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ABSTRACT

The increasing size of screening libraries poses a significant challenge for the
development of virtual screening methods for drug discovery, necessitating a re-
evaluation of traditional approaches in the era of big data. Although 3D phar-
macophore screening remains a prevalent technique, its application to very large
datasets is limited by the computational cost associated with matching query phar-
macophores to database molecules. In this study, we introduce PharmacoMatch,
a novel contrastive learning approach based on neural subgraph matching. Our
method reinterprets pharmacophore screening as an approximate subgraph match-
ing problem and enables efficient querying of conformational databases by encod-
ing query-target relationships in the embedding space. We conduct comprehen-
sive investigations of the learned representations and evaluate PharmacoMatch as
pre-screening tool in a zero-shot setting. We demonstrate significantly shorter
runtimes and comparable performance metrics to existing solutions, providing a
promising speed-up for screening very large datasets.

1 INTRODUCTION

The immense scale of the chemical space, covering over 1060 small organic molecules (Virshup
et al., 2013), makes the identification of molecules that bind to a protein target particularly challeng-
ing. Virtual screening methods are important tools in computer-aided drug discovery, addressing
this complexity and supporting medicinal chemists navigate large molecular databases in search of
potential hit compounds (Sliwoski et al., 2014). Among these methods, an established approach
is 3D pharmacophore screening. Pharmacophores represent an ensemble of steric and electronic
molecular features that is necessary to ensure an optimal interaction with a specific biological target
(Wermuth et al., 1998). A pharmacophore query can, for instance, be generated from the interac-
tion profile of a ligand-protein complex and then aligned positionally with the three-dimensional
conformations of compounds in a database (Wolber & Langer, 2005). These molecules are sub-
sequently ranked based on their agreement with the pharmacophore query, with those exhibiting
similar pharmacophoric patterns retrieved as potential hit compounds (Wolber et al., 2006).

An important development of the last years has been the emergence of make-on-demand libraries,
such as Enamine REAL (Shivanyuk et al., 2007). These libraries contain billions of commercially
available compounds that can be rapidly synthesized and are continuously expanding, driven by
advances in synthetic accessibility (Llanos et al., 2019). Screening larger libraries increases the
chances of identifying hits, but it also brings the trade-off of longer screening times. Scaling up 3D
pharmacophore screening to handle billions of molecules is challenging due to the computational
cost of pharmacophore alignment (Warr et al., 2022). Despite efforts to optimize these algorithms
(Wolber et al., 2008; Permann et al., 2021) and the development of various pre-filtering techniques
(Seidel et al., 2010), the alignment step remains a critical bottleneck.
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Figure 1: Overview of the PharmacoMatch workflow: Conformer and pharmacophore generation
from ligands and query creation, for example from a ligand-protein complex, precede pharma-
cophore screening. The encoder model converts the screening database into embedding vectors,
stored for later use. A hitlist is generated by comparing the query embedding with the database
embeddings.

In this work, we propose to perform 3D pharmacophore screening by using learned representations.
Specifically, our PharmacoMatch model employs a graph neural network (GNN) encoder to map
3D pharmacophores into an order embedding space (Ying et al., 2020), and predicts pharmacophore
matching through vector comparisons. The embedding vectors for the screening database are com-
puted once and then used to quickly generate a hitlist based on the query embedding (Figure 1). Our
key contributions are as follows.

• We conceptualize pharmacophore matching as a representation learning problem, enabling
the use of order embeddings for efficient and scalable pre-screening.

• We develop a GNN encoder that generates meaningful vector representations from 3D
pharmacophores. The model is trained in a self-supervised manner on unlabeled data,
employing a contrastive loss objective to capture partial ordering relationships between
queries and targets in the learned embedding space. We design augmentation strategies
specifically suited for the task of pharmacophore matching.

• We thoroughly analyze the learned embeddings and validate the practical utility of our ap-
proach as an effective pre-screening tool through experiments on virtual screening bench-
mark datasets.

We empirically demonstrate that our method is significantly faster than existing solutions, offering
a practical advantage for screening billion-compound libraries. A promising direction for further
improving efficiency is combining our approach with approximate retrieval techniques. Our work
thus represents a key step towards vector databases for virtual screening. Additionally, our refor-
mulation of pharmacophore screening as neural subgraph matching directly captures its subgraph
matching nature. To the best of our knowledge, we are the first to introduce order embeddings in
virtual screening, providing a novel perspective for the field. Furthermore, our use of self-supervised
learning presents a promising strategy for addressing data scarcity in drug discovery. We hope that
the combined insights from our study contribute to advancing representation learning for virtual
screening applications.

2 RELATED WORK

Pharmacophore alignment algorithms Alignment algorithms compute a rigid-body transforma-
tion, the pharmacophore alignment, to match a query’s pharmacophoric feature pattern to database
ligands. A scoring function then evaluates the pharmacophore matching by considering both the
number of matched features and their spatial proximity. The alignment is typically preceded by
fast filtering methods that prune the search space based on feature types, feature point counts, and
quick distance checks. Only molecules that pass these filters undergo the final, computationally
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expensive 3D alignment step, which is usually performed by minimizing the root mean square de-
viation (RMSD) between pairs of pharmacophoric feature points (Dixon et al., 2006; Seidel et al.,
2010). The algorithm by Wolber et al. (2006) creates smoothed histograms from the neighborhoods
of pharmacophoric feature points for pair assignment using the Hungarian algorithm, followed by
alignment with Kabsch’s method (Kabsch, 1976). A recent implementation by Permann et al. (2021)
improves on runtime and accuracy by using a search strategy that maximizes pairs of matching phar-
macophoric feature points. Alternatively, shape-matching algorithms like ROCS (Hawkins et al.,
2007) and Pharao (Taminau et al., 2008) model chemical features by Gaussian volumes, optimizing
for volume overlap.

Machine learning for virtual screening A common approach to using machine learning for vir-
tual screening is to train models on measured bioactivity values. However, these models are con-
strained by the scarcity of experimental data, which is both costly and challenging to obtain (Li
et al., 2021). Unsupervised training of target-agnostic models for virtual screening avoids depen-
dence on labeled data, but remains relatively unexplored. DrugClip (Gao et al., 2023), which is
not based on pharmacophores, approaches virtual screening as a similarity matching problem be-
tween protein pockets and molecules, using a multi-modal learning approach where a protein and
a molecule encoder create a shared embedding space for virtual screening. Sellner et al. (2023)
used the Schrödinger pharmacophore shape-screening score to train a transformer model on phar-
macophore similarity, which is a different objective than pharmacophore matching. PharmacoNet
(Seo & Kim, 2023) is a pre-screening tool that uses instance segmentation for pharmacophore gen-
eration in protein binding sites and a graph-matching algorithm for binding pose estimation. They
employ deep learning for pharmacophore modeling, but not for the alignment nor matching.

