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ABSTRACT

As large language models increasingly rely on external data sources, compensating
data contributors has become a central concern. But how should these payments
be devised? We revisit data valuations from a market-design perspective where
payments serve to compensate data owners for the private heterogeneous costs
they incur for collecting and sharing data. We show that popular valuation meth-
ods—such as Leave-One-Out and Data Shapley—make for poor payments. They
fail to ensure truthful reporting of the costs, leading to inefficient market outcomes.
To address this, we adapt well-established payment rules from mechanism design,
namely Myerson and Vickrey-Clarke-Groves (VCG), to the data market setting.
We show that Myerson payment is the minimal truthful mechanism, optimal from
the buyer’s perspective. Additionally, we identify a condition under which both
data buyers and sellers are utility-satisfied, and the market achieves efficiency.
Our findings highlight the importance of incorporating incentive compatibility
into data valuation design, paving the way for more robust and efficient data
markets. Our data market framework is readily applicable to real-world scenar-
ios. We illustrate this with simulations of contributor compensation in an LLM
based retrieval-augmented generation (RAG) marketplace tasked with challenging
medical question answering.

1 INTRODUCTION

The emergence of large language models (LLMs) has placed data at the heart of technological and
societal advancement. As concerns mount that the availability of data may not keep pace with the
rapid growth of model sizes (Villalobos et al., 2024), the ability to source high-quality data has
become a critical factor for the success of LLM companies. Currently, web-scale data crawling
is conducted with little regard for data provenance, often leading to copyright infringement that
impacts content owners. This has resulted in a growing number of copyright lawsuits, such as those
documented by New York Times v. OpenAI (2023); Concord Music Group v. Anthropic (2023).

Figure 1: Data sources have different
private unit costs

Increasingly, content creators are choosing to opt out of
contributing their work for AI training (Longpre et al.,
2024; Fan et al., 2025). To encourage participation from
data owners, there is a rising need to design an efficient
data-trading market. Data owners should be fairly com-
pensated for the use of their data, taking into account
factors like the intrinsic cost of data generation, for exam-
ple, it is more costly to gather expert-curated data than
synthetic data (Figure 1). However, these costs are private
- only the data collectors themselves know the effort and
cost they put in. A well designed data marketplace could
nevertheless discover these heterogeneous costs, match
high-cost data collectors only with buyers who derive a
high-value from the dataset, and extract appropriately high
compensation. It is unclear if existing approaches to data pricing achieve such goals.

Existing data valuation methods for machine learning primarily focus on interpretability and guiding
data collection, often neglecting market dynamics. In a market scenario, data owners (sellers) can
misreport data-related costs to maximize their compensation, while data buyers strive to improve
model performance at minimal cost. When valuation methods such as Leave-One-Out (Weisberg
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& Cook, 1982) and Data Shapley (Ghorbani & Zou, 2019) are directly used as pricing rules in data
markets, we point out that data sellers are incentivized to misreport their true costs, resulting in
inefficient data market collaboration.

To address the challenge of untruthful reporting, we draw on well-established payment mecha-
nisms from game theory, specifically, the Myerson payment rule (Myerson, 1981) and the Vick-
rey–Clarke–Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973), and adapt them
to our data trading framework. Our analysis shows that: (1) the Myerson payment rule yields the
minimum possible payment, making it optimal from the buyer’s standpoint; and (2) when allocations
are made to maximize overall market welfare in an unconstrained setting, the VCG and Myerson
payments coincide. Additionally, we demonstrate that when buyers’ utility functions are subadditive,
total payments can be distributed across buyers while maintaining individual rationality for all partici-
pants. These findings highlight the crucial role of game-theoretic principles in designing data market
payment schemes.

Our data market modeling framework can be readily extended to real-world applications, ranging from
simple mean estimation to optimizing data mixtures for LLM pretraining, to compensating content
contributors in retrieval-augmented generation (RAG) systems. For the RAG market, the payments
can be easily calculated by modifying the existing post-retrieval reranking process, showing great
potential for seamless integration into current pipelines while enabling fair and truthful compensation
for document owners.

