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ABSTRACT

The classical line search for learning rate (LR) tuning in the stochastic gradient
descent (SGD) algorithm can tame the convergence slowdown due to data-sampling
noise. In a federated setting, wherein the client heterogeneity introduces a slow-
down to the global convergence, line search can be relevantly adapted. In this
work, we show that a stochastic variant of line search tames the heterogeneity in
federated optimization in addition to that due to client-local gradient noise. To
this end, we introduce Federated Stochastic Line Search (FEDSLS) algorithm
and show that it achieves deterministic rates in expectation. Specifically, FEDSLS
offers linear convergence for strongly convex objectives even with partial client
participation. Recently, the extrapolation of the server’s LR has shown promises
for improved empirical performance for federated learning. To benefit from extrap-
olation, we extend FEDSLS to Federated Extrapolated Stochastic Line Search
(FEDEXPSLS) and prove its convergence. Our extensive empirical results show
that the proposed methods perform at par or better than the popular federated
learning algorithms across many convex and non-convex problems.

1 INTRODUCTION

Federated learning. Consider training a machine learning (ML) model w € R? on data scattered
over clients/nodes i € [N]. With limitations posed by volume, speed, governing policy, etc., on data
centralization, federated learning (FL) is a go-to approach to train the models over client-local data.

Formally, training w € R in an FL setting is represented as min,,cga { flw) =% Zfil fwt) },
where w’ € R? is a local copy of w € R? on the client 4.

A basic algorithm for the federated optimization is federated averaging (FEDAVG) (McMahan et al.}
2017), where after several local SGD updates, clients synchronize at a node called server. FEDAVG
can be described as the following:

w;k = wi},%l — ni,kg(w;kfl) for k € [K], with wi}o = wy, )
[St|
wepr = wyp—1,Ay, where Ay = — > {A} = w; —wj x}, )
|Se] = 7

where w; denotes the server’s model after ¢ synchronization rounds, also called the global model.
With w; communicated to clients, w} , is the model state at client ¢ € [N] after k local gradient

updates. S; C [N]is a subset of participating clients for the ¢-th round. A? := w; —w! ;- denotes the
model update at client i due to & local gradient update steps, whereby, A represents the synchronized
update to the model after ¢ rounds; 7, is the learning rate at the server. Convergence of FEDAVG
suffers from heterogeneity in clients’ data distribution, their participation frequency, drift in their
optimization trajectory, etc. To help mitigate these drawbacks, methods such as FEDPROX (Li et al.,
2020), ScAFrFoLD (Karimireddy et all [2020), etc. were proposed. Note that the update rule (2) for
wy by Ay, often referred to as pseudo-gradient, is analogous to that of standard stochastic gradient
descent (SGD) algorithm (Robbins & Monro, |1951)).

The server-side LR 7, naturally influences the performance of federated optimization. (Reddi
et al., 2021) noted that small client LRs nf’ & help reducing their drifts, wherein a larger server LR



7g, can address the incurred slowdown. However, (Malinovsky et al., [2023) showed that if the
clients’ objectives significantly differ then larger server LR does not help convergence. Subsequently,
FEDEXP (Jhunjhunwala et al.,2023)) proposed using LR extrapolation drawing from projected convex

) A‘L 2
optimization (Pierra, [1984). An extrapolated 7, is upper-bounded by m and is at least

1, where ¢ is a small positive constant to avoid the cases of division by 0. |Li et al.[(2024)) proposed
FEDEXPROX by extending FEDEXP to incorporate proximal objectives on clients and showed linear
convergence for strongly convex objectives under an interpolation condition across clients.

The line search for LR is a classical strategy proposed by |Armijo| (1966) that ensures guaranteed
descent in function values by ensuring that f(w;1) < f(w;) — ||V f(w;)||? for a ¢ > 0 for full
gradient descent. [Vaswani et al.|(2019) adapted it to sample-wise updates by a stochastic guarantee
of f(wit1,&) < flwe, &) — c|lg(wy)||?. They proved that under an interpolation condition generally
satisfied (Zhang et al.| [2016) by models such as deep neural networks, SGD with ARMIJO line
search achieves the deterministic convergence rate, thereby a linear convergence for strongly convex
objectives. The deterministic rates achieved by SGD with stochastic line search is a direct result of
shielding the data sampling noise by c||g(w;)||?; we formally elaborate on it in Section However,
it is interesting to note that interpolation itself is sufficient to ensure deterministic rates, as we discuss
in Section 4} Thus, it remains to investigate if ARMIJO scheme can provide expected descent without
an interpolation assumption. Nevertheless, with partial participation of clients S; C [N] resulting
in supplemented noise, it is imperative to translate the line search scheme to a federated setting.
However, implementing line search for 7, can not be direct because the server does not host any data
sample in a standard federated setting.

Therefore, we ask if introducing line search on the clients only can tame the noise-slowdown due to
both data sampling and partial client participation. Furthermore, motivated by the results of FEDEXP
and FEDEXPROX, if extrapolation can further improve such an FL algorithm. Our exploration
answers both these questions affirmatively. In this work, we introduce line search in federated
optimization and extend it to combine with extrapolation. Our contributions are summarized below.

1. Firstly, we strengthen and clarify the role of line search in SGD by relaxing the assumptions
of [Vaswani et al| (2019) — we replace (a) sample-wise smoothness/convexity with standard
population-level (expected) smoothness/convexity of the objective, and (b) interpolation with a
weaker expected sufficiently accurate function-estimates for the stochastic functions used inside
the ARMIJO condition for line search.

2. Federated Stochastic Line Search (FEDSLS): We establish that the stochastic ARMIJO line-
search on clients directly influences the global model update on the orchestrating server. FEDSLS
provably offers deterministic rates for federated convergence even with partial participation of
clients, specifically, it provides linear convergence for strongly convex objectives in this setting.
Our convergence results requires an interpolation assumption only at the client-level model and
escapes a requirement for this assumption at the level of samples on each client.

3. Federated Extrapolated Stochastic Line Search (FEDEXPSLS): We extend FEDSLS to FED-
EXPSLS that incorporates extrapolation in 7, to harness its advantages. We prove that FEDEXP-
SLS provides the same convergence guarantees as FEDSLS under standard assumptions.

4. We perform extensive benchmarks to validate the empirical efficacy of the proposed algorithms.
Our benchmarks prove that FEDSLS and FEDEXPSLS outperform the competitors across a
variety of deep learning tasks.

Figure [I] presents the results of a toy example to motivate a reader.
Similar to (Jhunjhunwala et al.|2023)), we consider two clients each
optimizing a distinct local objective function defined as follows:

FedAvg
FedExp
FedExpSls
FedSls

Training Loss

Fl(W) = (’(1)1 + wo — 3)2, FQ(W) = (w1 + 211.)2 - 3)2

It evidently highlights the benefits of combination of extrapolation L
and line search in federated learning. Commnication Round
Figure 1: Efficacy of line search.

2 RELATED WORK

The motivations to alleviate the shortcomings of the baseline FEDAVG have led to development of a
rich landscape of FL algorithms, in many cases, directly inspired by the variants of SGD.



The data and system heterogeneity across clients and the associated drifts between their optimiza-
tion dynamics and the server’s model’s trajectory poses primary challenge for FL. For this, FEDPROX
(Li et al.l 2020) introduced a regularizer term: £|jw’ — wl|* in clients’ objectives with respect to
(w.r.t.) the global model making the client-local optimization proximal. Similarly, SCAFFOLD
(Karimireddy et al.,|2020) introduced control variates at server and clients to check the client drifts.
FEDDYN (Durmus et al.l|2021) proposed an additional regularization term for clients’ objectives
similar to FEDPROX. However, beyond a modified local objective, FEDPROX, SCAFFOLD, FEDDYN,
employ the same averaging-based synchronization as given in (2)) and keep the server’s learning rate
74 constant; often ny = 1. Surely, they leave scope to tune 7, including adapting it to A, updates.

Adaptive LR methods such as ADAGRAD (Duchi et al.,|2011), ADAM (Kingma & Bal [2015), and
YOGI (Zaheer et al.L[2018)), are a standard approach to improve SGD. Motivated by them, (Reddi et al.|
2021)) employed these schemes to update rule (2)) to propose FEDADAGRAD, FEDADAM, FEDYOGI
methods. Wu et al.|(2023) introduced variance reduction to adaptive schemes to propose FAFED.
Wang et al.| (2022) introduced communication compression and error-feedback to FEDADAM.

Beyond first order, the second-order: FEDDANE (Li et al.|[2019)) and FEDNEW (Elgabli et al.| 2022)),
and zeroth-order: (Q1u et al.,|2023) model updates were also introduced to federated optimization.
Furthermore, MOON (Li et al.,|2021)) and FEDPROTO (Tan et al., 2022) proposed model contrastive
and prototype learning, respectively, in federated setting. |Chatterjee et al.| (2024) introduced con-
current updates on clients to harness their share-memory compute resources in a federating setting.
However, none of these algorithms used any variant of line search. As we introduce the stochastic
ARMUIIO line search to FL, it is relevant to note other related efforts in non-federated setting.

Variants of line search. Classical (deterministic) line search methods include Wolfe conditions
that include Armijo/backtracking (Armijo, |1966) based on sufficient decrease and curvature/strong-
Wolfe curvature conditions (Wolfel [1969) that add a curvature check and are standard for (L-)BFGS.
Goldstein (Goldstein & Pricel [1967)-type bracketing rules and nonmonotone schemes (Grippo et al.,
1986; |Zhang & Hager, |2004)) that require the maximum/average of function values decrease have also
been suggested in the deterministic regime. In stochastic regimes, two broad line search families have
been explored stochastic Armijo tests (Vaswani et al., 2019; |[Paquette & Scheinberg, [2020; (Cartis
& Scheinberg) |2018;; Berahas et al.l 2021} Jin et al., 2021)) that replace exact function values with
mini-batch estimates and control acceptance of SGD step after line search, and probabilistic/Bayesian
(Mabhsereci & Hennigl 2017) line search methods that impose Wolfe-like conditions in expectation
or with high probability. We adopt a stochastic ARMIJO-style rule embedded in SGD as the first
algorithm to offer line search for federated learning.

In terms of theoretical guarantees, before our paper, two existing works offer linear convergence
rates for strongly convex objectives: the FEDLIN algorithm (Mitra et al.| 2021) and FEDEXPROX of
(L1 et al., |2024). FEDLIN achieves linear ergodic convergence — convergence of function of averaged
model over iterates — for smooth and strongly convex objectives with full gradient updates and full
client participation. In the stochastic setting, FEDLIN maintains a standard sublinear convergence
even for strongly convex objectives. By contrast, our method provides a linear convergence even
with the stochastic gradient updates and partial client participation. The experimental performance
of FEDLIN is not known beyond a basic linear regression on a small dataset. As mentioned before,
FEDEXPROX offers deterministic rates similar to us. Our experimental results in Section |5 show that
FEDEXPSLS outperforms FEDEXPROX in many cases.