3 PRELIMINARIES

Pharmacophore representation In this work, we treat 3D pharmacophores as attributed point
clouds (Mahé et al., 2006; Kriege & Mutzel, 2012). A pharmacophore P can be represented by a set
of pharmacophoric feature points P = {(ri, di) ∈ R3 × D}i with the Cartesian coordinates ri and
the descriptor di of the pharmacophoric feature point pi. The descriptor set D covers the following
pharmacophoric feature types: hydrogen bond donors (HBD) and acceptors (HBA), halogen bond
donors (XBD), positive (PI) and negative electrostatic interaction sites (NI), hydrophobic interaction
sites (H), and aromatic moieties (AR). Directed feature types like HBD and HBA can be associated
with a vector component, but for simplicity, we will omit this information in our study. We further
denote the set of pair-wise distances between feature points as R = {∥ri − rj∥2 | 1 ≤ i, j ≤
|P |}. The pharmacophore P can be represented as a complete graph G(P ) = (VP , EP , λP ), where
VP = {v1, ..., v|P |} denotes the set of nodes with node attributes λP (vi) = li, and EP = VP × VP
denotes the set of edges, with the edge attribute of eij defined as the pair-wise Euclidean distance
λP (eij) = ∥ri−rj∥2 between the positions of nodes i and j. The edges are undirected, edge eij can
be identified with edge eji. The label set L = D ∪ R is the union of the feature descriptor set and
the set of pair-wise distances, and λP represents a labelling function λ : V ∪ E → L that assigns
a label to the corresponding vertex v or edge e. This representation is invariant to translation and
rotation.

Subgraph matching Two graphs G1 = (V1, E1, λ1) and G2 = (V2, E2, λ2) are isomorphic,
denoted by G1 ≃ G2, if there exists an edge-preserving bijection f : V1 → V2 such that ∀(u, v) ∈
E1 : (f(u), f(v)) ∈ E2. Additionally, we require the preservation of node and edge labels, such
that ∀v ∈ V1 : λ1(v) = λ2(f(v)), and ∀(u, v) ∈ E1 : λ1((u, v)) = λ2((f(u), f(v))). Let
GQ = (VQ, EQ, λQ) be a query graph, GT = (VT , ET , λT ) a larger target graph, and GH =
(VH , EH , λH) a subgraph of GT such that VH ⊆ VT , and EH ⊆ ET . The objective of subgraph
matching is to decide, whether GQ is subgraph isomorphic to GT , denoted by GQ ≲ GT , requiring
the existence of a non-empty set of subgraphsH = {GH | GH ≃ GQ} that are isomorphic to GQ.

Pharmacophore matching In its most general setting, pharmacophore matching seeks to match
all pharmacophoric feature points of a query pharmacophore PQ with the corresponding feature
points of a larger target pharmacophore PT . Let PH ⊆ PT denote a subset of the feature points
of PT . Then PQ matches PT after alignment if there exists a bijection g : PQ → PH such that
∀i ∈ PQ : di = dg(i) and ∥ri − rg(i)∥2 < rT , where rT is the radius of a tolerance sphere. It
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is thereby sufficient that query feature points are mapped into the tolerance sphere of their target
counterpart. For simplicity, we assume the same tolerance radii among all pharmacophoric feature
points. The ultimate goal of pharmacophore matching is to retrieve molecules from a database. A
matching pharmacophore is always linked to a corresponding ligand molecule via a look-up table.

Figure 2: Illustration of the pharmacophore
matching objective: The aim is to match the phar-
macophoric points of a query with the correspond-
ing points of a target pharmacophore such that the
query points fall within the tolerance sphere of the
target points, with a tolerance radius rT .

When represented as graphs GQ = G(PQ),
GH = G(PH), and GT = G(PT ), this
task boils down to the node-induced subgraph
matching of a query pharmacophore graph GQ

to a target pharmacophore graph GT . The tol-
erance sphere, however, weakens the require-
ment on edge label matching. An approximate
matching λQ((u, v)) ≈ λH((f(u), f(v))) is
sufficient if the difference between λQ((u, v))
and λH((f(v), f(u))) is less than 2rT , where
rT represents the tolerance radius of each phar-
macophoric feature point. This ensures that the
query points fall within the tolerance spheres
of the target points (compare Figure 2). Our
problem formulation of pharmacophore match-
ing relies on relative distances instead of the ab-
solute positioning of pharmacophoric features

and is therefore independent of prior alignment.

4 METHODOLOGY

Overview In the following we introduce PharmacoMatch, a novel contrastive learning framework
with the aim to encode query-target relationships of 3D pharmacophores into an embedding space.
We propose to train a GNN encoder model in a self-supervised fashion, as illustrated in Figure 3.
Our model is trained on approximately 1.2 million unlabeled small molecules from the ChEMBL
database (Davies et al., 2015; Zdrazil et al., 2023) and learns pharmacophore matching solely from
augmented examples, comparing positive and negative pairs of query and target pharmacophore
graphs, while optimizing an order embedding loss to extract relevant matching patterns.

Unlabeled data for contrastive training To span the pharmaceutical compound space, we down-
load a set of drug-like molecules sourced from the ChEMBL (2024) website in the form of Simplified
Molecular Input Line Entry System (SMILES) strings (Weininger, 1988) and curate an unlabeled
dataset using the open-source Chemical Data Processing Toolkit (CDPKit) (Seidel, 2024) (see Ap-
pendix A.1 for details). After an initial data clean-up, which includes the removal of solvents and
counter ions, adjustment of protonation states to a physiological pH, and elimination of duplicate
structures, the dataset contains approximately 1.2 million small molecules. To ensure a zero-shot
setting in our validation experiments, we remove all molecules from the training data that also ap-
pear in the test sets. Finally, we generate a low-energy 3D conformation and the corresponding
pharmacophore for each ligand.

Model input We represent the node labels {λP (v1), ..., λP (v|P |)} of a given pharmacophore
graph G(P ) = (VP , EP , λP ) as one-hot-encoded (OHE) feature vectors h = (h1, ...,h|P |). We
employ a distance encoding to represent pair-wise distances, which was inspired by the SchNet ar-
chitecture (Schütt et al., 2018). The edge attributes of edge euv are derived from the edge label
λP (euv) and represented by a radial basis function ek(ru − rv) = exp(−β(∥ru − rv∥2 − µk)

2),
where centers µk were taken from a uniform grid of K points between zero and the distance cutoff
at 10 Å, and the smoothing factor β represents a hyperparameter. To this end, the pharmacophore P
is represented by a data point x = [h, e] which is a tuple of the feature matrix h ∈ R|P |×|D| and the
distance-encodings e ∈ R(|P |×|P |)×K .