2 RELATED WORK

Data Valuation Methods. Data valuation has gained growing popularity in machine learning
applications, mainly for the purposes of explainability and addressing algorithmic fairness (Pruthi
et al., 2020; Liang et al., 2022), guiding high-quality data selection (Chhabra et al., 2024; Yu et al.,
2024). Among them there are two primary categories methods – Shapley value based and Leave-
One-Out (LOO) based. Shapley value based methods include Data Shapley (Ghorbani & Zou, 2019)
and computationally feasible variations (Jia et al., 2020; Wang et al., 2024). LOO-based methods
often encompass model retraining with one sample left out (Koh & Liang, 2020). In reality, rational
participants in a market setting are likely to act strategically to maximize their profits. As a result,
applying these pricing methods can lead to misreporting and inefficiencies within data markets.

Auction Theory and Mechanism Design. Starting from the Arrow–Debreu model (Arrow &
Debreu, 1954), a central question of market design is to set prices such that the net welfare of all
participants is maximized. Such a market is said to be efficient. Auction theory (Krishna, 2003), and
in general mechanism design, investigates how to how to design prices which preserve efficiency
even if some information is unknown i.e. private. In the context of data markets, this implies that we
want to design prices such that all participants truthfully report their true costs of data sharing and
benefits received from said data, so that we can maximize social welfare.

Data Markets. Due to unknown data sharing costs incurred by the data sellers, designing an
efficient mechanism can be challenging. Dütting et al. (2021) show that with one data sample from
the seller’s distribution, truthful mechanisms can be achieved with approximate market efficiency,
assuming unit supply sellers. Rasouli & Jordarn (2021) design a truthful mechanism where data
quality can be exchanged with monetary payments. However, they do not analyze its social efficiency.
Agarwal et al. (2024) study truthful mechanism design when buyers’ externalities due to competition
are known, aiming at maximizing social welfare or revenue. We refer to a recent survey (Zhang et al.,
2024) for a more detailed overview of the area. We note that most of these works often assume known
simple structured valuation functions and combinatorial allocations, not suitable for machine learning
worlds where the information sharing can happen in continuous space and the buyers’ valuations are
directly connected to model performances, which is our focus.

3 WHAT IS A DESIRED PAYMENT?

3.1 OUR PROPOSED MODELING FRAMEWORK

We consider a data market with disjoint sets of data buyers B and data sellers S . B ∩ S = ∅. Buyers
and sellers interact through the allocation (information exchange) matrix W ∈ R|B|×|S|, where |wi,j |
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Figure 2: Diagram of our data market modeling framework. Red denotes private values.

denotes the information exchange between buyer i and seller j, for example, how much data buyer
i purchases from seller j. Depending on the use case, W can live in constrained or unconstrained
domains. For easy theoretical derivation, we further assume that W is a continuous variable. We use
Wi,: and W:,j to denote i-th row and j-th column, respectively. Our proposed modeling framework
is illustrated in Figure 2.

Buyer’s Performance: Each buyer has its performance (e.g. accuracy) function vi(Wi,:) : R|S| →
R≥0. The performance measures how buyer i’s model gets improved utilizing the data from the
sellers; or equivalently, the drop in loss after data acquisition, vi = li(0) − li(Wi,:), where li(0)
denotes the standalone loss for buyer i. In game theory literature, such a performance function can as
well be called buyer’s valuation. In our main analysis, we assume buyer’s valuation functions are
known to the market, which makes the problem more tractable. It is infeasible to design a truthful
and efficient market with unknown buyers’ valuation, as analyzed in Appendix E.

Seller’s Cost: cj ∈ R≥0 is the private unit cost of data and f(·) : R|B| → R≥0 quantifies
the data sharing magnitude. For a specific seller j, we denote the data sharing magnitude as
fj(W ) = f(W:,j). fj(W ) is non-decreasing in the norm of jth column of W . A typical choice of
fj is

∑
i∈B w

2
ij . The total data sharing cost for seller j is thus cjfj(W ). The notion of data sharing

cost can encompass data generation costs, costs due to privacy leakage, and etc. Using game theory
terminology, the seller’s valuation is −cjfj .
Assumption 1. All vi and fj are differentiable with respect to W .
Definition 1 (Social Welfare and Social Cost). For an allocation W , social welfare (SW) is the
sum of all players’ valuations (buyers’ performance minus sellers’ costs): SW =