3 ALGORITHM AND ASSUMPTIONS

The interface for the FEDSLS and FEDEXPSLS algorithms is given as a pseudo-code in Algorithm
[Il We refer to|Vaswani et al.|(2019)’s algorithm as SGD-ARMIJO. The complete SGD-ARMIJO
(Algorithm ), FEDSLS (Algorithm ), and FEDEXPSLS (Algorithm [5)) are given in Appendixes [A]
and [B] Essentially, each client conducts local gradient update using SGD-ARMIJO method, while the
server opts to extrapolate its LR. We now state some standard assumptions:

Assumption 1 (Smoothness). The functions f; are L-smooth, i.e., for all x,y € R4, it holds that
fily) < filz) + Vi(z) T (y — ) + £|ly — || It is straightforward to prove that f as a sum of
L-smooth functions is also L-smooth.

Assumption 2 (Convexity). When needed, we specify that the functions f; are convex, i.e., for all
z,y € RY, fi(y) > fi(z) + Vfi(x) " (y — x). Therein, f is also convex.



Algorithm 1 A framework for FEDSLS and FEDEXPSLS methods.

1: initialize wg
2: foreachround ¢t =0,1,...,7T — 1do

3: S; < (random set of S clients); Server sends wy to clients ¢ € S; in parallel

4: for each client i € S; do

5: fork=1,2,..., K do

6: w ;. < SGD—ARMUO(w} ;)

7: end for

8: A} wp —wy g

9: end for ,

100 Ay= L g Aliny, < max {1, M} if FEDEXPSLS else , if FEDSLS;
11: W1 < W — ngtAt

12: end for

13: return wp

Assumption 3 (Strong- Convexity). When needed, we specify that the functions f; are u— strongly
convex, i.e., forall z,y € R%, it holds that f;(y) > fi(z) + Vfi(z) " (y — z) + 4|y — «||*>. Therein,
f is also p— strongly convex.

We also lay out the following additional assumptions which we use in the discussions but are not
assumed for our theoretical results:

Assumption 4 (Bounded Variance). We assume that the variance of g{ , (w) is bounded by a constant
o2, given as E[|g; ), (w) — V fi(w)[[?] < o, |

Assumption 5 (Bounded Gradient dissimilarity). The norm of the clients’ gradient averaged across all
clients for all w € R? is bounded as +- Zfil |V fi(w)|? < G+ B?|Vf(w)]]? for G >0, B > 1.

If f; are convex, then the bound can be relaxed to 4 Zf;l IV fi(w)||? < G24+2LB2(f(w)— f(w*)).

4 CONVERGENCE RESULTS

Definition 1 (Armijo Condition). For the k-th step in the t-th communication round, the Armijo
condition for the local objective functions f; at a sample £, with a constant ¢ > 0 is given by

fi(wi,kvfk) - fi(wz,k_17§k) < *an,k”gi(wi,k—l)nz- 3
4.1 DETERMINISTIC RATES FOR SGD

Here we discuss how ARMIJO condition mitigates the effect of the bias term in convergence of
SGD and retrieves deterministic GD rates in expectation. For brevity, we drop the subscript ¢ and
superscript ¢ here as we are looking at the SGD updates at a single client for local rounds.

Denote the loss function for i-th client performing SGD update by f;(w) := 5+ Zi\f:l filw, &™),
where £ denotes the m-th sample and M; is the total number of samples for the client ¢. The
stochastic gradient g;(w) := V f;(w, §) is the unbiased estimator of the full gradient E[g;(w)] =

V fi(w). We first give a few definitions.

Definition 2 (Sample-wise Interpolation). For a sum of functions problem, if there exists a w* € R¢
such that f;(w*,&™) = inf,, fi(w,&™) for all m = 1,2,..., M;, then interpolation holds, i.e.,
gi(w*) =V fi(w*, &™) =0

We now define the notion of expected sufficiently accurate stochastic estimates for a single local
solver to analyze SGD by reformulating the probabilistically sufficiently accurate function estimate
definition in [Paquette & Scheinberg| (2020).

Definition 3 (n}-accurate function). For ¢ > 0 as in definition|l|and for 0 < Ii’éc < , the

Imax

stochastic function estimates f;(w_,&x) and fi(wh, &), at the sample & drawn independently



at random at step k, of the true functions f;(wi_,) and f;(w}), respectively, are m}- accurate
in expectation with respect to the current iterate wi_l, step-size 77};,, and the stochastic gradient
gi(wi ) =V fi(wi _,,&) for a sample & if it holds that
E [ fi(w),_1, &) — filwh )| |Fr-1] < &5 E [(0k)?[lgi(wh )P [ Fr-1] ,
E [| fi(w, &) = filwp)] [ Fr—1] < w5 E [(00)?]lgi(wi— )1 Fra] ,
where Fi_1 is the filtration that accounts for all the randomness due to stochastic function and
gradient estimates up to step (k—1).

Define ky := lrél[&}@(] #'%. Thus, f; Vi € [N] is s j-accurate in expectation.

Remark 1. For linear least-squares loss function, the interpolation condition trivially satisfies the
assumption that the function estimates are sufficiently accurate in expectation, since LHS=RHS= 0
as fi(w*,&) =0 = f(w*) for any £ and g;(w*) = 0. Thus, in this particular case, interpolation is a
stronger condition than the assumption that function estimates are sufficiently accurate in expectation.

For n; < i for smooth and convex objectives, classical SGD iterates satisfy (see, Appendix i

B [f,() — i fi] € 5o o — | el @
o U K- 2p) (1—2nL)’
——
bias term
where o = infycargmin s Ellgi(w*) — Vfi(w*)||* and inf f denotes a lower bound for

f(w),Yw € RZ Tt is easy to see that the performance of SGD slows down compared to GD
due to the presence of the bias term which depends on variance of the gradient noise. We now present
a result of SGD with ARMIJO line-search, which depicts how ARMIJO condition allows overcome
this bias without sample-wise interpolation.

Theorem 1. Let the objective function for the i-th device f; be L-smooth and convex, the function
estimates in ARMIJO line-search are k; sufficiently accurate in expectation. For ¢ > % B s
SGD with ARMIJO Line search (3)) achieves the convergence rate of deterministic gradient descent in
expectation as

E[fi(wy) — inf f;] < [wo — w*||? S)

<

- _ K
where ¢ := ¢ — 2k ... and W, = 4 > p_q Wr—1.

Note that when ¢ > %, the rate given by the bound in H is satisfied unlike classical SGD, where the
LR is tuned manually, which is similar to the results given by [Vaswani et al.[(2019).

Comparing (@) and (3, we can see that Armijo condition aids in mitigating the effect of gradient
noise. These results highlight the explicit benefit of the ARMIJO condition in stochastic settings.
We defer the complete proof to Appendix [A.T] where we also discuss the cases for other analytical
classes of functions. Motivated by this insight, we use ARMIJO line search in Federated Learning to
mitigate the effect of client drift and gradient noise.

4.2 TOWARDS DETERMINISTIC RATES IN FEDERATED LEARNING

We now discuss the impact of SGD-ARMIJO, when implemented as client-local solver. The SGD
updates at a client i after K local steps is written as wj = w; — SR g 9i(w} _,). The
theoretical results correspond to the partial participation of clients. For brevity, we >, to denote
S L3 todenote |, and > _ics, denotes summation over i € S;. We define a filtration F;
that contains all the randomness up to the evaluation of the global update w;. We now state the

assumption of sufficient accurate function estimates in expectation for the federated setting, a natural
extension of Definition 3]

Assumption 6. For some 0 < £’ < ST the stochastic function estimates f; (wé w_1,&;) and

fi (wé w» &1 ), at the sample £ drawn independently at random at local round  in ¢-th global round, of



the true functions f;(w; , ) and f;(w} ;), respectively are #- accurate in expectation with respect
to the current iterate w{ , _,, step-size n; , and g;(wi , ;) := Vfi(wi ,_,,&L) for a sample &1, i.e.,

E [|fi(whk—1,6) = filw o) Fkoa] < w5 E [0 ) llgi (wh ) IIP[F7 1]
E [|fi(wh k&) — filwi o) |7 xa] < w5 E [0 ) llgi (wh ) IIP]F7 1]

where F7 ;. denote the o-algebra containing F; and all local randomness of client 4 up to step k—1.

Define k¢ := 1ma}]§[ /{?, thus for some 0 < Ky < , the assumption of & ¢-accurate function in

Imax

expectation holds.

We now present Lemma [T] that highlights that client-local SGD-ARMIJO alleviates the requirement

for heterogeneity bound in federated setting.
C
2Mimax

> 0, equivalently, Ky <

max )

Lemma 1. Under assumption |6} there exists ¢’ := (¢ — 2k,
such that ARMIIO line-search

SNk < max{ ot LS <f<wt> -E

ki max
s

vields

Z ;ﬁ(%;ﬂ]) - (6

i€S:
The proof is deferred to Appendix [E]

ARMIJO line search vs. bounded heterogeneity The standard bounded heterogeneity as-
sumption (5[ for the iterate wj , , at ¢,k step can be given as LY LE {||Vfi(w;k71)”2} <

G*+ B*Y K {HVf(w;k_l)Hz], for G > 0, B > 1. Comparing it to (ﬁ) we can see that

ARMIJO line search provides another upper bound for the same quantity and thus, we can prove the
results without needing assumption |5 However, it is difficult to resolve the term } s, % fi (wz %)
to the global objective function at some known argument. To resolve this, we need to adapt the
client-wise interpolation assumption for our results.

Remark 2. In the special case, f; = f forall i € [N] (i.e., G = 0, B > 1), a case stronger than i.i.d.
data , then due to the convex (or strongly convex) nature of functions, Jensen’s inequality enables
carrying the clients’ objective’s descents to the global objective when the global learning rate n,, < 1.
Thus, in that case for convex objectives, the descent in the global function comes for free. However,
descent can’t be guaranteed for non-convex objectives.

Assumption 7 (Client-wise interpolation). There exists w* € R? such that V f;(w*) = 0 for all
ie{l,2,...,N}.

With assumptions [6] and [7, ARMIJO line search enables a simplified convergence analysis of the
proposed algorithms FEDSLS and FEDEXPSLS. It allows for control of the client drift using an
objective gap between the current global iterate and the averaged local objectives after k local
ARMIIO line search calls— f(w¢) — & D¢ s, Ji(w} i), rather than relying on auxiliary bias terms
that obtained using bounded heterogeneity and bounded variance of the clients’ gradients. This
structural advantage is the reason we are able to achieve convergence rates comparable to those in
the deterministic full-participation setting, despite the presence of partial client participation and
stochastic gradient updates. However, we need the interpolation regime (client-wise) to translate the
average of local objectives % D i S fi(w; «) to the global objective evaluated at some value. While

under interpolation, one can relate f;(w;) — 1>, s, Ji(w} x) to the optimality gap f(w;) — f(w*).