GNN encoder The encoder input is the pharmacophore graph representation x = [h, e], with
the feature matrix h and the edge attributes e. Node feature embeddings are generated by initially
passing the OHE feature matrix through a single dense layer without an activation function. We
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Figure 3: (a) The encoder model learns an order embedding space by comparing augmented phar-
macophores. (b) Illustration of the embedding space, where pharmacophores matching a query are
positioned to the upper right. (c) Augmentation strategies for model training involve generating
positive and negative query-target pairs on-the-fly by combining node deletion with varying degrees
of node displacement. Negative pairs are also created by shuffling the batch, mapping query phar-
macophores to random target pharmacophores.

then update the node representations through message passing using the edge-conditioned convo-
lution operator (NNConv) by Gilmer et al. (2017); Simonovsky & Komodakis (2017), which was
originally designed for representation learning on point clouds and 3D molecules, to aggregate dis-
tance information into the learned node representations (see Appendix A.3 for details). We connect
successive convolutional layers using DenseNet-style skip connections (Huang et al., 2017). Graph-
level read-out is achieved by additive pooling of the updated feature matrix h ∈ R|P |×m into a
graph representation q ∈ Rm, which is then projected to the final output embedding z ∈ RD

+ by a
multi-layer perceptron. The employed loss function requires to map the final representation to the
non-negative real number space. We accomplish this by using the absolute values of the learnable
weights for the last linear transformation immediately after the final ReLU unit (see Appendix A.4
for details).

Loss function In order to encode query-target relationships of pharmacophores into the embed-
ding space, we employ the loss function by Ying et al. (2020). The key insight is that subgraph
relationships can be effectively encoded in the geometry of an order embedding space through a
partial ordering of the corresponding vector embeddings. Let zQ the embedding of graph GQ, zT
the embedding of graph GT , and fΘ : G → RD

+ a GNN encoder to map pharmacophore graphs G
to embedding vectors z ∈ RD

+ . The partial ordering zQ ⪯ zT reflects, whether GQ is subgraph
isomorphic to GT : zQ[i] ≤ zT [i], ∀i ∈ {1, ..., D} iff GQ ≲ GT . The following max-margin
objective can be used to train the GNN encoder fΘ on this relation:

L(zQ, zT ) =
∑

(zQ,zT )∈Pos

E(zQ, zT ) +
∑

(zQ,zT )∈Neg

max{0, α− E(zQ, zT )} (1)

The penalty functionE : RD
+×RD

+ → R+ reflects violation of the partial ordering on the embedding
vector pair: E(zQ, zT ) = ∥max{0, zQ−zT }∥22. Pos is the set of positive pairs per batch, these are
pairs of query zQ and target graph embedding zT with a subgraph-supergraph relationship, andNeg
is the set of negative examples, these are pairs of query and target embedding vectors that violate
this relationship. The positive and negative pairs are generated on-the-fly via augmentation during
training.
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Augmentation module The PharmacoMatch model correlates the matching of a query and a tar-
get pharmacophore with the partial ordering of their vector representations. Positive pairs represent
successful matchings, while negative pairs serve as counter examples. In order to create these pairs
from unlabeled training data, we define three families of augmentations T , which are composed
of random point deletions and positional point displacements. For positive pairs, valid queries are
created by randomly deleting some nodes from a pharmacophore P , leaving at least three, and dis-
placing the remaining nodes within a tolerance sphere of radius rT . This augmentation, denoted as
t1(·) ∼ T1, produces the positive pair (t1(P ), P ). Negative pairs highlight examples of unsuccess-
ful matching, using three strategies to capture different undesired outcomes. The first strategy intro-
duces positional mismatches by displacing the pharmacophoric feature points of P to the boundary
of the tolerance sphere without deleting any points. Specifically, we compute the mean position of
the points, µ = 1

|P |
∑|P |

i=1 ri, and shift each point pi by rT along the direction ri−µ. This approach
avoids the unintended creation of positive pairs, which can occur with random sampling, and ensures
that displacements do not cancel out. The resulting augmentation, denoted t2(·) ∼ T2, generates the
negative query-target pair (t2(P ), P ). This strategy demonstrated better model performance than
random positional displacement. Our second strategy teaches the model that every pharmacophoric
feature point in the query should correspond to a point in the target. This is achieved by deleting
some target nodes, using an augmentation operator t3(·) ∼ T3, where T3 involves node deletion
without displacement. As a result, the query in the pair (t1(P ), t3(P )) only partially matches its
target. With the third strategy, we train the model to avoid matching queries with targets that are
significantly different. This approach involves randomly mapping queries t1(Pi) to the incorrect
targets Pj , where i ̸= j (for more details, see Appendix A.2).

Model details & design choices Our GNN encoder model is implemented with three convolu-
tional layers with an output dimension of 64. The MLP has a depth of three dense layers with a
hidden dimension of 1024 and an output dimension of 512. The final model was trained for 500
epochs using an Adam (Kingma, 2014) optimizer with a learning rate of 10−3. The margin of the
best performing model was set to α = 100. The default tolerance radius rT in CDPKit’s pharma-
cophore screening is set to 1.5 Å, and we use the same value for the node displacement during model
training to ensure consistency with the alignment algorithm in subsequent evaluations. We design
a curriculum learning strategy for learning on pharmacophore graphs, detailed in Appendix A.5,
along with details on model training and hyperparameter optimization. Systematic ablation studies
of model architecture components and the impact of different augmentation strategies, model size,
and embedding dimension on model performance are provided in Appendix A.5.

Decision function for model inference We use the trained GNN encoder fΘ to precompute vector
embeddings zT of the database pharmacophores. These are queried with the pharmacophore embed-
ding zQ by verification of the partial ordering constraint through penalty function E(·, ·) (Equation
1), which shall not exceed a threshold t. This leads to decision function g : RD

+ × RD
+ → {0, 1}:

g(zQ, zT ) =

{
1 iffE(zQ, zT ) < t

0 otherwise
(2)

evaluating 1, if the partial ordering on zQ and zT reflects a pharmacophore matching, and 0 oth-
erwise. In the following, we refer to equation (2) as matching decision function. In practice, we
recommend a decision threshold of t = 6500, determined from our benchmark experiments.

5 EXPERIMENTS

We designed the embeddings to reflect the type and relative positioning of pharmacophoric feature
points. Comparison of embedding vectors via the matching prediction function should emulate the
matching of the underlying pharmacophores. To get a better understanding of the encoder’s latent
space, we investigate these properties as follows:

1. Pharmacophoric feature point perception: We investigate the learned embedding space
qualitatively through dimensionality reduction.
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2. Positional perception: We investigate the influence of positional changes on the output of
the matching decision function.

3. Virtual screening performance: The performance of our model is evaluated using ten
DUD-E (Mysinger et al., 2012) targets, and the produced hitlists are compared with the
performance and runtime of the CDPKit (Seidel, 2024) alignment algorithm. We further
evaluate the pre-screening performance of our model and compare it against the Pharma-
coNet (Seo & Kim, 2023) model using the DEKOIS2.0 (Bauer et al., 2013) and LIT-PCBA
(Tran-Nguyen et al., 2020) benchmark datasets.