∑
i∈S vi(Wi,:)−∑

j∈B cjf(W:,j). Correspondingly, we can define social cost (SC), minimizing which is equivalent
to maximizing the social welfare. SC =

∑
i∈S li(Wi,:) +

∑
j∈B cjf(W:,j)

Mechanism. A mechanism is a pairM = (W ,p), where W is the allocation matrix and p =
(pi)i∈B∪S is the vector of payments to/from the players. We consider several payment specifications
in the sections that follow. Given reported costs ĉ, the mechanism selects an allocation W ⋆(ĉ) that
maximizes reported social welfare:

W ⋆(ĉ) ∈ argmax[SW :=
∑
i∈B

vi(W )−
∑
j∈S

ĉjfj(W )]. (1)

An optimum W ⋆(ĉ) always exists; see Appendix C.1.1. The mapping W ⋆(·) is fully determined by
the reported cost ĉ.

3.2 DESIRED PROPERTIES FOR PAYMENTS

Desired payments should be truthful, individual-rational, budget-balanced and socially efficient. We
formally define these properties as follows.
Definition 2 (Social Efficiency). Allocation denoted by W ∈ W is socially efficient (SE) if it
minimizes the social cost or maximizes the social welfare.
Definition 3 (Utility). Let Pi→ be the price to pay for a buyer i ∈ B and P→j be the payment made
to a seller j ∈ S. Utility is defined as the participant’s payoff from the market:

ui := vi(W )− Pi→, uj := P→j − cjfj(W )

3
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Definition 4 (Individual Rationality). Individual Rationality (IR) is satisfied if each participant’s
utility is non-negative

ui ≥ 0 ∀i ∈ B, uj ≥ 0 ∀j ∈ S .
Definition 5 (Incentive Compatibility or Truthful). A mechanism M is considered incentive-
compatible (IC) if each participant achieves their best outcome by truthfully reporting their private
values, regardless of what others report. We also refer to an IC mechanism as a truthful mechanism.
Definition 6 (Budget Balance). A mechanism is called strong budget-balanced (SBB) if

∑
i∈B Pi→ =∑

j∈S P→j and weak budget-balanced (WBB) if
∑

i∈B Pi→ >
∑

j∈S P→j .

4 COMMON PAYMENTS ARE NOT TRUTHFUL

In this section, we examine three common payment methods for seller compensation: direct reim-
bursement of reported costs and two widely used data valuation approaches, namely LOO and Data
Shapley payments. We show that all of them incentivize sellers to misreport their unit data costs.

From now on, we denote ĉ−j = ĉ\{ĉj}, that is, the collection of all reported unit costs of sellers
other than seller j. We first prove a fundamental result, which shows that with a larger reported unit
data cost, seller j shares less data.
Claim 1. fj(W ⋆(ĉj , ĉ−j)) is monotonically non-increasing in ĉj .

Proof can be seen in Appendix C.2.1. It is worth noting that the total data sharing magnitude of
other sellers than j (denoted by

∑
k∈S\{j} fk(W

⋆(ĉj , ĉ−j))) can increase or decrease in ĉj , as
W ⋆(ĉj , ĉ−j)) can have both positive and negative entries. We illustrate this empirically in Figure 8.

4.1 DIRECT REIMBURSEMENT INCENTIVIZES OVER-REPORTING

0

5
Naive payment
cost

5

0
reported cj 

utility

0 5 10 15 20
cj

10

12

14

 true cj

social cost

Figure 3: User’s utility is
maximized when reported ĉj
is greater than true cj = 5
(Mean estimation market).

The most straightforward payment is to directly pay data sellers the
costs they report, denoted as P dir

→j = ĉjfj(W
⋆(ĉj , ĉ−j)). We show

that such a payment incentivizes overreporting ĉj , i.e. ĉj > cj .
Claim 2. Using reported cost as naive payment incentivizes data
owners to over-report ĉj .

