wt)

∥∥∥
∥∥∥∥∥∥ 1

NK

∑
i,k

(
∇fi(wt)−∇fi(wi

t,k−1)
)∥∥∥∥∥∥

− ηgηlmaxK∥∇f(wt)∥2 +
Lηg

2

2
E[∥∆t∥2 | Ft]

Young′s Inq.

≤ f(wt) +
ηgηlmax

K

2

∥∥∥∥∥∥ 1

NK

∑
i,k

(
∇fi(wt)−∇fi(wi

t,k−1)
)∥∥∥∥∥∥

2

− ηgηlmax
K

2
∥∇f(wt)∥2 +

Lηg
2

2
E[∥∆t∥2 | Ft]

Jensen′s
≤ f(wt) +

ηgηlmax

2N

∑
i,k

∥∥∇fi(wt)−∇fi(wi
t,k−1)

∥∥2 − ηgηlmax
K

2
∥∇f(wt)∥2 +

Lηg
2

2
E[∥∆t∥2 | Ft]

UsingAsm 1

≤ f(wt) +
ηgηlmaxL

2

2N

∑
i,k

∥∥wt − wi
t,k−1

∥∥2 − ηgηlmaxK

2
∥∇f(wt)∥2 +

Lηg
2

2
E[∥∆t∥2 | Ft]
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Taking expectation on both sides and using Lemma 5,

E[f(wt+1)] ≤ E[f(wt)] +
ηgηlmax

2L2K2

2c′
E [f(wt)− f(w∗)]− ηgηlmaxK

2
E[∥∇f(wt)∥2]

+
Lηg

2

2N

∑
i

E[∥wt − wi
t,K∥2].

Now, we use Lemma 4 to obtain

E[f(wt+1)] ≤ E[f(wt)] +
ηgηlmax

2L2K2

2c′
E [f(wt)− f(w∗)]− ηgηlmax

K

2
E[∥∇f(wt)∥2]

+
Lηg

2ηlmaxK

2c′
E[f(wt)− f(w∗)].

Subtracting f(w∗) from both sides and rearranging the terms, we obtain

ηgηlmax
K

2
E[∥∇f(wt)∥2] ≤ (1 +D)E[f(wt)− f(w∗)]− E [f(wt+1)− f(w∗)] , (40)

where D :=
ηgηlmaxLK(ηlmaxLK + ηg)

2c′
.

To create a telescoping scoping sum on the RHS, we use artificial weights αt, following (Stich, 2019),

such that αt

(
1 +

ηgηlmax
2L2K2(ηlmaxLK + ηg)

2c′

)
= αt−1, where α−1 = 1. Thus, multiplying

αt on both sides of Equation 51, we obtain

αt
ηgηlmax

K

2
E[∥∇f(wt)∥2] ≤ αt−1E[f(wt)− f(w∗)]− αtE [f(wt+1)− f(w∗)] .

Summing on both sides from t = 0, . . . , T − 1, we obtain

T−1∑
t=0

αt
ηgηlmax

K

2
E[∥∇f(wt)∥2] ≤ α−1E[f(w0)− f(w∗)]− αT−1E [f(wt+1)− f(w∗)] .

Since, −αT−1E [f(wT )− f(w∗)] is a negative term, it can be ignored. Now, using α−1 = 1 and
diving both sides by

∑T−1
t=0 αt, we obtain

min
t=0,1,..., T−1

E[∥∇f(wt)∥2] ≤
1∑T−1

t=0 αt

T−1∑
t=0

αtE[∥∇f(wt)∥2] ≤
2

ηgηlmax
K
∑T−1

t=0 αt

E[f(w0)− f(w∗)].

To find a final upper bound for the LHS, we need to find a lower bound for
∑T−1

t=0 αt. We evaluate∑T−1
t=0 αt as

T−1∑
t=0

αt =
1

(1 +D)

1−
(

1
1+D

)T
1−

(
1

1+D

) =
1

(D)

(
1−

(
1

1 +D

)T
)
. (41)

Choosing ηlmax
such that

(
1

1+D

)T
≤ 1

2 ⇐⇒ T ≥ log(2)
log(1+D) provides a suitable lower bound for∑T−1

t=0 αt. Using the identity 1
log(1+x) ≤

1
x + 1

2 for x > 0, we note that

log(2)

log(1 +D)
≤ 1

log(1 +D)
≤ 1

D
+

1

2

Thus, it is sufficient to choose ηlmax
such that

1

D
+

1

2
≤ T ⇐⇒ D :=

ηgηlmax
LK(ηlmax

LK + ηg)