Benchmark datasets We perform experiments on the DUD-E benchmark dataset (Mysinger et al.,
2012), which is commonly used to evaluate the performance of molecular docking and structure-
based screening. The complete benchmark contains 102 protein targets, each accompanied by active
and decoy ligands in the form of SMILES strings (Weininger, 1988) and the PDB template (Burley
et al., 2017) of the ligand-receptor complex. We randomly select ten different protein targets for a
proof-of-concept comparison with the CDPKit alignment algorithm. For our pre-screening experi-
ment, we use the DEKOIS2.0 (Bauer et al., 2013) dataset, which contains 80 targets, each with 40
actives and 1,200 decoys, as well as the LIT-PCBA (Tran-Nguyen et al., 2020) dataset, consisting
of 15 target sets with 7,761 confirmed actives and 382,674 inactive compounds. Database ligands
are processed according to the data curation pipeline outlined in the Methodology section, with the
exception that we sample up to 25 conformations per compound. Further information is provided in
the Appendix A.6.

5.1 PHARMACOPHORIC FEATURE POINT PERCEPTION

We conduct a qualitative analysis through dimensionality reduction to gain a first intuition for the
properties of the learned embedding space. The partial ordering of graph representations in the
embedding space, based on the number of nodes per graph, is essential for encoding query-target
relationships. This ordering property of the embedding space can be visualized using principal
component analysis (PCA). Figure 4a displays the first two principal component axes of the learned
representations, with the representations labeled according to the number of pharmacophoric feature
points of the corresponding pharmacophores. This visualization demonstrates how the embedding
vectors are systematically ordered relative to the number of nodes in each pharmacophore graph.
Similarly, the Uniform Manifold Approximation and Projection (UMAP) algorithm (McInnes et al.,
2020), a dimensionality reduction technique that preserves the local neighborhood structure of high-
dimensional data, was employed. Figure 4b shows the UMAP representation of the embeddings,
labeled by the number of feature points of a specific type. This visualization suggests that pharma-
cophores with a similar set of points are mapped proximally within the embedding space.

5.2 POSITIONAL PERCEPTION

We define a family of augmentations TrD to randomly delete nodes from a pharmacophore
P and displace the remaining nodes by a radius rD. We sample augmentations trD (·) ∼
TrD with increasing radius rD taken from a uniform grid of m distances between 0 and
10 Å. For a given batch of pharmacophores {P1, ..., Pn}, we generate the query-target pairs
{(trD (P1), P1), ..., (trD (Pn), Pn)}. We then evaluate the decision function g(·, ·) (Equation 2) on
the corresponding vector representations and calculate the mean of the decision function across all
pairs against an increasing radius rD, which is illustrated in Figure 4c. Without node displacement,
the mean matching decision function is close to 1, indicating that the model recognizes pharma-
cophores with reduced node sets as valid queries. With a displacement of approximately 1.5 Å, the
mean matching decision value drops to 50%, demonstrating the model’s consideration of the chosen
tolerance radius. Beyond a displacement of 1.5 Å, the decision function further decreases, ap-
proaching a plateau at approximately 6 Å. The results show that our model integrates 3D-positional
information of pharmacophoric feature points into the learned representations.

5.3 ALIGNMENT PREDICTION AND PERFORMANCE AS A PRE-SCREENING TOOL

Hitlist ranking Each benchmark set is comprised of a pharmacophore query PQ and a set of
ligands L = {L1, ..., Ln}, where each ligand Li is associated with a set of pharmacophores
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Figure 4: (a.) Dimensionality reduction of the ADA target’s embedding space via PCA, with em-
beddings labeled by pharmacophoric feature point count. (b.) Dimensionality reduction via UMAP,
with embeddings labeled by pharmacophoric feature point type. (c.) Experimental validation of the
model’s perception of 3D point positions, showing the mean matching decision function versus the
displacement radius rD of the augmentation, with a decision threshold set to t = 6500.

{P1, ..., Pki}i and a label yi, which indicates whether the ligand is active or decoy. The task
is to rank the database ligands w.r.t. the query, based on a scoring function F : P × P →
R+. The ranking score ψi of ligand Li is calculated through aggregation of the pharmacophore
scores

⊕
({F (PQ, P1), ..., F (PQ, Pki)}i), where

⊕
is an aggregation operator. PharmacoMatch

transforms the query G(PQ) 7→ zQ and the set of pharmacophores {G(P1), ..., G(Pki)}i 7→
{z1, ..., zki

}i via encoder model fΘ : G → RD
+ and evaluates the penalty function E : RD

+ ×RD
+ →

R+. A low penalty corresponds to a high ranking. The ranking score of database ligand Li is
calculated as ψi = min({E(zQ, z1), ..., E(zQ, zki

)}i).

Ground truth for alignment prediction We evaluate the alignment prediction performance of
PharmacoMatch by relative comparison with the alignment algorithm implemented in the open-
source software CDPKit (Seidel, 2024), which utilizes clique-detection followed by Kabsch align-
ment (Kabsch, 1976). The ligand-receptor complex of the respective DUD-E target is used to gen-
erate a structure-based pharmacophore query with the CDPKit. The CDPKit alignment algorithm
only returns exact matches, meaning that queries with an excessive number of points may yield no
results. Consequently, pharmacophore modeling often requires user interaction to reduce the num-
ber of points in the query. For our comparison, we refined the initial query pharmacophores to a
subset of 5–7 pharmacophoric feature points, which is a common range in pharmacophore mod-
eling. These points were selected to ensure that the query yields meaningful enrichment for the
CDPKit algorithm. Only after this refinement did we proceed to compare PharmacoMatch against
this ground truth. The alignment of a query PQ and a target PT is evaluated with an alignment score
S : P × P → R+, which takes into account the number of matched features and their geometric
fit (further details are provided in the Appendix A.6). The ligand ranking score is calculated as
ψi = max({S(PQ, P1), ..., S(PQ, Pki)}i), the highest alignment score represents the score for the
database ligand. Analogous to equation (2), we can also define a matching decision function ϕ based
on the alignment score, where t = |PQ|:

ϕ(PQ, PT ) =

{
1 iffS(PQ, PT ) ≥ t
0 otherwise

(3)

Evaluation metrics Both algorithms rank database ligands to produce a hitlist. We assess the
performance of PharmacoMatch on the benchmark using two approaches. First, we demonstrate
that the PharmacoMatch penalty E(·, ·) correlates with the matching decision function ϕ(·, ·) of
the alignment algorithm. We evaluate both functions against all pharmacophores in a dataset w.r.t.
query PQ. The outputs are compared by generating the corresponding receiver operating character-
istic (ROC) curves, and the performance is quantified using the area under the ROC curve (AUROC)
metric. We argue that this relative performance is the key metric for evaluating the alignment pre-
diction performance of our model. Second, we compare the absolute screening performance of our
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Table 1: Method comparison and screening performance of the PharmacoMatch algorithm and
the CDPKit alignment algorithm on ten different DUD-E protein targets (see Appendix A.6 for
details). BEDROC values are calculated with α = 20, as recommended by Truchon & Bayly
(2007), AUROC and BEDROC are reported in percent. Confidence intervals are calculated us-
ing bootstrapping (Efron, 1979), with standard deviations reported based on 100 resampled datasets.