S

Note that|Li et al.| (2024) also achieved linear rates for strongly convex objectives. At the core of their
approach lies the proximal term in the client objectives. An exact solution of the proximal problem
largely provides the foundation for mitigating the bias term in convergence error upper-bound that
we used the ARMIJO condition for. They extended their results in (Anyszka et al.||2024) to show that
FEDEXPROX achieves linear convergence for Polyak-Lojasiewicz objectives.

4.3 CONVERGENCE OF FEDSLS

We now describe the convergence results of FEDSLS for convex, strongly convex and non-convex
classes of objective functions.



Theorem 2 (f; are convex). Let the functions f; satisfy the assumptions[I} 2} [land[7} For a constant
global learning rate 14, = 14 and client learning rate 7, < ﬁ, FEDSLS achieves the
convergence rate for average of iterates as

Ied 5
wo — w* @)
(2¢ = ng — KLt )N M KT lreo |

E[f(w) = f(w")] <

where Wy = % Zz:ol wy and ¢’ == c— 2kymy,, ., such that ¢ > 0.

The proof of Theorem [2] is included in Appendix [C|in the supplementary. Theorem [2] shows a

sublinear convergence for convex problems.

Theorem 3 (f; are strongly convex). Let the functions f; satisfy the assumptions|[I| B @andq For a
. _ . . C—T]g

constant global learning rate 14, = ng such that ng, < client learning rate ... < 17 pvl

FEDSLS algorithm satisfies

2
Mmax M7

Mg M L\
Blor - wl? < (1= 205 ) g - '

The proof of Theorem 3]is included in the supplementary in Appendix [C| Theorem 3|shows a linear
convergence for strongly-convex problems.

Theorem 4 (f; are non-convex). Let functions f; satisfy the assumptions || 6| and[7|For n,,,,, >

8c!

27T —1
Cl
N2LK+\/ (2 LK) 40, L2K2 38

, FEDSLS achieves the convergence rate

2L(m
=0,..., T C

LK+ 15) g wp) — 1))

max

where ¢’ == c— 2k, > 0.

max

The details are included in Appendix [C] in the supplementary. Theorem [4] shows a sub-linear
convergence for non-convex problems.

4.4 CONVERGENCE OF FEDEXPSLS

We now describe the convergence results of FEDEXPSLS for convex, strongly convex and non-convex
classes of objective functions.

Theorem 5 (f; are convex). Suppose a function f; satisfy assumption [land[7} For global

learning rate g, as computed in FEDEXPSLS constrained to lie in [1,1,, .. |, client learning rate
< 21
Mmax S KL4r;

, FEDEXPSLS achieves the convergence rate for average of iterates as

C/

— an*|2
2c —m,. KL— L. ng.. KT [|wo — w*|?,

E[f(w) = f(w")] <

= _ 1T /
where Wy = 7y, wy and c'.

The proof of Theorem [3] is included in Appendix [C]in the supplementary. Theorem [3] shows a
sublinear convergence for convex problems.

Theorem 6 (f; are strongly convex). Let the functions f; satisfy assumption 6l and[7} For
a global learning rate 14, computed in FEDEXPSLS constrained to lie in 1,1, | such that

, client learning rate n;_,, < #_41&,?’ the last update of FEDEXPSLS satisfies

T+1
X Linax M .
Eflwrsr — w'| < (1 - "’72“) Jwo — w1

The proof of Theorem [f is included in the supplementary in Appendix [C]in the supplementary.
Theorem 6] shows a linear convergence for strongly-convex problems.



Theorem 7 (f; are non-convex). Let the functions f; satisfy assumption[I}[6|and[7} For a global

learning rate 14, computed in FEDEXPSLS constrained to lie in [1,1,, . | and local learning rate

8c!
2T —1

VRS
Ngmax LK+ \/(T]Qn]ax LEK)?+1gmax L2 K? 217931

bound

FEDSLS achieves the convergence rate

>
maz =

2L(m,,. LK +1)

; E[f(wo) — f(w")],

max

C

=0?{1_%HT_1E[HVf(wt)||2] <

where ¢’ :=c — 2k, > 0.

max

The details are included in Appendix [C|in the supplementary. Theorem [/| shows a sub-linear
convergence for non-convex problems.

5 EXPERIMENTS AND NUMERICAL RESULTS

In this section, we conduct comprehensive evaluation of the proposed federated optimizers by
experimentally comparing their performance against established federated algorithms: FEDAVG,
FEDEXP, FEDEXPROX. We also include FEDADAM in the benchmarks for language model and in a
high heterogeneity case. The objective is to demonstrate that FEDEXPSLS leads to faster convergence
and improved stability during training in communication rounds.

Datasets and Architecture: We evaluated the proposed algorithms on a diverse set of benchmarks
that cover image classification and text prediction tasks. Our experiments involved four combination
of datasets (Caldas et al., |2018) and models: (a) CIFAR-10 with ResNet-18, (b) CIFAR-100 with
ResNet-18, (c) FEMNIST with Multi-Class Logistic Regression, and (d) SHAKESPEARE
with Long Short-Term Memory (LSTM).

Experimental Setup For training across different algorithms, we distributed CIFAR-10 and CIFAR-
100 over 100 clients as in (Jhunjhunwala et al.,2023)). The number of clients for FEMNIST and
SHAKESPEARE are selected as in (Caldas et al.,2018). In each training round, we uniformly
sample 20 clients without replacement within a round, but with replacement across rounds. We
compute mini-batch gradients on each client using a fixed batch size of 50. The number of local
epochs is fixed at K = 20 for all experiments. To introduce heterogeneity in the data distribution
across clients, we employ a Dirichlet distribution with a concentration parameter o = 0.3 (Caldas
et al., [2018)), which is standard in the existing experimental benchmarks (Karimireddy et al., [2020).
The training loss is calculated as the average of the losses reported by the participating clients in each
round, aggregated over 5 runs using different random seeds. All experiments were performed on
NVIDIA A6000 GPUs with 48 GB onboard memory. Wherever required, we performed grid search
for hyperparameter tuning.
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Table 1: Comparison of Training Loss

Method CIFAR-10 CiFAR-100 FEMNIST SHAKESPEARE
FEDAVG 0.57 +£0.01 2.07+0.02 2.25+0.00 1.81 £ 0.01
FedExp 0.38+0.01 1.44+0.02 2.19+0.00 2.12 £0.02
FedExpSLS  0.13 +0.01 0.5 £ 0.05 1.6 £ 0.01 1.66 + 0.03
FedExpProx 0.434+0.06 1.354+0.13 1.57+0.001 2.03 £0.03
FEDSLS 0.41+0.03 1.124+0.05 1.65+ 0.002 1.69 £+ 0.001
Table 2: Comparison of Test Accuracy
Method CIFAR-10  CIFAR-100 FEMNIST SHAKESPEARE
FEDAVG 76.8 +0.54  40.94+0.38  47.90 +0.09 47.67 +0.01
FEDEXxP 82.09 +0.56 50.244+0.34 48.68 + 0.21 47.81+0.23
FEDEXPSLS 87.29 £0.6 50.23+3.37 60.924+0.42 50.37 + 0.03
FEDEXPROX 81.79 +1.48 52.13+2.18 58.13 £3.06 48.56 + 0.12
FEDSLS 82.75+0.81 46.53+0.6 58.47 +0.12 49.94 + 0.35
Our code is available at https://anonymous.4open.science/r/

FederatedLineSearch-B663/README . md.

Analysis of Results The results of the experiments are shown as comparative training loss and test
accuracy in Figures[2]and 3] We also present the numerical results with standard deviation in Tables
and[2] Across all experiments, FEDEXPSLS consistently outperforms other algorithms. As an
exception to this trend, for the CIFAR-100 dataset, FEDEXPROX marginally does better in terms of
test accuracy. The high class count (100 classes) in CIFAR-100 introduces greater heterogeneity,
which favors the performance of FEDEXPROX. We evaluated FEDADAM for CIFAR-100 and
SHAKESPEARE datasets that involve higher heterogeneity and language models, respectively.
However, in both cases it overwhelmingly underperforms. We also counted the number of retries in
both FEDSLS and FEDEXPSLS to check the overhead for descent guarantees. However, in no case
we found the numbers higher than 2 in any round of training, which promises a very light overhead.
Our experimental results comprehensively back the algorithmic efficacy of our algorithms.

6 CONCLUSION AND DISCUSSION

In this paper we introduced two new federated learning algorithms. The algorithm FEDSLS provides
convergence rates similar to deterministic gradients even with partial participation of clients. Our
work uncovers that a line search scheme for the client-local stochastic gradient updates can tame the
effect of heterogeneity thus removing the requirement for an explicit bound on the same. Practically,
the line search addresses the slow down due to partial client participation, in addition to the data and
system-induced heterogeneity. The algorithm FEDEXPSLS empirically outperforms the state-of-the-
art methods across deep learning tasks. Our approach motivates exploring and extending line search
to future federated optimization algorithms.


https://anonymous.4open.science/r/FederatedLineSearch-B663/README.md
https://anonymous.4open.science/r/FederatedLineSearch-B663/README.md
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A  ARMIJO LINE SEARCH ALGORITHM

Algorithm [2] gives the pseudo-code for SGD with ARMIJO line-search implemented via the call
SGD—ARMIJO('w};fl, 7, M,max; 0, 0, k, opt) fork =1,2,..., K, where w,id is the state of the
model at (k—1)-th local round on a client with loss function f;; ;.. is an upper bound on the step
size n, 9 is the scaling/reset factor, b is the minbatch size , and opt is the reset policy. The line-search
scheme is stochastic because the Armijo condition [3]is evaluated on a minibatch (potentially of size
1) to compute function f; and its gradient. We include the SGD algorithm with ARMUO line-search 2]
from the point of view of a client (Vaswani et al.| 2019).

Algorithm 2 SGD—ARMUO(w},_1, 1, Mmi,..... 0, b, k, opt).

b, c the ARMIJO parameter, 3 the backtracking factor, § > 1, and opt

Input: 7, ,
Output: w},
1: by < sample mini-batch of size b
2: n < RESET/f
3: repeat
4 e fon 4
5: Wy, +— wi_y — NV fi(wy,_q, bi)
6: until f;(w},bx) < fi(wi_;,b) —c ||V fi(wh_;,bk)|? > Armijo Line Search
7: w,’:c — 12),’C
8: return w,

The RESET method, given in Algorithm 3] heuristically resets 7 based on the handle opt at every
gradient update step. Taking 7;_.. = 7mr—1 could be one strategy where we start dampening the
step-size from the last achieved state. However, it can increase the backtracking. This method can
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implement various heuristics that appeared in the literature: (Nocedal & Wright, [1999).Chapter 3.
The heuristic line search is an active area of research with new developments such as a new variant of
Goldstein Line search by Neumaier & Kimiaei| (2024).