2c′
≥ 2

2T − 1
.
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Ignoring the negative root of the quadratic inequality (ηgL
2K2)ηlmax

+ (η2gLK)ηlmax
≥ 4c′

2T−1 , the
bound for ηlmax is obtained as

ηlmax
≥

8c′

2T − 1

η2gLK +

√
(η2gLK)2 + ηgL2K2

16c′

2T − 1

, (42)

using the quadratic formula x = −2c
b+

√
b2−4ac

for a quadratic equation ax2 + bx+ c = 0. Hence, for

ηlmax
satisfying Equation 53, we have

(
1

1+D

)T
≤ 1

2 , thus
∑T−1

t=0 αt == 1
(D)

(
1−

(
1

1+D

)T)
≥

1
2D . Thus, choosing ηlmax according to Equation 53 for 2T − 1 > 0 when T ≥ 1, we have

min
t=0,1,..., T−1

E[∥∇f(wt)∥2] ≤
4D

ηgηlmax
K

E[f(w0)− f(w∗)]. (43)

D PROOFS FOR FEDEXPSLS

D.1 CONVERGENCE PROOF OF FEDEXPSLS ALGORITHM: CONVEX OBJECTIVES

Theorem 13 (Restatement from Section 4). Suppose a function fi satisfy assumption 1 2, 7 and 6.
For global learning rate ηgt as computed in FEDEXPSLS constrained to lie in [1, ηgmax

], client
learning rate ηlmax

< 2c′−1
KL+4κf

, FEDEXPSLS achieves the convergence rate for average of iterates
as

E [f(w̄t)− f(w∗)] ≤ c′

(2c′ − ηlmax
KL− 1)ηlmax

ηgmax
KT
∥w0 − w∗∥2,

where w̄t =
1
T

∑T
t=1 wt and c′.

Proof.

∥wt+1 − w∗∥2 = ∥wt − ηgt∆t − w∗∥2

= ∥wt − w∗∥2 + η2gt∥∆t∥2 − 2ηgt⟨∆t, wt − w∗⟩
= ∥wt − w∗∥2 + η2gt∥∆t∥2 + 2ηgt⟨∆t, w

∗ − wt⟩

Taking expectations on both sides conditioned on Ft

E[∥wt+1 − w∗∥2 | Ft] = ∥wt − w∗∥2 + E[η2gt∥∆t∥2 | Ft]︸ ︷︷ ︸
C1

+2E[ηgt⟨∆t, w
∗ − wt⟩ | Ft]︸ ︷︷ ︸

C2

(44)

First, we bound the term C1 as below

C1 = E[η2gt∥∆t∥2 | Ft] = E

[
ηgt max

{
1,

∑
i∈St
∥∆i

t∥2

2S(∥∆t∥2 + ε)

}
∥∆t∥2

∣∣∣∣Ft

]

≤ E

[
ηgt

∑
i∈St
∥∆i

t∥2

S∥∆t∥2
∥∆t∥2

∣∣∣∣Ft

]

≤ E

[
1

S

∑
i∈St

ηgt∥∆i
t∥2
∣∣∣∣Ft

]

≤ 1

N

∑
i∈[N ]

E
[
ηgt∥∆i

t∥2
∣∣∣∣Ft

]
=

1

N

∑
i∈[N ]

E
[
ηgt∥wt − wi

t,K∥2
∣∣Ft

]
≤ ηlmax

ηgmax
K

c′
E
[
(f(wt)− f(w∗))

∣∣Ft

]
,
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where the last inequality is obtained using Lemma 4 for c′ = c− 2κfηlmax
and ηgt ≤ ηgmax

. We now
resolve C2 as in proof of Theorem 2 (using indicator functions)

C2 = −2E[⟨ηgt∆t, wt − w∗⟩
∣∣Ft]