Protein Relative Absolute screening performance Absolute screening performance
target performance PharmacoMatch CDPKit

AUROC AUROC BEDROC EF1% EF5% EF10% AUROC BEDROC EF1% EF5% EF10%

ACES 96.0 ± 0.2 58 ± 2 18 ± 1 8.4 ± 1.4 3.5 ± 0.3 2.2 ± 0.2 55 ± 1 16 ± 2 5.5 ± 1.3 3.0 ± 0.3 2.1 ± 0.2

ADA 98.3 ± 0.2 83 ± 3 44 ± 4 16.7 ± 4.1 9.5 ± 1.0 5.7 ± 0.4 94 ± 1 82 ± 3 53.6 ± 4.3 15.9 ± 0.9 8.4 ± 0.4

ANDR 98.8 ± 0.1 76 ± 1 33 ± 2 15.8 ± 1.9 6.0 ± 0.5 4.3 ± 0.3 71 ± 2 26 ± 2 12.6 ± 2.1 4.4 ± 0.5 3.7 ± 0.3

EGFR 91.1 ± 0.5 63 ± 1 11 ± 1 3.1 ± 0.7 2.0 ± 0.3 1.6 ± 0.2 76 ± 1 26 ± 2 12.2 ± 1.6 4.6 ± 0.3 3.7 ± 0.2

FA10 84.3 ± 0.1 47 ± 1 1 ± 1 0.2 ± 0.2 0.1 ± 0.1 0.2 ± 0.1 55 ± 1 6 ± 1 0.0 ± 0.0 0.7 ± 0.2 1.2 ± 0.1

KIT 84.5 ± 0.1 56 ± 2 4 ± 1 0.0 ± 0.0 0.4 ± 0.2 0.7 ± 0.2 63 ± 2 9 ± 2 1.1 ± 0.8 1.2 ± 0.4 1.8 ± 0.3

PLK1 79.5 ± 0.5 62 ± 3 9 ± 2 1.5 ± 1.3 0.7 ± 0.3 1.8 ± 0.3 75 ± 3 39 ± 3 5.7 ± 2.3 10.2 ± 0.9 5.5 ± 0.5

SRC 96.6 ± 0.2 79 ± 1 27 ± 1 6.0 ± 1.0 5.3 ± 0.4 4.6 ± 0.2 80 ± 1 28 ± 1 11.1 ± 1.2 5.3 ± 0.4 4.3 ± 0.2

THRB 89.9 ± 0.5 70 ± 1 22 ± 1 5.9 ± 1.0 4.8 ± 0.4 3.3 ± 0.2 79 ± 1 35 ± 2 11.8 ± 1.5 7.2 ± 0.4 4.5 ± 0.2

UROK 83.8 ± 0.2 60 ± 2 4 ± 1 0.6 ± 0.7 0.5 ± 0.2 0.4 ± 0.2 91 ± 1 55 ± 3 24.5 ± 2.8 10.4 ± 0.9 8.2 ± 0.4

model and the alignment algorithm using the ligand ranking score ψ. The primary objective of vir-
tual screening is to find active compounds among decoys. The AUROC metric is used to evaluate
the overall classification performance w.r.t. activity label yi. A drawback of this metric is that it
does not reflect the early enrichment of active compounds in the hitlist, which is of significant in-
terest in virtual screening. Early enrichment is assessed using the enrichment factor (EFα%) and the
Boltzmann-enhanced discrimination of ROC (BEDROC) metric (Truchon & Bayly, 2007), which
assigns higher weights to better-ranked samples (definitions in Appendix A.6). Note that these per-
formance metrics are entirely dependent on the chosen query. Therefore, our primary performance
metric in this experiment is the relative performance AUROC. For completeness, we also report
absolute virtual screening metrics. We conduct this proof-of-concept comparison using a randomly
selected subset of 10 DUD-E targets, serving as a focused case study.

Alignment prediction performance Our results, comparing PharmacoMatch with the CDPKit
alignment algorithm across the selected targets, are summarized in Table 1 (ROC plots are provided
in the Appendix A.6). We observe a robust correlation between the hitlists generated by the two
algorithms, demonstrating the effectiveness of our approach. This correlation varies by target, re-
flecting the sensitivity of virtual screening to the chosen query. Although the alignment algorithm
achieves generally higher AUROC scores and early enrichment, our method consistently produces
hitlists with competitive performance across several targets. In terms of runtime, PharmacoMatch
significantly outperforms the alignment algorithm. We compare the time required for alignment, em-
bedding, and vector matching per pharmacophore. Alignment is performed in parallel on an AMD
EPYC 7713 64-Core Processor with 128 threads, while pharmacophore embedding and matching
are run on an NVIDIA GeForce RTX 3090, with both devices having comparable purchase prices
and release dates. Creating vector embeddings from pharmacophore graphs takes 67 ± 7 µs per
pharmacophore, approximately as long as aligning a query to a target with 66 ± 6 µs. However,
the embedding process only needs to be performed once. Subsequently, the preprocessed vector
data can be used for vector matching, which takes 0.3± 0.1 µs, being approximately two orders of
magnitude faster than the alignment. Additionally, vector comparison is independent of the query
size, an advantage not shared by the alignment algorithm. Although executed on different hardware,
this comparison highlights the speed-gain of our algorithm.

Applicability as a pre-screening tool We demonstrated how PharmacoMatch predicts pharma-
cophore matching and compared its performance with the CDPKit alignment algorithm. A key
aspect of this comparison is the role of user interaction in query design, since the alignment algo-
rithm only identifies a match when all pharmacophoric feature points align, and while it is possible
to define feature points as optional, this flexibility significantly increases runtime due to the com-
binatorial explosion of possible query patterns. Consequently, handling larger queries with ten or
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Table 2: Comparison of PharmacoMatch with PharmacoNet (Seo & Kim, 2023) as a pre-screening
tool. The reported performance metrics were averaged over all targets of the DEKOIS2.0 and
LIT-PCBA datasets. AUROC and BEDROC are given in percent, BEDROC values are calculated
with α = 80.5, as reported in Seo & Kim (2023). PharmacoNets runtime per ligand depends on the
number of atoms, here we report their measurement for ligands with 70 heavy atoms. The runtime
for PharmacoMatch was calculated as average over all ligands in the benchmark.

DEKOIS2.0 LIT-PCBA Runtime

AUROC BEDROC EF0.5% EF1% EF5% AUROC BEDROC EF0.5% EF1% EF5% per ligand (s)

PharmacoNet 62.5 12.3 4.4 4.2 2.9 - - - 3.1 - 5.2 · 10−3

PharmacoMatch (ours) 60.9 15.1 5.5 4.9 3.2 57.4 5.0 6.0 3.5 2.2 3.3 · 10−6

more points becomes computationally prohibitive. PharmacoMatch operates independently of the
query’s size. This characteristic makes PharmacoMatch particularly suitable as a pre-screening
tool. By using structure-based queries without refinement step, it can filter extensive datasets ef-
fectively, reducing the computational burden before engaging more resource-intensive methods or
requiring user interaction. To evaluate this use case, we compare our method with the recent pre-
screening tool PharmacoNet (Seo & Kim, 2023), which employs image segmentation to generate
pharmacophore queries and a parameterized analytical function for hitlist creation. To replicate an
automated pre-screening scenario, we exclude user interaction from our workflow. Specifically, we
generate an interaction pharmacophore using CDPKit and use it directly as a query for Pharma-
coMatch. We assess the pre-screening performance of PharmacoMatch and PharmacoNet on the
DEKOIS2.0 (Bauer et al., 2013) and LIT-PCBA (Tran-Nguyen et al., 2020) benchmark datasets.
Performance is evaluated using the average AUROC, BEDROC, and EF metrics across all targets
(see Appendix A.6 for more details). The results of this comparison are summarized in Table 2. Our
evaluation demonstrates that PharmacoMatch outperforms PharmacoNet with respect to early en-
richment. Importantly, PharmacoMatch’s runtime is three orders of magnitude faster. Given that the
primary goal of pre-screening is rapid and cost-effective filtering before using more computationally
expensive methods, we argue that this substantial improvement in runtime makes PharmacoMatch
an effective pre-screening tool.