Algorithm 3 RESET
Input: n, n,.... b, %k, 0 > 1, and opt
Output: wy,
. if £ = 1 then
return 7,

max

1

2

3: else if opt =0 then
4: n<n

5: else if opt =1 then
61 M M

7: elseif opt = b2 then
8: n<mn-dn

9: end if
10: return 7

A.1 DISCUSSION ON DETERMINISTIC LEARNING RATE

The convergence rate of SGD is slower in comparison to GD due to the effect of the variance of
stochastic gradients. This leads to SGD requiring a larger number of epochs to achieve the same
error tolerance in comparison to GD. In the following section, we explore how line-search using
ARMIJO rule mitigates this effect of variance and allows us to achieve deterministic rates for SGD in
expectation.

Let us consider f; to be the loss function for the i-th device performing an SGD update. In stochastic
setting, f; is defined as f;(w) := 57 2%21 f(w, &™), where £™ denotes the m-th sample and M
is the total number of samples for the device. The stochastic gradient g;(w) := V f;(w, &) is the
unbiased estimator of the full gradient E[g;(w)] = V f;(w). In this section, we drop the subscript ¢
and superscript ¢ from the model updates at a client wz . and write it as w}, instead, as we are looking
at the SGD updates at a single client for local rounds.

We first state a few prerequisites for our discussion.

Definition 4 (Interpolation). For a sum of functions problem, if there exists a w* € R? such that
filw*, &™) = infy, fi(w, &™) forallm = 1,2, ..., M, then interpolation holds.

Lemma 2 (Variance transfer). Define 0% := infy:cargmin f; Ellgi(w*) — Vf; (w*)||2. If each

f(w, &™) is convex and L-smooth, then for every w € R%, we have

E|gs(w)||? < 4L(f;(w) — inf f;) + 207,

The SGD update can be written as: w}, = w}_, —ni.g;(wi_,), where i, is the learning rate, w}
is the SGD update at (k—1)-th step. The proof of classical SGD for convex objectives f; with a fixed
learning rate 7;, = 7; using first-order convexity and lemmal gives the following bound:

E [[wp — w*|lwk—1] < lwh_y — w*||* + 20V fi(w)_y), wi_y — w*) + B [llgs (wh_ ) I* |wi—1]
< wp_y —w*|* 4+ 20 (2 L — 1)(fi(wj,_,) — inf f;) + 2707,
< wp_y —w*||* = 21 — 2 L) (fi(wy,_,) — inf f;) + 2707, (8)

for0 < < ﬁ Averaging on both sides for k = 1,2, ..., K, rearranging the terms and substituting
wh =+ Zszl w! _, after using Jensen’s inequality, we obtain

i 1 ; Ul
EIf 7 f i %2 *
[fl(wk) in fl] = 277 ( _ 277[L)K ||w0 w H + (1 . 277[L) O-f,i (9)
————

bias term
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The bias term in Q] represents the slowdown in convergence compared to deterministic GD. This term
can be subsumed under the interpolation condition E} when o, = 0, the rate obtained in Equation E]
is that of deterministic GD. (Vaswani et al.,[2019) et al. retrieved the deterministic GD rates for SGD
using ARMDJO line-search in expectation under the interpolation condition. This does not actually
reflect the benefit of using ARMIJO line-search.

We now discuss how ARMIJO condition subsumes the bias term in SGD and retrieves deterministic
GD rates in expectation. We begin with the assumption of expected sufficiently accurate stochastic
estimates for a single local solver to analyze SGD. Note that Fj,_ is the filtration that accounts for
all the randomness due to stochastic function and gradient estimates up to step (k—1).

Assumption 8. Define k5 := m[%\)rc] r's. We assume that for some 0 < k5 <
i€

fi Vi € [N] are k y-accurate in expectation.

, the assumption

lmax

Theorem 8. Let the objective function for the i-th device f; be L-smooth and convex, and Assump-
tionholds. For c > % + K Mo SGD with ARMIIO Line search (3)) achieves the convergence rate
of deterministic gradient descent in expectation as

E [fi(@g) — inf £i] € ool — "

(2¢ = D)y K
where ¢ := ¢ — 2k, and U = 3 Eszl Wh—1.
Proof. Let w be the iterate at the k-th step for a device i running SGD update and 7 is the learning
rate returned by ARMIJO line search condition 3]
lwi, = w|* = llwy—y —w*[|* = 20, gi(wi 1), wi—y —w") + [mgi(wi 1)
Taking the expectation on both sides conditioned on filtration Fj_;
E [Jwj, — w21 Fir] < oy — w2+ 28 [0, gi(why), w7 — wi )1 Foa] +E [ k) llgi (b )21 Fia]

Term 1

We first handle Term 1 as
E [(np gi(wj,_y),w* —wj_1)|Fr1] =E {(771 gi(wj,_y),w* — w271>]l{(gi(w};_l),w*—wg_1)>0}|fk*1]
+E [Wg gi(w_y), w* — wi:—1>]l{<gi(w};il),w*fw}ifl)SO}|‘Fk—1}
<E {(7712 gi(wj,_,), w* — w;;71>]1{<gi(w271),w*7w271)>0}|]:k*1}
< Mpax B Rgi(w;:cfl)ﬂf - wiic71>|~7:k—1}
= Mo (V fi(Wh ) 0" = wj_y) (10)

Using Equation[I0]and convexity of f;, we obtain

E [[lwy, — w*|*|Fa-1] < lwg = w*[|* = 21, (Fi(wi_1) — inf £5) + E [(03)?[lgi (wi)II* Fe—1]
(11)

Since 7}, is returned by ARMIIO line search condition thus it satisfies

filwh, &) — filwi_1, &) < —enillga(wi)|IP (12)
Rearranging and taking expectation on both sides of equation[I2]conditioned on Fj,_;

E [(m)?llgs (wi) |1*| Fr—1] < %E [0 (fi(wh— 1, &) — fi(wh, €k))| Fret]

< Mo g (o uf . €6) — fi o €6))| ]
< LcaxE [(filwh—1, &) = filwi 1) + filwy 1) = filwy, &) + fi(wi) = fi(wp))| Fe-1]
< Mo 5 [y f.y) = fiwh) + 265 (r)2lgs 1) 21

13)
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where the last inequality is obtained using assumption[§] Rearranging the terms, we obtain

(1 250 ) (0P ) PIFir] < 2 [k ) = o)l

_c
b
2Nlmax

E [0 g () Fimr] < g — B [filwh ) = fi(wi)| Fema] (14)

Choosing kf <

Substituting equation [I4]in equation [T} we obtain

E [[lwf — w*|?|Fer] < [[wh_y —w* | = 2 (fiwh_1) — inf f;) + — e B [(f(w)_y) — fi(wh))|Fe1]

€= 2K [T
< |lwk — w*||2 = (f;(w?) —inf £:) [ 2 o Mmax
< =0 = () = i £) (20— g —
Rearranging and summation on both sides for £ = 1, ..., K and taking expectation again on both
sides
¢
E[f;(wg) —inf f;] < ——F—— —w*|? 15
[fl(wk) m fl] = (25_ 1)771n,axK||w0 w H ) ( )
forc > 1 + kymi,... ¢ = c— 2ksm,,., and Oy = & Zszl Wk—1- O

Comparing Equations[9]and[T3] we can see that the ARMIJO condition subsumes the effect of gradient
noise. Moreover, as seen previously, under the interpolation condition, SGD behaves like GD. Thus,
ARMIJO allows SGD to behave like GD without the interpolation condition. Similarly, we can recover
a linear rate for strongly convex objectives using the definition of u-strongly convex objectives
(e > 0) for SGD updates implemented with ARMIJO line-search.

Now, we discuss the case for non-convex objectives.

Theorem 9. Let the objective function for the i-th device f; be L-smooth and non-convex, and
Assumption@holds. Forc > 2ky¢m,.. ., SGD with ARMIIO Line searchElachieves the convergence
rate of deterministic gradient descent in expectation as

min EIVA (kI < (5 + ) £ ((fwo) — Hiw)

max

where ¢ := ¢ — 2K 1)

max*

Proof. Using the definition of L-smoothness

filwi) = filwir) < =mi(V fi(wi—1), gi(wi—1)) + S Ik gi(wi_)II?

Taking expectation on both sides, conditioned on Fj_;

E [fulwh) — fitwho1)|Fir] < ~ B [ah (VfiCwf 1), e (wl1)) Fir] + 5 [0 gs (k)1 Fic ]

Term 1

We first handle Term 1 as
~E [} (V fi(wh1), 9: (w1 DI Fe1] = =B [0 (VS0 00k o)) up ) gt y503 1Pt

-E [7711@ (V fi(wi—1)s gi(wi_ )Y Lg(w sy (wi_ ) gs(wi_ ) <0} |]:l~c—1]

<-E [772 <vfi(w;;71)vgi(w;;:fl)»]l{(ij(11);_1),g,¢(1z)£_1))§0}|~Fk71}
= —E [ni(V fi(wj_1), gi(wj,_1)) | Fr—1] (16)
< M [V fi (w2 (17)
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Notice that Equation |16 holds true when V f;(wi ), gi(wi_;)) < 0. The last inequality is true
since (V fi(wj,_,), gi(wi_,)) < 0 in Equation[16} Using Equation |17} we obtain

, , , I , ,
E [fi(wg) = fi(wi_ )| Fr-1] < —mupucllfi(wi_1)[I> + SE ()21l g (wi— )P Fr—1]  (18)

Since 7}, is returned by ARMIO line search condition thus it satisfies

filwi &) — filwi1, &) < —enpllgi(wi_y)|” (19)
Rearranging and taking expectation on both sides of equation [I9]

E (004 lgs k)1 ] < 2B [k (ko1 0) — filwl, )1 ]

%T“]E [(filwi_y) — fi(wh)) + 25 ()2l 9i(wh_1) |2 Fee1]

A

IN

_Cc

For k¢ <
IS 2

E () gk ) PIFem] < 2 — B [(fiwio) = fiwh)IFica] 20

Substituting equation 20]in equation[T8] we obtain
E [fi(wy,) = filwi—1)|Fe-1] < =i | filwi )| +

Rearranging and putting ¢ := ¢ — 2k,

L ) )
S gy E Uik 0) ~ i) o]

max )

max

. 1 L i . .
Vs )P < (4 B0~ flukod
Summation on k = 1, ..., K on both sides and taking expectations again
i 1 L i
> BNk I < (1 + 5 ) B [iun) ~ Atk
ke|K] Mimax
min BV fi(wi )| < (1 + 52 ) 2 ((ilwo) — fiw?)) e
ke[K] = Moewe  2€) K
for ¢ > 0. O

Thus, we can see that for objective classes of convex and non-convex objectives, using the ARMIJO
line-search technique mitigates the effect of variance and the convergence rate for SGD is improved
to match its deterministic counterpart in expectation. Motivated by this insight, we use ARMIJO line
search in Federated Learning to mitigate the effect of client drift and gradient noise.