≤ −2ηlmax
ηgmax

N

〈∑
i,k

∇fi(wi
t,k−1), wt − w∗

〉
= −2ηlmaxηgmax

N

∑
i,k

〈
∇fi(wi

t,k−1), wt − wi
t,k−1 + wi

t,k−1 − w∗〉
=

2ηlmax
ηgmax

N

∑
i,k

{
−
〈
∇fi(wi

t,k−1), w
i
t,k−1 − w∗〉+ 〈∇fi(wi

t,k−1), w
i
t,k−1 − wt

〉}
convexity

≤ 2ηlmax
ηgmax

N

∑
i,k

{(
fi(w

∗)− fi(w
i
t,k−1)

)
+
〈
∇fi(wi

t,k−1), w
i
t,k−1 − wt

〉}
smoothness
≤ 2ηlmax

ηgmax

N

∑
i,k

{(
fi(w

∗)− fi(w
i
t,k−1)

)
+
(
fi(w

i
t,k−1)− fi(wt) +

L

2
∥wt − wi

t,k−1∥2
)}

≤ 2ηlmax
ηgmax

N

∑
i,k

(
fi(w

∗)− fi(wt)
)
+

ηlmax
ηgmax

L

N

∑
i,k

∥wt − wi
t,k−1∥2

≤ 2ηlmaxηgmax

N

∑
i,k

(
fi(w

∗)− fi(wt)
)
+

ηlmaxηgmaxL

N

∑
i,k

∥wt − wi
t,k−1∥2

≤ 2ηlmax
ηgmax

K
(
f(w∗)− f(wt)

)
+

ηlmax
ηgmax

L

N

∑
i,k

∥wt − wi
t,k−1∥2 (45)

Substituting the bounds on the terms C1 and C2 in Equation 44

E[∥wt+1 − w∗∥2 | Ft] ≤ ∥wt − w∗∥2 + ηlmaxηgmaxK

c′
E
[
f(wt)− f(w∗)

∣∣Ft

]
+ 2ηlmaxηgmaxK

(
f(w∗)− f(wt)

)
+

ηlmax
ηgmax

L

N

∑
i,k

∥wt − wi
t,k−1∥2

(46)

Taking expectation again, using the tower property and substituting the bound on client drift across
N clients and k local rounds using Lemma 5, we obtain

E[∥wt+1 − w∗∥2] ≤ E[∥wt − w∗∥2] + ηlmax
ηgmax

K

c′
E [f(wt)− f(w∗)] + 2ηlmax

ηgmax
KE [f(w∗)− f(wt)]

+
η2lmax

ηgmaxK
2L

c′
E [f(wt)− f(w∗)]

Rearranging, we obtain

E[∥wt+1 − w∗∥2] ≤ E[∥wt − w∗∥2]− ηlmax
ηgmax

KE [f(wt)− f(w∗)]

(
2− 1

c′
− ηlmax

KL

c′

)
For ηlmax

< 2c′−1
KL , we have

(2c′ − ηlmaxKL− 1)

c′
ηlmax

ηgmax
KE [f(wt)− f(w∗)] ≤ E[∥wt − w∗∥2]− E[∥wt+1 − w∗∥2]

(47)

Averaging over t = 1, . . . , T and using Jensen’s inequality

E [f(w̄t)− f(w∗)] ≤ c′

(2c′ − ηlmaxKL− 1)ηlmaxηgmaxKT
∥w0 − w∗∥2,

where w̄t =
1
T

∑T
t=1 wt.
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D.2 CONVERGENCE PROOF OF FEDEXPSLS ALGORITHM: STRONGLY- CONVEX OBJECTIVES

Theorem 14 (Restatement from Section 4). Let the functions fi satisfy assumption 1, 3, 7 and 6.
For a global learning rate ηgt computed in FEDEXPSLS constrained to lie in [1, ηgmax

] such that
ηgmax

≤ 2
ηlmaxµK

, client learning rate ηlmax < 2c−1
KL+4κf

, the last update of FEDEXPSLS satisfies

E∥wT+1 − w∗∥2 ≤
(
1− ηgηlmaxµK

2

)T+1

∥w0 − w∗∥2.

Proof.