Practical considerations & limitations There are two options for integrating our model into a
virtual screening pipeline. First, the PharmacoMatch model can be used in place of the alignment
algorithm to generate a hitlist of potential active compounds, which is suitable for quickly producing
a compound list for experimental testing. Second, our method can serve as an efficient pre-screening
tool for very large databases, reducing the number of molecules from billions to millions, after which
the slower alignment algorithm can be applied to this filtered subset. Note that alignment will still
be necessary if visual inspection of aligned pharmacophores and corresponding ligands is desired.
An important limitation is that the embedding process is not lossless and might lead to reduced
3D geometric precision, when compared to an alignment algorithm. The employed E(3)-invariant
encoder cannot distinguish a pharmacophore from its mirror image, potentially increasing the false
positive rate. Addressing these limitations will be part of future work.

6 CONCLUSION

We have presented PharmacoMatch, a contrastive learning framework that creates meaningful phar-
macophore representations for virtual screening. The proposed method tackles the matching of 3D
pharmacophores through vector comparison in an order embedding space, thereby offering a valu-
able method for significant speed-up of virtual screening campaigns. PharmacoMatch is the first
machine-learning based solution that approaches pharmacophore virtual screening via an approxi-
mate neural subgraph matching algorithm. We are confident that our method will help to improve
on existing virtual screening workflows and contribute to the assistance of medicinal chemist in the
complex task of drug discovery.
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A APPENDIX

A.1 DATASET CURATION & STATISTICS

Unlabeled training data was downloaded from the ChEMBL database to represent small molecules
with drug-like properties. At the time of data download, the ChEMBL database contained 2,399,743
unique compounds. We constrained the compound category to ”small molecules” and enforced ad-
herence to the Lipinsky rule of five (Lipinski et al., 1997), specifically setting violations to ”0,”
resulting in a refined set of 1,348,115 compounds available for download. The molecules were ac-
quired in the form of Simplified Molecular Input Line Entry System (SMILES) (Weininger, 1988)
strings. Subsequent to data retrieval, we conducted preprocessing using the database cleaning func-
tionalities of the Chemical Data Processing Toolkit (CDPKit) (Seidel, 2024). This process involved
the removal of solvents and counter ions, adjustment of protonation states to a physiological pH
value, and elimination of duplicate structures, where compounds differing only in their stereo con-
figuration were regarded as duplicates. To prevent data leakage, we carefully removed all structures
from the training data that would occur in one of the test sets we used for our benchmark experi-
ments. The final set was comprised of 1,221,098 compounds. For each compound within the dataset,
a 3D conformation was generated using the CONFORGE (Seidel et al., 2023) conformer generator
from the CDPKit, which was successful for 1,220,104 compounds. To enhance batch diversity, we
generated only one conformation per compound for contrastive training. Subsequently, 3D pharma-
cophores were computed for each conformation, with removal of pharmacophores containing less
than four pharmacophoric feature points. The ultimate dataset comprised 1,217,361 distinct pharma-
cophores. Figure 5 shows the frequency of pharmacophores with a specific pharmacophoric feature
point count in the training data. On average, a pharmacophore consists of 12.4 pharmacophoric fea-
ture points, with the largest pharmacophore in the dataset containing 32 points. Hydrophobic feature
points and hydrogen bond acceptors are the most prominent, while hydrogen bond donors and aro-
matics occur less frequently. Ionizable feature points and halogen bond donors are comparatively
rare.

Figure 5: Pharmacophoric feature point statistics of the training data. The respective histograms
display the total number of pharmacophoric feature points and the number of points of specific
types per pharmacophore in the training data. The complete training dataset contains 1,217,361
distinct pharmacophores.
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A.2 AUGMENTATION MODULE

The augmentation module receives the initial pharmacophore x0 = [h0, r0], with the initial OHE
feature matrix h0 and the Cartesian coordinates r0. Edge attributes of the complete graph were
calculated from the pair-wise distances between nodes after modifying the input according to the
augmentation strategy, which combines random node deletion and random node displacement. The
module outputs the modified tuple x = [h, e] with the feature matrix h and the edge attributes e.

Node deletion Random node deletion involved removing at least one node, with the upper bound
determined by the cardinality of the set of nodes Vi of graphGi. To ensure the output graph retained
at least three nodes, the maximum number of deletable nodes was |Vi| − 3. The number of nodes to
delete was drawn uniformly at random.

Node displacement There are two modes for the displacement of pharmacophoric feature points,
displacement within the tolerance sphere, and displacement onto the surface of the tolerance sphere.
For simplicity, we assumed the same tolerance sphere radius rT across different pharmacophoric
feature types. For displacement within the tolerance sphere, we calculated the coordinate displace-
ment (∆x,∆y,∆z) from spherical coordinates ϕ ∼ U(0, 2π) and cos θ ∼ U(−1, 1), which were
drawn at random from a uniform distribution:

∆x = ∆r sin θ cosϕ, ∆y = ∆r sin θ sinϕ, ∆z = ∆r cos θ (4)

where ∆r = rT 3
√
u and u ∼ U(0, 1). Displacement of the nodes onto the tolerance sphere surface

was achieved by calculating the mean of the positions of the pharmacophoric feature points, µ =
1
|P |

∑|P |
i=1 ri, and displacing each point pi by rT in the direction ri − µ. The displacement away

from the center ensures that displacement directions do not cancel each other.

A.3 MESSAGE PASSING NEURAL NETWORK

Convolution on irregular domains like graphs is formulated as message passing, which can generally
be described as:

h
(k)
i = γ(k)(h

(k−1)
i ,

⊕
j∈N (i)

ϕ(k)(h
(k−1)
i ,h

(k−1)
j , eij)) (5)

where h
(k)
i ∈ RF ′

denotes the node features of node i at layer k, h(k−1)
i ∈ RF denotes the node

features of node i at layer k − 1, eij ∈ RD the edge features of the edge from node i to node j,
γ(k) and ϕ(k) are parameterized, differentiable functions, and

⊕
is an aggregation operator like,

e. g., the summation operator (Fey & Lenssen, 2019). In our encoder architecture, we employed the
following edge-conditioned convolution operator, which was proposed both by Gilmer et al. (2017)
and Simonovsky & Komodakis (2017):

h
(k)
i = Θh

(k−1)
i +

∑
j∈N (i)

h
(k−1)
j · ψΘ(eij) (6)

where Θ ∈ RF×F ′
denotes learnable weights and ψΘ(·) : RD → RF×F ′

denotes a neural network,
in our case an MLP with one hidden layer. These transformations map node features h into a latent
representation that combines pharmacophoric feature types with distance encodings.