B MODEL UPDATE ALGORITHMS FOR FEDERATED LEARNING

B.1 FEDSLS WITH ARMIJO LINE SEARCH

We describe the algorithm for FEDSLS- as run by a server orchestrating IV clients in Algorithm
M Server initializes the global model wy and sends it to all clients. A random subset of S clients
is selected in each global communication round. The local model of each participating client is
initialized to the current global model, and each client runs a local optimizer for K rounds. Step
8 of FEDSLS (Algorithm ) calls SGD-ARMIJO method (see Algorithm [2), which essentially uses
ARMIJO line-search for SGD updates at each client for each k-th round. After K local rounds, the
pseudogradient A ; for each client is computed and sent to the server to obtain a global pseudogradi-
ent A, which is then used for a gradient step-like update at the server to evaluate the next global
model w4 .

B.2 FEDEXPSLS WITH ARMIJO LINE SEARCH
We now describe the FEDEXPSLS Algorithm [5| In FEDEXPSLS, each participating client calls

SGD—ARMIIO line-search, and the global model is updated using server-side extrapolated learning
rate (Jhunjhunwala et al.| 2023) computed using squared norms of local and global pseudogradients.
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Algorithm 4 FEDSLS

Server Input: initial global estimate wy, total N clients, sampled clients S;, where |S;| = S, batch
size b, maximum bound for local learning rate 7, global step-size g, = ny <1

Output: global model update wr

1: for synchronization round ¢t = 0,1,...,7—1 do
2 server sends w; to all clients

3 S; < random set of S clients

4 for each i € S; in parallel do

5: wt 0 W
6
7
8

fork712 , K do

wi . SGD— ARMUO(W] .1, 775 My 05 by K, 0PI)
end for 4
9: A} wr —wi g
10: end for
1
11: At < 5 ZiESt At,i
12: W1 < (U}t — ngtAt)
13: end for

14: return wr

Algorithm 5 FEDEXPSLS algorithm.

Server Input: initial global estimate wy, total N clients, sampled clients S;, where |S;| = S, batch
size b, maximum bound for local learning rate 7, _, global step-size g, =ny <1
QOutput: global model update wr
1: foreachroundt =0,1,2,...,7—1do
2: Server sends w; to all chents
3 S; <+ random set of S clients;
4 for each client i € S; in parallel do
5: Wi 4 Wy
6: for localround k = 1,2,..., K do
7: '
8
9
0
1

wi, + SGD— ARMIJO(w;k_l, 7, M
end for
Al wy — wi,K
end for ‘
Ay = % Zv‘,est Ay
Sics, A2 }

0, b, k, opt)

max®

10:
11:

12: Tg, < maxq 1, PTAEES)

13: W1 < W — ngtAt
14: end for
15: return wr

C PROOFS FOR FEDSLS

We can’t apply the law of iterated expectations for reducing the Armijo line for stochastic functions to
formulate an Armijo condition for the true function at that iterate. This is because the use of the same
minibatch to evaluate the iterate and the function value at that iterate to check if the Armijo condition
is satisfied. This gives the motivation that function estimate at a sample is actually a biased estimate
of the true function. Thus, we adopted the notion of expected sufficiently accurate function estimates.

»

Lemma 3. Under assumption there exists ¢’ := (¢ — 2k¢m1,,..) > 0, equivalently, K < 2m

such that ARMIJO line-search (3 yields an expected decrease in the local objective f;,

E [; S (filwh i) - fi<wt>)] <-SE| S i llati )P 1E] @)

i€SE k,i€S;

18



Proof. Consider, the ARMIJO line-search @) for some ¢ > 0 as given below:

Jilw) g, &) — filwh 1, &) < J(w g 1)|?
filwy ) = filwi 1) < *kang(wtk OIP+ (filwy ) = filw) g, &) + (fi(w) g1, &) — filw) 1))

Summation over k € [K] and averaging over i € S; and taking expectations on both sides conditioned
on filtration F; gives

1 . . 1 X )
Elg D> (filwin) = filwie) |Fo| < =B |5 >0 niallgs(wie )l | F

k,i€S; k,i€S;

+E % > (filwhy) = fi(wi . &) | Fe

k,i€S:

VE |2 3 (i) — lwis)) | 7

k,i€St

Asm.
Z 77tk||gz wtk DI Fe
szSt

1 ) )
+26/E | 5 Y ) llgi(wi eI | Fo
k€S

(c—261M10) j '
< TR E | S ()|
k,i€S;

O

where ¢ := (¢ — 2k 5ms,,,,.) > 0, when ry < 5¢—.

Lemma 4. Under the assumption [7|and[6] the model drift from the global update wy to local updates
per client after K local steps wy i across all clients i for the FEDSLS algorithm is bounded as

ZE lwe = w} k1] <

M VU [ (1) — f ()] 23)

where ¢’ > 0.

Proof. Using Lemma[3] we obtain

1
E 3 Z (filwi i) = fi(wy) ‘ft] S**E Z e llgi(wi eI ‘ft
1€ES, k,1€St
/ . .
< =5 2 E Milgiwi 1) |
ki
s——Z [ 17 1 I H
I
S_nlnlaxNZE ”wtk 1 wtk” |-7:t]
< - ZE [szl‘:,kfl - wi,kHQ‘ft] )
M Y05
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where we used n; & < Mime.- Expanding over k = 1, ..., K onright-hand side

4 i i i
ft} < _77 NE lZ(|wt—wt,1H2+ [[wt 1 _wt,2||2

max

max

E| g (filwhs) — filw)

1€ES

i

+~--+||sz71_wiKH2)“Ft]
/
S_WZE llwy — wtKH ’}-t]

Last inequality is obtained using the fact [lw; — wj g [|* < K 7, [lwf ,_, — w} ;. [|>. We obtain

; Z (fz(wt> Ji( wtK ’}—t]

1E€ES

) NK
DE [lwr —wj || 7] < FeetE

Under assumptionon fi(w*) < fi(w) for all w € RY, we obtain

i 2 Mo NV K 1
DUE = i P|F] < He lS 2 () - H
NK .
< dmec {(f(wt) — f(w) ’E] 24)
Taking the expectation again gives the result. O

Lemma 5. Under assumptions[7|and|[6] the updates of FEDSLS have bounded drift using ARMIJO
line-search
2

S B e — w7 < PP ) — )]
ik

Cl

Proof. Recall that the local update made on client i is wi , = wi | —ni .g;(wi . _,), where ni .
is obtained using ARMIJO line-search. Thus,

1 1« || 2
*lewt*wik-ﬂ\Q:*Z Z t]g'L wt] 1)
N & N Ll
k— 1
2
& 0= 03 () oty 25)
ik j:l
Using ARMIJO rule, we have —= Hnt ,\ng(wt,C 1)” < fi(wé)k_l,f,i) —fi(w;m{};),thus we can

write
e () Ngi i D|” < mip (Filwh o €0) — filw x, €1))
< Mo ((fi(wlti,szhglic) - fi(wi,kfl)) - (fi(wi,k,fzi) - fz(w;k))
+ (filw g—1) = filwiy))) - (26)

Taking expectation on both sides of Equation (26) conditioned on F; and using assumption[6] we
obtain

cE {(Wii,kf Hgi(wi,kq)HQ ‘]:t} < M (E {fi(wi,kflvglic) - fi(wii,kq)
E [filwh ) = filwl )| ] )
< 26 [ (1) 93wt )| | o] + B [t ) = i i)| 7]

Thus, for ¢ > 0ie., ky < #, we have

E[ n k) l|gi (w} 1. 1) ‘Ft} < Z“E [fz(wtk 1) — filwiy)

Fi| B [fitwi o €) — filw) )| 7]

7, @)
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Taking expectation on both sides of Equation (23)) conditioned on F; and substituting Equation (27)

NZEUW wy 1|l ‘]:t} <*Z -1) ZE[ |gl wi ) ‘]:t}

< ncl,miN“ Z(k -1) EE [fi(wi,jfl) - fi(wi,j)‘}—t}
j=1

ik

< Mo 3k = DE [filwn) — filw )| 7]

Using the descent property of ARMIJO line-search E[f; (w} ;)| Fi] > E[f;(w] )| F] for all k from
Lemma[3} we obtain

NZE[|wt wy 1|l ’}—t} < U ZE[L we) — fi(w g ‘]:t}

Under assumption 7] the inequality becomes
2

o S [l P[] < Pt [ () — pw)
i,k

ft} .

C.1 PROOF FOR CONVEX OBJECTIVES

We now give the convergence proof for convex functions.

Theorem 10 (Restatement from Section[d} For constant server step-size). Let the functions f; satisfy
the assumptionsm |ZI mand |§| For a constant global learning rate 1y, = 14 and client learning rate

M < ﬁ, FEDSLS achieves the convergence rate for average of iterates as

c/

(2¢ = ng — K LNt )Ng Mo KT |

where W, = 7 ZZ:OI wy and ¢ = ¢ — 2K¢m,,., such that ¢ > 0.