∥wt+1 − w∗∥2 = ∥wt − ηgt∆t − w∗∥2

= ∥wt − w∗∥2 + η2gt∥∆t∥2 − 2ηgt⟨∆t, wt − w∗⟩
= ∥wt − w∗∥2 + η2gt∥∆t∥2 + 2ηgt⟨∆t, w

∗ − wt⟩

Taking expectations on both sides

E[∥wt+1 − w∗∥2 | Ft] = ∥wt − w∗∥2 + E[η2gt∥∆t∥2 | Ft]︸ ︷︷ ︸
D1

+2E[ηgt⟨∆t, w
∗ − wt⟩ | Ft]︸ ︷︷ ︸

D2

(48)

First, we bound the term D1 same as in Theorem 6

D1 := E[η2gt∥∆t∥2 | Ft] ≤
ηlmax

ηgmax
K

c′
E
[
(f(wt)− f(w∗))

∣∣Ft

]
,

We now resolve D2 using perturbed strong convexity (Karimireddy et al., 2020) using µ ≤ L

D2 = −2ηgtE[⟨∆t, wt − w∗⟩
∣∣Ft]

≤ −2ηlmaxηgmax

N

〈∑
i,k

E[∇fi(wi
t,k−1)|Ft], wt − w∗

〉
= −2ηlmax

ηgmax

N

∑
i,k

E[
〈
∇fi(wi

t,k−1), wt − wi
t,k−1 + wi

t,k−1 − w∗〉∣∣Ft]

=
2ηlmaxηgmax

N

∑
i,k

E[−
〈
∇fi(wi

t,k−1), w
i
t,k−1 − w∗〉+ 〈∇fi(wi

t,k−1), w
i
t,k−1 − wt

〉∣∣Ft]

Using Asm 3
≤ 2ηlmaxηgmax

N

∑
i,k

E[
(
fi(w

∗)− fi(w
i
t,k−1)

)
− µ

2
∥wi

t,k−1 − w∗∥2 +
〈
∇fi(wi

t,k−1), w
i
t,k−1 − wt

〉∣∣Ft]

smoothness
≤ 2ηlmaxηgmax

N

∑
i,k

E[
(
fi(w

∗)− fi(w
i
t,k−1)

)
− µ

4
∥wt − w∗∥2

∣∣Ft]

+
2ηlmax

ηgmax

N

∑
i,k

E[
(
fi(w

i
t,k−1)− fi(wt) +

L+ µ

2
∥wt − wi

t,k−1∥2
)∣∣Ft]

≤ 2ηlmax
ηgmax

KE[
(
f(w∗)− f(wt)

)∣∣Ft]−
ηlmax

ηgmax
µK

2
E[∥wt − w∗∥2

∣∣Ft]

+
2ηlmaxηgmaxL

N

∑
i,k

E[∥wt − wi
t,k−1∥2

∣∣Ft] (49)

Substituting the bounds on the terms D1 and D2 in Equation 48

E[∥wt+1 − w∗∥2 | Ft] ≤ ∥wt − w∗∥2 − ηlmax
ηgmax

µK

2
E[∥wt − w∗∥2

∣∣Ft] +
ηlmax

ηgmax
K

c′
E
[
f(wt)− f(w∗)

∣∣Ft

]
+ 2ηlmax

ηgmax
KE[

(
f(w∗)− f(wt)

)∣∣Ft] +
2ηlmaxηgmaxL

N

∑
i,k

E[∥wt − wi
t,k−1∥2

∣∣Ft]
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Taking expectation again, using tower property and substituting the bound on client drift across N
clients and k local rounds using Lemma 5, we obtain

E[∥wt+1 − w∗∥2] ≤
(
1− ηlmax

ηgmax
µK

2

)
E[∥wt − w∗∥2]− ηlmax

ηgmax
KE[

(
f(wt)− f(w∗)

)
]

(
2− 1

c′
− ηlmax

KL

c′

)

For ηlmax
≤ 2c′−1

KL , the second term can be ignored. Hence, we obtain

E[∥wt+1 − w∗∥2] ≤
(
1− ηlmaxηgmaxµK

2

)
E[∥wt − w∗∥2]

Recursion over t = 0, . . . , T− under the assumption ηgmax ≤ 2
ηlmaxµK

E[∥wT+1 − w∗∥2] ≤
(
1− ηlmax

ηgmax
µK

2

)T+1

∥w0 − w∗∥2.

D.3 CONVERGENCE PROOF OF FEDEXPSLS ALGORITHM: NON- CONVEX OBJECTIVES

Theorem 15. Let the functions fi satisfy assumption 1, 7 and 6. For a global learning rate ηgt
computed in FEDEXPSLS constrained to lie in [1, ηgmax ] and local learning rate bound ηlmax ≥

8c′
2T−1

ηgmaxLK+
√

(ηgmaxLK)2+ηgmaxL
2K2 16c′

2T−1

, FEDSLS achieves the convergence rate

min
t=0,..., T−1

E[∥∇f(wt)∥2] ≤
2L(ηlmax

LK + 1)

c′
E[f(w0)− f(w∗)],

where c′ := c− 2κfηlmax > 0.