A.4 ENCODER IMPLEMENTATION

The encoder was implemented as a GNN fΘ : G → RD
+ that maps a given graph G to the abstract

representation vector z ∈ RD
+ . The architecture is comprised of an initial embedding block, three

subsequent convolution blocks, followed by a pooling layer, and a projection block.
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Embedding block The embedding block receives the pharmacophore graph Gi as the tuple xi =
[hi, ei], with the OHE feature matrix hi and the edge attributes ei. Initial node feature embeddings
are created from the OHE features with a fully-connected (FC) dense layer with learnable weights
W and bias b:

hi ←Whi + b (7)

Convolution block The convolution block consists of a graph convolution layer, which is imple-
mented as edge-conditioned convolution operator (NNConv), the update rule is described in Section
A.3. The network further consists of batch normalization layers (BN), GELU activation functions,
and dropout layers. The hidden representation hl

i of graph Gi is updated at block l as follows:

[hl
i, ei]→ {NNConv→ BN→ GELU→ concat(hl′

i ,h
l
i)→ dropout} → hl+1

i (8)

where hl′

i represents the latent representation after activation. Updating the feature matrix l times
yields the final node representations of the pharmacophoric feature points.

Pooling layer We employed additive pooling for graph-level read-out ri, which aggregates the set
of |V | node representations {h1, ...,h|V |}i of a Graph Gi by element-wise summation:

qi =

|V |∑
k=1

hk (9)

Projection block The projection block maps the graph-level read-out to the positive real number
space and is implemented as a multi-layer perceptron MLP : Rd → RD

+ , where d is the dimension
of the vector representation before and D the dimension after the projection. The block consists of
k sequential layers of FC layers, BN, ReLU activation, and dropout:

qk
i → {FC→ BN→ ReLU→ Dropout} → qk+1

i (10)

The final layer is a FC layer without bias and with positive weights, only:

zi ← abs(W)qi (11)

Matrix multiplication of the positive learnable weights W and the output of the last ReLU activation
function produces the final representation zi ∈ RD

+ .
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Figure 6: Architecture of the GNN encoder model.
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A.5 MODEL IMPLEMENTATION AND TRAINING

Implementation dependencies The GNN was implemented in Python 3.10 with PyTorch (v2.0.1)
and the PyTorch Geometric library (v2.3.1) (Fey & Lenssen, 2019). Both, model and dataset, were
implemented within the PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019) frame-
work (v2.1.0). Model training was monitored with Tensorboard (v2.13.0). CDPKit (v1.1.1) was
employed for chemical data processing. Software was installed and executed on a Rocky Linux
(v9.4) system with x86-64 architecture.

Model training Training was performed on a single NVIDIA GeForce 3090 RTX graphics unit
with 24 GB GDDR6X. Training runs were performed for a maximum of 500 epochs with a batch size
of 256 pharmacophore graphs. Curriculum learning was applied by gradual enrichment of the dataset
with increasingly larger pharmacophore graphs. At training start, only pharmacophore graphs with
4 nodes were considered. After 10 subsequent epochs without considerable minimization of the
loss function, pharmacophore graphs with one additional node were added to the training data. This
approach allows the model to start with very simple examples, gradually increasing the difficulty
of the matching task. The loss function was minimized with the Adam (Kingma, 2014) optimizer,
we further applied gradient clipping. A training run on the full dataset took approximately 48 hours
with the above hardware specifications.

Hyperparameter optimization & model selection Hyperparameters were optimized through
random parameter selection, the tested ranges are summarized in Table 4. Unlabeled data was split
into training and validation data with a 98:2 ratio. Training runs were compared using the AUROC
value on the validation data. This was calculated by treating the positive and negative pairs as bi-
nary labels, and the predictions were based on their respective order embedding penalty, which was
calculated with function E(·, ·) in Equation (1). Hyperparameter optimization was performed on a
reduced dataset with 100,000 graphs, which took approximately 5 hours per run. The best perform-
ing models were retrained on the full dataset. The hyperparameters of the final encoder model are
summarized in Table 3. After model selection, the final model performance was tested on virtual
screening datasets.

Table 3: Hyperparameters of the best performing encoder model

Hyperparameter

batch size 256
dropout convolution block 0.2
dropout projection block 0.2
max. epochs 500
hidden dimension convolution block 64
hidden dimension projection block 1024
output dimension convolution block 1024
output dimension projection block 512
learning rate optimizer 0.001
margin for negative pairs 100.0
number of convolution blocks 3
depth of the projector MLP 3
edge attributes dimension 5
sampling sphere radius positive pairs 1.5
sampling surface radius negative pairs 1.5

Ablation studies To evaluate the importance of various model parameters, we conduct a series of
ablation studies using the best-performing model. In these experiments, we systematically alter one
parameter at a time and assess its impact on classification performance using the validation hold-out
set. Our findings reveal several key insights. The embedding dimension of the learned representa-
tions can be reduced to 128 without loss in performance. The encoder requires at least 32 dimensions
to remain effective. Skip-connections are critical for model performance, with DenseNet-style con-
nections slightly outperforming ResNet-style (He et al., 2015) alternatives. Interestingly, the choice
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Table 4: Tested hyperparameter ranges for model training.

Hyperparameter Parameter range

dropout [0.2, 0.3, 0.4, 0.5]
margin for negative pairs [0.1, 0.5, 1, 2, 5, 10, 100, 1000]
output dimension projection block [64, 128, 256, 512, 1024]
displacement sphere radius rT of positive pairs [0.25, 0.5, 1.0, 1.5]

Table 5: Tested hyperparameter ranges for ablation studies.

Parameter Parameter range Validation AUROC

Tolerance radius [0.0, 0.5, 1.0, 1.5, 2.0] [0.91, 0.93, 0.94, 0.94, 0.93]
Encoder dimension [8, 16, 32, 64, 96] [0.92, 0.93, 0.94, 0.94, 0.94]
Embedding dimension [32, 64, 128, 256, 512, 1024] [0.91, 0.93, 0.94, 0.94, 0.94, 0.93]
Skip-connection [dense, res, none] [0.94, 0.93, 0.74]
GNN Layer [NNConv, GINE, CFConv, GAT] [0.94, 0.94, 0.94, 0.93]
Projector layers [1, 2, 3] [0.94, 0.94, 0.94]
Convolution layers [1, 2, 3] [0.94, 0.94, 0.94]
Margin [0.01, 0.1, 1, 2, 5, 10, 100, 1000] [0.88, 0.90, 0.92, 0.92, 0.93, 0.93, 0.94, 0.94]

of message-passing layer, whether NNConv, graph isomorphism operator (GINE) (Hu et al., 2020),
graph attention operator (GAT) (Brody et al., 2022), or continuous-filter convolutional layers (CF-
Conv) (Schütt et al., 2018), has minimal impact on performance. The depth of the projector and
encoder also does not significantly affect results. In contrast, the margin value plays a significant
role in model performance. While larger values enhance performance, excessively high margins
can lead to training instability. A margin of 100 provides an effective balance between these factors.
The displacement radius for augmentations in creating positive pairs is most effective at 1.5 Å, while
removing node displacement degrades model performance.