E[f(w;) — f(w*)] < lwo — w*||? (28)

Proof.
[wipr —w*||* = [lwe — ngA¢ — w*||?
= [lwe — w*|* + ng? | Ael® = 2mg(A¢, wy — w")
Taking the expectation on both sides
— w4 0y "E [1A?| 7] + 20, B[{ A w” —wi)| 7] (29)

.Al -A2

Ellwes1 — w*||*|F] = [Jwy

We first resolve A; by using lemma[d]under interpolation regime,
Ar = 1g°E [|| A |1?| ]

2
= 779 S ZS wa |‘Ft
1€5¢
£ -t
1651

IN

2
”ﬁg >E (e = wi 0l |7 ]
2 K
< B8 [f(we) - fw)| 7. (30)
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where ¢ := (¢ — 2k¢m;,,..) > 0. We now resolve Aj,
.AQ = 2’17gE[<At, U)* — wt> ’]:t]

1 . ) .
= 2ngE <S Z N 9i (Wi 1), w _wt>|]:t

k€S
= S 3 E [0 49i (wh o) w” = wi)| ]
k,i
_ 2
g ZE [m 49 (W), w wt>1{<9i(wi,k,1),w*fw»zo}‘ft}

+ Wg ZE [Ut,k(gz‘(wt,kq)a w' — wt>]l{(g,;(w§,k_1),w*—wt><0}‘]:t:|
ki

_2n
== anmax |:gl wt k— 1) w* — wt>]l{(g7(wf k1) w*—wt)>0}|}—t]

+ Wg Y E [nt,k<gi(wt,k—l)a w* = we) (g i, ) —w,)<0} |ft}
ki

Now since,
Mg (9i(w 1), 0™ —we) i g i, ) wr—wiy<o <0
= Ej (gi(w] ), 0" — we)ly: (gi(wiﬁk_l),w*—wt)§0|ft] < E[0]|F]

So, we have
Az = 2n,E [<At, i |-7:t

< 2’79 Z mex (gi(wi k1), 0" = W)Lt ) —wi) 203 | ]

< 2779 Z Zm,,,ax (gi(wf 1), w* — wi)| Fi]

N] k=1
Where‘ the last inequahty is due to the fact that- (g;(wj , ), w* — wt>]l{<gi(w?k71),w*_wt>20} <
<g¢(w§’k71), w* — wy) as indicator function 1 3 < 1. Thus, we can now bound A3 as
Az =2 [<At7UJ* — Wy |-7:t

< 2ng > meax (9i(w} j_y), w* = we)| Fy

ze [N] k=1
209 M i .
- 2V<§%E[Vfi<wt,k_1>|f4,wt —)

209 M ; ; X
= g Z]E Vi wt 1), Wt — Wy g1+ Wy g —w >|]:t]

2 . ) . .
= % ZE[_<vfi(w;,k—1)awz,k—l - W*> + <Vfi(w§,k—1)a wi,k_l - wt>|~7:t]

i,k
convex1ty 2 . . .
0 e ZE Fiw*) = fi(wi 1)) + (V fawi o) wh oy — w)|F]
bmoothnesa 2 . . L .
e ZE Jiw") = fulwi 1)) + (filwi ) = Filwe) + G llwe = wi )] F]
<9 KE[(f(w*) — Mg Mo L — w42
< 20971, KE[(f(w*) = f(wn)) | F] + =322 3 CEllwr — wi || 7] 31)
i,k
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Substituting Equations (30) and (1)) in Equation (29) and taking expectations on both sides

2 K
%]E [f (we) = f(w*)] + 20gm,,. KE[(f(w*) — f(w,))]

Mg Mo L ;
+ QT > Ef|lwe — w} o |I°] (32)
ik

Eflwers — w*[*] < Ef|lw — w*[|*] +

Using Lemma 3]

Ellwnsr —w1P) < Bl — ]+ R ) — f(0")] — 2y KE{(F () — ("))

2 K2?[
A T () — /(")) (33)
Blfess — ] < Bllus — w7 - ngn KELfwr) = )] (2 2 = S8on,..1)

(34)

we obtain

Rearranging the terms and assuming 7, < 25="1s

max KL °
2¢' —ng — KL, . « .
( — Ny KELf (w0) = f(w7)] < ElfJwe — w"?] = Efwers — w”|?]

Averaging overt = 0,...,T — 1 and using Jensen’s inequality

E[f(wi) — fw™)] <

C/

(2¢ = ng — KLy ) g Mnar KT

C/

<
T (2 =g — KL, )09 KT

E[(lwo — w* 1] = llwr — w*|1*)]

lwo — w™%, 35)

— T—1
where w; = & >, ) wy. O

C.2 PROOF FOR STRONGLY CONVEX OBJECTIVES

The proof for strongly convex functions follows similarly to the proof for convex objectives.

Theorem 11 (Restatement from Section ). Let the functions f; satisfy the assumptions (1| B} [7]

and @ For a constant global learning rate 1y, = 1y such that ng < %}J«K client learning rate

2c—1ny4
Minax < KLT4r;

, FEDSLS algorithm satisfies

Mg M P\
Blor - w'l? < (1- 205y - '

Proof.
N2 = e — 1A — |
= [Jw — w*[|2 + 12| A¢]]? — 204 (A, wy — w*)
Taking the expectation on both sides
Ell[wer1 — w*[*|Fe] = llwe — w*[|* + 0y [[|Adl®|Fe] + 20 E[(As, w* — wy) | Fe]

81 62

lwir1r —w

We first resolve 13; by using Lemmafor di=c—2ksm,,. >0,

max

2

1 .
Bi = ny’E [| A¢]|*| Fi] = ng*E 5 > (we—wi )| |Fe
1ES:
<t SO [ — w07
_779 N - t t, K t
2 K
< Do Moo D [ f () — f(w*)|F) (36)

C
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We now resolve Bs using perturbed strong convexity (Karimireddy et al.| [2020) using ¢ < L
_ * 277977lmax i *
By = 2ngE[{Ay, w* — wt)|}'t] < TN ZEWfi(wt,kqﬂft]awt -w
ik
219 Mo i i i *
= —QT S EUVfiw] 1), w = wh gy +w) gy —w*)|F
ik
277 Mlimax w* i i
g ZE ~(Vfiwf jom1)swh g — w*) + (Vfilwh 1), w1
i,k
Using Asm@ 277 Moan N . n . «
< QT ZE[(fi(w ) = filw) 1)) — 5”“’%,1%1 —w*|?
ik
+(Vfilw 1), iy — we )| Fi]
smoo&hncss 2ngnlmdx

< SCE[(fi(w") — filwl 1))

ik

—wi)| 7]

M *
- ZHU/t —w* || 7]

209 M max i L+p i
+ QT ZE[(fz‘(wt,kq) — filwe) + THwt —wj 1 |I*)|F
i,k
. g Mmax I .
< 20911, KE[(f(w") = f(w0))|Fi] = 2= E[ |y — w*||*| ]
209 My L i
+ ;E[Hwt = w1 [*| F] (37

Combining Equations (36) and (37) and taking expectations on both sides

2
Elfwi1 — w*[|*] < E[lwe — w*||?] + ngmcilKE [f(we) = F(w*)] + 2ngnt,,. KE[(f(w") — f(w))]
Mg M W

. Mg M L i
S By — w7+ Fe Y Ellwe —wip ] (38)
ik
Using Lemmal[3]
. Mg M IS w* Mg M I .
Bffurss 0] < (1 2P B, - 0]+ 2 e ) ~ )

K2 2 L
= 20y o KE[(f (we) — f(w))] + %E [(f (we) = f(w*))]
Efllwess — w*|?] < (1 s

> ) Elwe = w*12) = 1y KE [f(w0) = f ()] (2 o KmL)

C
FOr 2’ —Ng th t 2’ —Ng— ’mmdx
Mo < KL - heterm

sl KE[f (w,) = f(w*
thus resulting bound is given as

)] becomes non-negative,

* Imax K *
Effuess - 0| < (1 - 22 ) B, - 0[]

(39
. — 1 2
Recursion over t = 0,...,T — 1 under the assumption 7, < Mo K
T
. Linax H I *
Efllwr — w? < (1 - ’7’72"> By — w1
O
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C.3 PROOF FOR NON-CONVEX OBJECTIVES

Theorem 12 (Restatement from Section[d). Let functions f; satisfy the assumptions|[I| [7]and[6] For

8¢’

Mooz = 21 —, FEDSLS achieves the convergence rate
77§LK+\/(17§LK)2+»79L2K2 ETEA
] 2 2L nlmaxLK + 77 *
_min B[V fu) | < 220 W) ),

where ¢’ :=c — 2k, > 0.

max

Proof. Using the smoothness of f

Flwesn) < $) + (9 ), (s =) + 5o = wil?

Taking expectations on both sides conditioned on J; and bounding the inner product term similar to
the proof in convex cases, we obtain

E[f(wit1) | Fi] < flwe) —ng(Vf(wy), E[A, | Fi]) + ng E[[| A | Fi]

1 . Ln,?
< 1) =ty { V100, 5 3 ik i) ) + CE B AP | 7
ik

2
< ) = 1y K00, e SV i) = V) + V) ) + “R Bl | 7
ik
< ) =t K00, e S Vi) = V)
ik

Ln 2
— Ny M K[|V f (w1) |* + TQIE[HAtH? | Ft]

<) + i KV £ 00), e 3 (V) = Vit ) )
ik

2 L772 2
= Ny K[V f (wi) | + —=E[|A]* | 2]

CS Ing.
< F(w0) + 0 K|V £ )

1 i
¥ %: (Vfi(we) = V fi(wi 1))

o In ? 2
= Ny K[V f (w0) | + —=E[|1A]* | 2]
2

Young’s Inq. Mg Mo

< flwe) + TK ﬁ Z (sz‘(wt) - vfi(wti,k—l))
ik

0 nmx Lng?
29 mex 17 f () |2 + TQIEHIAtII2 | Fi

Jensen’s i 2 mwx L ’
2 b %mmxznmwt = Vfilwh )| — B |V f )|+ SB[ A | F)

UsingAsm I L mmax U mmax 2 Lng®
S e+ TR ZHwt wipea || = B2 0 f () P+ ZEE[ A2 | F
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Taking expectation on both sides and using Lemma 3]

E[f(w) — f(w*)] — e B17 pw) )

Elf (wes1)] < E[f (we)] + M :

2c!
L

2
7 i
+ o O Elllwr —wi k)

Now, we use Lemmalfd]to obtain

2L2K2 K
+ deen 22 [f(wy) — f(w)] — 2R RV ()]

E[f(wes1)] < E[f(wy)] 20 2

Ln,* K
Sl Bl f () — ().

Subtracting f(w*) from both sides and rearranging the terms, we obtain

oK (1 ) < (1 4+ DYEL ) — f0")] - E[fwsn) - Fw)], (40)

LK LK
where D i 19Mmax LI (M1, LK + 1g)
2c¢
To create a telescoping scoping sum on the RHS, we use artificial weights o, following (Stich, [2019),
Mg L2 K2 (1 L+ 109)
2¢
;. on both sides of Equation[51] we obtain

such that oy | 1+

) = ay_1, where a_; = 1. Thus, multiplying

ath[HVf(wt)HQ] < a1 E[f(we) — f(w")] = ouE [f(wig1) — f(w")].