Proof. Using the smoothness of f

f(wt+1) ≤ f(wt) + ⟨∇f(wt), (wt+1 − wt)⟩+
L

2
∥wt+1 − wt∥2

Taking expectations on both sides conditioned on Ft, we obtain

E[f(wt+1) | Ft] ≤ f(wt)−
〈
∇f(wt),E[ηgt∆t | Ft]

〉︸ ︷︷ ︸
T1

+
L

2
E[ηgt2∥∆t∥2 | Ft]︸ ︷︷ ︸

T2

(50)
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We resolve T2 by bounding the inner product, similar to the proof in cases, and using ηgt ≤ ηgmax
as

T1 :=−
〈
∇f(wt),E[ηgt∆t | Ft]

〉
≤ −ηgmax

ηlmax

〈
∇f(wt),

1

N

∑
i,k

∇fi(wi
t,k−1)

〉

≤ −ηgmaxηlmaxK

〈
∇f(wt),

1

NK

∑
i,k

∇fi(wi
t,k−1)−∇f(wt) +∇f(wt)

〉

≤ −ηgmaxηlmaxK

〈
∇f(wt),

1

NK

∑
i,k

∇fi(wi
t,k−1)−∇f(wt)

〉
− ηgmaxηlmaxK∥∇f(wt)∥2

≤ηgmaxηlmaxK

〈
∇f(wt),

1

NK

∑
i,k

(
∇fi(wt)−∇fi(wi

t,k−1)
)〉
− ηgmaxηlmaxK∥∇f(wt)∥2

CS Inq.

≤ ηgmaxηlmaxK
∥∥∥∇f(wt)

∥∥∥
∥∥∥∥∥∥ 1

NK

∑
i,k

(
∇fi(wt)−∇fi(wi

t,k−1)
)∥∥∥∥∥∥− ηgmaxηlmaxK∥∇f(wt)∥2

Young′s Inq.

≤ ηgmax
ηlmax

K

2

∥∥∥∥∥∥ 1

NK

∑
i,k

(
∇fi(wt)−∇fi(wi

t,k−1)
)∥∥∥∥∥∥

2

− ηgmax
ηlmax

K

2
∥∇f(wt)∥2

Jensen′s
≤ ηgmax

ηlmax

2N

∑
i,k

∥∥∇fi(wt)−∇fi(wi
t,k−1)

∥∥2 − ηgmax
ηlmax

K

2
∥∇f(wt)∥2

UsingAsm 1

≤ ηgmaxηlmaxL
2

2N

∑
i,k

∥∥wt − wi
t,k−1

∥∥2 − ηgmaxηlmaxK

2
∥∇f(wt)∥2

Using Lemma 5,

T1 ≤
ηgmaxηlmax

2L2K2

2c′
E [f(wt)− f(w∗)]− ηgmaxηlmaxK

2
E[∥∇f(wt)∥2]

We take expectation on both sides of Equation 50. Substituting the bound on T1 using Lemma 5 and
bound on T2, we obtain

E[f(wt+1)] ≤ E[f(wt)] +
ηgmax

ηlmax
2L2K2

2c′
E [f(wt)− f(w∗)]− ηgmax

ηlmax
K

2
E[∥∇f(wt)∥2]

+
L

2N

∑
i

E[ηgt∥wt − wi
t,K∥2].

Now, we use Lemma 4 to obtain

E[f(wt+1)] ≤ E[f(wt)] +
ηgmaxηlmax

2L2K2

2c′
E [f(wt)− f(w∗)]− ηgmaxηlmaxK

2
E[∥∇f(wt)∥2]

+
Lηgmax

ηlmax
K

2c′
E[f(wt)− f(w∗)].

Subtracting f(w∗) from both sides and rearranging the terms, we obtain

ηgmaxηlmaxK

2
E[∥∇f(wt)∥2] ≤

(
1 + D̃

)
E[f(wt)− f(w∗)]− E [f(wt+1)− f(w∗)] , (51)

where D̃ :=
ηgmax

ηlmax
LK(ηlmax

LK + 1)

2c′
.