A.6 VIRTUAL SCREENING

DUD-E dataset details General information about the DUD-E targets is summarized in Table 6.
For each target we downloaded the receptor structure from the PDB and created the corresponding
interaction pharmacophore with the CDPKit. Vector features were converted into undirected phar-
macophoric feature points. The resulting pharmacophore queries (Figure 7) were used in our virtual
screening experiments.

Table 6: DUD-E targets that were selected for bechmarking experiments in this study.

Target PDB code Ligand ID Active
Ligands

Active
Conformations

Decoy
Ligands

Decoy
Conformations

Query
Points

ACES 1e66 HUX 451 10048 26198 567122 6
ADA 2e1w FR6 90 2166 5448 125035 7
ANDR 2am9 TES 269 3039 14333 211968 6
EGFR 2rgp HYZ 541 12468 35001 755017 7
FA10 3kl6 443 537 13343 28149 638831 5
KIT 3g0e B49 166 3703 10438 224364 5
PLK1 2owb 626 107 2531 6794 152999 6
SRC 3el8 PD5 523 11868 34407 737864 6
THRB 1ype UIP 461 11494 26894 626722 7
UROK 1sqt UI3 162 3450 9837 199204 6
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Figure 7: Structure-based pharmacophore queries of ten targets of the DUD-E benchmark dataset.

DEKOIS2.0 dataset details General information about the DEKOIS2.0 targets (Bauer et al.,
2013). Each target is associated with a PDB four-letter code and a corresponding ligand ID. For each
target, we downloaded the receptor structure and its respective ligand from the PDB and generated
the interaction pharmacophore using the CDPKit. These queries were used without further refine-
ment in our pre-screening experiments. For targets containing the small molecule ligand in multiple
binding pockets, we randomly selected one pocket for pharmacophore generation. The SIRT2 target
was excluded from our evaluation because its structure does not contain a small molecule ligand.
Actives and decoys were processed analogous to the ligands in the DUD-E benchmark.

LIT-PCBA dataset details For each target, the downloaded files include a SMILES file contain-
ing the active and inactive ligands, along with receptor structures provided as PDB files. To ensure a
fair comparison with PharmacoNet, we created pharmacophore queries using the same receptor PDB
files as in their study. These PDB files were selected based on a methodology described by (Shen
et al., 2023) and are listed in Table S4 of the respective supporting information. Interaction phar-
macophores were generated using CDPKit and used without further refinement in our pre-screening
experiments. Active and inactive ligands were processed following the same protocol as for the
DUD-E benchmark.

CDPKit alignment scoring function The CDPKit implements alignment as a clique-detection
algorithm and computes a rigid-body transformation via Kabsch’s algorithm to align the pharma-
cophore query PQ to the pharmacophore target PT . The goodness of fit is evaluated with a geometric
scoring function S : P × P → R+:

S(PQ, PT ) = SMFP (PQ, PT ) + SGeom(PQ, PT ) (12)

where SMFP : P×P → N counts the number of matched feature pairs and SGeom : P×P → [0, 1)
evaluates their geometric fit.

Runtime measurement We measured alignment runtimes using the psdscreen tool from the CDP-
Kit with 128 threads on an AMD EPYC 7713 64-Core Processor, while embedding and matching
runtimes with PharmacoMatch were recorded using an NVIDIA GeForce RTX 3090 GPU with 24
GB GDDR6X. We additionally used 8 CPU worker nodes for the embedding step. Runtime per
pharmacophore was estimated by dividing the total runtime by the number of pharmacophores in
each dataset, with the final estimate taken as the mean of ten runs. The results report the mean and
standard deviation of these estimates across all ten datasets.

Performance metrics The enrichment factor (EF) is formally defined as:

EFα =
nα
n · α

(13)

with nα the number of true active compunds in the top α% of the hitlist ranking and the total number
of active compounds n.
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The Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic (BEDROC) metric
(Truchon & Bayly, 2007) is similar to the AUROC metric but assigns greater weight to samples
ranked higher in the hitlist. The degree of this reweighting is controlled by the early recognition
parameter α. The formal definition is as follows:

BEDROCα =

∑n
i=1 e

−αri/N

Ra(
1−e−α

eα/N−1
)
· Ra sinh (α/2)

cosh (α/2)− cosh (α/2− αRa)
+

1

1− eα(1−Ra)
(14)

where n is the number of active compounds in the dataset, N is the total number of compounds,
Ra = n/N is the ratio of active compounds in the dataset, and ri = ranki−1

N−1 is the normalized
ranking of the i-th active compound.

The area under receiver operating characteristic (AUROC) performance metrics of our virtual
screening experiments on the selected DUD-E targets are derived from the ROC curves presented in
Figures 8 and Figure 9. The performance metrics for the pre-screening experiments are calculated
as follows: for each target, we calculated the AUROC, BEDROC, and enrichment factors (EF) for
the top 0.5%, 1%, and 5% of the hit list, reporting the average values for these metrics. Metrics for
PharmacoNet were reported as presented in their original manuscript and were not recalculated.

A.7 EMBEDDING SPACE VISUALIZATION

UMAP visualization UMAP embeddings for visualization plots were calculated with the UMAP
Python library. The ‘metric‘ parameter was set to Manhattan distance, all other parameters are the
default settings of the implementation. We tested a range of hyperparameters to ensure that the
visualization results are not sensitive to parameter selection.
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Figure 8: Performance comparison of PharmacoMatch and the alignment algorithm. The ROC-
curves display the agreement of the hitlist ranking of the two algorithms for ten targets of the DUD-E
benchmark dataset.

Figure 9: Absolute screening performance of PharmacoMatch and the alignment algorithm perfor-
mance for ten targets of the DUD-E benchmark dataset. The pharmacophore queries were generated
from the respective PDB ligand-receptor structures.
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Figure 10: UMAP visualization of the vector embeddings of the ACES target.

Figure 11: UMAP visualization of the vector embeddings of the ANDR target.

Figure 12: UMAP visualization of the vector embeddings of the EGFR target.
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Figure 13: UMAP visualization of the vector embeddings of the FA10 target.

Figure 14: UMAP visualization of the vector embeddings of the KIT target.

Figure 15: UMAP visualization of the vector embeddings of the PLK1 target.
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Figure 16: UMAP visualization of the vector embeddings of the SRC target.

Figure 17: UMAP visualization of the vector embeddings of the THRB target.

Figure 18: UMAP visualization of the vector embeddings of the UROK target.
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