2
Summing on both sides from¢t = 0,...,7 — 1, we obtain
gl K
> o IR |V f ()] < Bl (wo) — f(w)] = ar—iE [fwisr) = Fw)].
t=0

Since, —ar_1E[f(wr) — f(w*)] is a negative term, it can be ignored. Now, using a_; = 1 and
diving both sides by 37" v, we obtain

. 2 1 = 2 2 X
o BT 001 € ot S RISl € ) )

To find a final upper bound for the LHS, we need to find a lower bound for ZtT;()l oy We evaluate

ZtT;()l ay as
L\
STELECO [ AL S
oy = =—|1-|——= .
1+D 1 D 1+D
= D (d5) D +
7 1 T 1 log(2) . .
Choosing 7, such that (ﬁ) <53 &= T2> log(gl D) provides a suitable lower bound for
Z;T:_Ol ;. Using the identity m < 14 3 forz > 0, we note that
log(2) < 1 < 1 . 1
log(1+D) ~ log(1+D) = D 2

Thus, it is sufficient to choose 7;_, . such that

1 Ng Mo LE (10 LK + 1) 2
Z<L<T «— D:= 9 [tmax max g > .
tg= 2/ =T -1

ol
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Ignoring the negative root of the quadratic inequality (n,L?K?)n,
bound for 7;___ is obtained as

max

max

+ (n2LK)n,,,, > 5755 the

8
My > 21 —, (42)
c
naLK + \/(17§LK)2 +ngL2K? 5T 1
using the quadratic formula x = Wﬁ for a quadratic equation az? + bz + ¢ = 0. Hence, for

T T
M,,.. satisfying Equation , we have (ﬁ) < 3, thus ZZ:J o == ﬁ <1 — (ﬁ) ) >
according to Equation [53[for 27" — 1 > 0 when 7" > 1, we have

4D
Mg Mo

max

%. Thus, choosing 7;

E[f(wo) = f(w")]. (43)

O

. -
poo i B[V (w)lI”) <

D PROOFS FOR FEDEXPSLS

D.1 CONVERGENCE PROOF OF FEDEXPSLS ALGORITHM: CONVEX OBJECTIVES

Theorem 13 (Restatement from Section[d). Suppose a function f; satisfy assumption[I|2} [7]and |6
For global learning rate 14, as computed in FEDEXPSLS constrained to lie in (1,1, ], client
learning rate n,,.. < %, FEDEXPSLS achieves the convergence rate for average of iterates
as

C,

(20/ = Mmax KL - 1)77lmaxngmax KT

117,

E[f(w) = f(w")] <

|lwo — w
where Wy = % Zle wy and c'.

Proof.
|wes1 — W*HQ = ||we — ng, A¢ — W*HQ
= [Jwy — w*||* + 02, 1A% — 2ng, (Ar, wy — w*)
= [lwy — w*||* + 02 [| A1 + 21, (Ar, w* —wy)
Taking expectations on both sides conditioned on F;

Ellwers = w*||* | F] = llwe — w*||* + Elng, [ A | o] + 2Elng, (A, w™ —we) | Fi] - (44)

Cl C2
|

First, we bound the term C; as below

Ci =E.IIA* | 7] =E

) Ai 2
Ngr max{l ZZESt”t”} ||At||2
1417

25([[Ad? +€)
4
4

1 - 1 )
¥ 5B [mlalPA] = 5 X B il - vl l| ]

i€[N] i€[N]

IN

e S 1AM
" SIAP

1 i
<E [S Z Mg, | A1

1ES,

IA

IN

Mo lgmas K [ () — f(*)) | 7]

C
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where the last inequality is obtained using Lemmafor d =c—2kpm,,, andng, < ng... . Wenow
resolve C5 as in proof of Theorem |Z| (using indicator functions)

Ca = —2E[(ng, As, wy — w*)|F]
277lmax77 max i *
< —Ng< ;; Vfi(wi 1), we —w >

2 i i '
- _% D AV Fiw] joor)yw = wh g +w) g —w)
ik

20l Mgima ' 4 ' ' 4
- Tg Z{ —(Vfilw} 1) wi gy —w*) + (Vfilw] 1), wy g — wt>}
ik
CONVEXTLY 2771 - xc Mma * - . -
< Tg Z {(fi(w ) = filwix_1)) + (Vfilwi p_1), 0}y — wt>}
ik
smoothness 27

. ) L .
< Hmedlomes NS (0) = fiw] o)) + (Filwi ) = Filwe) + 5w —wi 1) }

i,k
2Nl 10 Mg . Mo Mgmax L i
< Sy (fi(w') — filwn) + TS luy — gy
ik ik
21 Ngmas . N Mgimax L i
< ey (fi(w") = filwn)) + Tl — w2
ik ik
. NMina Ngmax L i
< 2 Mo K (f (") = )+ Ty Pl — w2 (45)

ik
Substituting the bounds on the terms C; and C; in Equation A4

. . N Tgmasx 1 .
Elllwesr — w*|* | Fo] < [Jwy — w*||? + Frexdmes | [ f(w,) — f(w*)

C/

Fi]

. Mo Ngmas L i
+ 277lmax779maxK(f(w ) - f(wt)) + Tg Zk ||7.Ut - wt,k—l”z
(46)

Taking expectation again, using the tower property and substituting the bound on client drift across
N clients and k local rounds using Lemmal5] we obtain

Elllwisr — w*[2] < Elljwy — w*|?] + Monsomas K 100y — )] + 20010 KE [f(w*) — fwr)]

c/

7712 Ngamas 18 ’L

o Bws oo 2 () — f(07)
Rearranging, we obtain
* * * 1 nlmaxKL
Elfess = ] < Ellue = 0] = ey KE L) = )] (2 5 - oKL
For 1, < 271, we have
(26/ B nlmaxKL B 1) * * *
" Mo Ngman KE [f (w1) = f(w0*)] < E[llw; — w*[[*] = E[[Jweyr — w*||]
47
Averaging over t = 1, ..., T and using Jensen’s inequality
Cl
]E =\ * < _ *12
) = flw™)] < (2¢ = My KL — 1)77lmax779meTHwo wrl
where w; = & 71 wy. O
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D.2 CONVERGENCE PROOF OF FEDEXPSLS ALGORITHM: STRONGLY- CONVEX OBJECTIVES

Theorem 14 (Restatement from Section[d). Let the functions f; satisfy assumption I} 3] [/ and [6]

For a global learning rate 1,4, computed in FEDEXPSLS constrained to lie in [1,1,,.. | such that
, client learning rate n;_. = < #}1@, the last update of FEDEXPSLS satisfies

max

<
ngmax — Max WK

T+1
Mg M e LI
- ) lwo — w*|.

Blors: - vl < (1- 22

Proof.
[wepr — w*[|* = |lwe — ng, Ay — w*|?
= ||’U}t — ’lU*H2 + n;t ||AtH2 — 27’]gt (At,wt — w*>
= llwe — w1 + 05, |1 Ael|* + 2ng, (A, w* — wy)
Taking expectations on both sides
Ellwers — w*||* | Fi] = llwe — w*[|* + Elng, [ A | o] + 2E[ng, (A, w™ —wi) | Fi] - (48)
g

Dl DZ

First, we bound the term D; same as in Theorem|§|
Minax "l maxK *
D, := E[nﬁtIIAtIIQ | Fi] < cif]E [(f(wt) — f(w")) |-7:t] )
We now resolve Dy using perturbed strong convexity (Karimireddy et al., [2020) using ¢ < L
Dy = =214, E[(Ay, wy — w*>|]-'t]

277lmax77 max 7 *
< Pl (SO vl B~ )

2 ' ‘ '
— el NNRI( f(wh ), wp — wh gy +wh ey — w )| F

N i,k
2 . , ) ,
= % S E[(Vfilw) g 1) whyy —w) + (Vfilw)yy),w) oy — wi)| Fi]
ik

Using Asm[3]
Imax 'lgmax
< Mmax g

=l STBI(fi(w") = filwhp)) = Glwigy = w4 (Vw0 wigy — wn)| ]

i,k
smoo%hness 277lm

Sl S TE(fi(w?) ~ fulwiy) = llwe w7
ik

2N g i L+p i
s e s SR ) — i) + TP — w2 |7
ik

. M g S .
< 2 Mg KE[(f (W) = f(wy))|F] — 792 E[llw; — w*||?| 7]
2N Mg L ;
+ 7Ng E . E[[Jws — w;,k71||2’]:t] (49)

Substituting the bounds on the terms D; and D, in Equation 48]

X . M Mg P X Moo Mg K x
Elllwesr — w*||* | F) < [Jwy — w*||* — 7"2 E[[|w; — w*||?|F:] + 75 E [f(we) — f(w*)|F]
* 277lmax77 maxL 7
- 2 g KEL(f (") = f (w0) )| Fi] 4 =R TRy — wi o |[*[ 7]

ik
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Taking expectation again, using tower property and substituting the bound on client drift across N
clients and k local rounds using Lemma 5] we obtain

1

Effwesr — w*|] < (1 - W) Eflwr — w2 = 1t o KEI(f(wr) — F("))] (2 N

C/

2

Form_ .. < 2%21 , the second term can be ignored. Hence, we obtain
2 M Mgima A 2
Bl - [P < (1 - Pl B, — o)
Recursion over ¢ = 0, ..., T'— under the assumption ng = < i 2 WK

T+1
. Lima gimas HC .
Bl - w7 < (1 - P ) gy — w2

D.3 CONVERGENCE PROOF OF FEDEXPSLS ALGORITHM: NON- CONVEX OBJECTIVES

Theorem 15. Let the functions f; satisfy assumption|[l|[/|and[6] For a global learning rate ng,
computed in FEDEXPSLS constrained to lie in [1,nq,. | and local learning rate bound >

mazx —
8¢’
2T—1

C/
Ngmax LE+ \/(ngmax LE)2+41g0x L2 K2 217{"5— T

, FEDSLS achieves the convergence rate

LE 4 D pwg) - fu),

max

min £V 2 2L(m
<
t:O,..‘l, T-1 [H f(wf)” ] = .

where ¢ = ¢ —2km,,.. > 0.

max

Proof. Using the smoothness of f
L 2
Fwerr) < flwe) +(VF(we), (Werr = we)) + 5 wers — we
Taking expectations on both sides conditioned on F;, we obtain

E[f(weer) | Fi < f(w) — (V1) Bl A | F) + Sl [AJP [ F) - 650)

T Ts

30

C

Mo KL

/

)



We resolve 73 by bounding the inner product, similar to the proof in cases, and using 1y, < 1, as

Ti == (Vf(wi), Elng, As | Fi]) < —ngmaxm,,,ax<Vf w), Zsz Wiy >
< A KV S0, >V huta) = Vi) + Vi)

< A K (7). KZW ki) = V) )~ g KV 1)

1 %
s K50, e 5 (V) = Tl ) ) = s K )
i,k
CS Ing. 1 .
< Mg K|V 00) | |57 D2 (Vi) = Vo)) | = g s IV )
i,k
2
Young’s Ing. n maxnlmaxK 1 i n 1nax77l1naxK 9
< 5 5 N zk: (Vfilwe) = Vilwi_1))|| — ngVf(wt)H
Jensen’s g mdxnlmdx i 2 Ngumax Mmax IS 2
< mexTmex Z |V filwe) =V falwy )| — gf [V f(we)||
UsmgAsmm
< s Z e — g | Mo )
Using Lemmal[5]
2[2K? K
Ty < Dol 2 2R (1) — f(u*)] - Dmems 2|V (1))

2c! 2

We take expectation on both sides of Equation[50] Substituting the bound on 77 using Lemma 35]and
bound on 73, we obtain

27272
E[f(wig1)] < E[f(we)] + ”gmaxm;a; L*K

L i
+ IN ZE[% [|we — wt,KHZL

E [ (wy) — f(w?)] — BB R0 pan) |

Now, we use Lemma ] to obtain

2727172
L (es1)] < Bl ()] + Do LG ) — )] — Moo gy ()|
g e R g () — f )]

2c!