To create a telescoping scoping sum on the RHS, we use artificial weights βt, following (Stich, 2019),

such that βt

(
1 +

ηgmaxηlmax
2L2K2(ηlmaxLK + 1)

2c′

)
= βt−1, where β−1 = 1. Thus, multiplying

βt on both sides of Equation 51, we obtain

βt
ηgmax

ηlmax
K

2
E[∥∇f(wt)∥2] ≤ βt−1E[f(wt)− f(w∗)]− βtE [f(wt+1)− f(w∗)] .
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Summing on both sides from t = 0, . . . , T − 1, we obtain

T−1∑
t=0

βt
ηgmax

ηlmax
K

2
E[∥∇f(wt)∥2] ≤ β−1E[f(w0)− f(w∗)]− βT−1E [f(wt+1)− f(w∗)] .

Since, −βT−1E [f(wT )− f(w∗)] is a negative term, it can be ignored. Now, using β−1 = 1 and
diving both sides by

∑T−1
t=0 βt, we obtain

min
t=0,1,..., T−1

E[∥∇f(wt)∥2] ≤
1∑T−1

t=0 βt

T−1∑
t=0

βtE[∥∇f(wt)∥2] ≤
2

ηgηlmaxK
∑T−1

t=0 βt

E[f(w0)− f(w∗)].

To find a final upper bound for the LHS, we need to find a lower bound for
∑T−1

t=0 βt. We evaluate∑T−1
t=0 βt as

T−1∑
t=0

βt =
1

(1 + D̃)

1−
(

1
1+D̃

)T
1−

(
1

1+D̃

) =
1

(D̃)

(
1−

(
1

1 + D̃

)T
)
. (52)

Choosing ηlmax such that
(

1
1+D̃

)T
≤ 1

2 ⇐⇒ T ≥ log(2)

log(1+D̃)
provides a suitable lower bound for∑T−1

t=0 βt. Using the identity 1
log(1+x) ≤

1
x + 1

2 for x > 0, we note that

log(2)

log(1 + D̃)
≤ 1

log(1 + D̃)
≤ 1

D̃
+

1

2

Thus, it is sufficient to choose ηlmax
such that

1

D̃
+

1

2
≤ T ⇐⇒ D̃ :=

ηgmaxηlmaxLK(ηlmaxLK + 1)

2c′
≥ 2

2T − 1
.

Ignoring the negative root of the quadratic inequality (ηgmaxL
2K2)ηlmax +(ηgmaxLK)ηlmax ≥ 4c′

2T−1 ,
the bound for ηlmax

is obtained as

ηlmax ≥

8c′

2T − 1

ηgmaxLK +

√
(ηgmaxLK)2 + ηgmaxL

2K2
16c′

2T − 1

, (53)

using the quadratic formula x = −2c
b+

√
b2−4ac

for a quadratic equation ax2 + bx+ c = 0. Hence, for

ηlmax satisfying Equation 53, we have
(

1
1+D̃

)T
≤ 1

2 , thus
∑T−1

t=0 βt == 1
(D̃)

(
1−

(
1

1+D̃

)T)
≥

1
2D̃

. Thus, choosing ηlmax
according to Equation 53 for 2T − 1 > 0 when T ≥ 1, we have

min
t=0,1,..., T−1

E[∥∇f(wt)∥2] ≤
4D̃

ηgmaxηlmaxK
E[f(w0)− f(w∗)]. (54)

E COMPARISON OF ARMIJO LINE SEARCH WITH BOUNDED HETEROGENEITY

The maximum value of ARMIJO step-size for each client is fixed as ηlmax
, see Algorithm 2. Line-

search for a client-local LR begins with ηlmax
and continues until a maximally feasible ηit,k is obtained

that satisfies the Armijo condition.

We include Lemma 1 of Vaswani et al. (2019) for our discussion. Note that we do not use these
bounds on the learning rate in our poofs.
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Lemma 6 (Lemma 1 of Vaswani et al. (2019)). Assume that for each client i and sample ξ ∼ Di,
the function fi(·, ξ) is Lξ-smooth (define, L := maxξ∼D Lξ). Let c ∈ (0, 1) and ηlmax

> 0. At inner
step (t, k) on client i, the Armijo line search returns a step-size ηit,k ∈ (0, ηlmax

] satisfying

ηit,k ≥ min

{
2(1− c)

L
, ηlmax

}
.

Proof. Set git,k−1 := ∇fi(wi
t,k−1, ξk) and wi

t,k := wi
t,k−1 − ηit,kg

i
t,k−1. By L-smoothness,

fi(w
i
t,k, ξk) ≤ fi(w

i
t,k−1, ξk) + ⟨git,k−1, w

i
t,k − wi

t,k−1⟩+
L

2
∥wi

t,k − wi
t,k−1∥2

= fi(w
i
t,k−1, ξk)− ηit,k∥git,k−1∥2 +

L

2
(ηit,k)

2∥git,k−1∥2

= fi(w
i
t,k−1, ξk)−

(
ηit,k −

L(ηi
t,k)

2

2

)
∥git,k−1∥2. (55)

The Armijo condition with parameter c > 0 is

fi(w
i
t,k, ξk) ≤ fi(w

i
t,k−1, ξk)−cηit,k∥git,k−1∥2. (56)

A sufficient condition for equation 56 to hold is that (ηit,k −
L(ηi

t,k)
2

2 ) on the RHS of equation 55
dominates the Armijo decrease cηit,k:

ηit,k −
L(ηit,k)

2

2
≥ c ηit,k ⇐⇒ ηit,k ≤ τ :=

2(1− c)

L
.

Therefore, every η ∈
(
0,min{τ, ηlmax

}
]

is a feasible step that satisfies equation 56. Let us define the
Armijo acceptance set at the inner step (t, k) for a client i as

Ai
t,k :=

{
η ∈ (0, ηlmax ] : equation 56 holds

}
.

Clearly, (
0,min{τ, ηlmax

}
]
⊆ Ai

t,k.

By the line-search selection rule: return the maximal feasible step in (0, ηlmax
],

ηit,k ≥ min{τ, ηlmax
} = min

{
2(1− c)

L
, ηlmax

}
is returned by the line-search algorithm.

Remarks.

1. The inequality ηit,k ≤
2(1−c)

L is a sufficient condition for Armijo line search. Thus,(
0,min

{
2(1−c)

L , ηlmax

}]
is the guaranteed feasible set that will satisfy Armijo. The learn-

ing rate returned by Armijo, which is the maximal step-size such that equation 3 is satisfied,
will be lower bounded by 2(1−c)

L , hence 2(1−c)
L need not be the maximal step; larger steps

are possible.
2. The lower bound concerns the returned step when the line-search selects the largest feasible

step on its search set.
3. Geometric backtracking (Alg. 2, opt=1). If the search tests only the grid
{ηlmax , βηlmax , β

2ηlmax , . . .} with fixed β ∈ (0, 1) and returns the largest grid point in
Ai

t,k, then ηit,k ≥ β min
{

2(1−c)
L , ηlmax

}
.

This is because if 2(1−c)
L ≥ ηlmax , the search starts with ηlmax and the first test passes,

so the returned step is η = ηlmax
≥ β ηlmax

= β min
{

2(1−c)
L , ηlmax

}
. Otherwise, if

2(1−c)
L < ηlmax , let m be the smallest integer such that βmηlmax ≤

2(1−c)
L < βm−1ηlmax .
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Since every η ≤ 2(1−c)
L satisfies the Armijo condition, βmηlmax

lies in the feasible set; hence
the returned step satisfies η ≥ βmηlmax

. Because 2(1−c)
L < βm−1ηlmax

, we have β 2(1−c)
L <

βmηlmax
>. Therefore η ≥ βmηlmax

> β 2(1−c)
L = β min

{
2(1−c)

L , ηlmax

}
.

For opt∈ {0, 2}, the guarantee becomes ηit,k ≥ β min
{

2(1−c)
L , ηstart

}
, where ηstart is the

starting step-size used in reset. This can be arbitrarily small if ηstart is small.

For the analysis, we considered the search for step-size in the continuous space over all reals with
opt=1, not the grid, i.e., the line search returns the largest feasible step in (0, ηlmax

].