Subtracting f(w*) from both sides and rearranging the terms, we obtain

Tome e g1 ()| < (14 D) ELf () ~ F(w*)] ~ Elfwnn) — f@™)], 6D

Nguma Manae L (Mo LK + 1)
2c/ '

To create a telescoping scoping sum on the RHS, we use artificial weights 3;, following (Stich, [2019),

2L2K? LK +1
SuCh that Bt 1 + ngmaxnlmax 2 /(nl + ))
C

B¢ on both sides of Equation |51} we obtain

where D :=

max

= B¢—1, where f_; = 1. Thus, multiplying

gy Mo S RV )Y < oL o) — F()] = BE[f(winn) = F(w)].
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Summing on both sides from¢t = 0,...,7 — 1, we obtain

Z Mo M R B f ()] < BoELf (o) — F(w)] — BB [F i) — F(w”)]

Since, —fr_1E [f(wr) — f(w*)] is a negative term, it can be ignored. Now, using 5_; = 1 and
diving both sides by Zz:ol B¢, we obtain

T-1

. 1 2
o min, E[|[Vf(w)]) < ST Zﬂt IV £ (ws)|*] < o KT,

To ﬁnd a final upper bound for the LHS, we need to find a lower bound for ZtT:_Ol B:. We evaluate
Zt 0 Bt as

E[f(wo) = f(w")].

t=0

= 1 1—(%)T 1 1 \*
ZBF(HD) 1_(:;) ~ (D) (1_<1+D) ) 2

log(2)
= T> Toa(14.D) provides a suitable lower bound for

1
2
Zt o ! 3. Using the identity = g(1+w) < 14 3 forz > 0, we note that

log(2) < 1 <
log(1+ D) ~ log(1+4 D) ~

T
Choosing M, SUCh that ( o D) <

+

T~
DO =

Thus, it is sufficient to choose ;.. such that

77(]max nlmax LK(nlmax LK + 1) > 2

<7 D= .
— 2 Z 9T 1

l\D\»—l

1

=+

D
Ignoring the negative root of the quadratic inequality (15, LK), + (Ngmae LE ) e > 5257,
the bound for 7;___ is obtained as

max

8c
Moo > 24 1 — (53)
C
ngrnaxLK + \/(ngnlaxLK)Q + ngxxlaxL2K2 2T _ 1

. . _ —2C . . 2 _
using the quadratic formula x = YTV —Tas for a quadratic equation axz® + bx + ¢ = 0. Hence, for

T T
n,,.. satisfying Equation , we have (14}D) < Lthus Y ) B == (%) (1 - (H%) ) >
man according to Equationfor 2T'— 1> 0whenT > 1, we have

min, B[V ()] £ — B[ f(w) — f(w)] 54

t=0,1,..., T— Grmax Mlmax

O

E COMPARISON OF ARMIJO LINE SEARCH WITH BOUNDED HETEROGENEITY

The maximum value of ARMIJO step-size for each client is fixed as n;_, see Algorlthm 2} Line-
search for a client-local LR begins with 7, and continues until a maximally feasible 7 ;. is obtained
that satisfies the Armijo condition.

max

We include Lemma 1 of [Vaswani et al.| (2019) for our discussion. Note that we do not use these
bounds on the learning rate in our poofs.
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Lemma 6 (Lemma 1 of [Vaswani et al.| (2019)). Assume that for each client © and sample & ~ D,
the function f;(-,€) is L¢-smooth (define, L := maxgp L¢). Let ¢ € (0,1) and ;. > 0. At inner
step (t, k) on client i, the Armijo line search returns a step-size 77; w € (0,m

satisfying
) . 2(1 —c
PN

Proof. Setg; | =V fi(w}, 1,&)and wf , :=wj, | =0} .9f - By L-smoothness,

max]

fi(wfs,mfk) < fi(wz,k—l,gk) + <9§,k717 w;k - wi,ml) + §Hw3&,k - wi,kleQ

. o L .
= filwy g—1,&k) — né,kllgi,k_lllz + 5(772,k)2”9z,k—1||2

i i L)\
= fi(wt j—1,8k) — (nt,k -3 )Hgt,quQ- (55)
The Armijo condition with parameter ¢ > 0 is
fi(wi,k,ﬁk) < fi(wi,k—lafk)_cnz,k”gz,k—1”2' (56)
. " . . i L(nik)2 .
A sufficient condition for equation |56|to hold is that (n; , — —5"—) on the RHS of equation |55
dominates the Armijo decrease cn; E
o Lln)? i i 21 - ¢)
ik 2’ > Ny = My S Ti= 7

Therefore, every n € (O, min{7,n_.. }] is a feasible step that satisfies equation Let us define the
Armijo acceptance set at the inner step (¢, k) for a client ¢ as

Aj i = {n € (0,m,,.] : equation[5§holds}.
Clearly,
(0, min{7, ny,,.. }] < Aiv""

By the line-search selection rule: return the maximal feasible step in (0, 7,

max]’

) . . [2(1—¢
Uz,k Z mln{Ta 77lmax} = mln{ %7 Mmax }
is returned by the line-search algorithm. O

Remarks.

1. The inequality 77271@ < 2(15 9 is a sufficient condition for Armijo line search. Thus,

(0, min{ @, Moo H is the guaranteed feasible set that will satisfy Armijo. The learn-

ing rate returned by Armijo, which is the maximal step-size such that equation [3]is satisfied,
will be lower bounded by 2(1; ) hence 2(1; ©)

are possible.

need not be the maximal step; larger steps

2. The lower bound concerns the refurned step when the line-search selects the largest feasible
step on its search set.

3. Geometric backtracking (Alg. 2, opt=1). If the search tests only the grid
s BMsans B2Mians - - -+ with fixed 3 € (0,1) and returns the largest grid point in

Aj o thennf . > B min{72(1L—c)’ mmax}-

2(1—c)

This is because if = > .., the search starts with 7. and the first test passes,

max

so the returned step is n = ;... > BN = B min{ 2(11;0), nlmax}. Otherwise, if

< 72(1;@ < B -

@ <m let m be the smallest integer such that 5™,

max max
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Since every 1 < # satisfies the Armijo condition, 3™, lies in the feasible set; hence
nx- Because 20290 < gm=1y, e have g 2029 <

8"n,... > Thereforen > ™n . > ﬁ@ = Bmin{@, mmx}.

the returned step satisfies n > 8™,

max

For opte€ {0, 2}, the guarantee becomes nzk > B min{ 2(156), nsm}, where 775y 1S the

starting step-size used in reset. This can be arbitrarily small if 7, is small.

For the analysis, we considered the search for step-size in the continuous space over all reals with
opt=1, not the grid, i.e., the line search returns the largest feasible step in (0, 7;

max]'

We now give the Lemma that provides an upper bound which allows ARMIJO to substitute the
bounded heterogeneity assumption.

c
bl
2nlmax

> 0, equivalently, Ky <

max)

Lemma 7. Under assumption|6| there exists ¢’ := (¢ — 2k 1
such that ARMIIO line-search

vields

i 2 L 1 1 1 i
kZJ]E [val(wtkfl)H ] < max {2(10)7 ’f”m“} g (f(wt> —E |J€Z& Sfl(wtK)]> .

Proof. Using Lemma 3] we obtain

E é Z (filwir) = filwi 1))

k,i€St

Lemma [6] . 2(1_0 154 .
F i 22 S | 8 el 1?1
k,i€S;

C

where ¢ := (¢ — 2ksm;,,.) > 0, when ky <
the second moment, we obtain

TR Using the squared mean as a lower bound for

max

E s 3 (lwha) ~ filwsr)

k,i€St

. [2(1—¢) d i
Al <m0 6B | S IV

Thus, rearranging and expanding the telescoping sum, we obtain
. [2(1—-¢) c : 1 i
min {Lﬂ?lmax} N S RV fi(wi)I?F] < (f(wt) -3 SE [fi(wt,KN]:t])
ko €S
Thus, we have

S E VA P|R] < max{ gt (f(wt) -3 SE [fi<wz‘,K>|ft]>

)
C
> ) M =

O

F EXTRA EXPERIMENTAL DETAILS

Description of Dataset

CIFAR10/100 The CIFAR-10 dataset is composed of 60,000 natural images of size 32x32 pixels,
categorized into 10 distinct classes. CIFAR-100 builds on the same image set but introduces a more
fine-grained classification scheme, dividing the images into 100 classes and thereby increasing the
difficulty of the classification task. Both datasets consist of 50,000 training images and 10,000 test
images. For training in the federated learning environment, the training data is artificially partitioned
among 100 clients using the data partitioning strategy proposed by (Hsu et al.,|2019), introducing
non-1ID characteristics across clients.

FEMNIST The FEMNIST data set is a federated variant of the EMNIST dataset, designed to
benchmark personalized and federated learning algorithms as introduced by (Caldas et al.l 2018), the
dataset is naturally partitioned between 3,550 clients. The dataset contains a total of 80,5263 samples
with 226.83 samples per user.
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SHAKESPEARE The SHAKESPEARE dataset is a character-level language modeling task derived
from The Complete Works of William Shakespeare as in (Caldas et al., [2018)). It is structured for
next-character prediction and is commonly used to evaluate federated learning methods in natural
language processing tasks.The dataset is partitioned between 1,129 users.The dataset contains a total
of 4,226,15 samples with 3,743.2 samples per user.

Experimental Analysis of Line Search Steps in the SLS Optimizer
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Figure 4: Average Line Search Steps vs Communication Rounds

In Figure 4] we evaluate the average number of line search steps (retries) per gradient step
update per client during training with the FedExpSLS algorithm. As shown, the behavior of
the SLS optimizer varies across different datasets:

CIFAR10 : We observed a higher number of line search steps during the initial rounds
of training. After approximately 100 rounds, this count rapidly declines and stabilizes at
around one line search step per gradient step update per client. The plot[da]shows that the
optimizer tunes the learning rate during first 100 rounds of training.

CIFAR100 and FEMNIST : With CIFAR100 and FEMNIST dataset, the number of line
search steps drops sharply from around 4 to approximately 1 within the first 50 training
rounds. The drop of retry count suggests faster convergence by the optimizer.

SHAKESPEARE : The line search step count remains around 1 consistently throughout
the training.
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Figure 5: CIFAR-10 experiments with varying c values

From figure [5a]and[5b] we observe that increasing the value of the hyperparameter ¢ leads to a decline
in test accuracy and an increase in the line search steps when using the FedExpSLS algorithm.
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