We now give the Lemma that provides an upper bound which allows ARMIJO to substitute the
bounded heterogeneity assumption.
Lemma 7. Under assumption 6, there exists c′ := (c− 2κfηlmax

) > 0, equivalently, κf < c
2ηlmax

,
such that ARMIJO line-search (3) yields∑

k,i

E
[
∥∇fi(wi

t,k−1)∥2
]
≤ max

{
L

2(1− c)
,

1

ηlmax

}
1

c′

(
f(wt)− E

[∑
i∈St

1

S
fi(w

i
t,K)

])
.

Proof. Using Lemma 3, we obtain

E

 1

S

∑
k,i∈St

(
fi(w

i
t,k)− fi(w

i
t,k−1)

) ∣∣∣∣Ft

 Lemma 6
≤ −min

{
2(1− c)

L
, ηlmax

}
c′

S
E

 ∑
k,i∈St

∥gi(wi
t,k−1)∥2

∣∣Ft


where c′ := (c− 2κfηlmax

) > 0, when κf < c
2ηlmax

. Using the squared mean as a lower bound for
the second moment, we obtain

E

 1

S

∑
k,i∈St

(
fi(w

i
t,k)− fi(w

i
t,k−1)

) ∣∣∣∣Ft

 ≤ −min

{
2(1− c)

L
, ηlmax

}
c′

S
E

 ∑
k,i∈St

∥∇fi(wi
t,k−1)∥2

∣∣Ft


Thus, rearranging and expanding the telescoping sum, we obtain

min

{
2(1− c)

L
, ηlmax

}
c′

N

∑
k,i

E
[
∥∇fi(wi

t,k−1)∥2
∣∣Ft

]
≤

(
f(wt)−

∑
i∈St

1

S
E
[
fi(w

i
t,K)|Ft

])
Thus, we have∑

k,i

E
[
∥∇fi(wi

t,k−1)∥2
∣∣Ft

]
≤ max

{
L

2(1− c)
,

1

ηlmax

}
1

c′

(
f(wt)−

∑
i∈St

1

S
E
[
fi(w

i
t,K)|Ft

])

F EXTRA EXPERIMENTAL DETAILS

Description of Dataset

CIFAR10/100 The CIFAR-10 dataset is composed of 60,000 natural images of size 32×32 pixels,
categorized into 10 distinct classes. CIFAR-100 builds on the same image set but introduces a more
fine-grained classification scheme, dividing the images into 100 classes and thereby increasing the
difficulty of the classification task. Both datasets consist of 50,000 training images and 10,000 test
images. For training in the federated learning environment, the training data is artificially partitioned
among 100 clients using the data partitioning strategy proposed by (Hsu et al., 2019), introducing
non-IID characteristics across clients.

FEMNIST The FEMNIST data set is a federated variant of the EMNIST dataset, designed to
benchmark personalized and federated learning algorithms as introduced by (Caldas et al., 2018), the
dataset is naturally partitioned between 3,550 clients. The dataset contains a total of 80,5263 samples
with 226.83 samples per user.
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SHAKESPEARE The SHAKESPEARE dataset is a character-level language modeling task derived
from The Complete Works of William Shakespeare as in (Caldas et al., 2018). It is structured for
next-character prediction and is commonly used to evaluate federated learning methods in natural
language processing tasks.The dataset is partitioned between 1,129 users.The dataset contains a total
of 4,226,15 samples with 3,743.2 samples per user.

Experimental Analysis of Line Search Steps in the SLS Optimizer
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Figure 4: Average Line Search Steps vs Communication Rounds

• In Figure 4, we evaluate the average number of line search steps (retries) per gradient step
update per client during training with the FedExpSLS algorithm. As shown, the behavior of
the SLS optimizer varies across different datasets:

• CIFAR10 : We observed a higher number of line search steps during the initial rounds
of training. After approximately 100 rounds, this count rapidly declines and stabilizes at
around one line search step per gradient step update per client. The plot 4a shows that the
optimizer tunes the learning rate during first 100 rounds of training.

• CIFAR100 and FEMNIST : With CIFAR100 and FEMNIST dataset, the number of line
search steps drops sharply from around 4 to approximately 1 within the first 50 training
rounds. The drop of retry count suggests faster convergence by the optimizer.

• SHAKESPEARE : The line search step count remains around 1 consistently throughout
the training.
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step update per client v/s varying c values

Figure 5: CIFAR-10 experiments with varying c values

From figure 5a and 5b, we observe that increasing the value of the hyperparameter c leads to a decline
in test accuracy and an increase in the line search steps when using the FedExpSLS algorithm.
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