Proof. The utility for seller j is the payment it received minus its
data sharing cost.

uj = P dir
→j−cjfj(W ⋆(ĉj , ĉ−j)) = (ĉj−cj)fj(W ⋆(ĉj , ĉ−j)) (2)

When ĉj > cj , we have uj(ĉj) > uj(cj) = 0. Strategic seller j
would over-report.
Notably, the seller’s incentive to over-report is bounded as
fj(W

⋆(ĉj , ĉ−j)) approaches zero when ĉj becomes sufficiently
large, resulting in near-zero utility. This is observed in Figure 3.

4.2 POPULAR DATA VALUATION PAYMENTS ARE NOT TRUTHFUL EITHER

We now review two conventional data valuation methods: Leave-One-Out (LOO) valuation and
Data Shapley. When seller compensation is based on these methods, we demonstrate that sellers
are consistently incentivized to misreport their private types, as compensation depends on their
self-reported information.

4.2.1 LEAVE-ONE-OUT PAYMENT RULE

LOO has been a standard approach to estimate influence in statistics (Weisberg & Cook, 1982; Koh &
Liang, 2020). LOO valuation quantifies a data point’s contribution by assessing the change in model
performance when the point is removed. This method inherently requires retraining the model on the
reduced dataset. In our context, it corresponds to the following equation, representing the difference
in buyers’ performance function with and without the presence of data seller j.

PLOO
→j =

∑
i∈B

vi(W
⋆(ĉj , ĉ−j))− vi(W ⋆(∞, ĉ−j)) (3)

4
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Figure 4: First row: how PLOO
→j and PSP

→j change with reported unit cost ĉj ; second row: how
utility (uj = P→j − cjfj(W

⋆(ĉj , ĉ−j))) change with ĉj ; third row: how social cost (SC =∑
i∈B vi(W

⋆(ĉj , ĉ−j)) −
∑

k∈S ckfk(W
⋆(ĉj , ĉ−j))) change with ĉj . The dashed lines denote

optima. The first and second pictures are from one random seed, and the third and fourth pictures are
from another random seed in our Mean Estimation Market experiment.

Claim 3. Using LOO valuation as the payment rule incentivizes sellers to misreport their true costs,
either by over-reporting or under-reporting (proof in Appendix C.2.3).

4.2.2 PAYMENT VIA SHAPLEY VALUE

Shapley value was first introduced to attribute fair contributions in a cooperative game by Shapley
(1951). In the Machine Learning world, Data Shapley (Ghorbani & Zou, 2019) was proposed to
address data valuation. We adopt data shapley calculation in our scenario, as in (4). The idea is to
calculate the marginal contribution of seller j, averaged over all subsets of sellers. Depending on the
market size, the calculation of Shapley value can be computationally inefficient. In contrast, LOO
payment only considers the marginal contribution to the subset S\{j}.

PSP
→j =

∑
π⊆S\{j}

|π|!
(
|S| − |π| − 1

)
!

|S|!

[∑
i∈B

vi
(
B ∪ π ∪ {j}

)
−

∑
i∈B

vi(B ∪ π)
]
. (4)

where vi
(
B ∪ π

)
denotes vi(W ′), where W ′ maximizes the reported social welfare of buyers B and

a subset of sellers π: W ′ = argmaxW∈R|B|×|π|
∑

i∈B vi(W )−
∑

j∈π ĉjf(W ).

Remark 1. PSP
→j is not IC either. As like LOO payment, the utility of seller j is dependent on its

reported ĉj , and thus a rational seller j can manipulate ĉj to arrive at a higher utility.

Remark 2. If the performance function is super-additive1 (e.g. when complementary but necessary
data sources are combined to solve a task), LOO payment is greater than Shapley payment. On the
flip side, if the performance function is sub-additive2 (e.g. when the contribution of one user is very
similar to that of another), LOO payment is smaller than Shapley payment.

4.3 AN ILLUSTRATIVE EXAMPLE – MEAN ESTIMATION MARKETS

To support our claim that LOO and Shapley payments can incentivize misreporting, we present a
simple illustrative example based on mean estimation tasks. In this setup, buyers aim to estimate
their local means {µi}i∈B. Sellers have unbiased local estimates from their local samples sampled
from N (µj , σ

2
j ), j ∈ S. In order to achieve lower MSE loss, buyers may seek trading with sellers

for their local estimates and combine them with weights W . We choose fj to be
∑

i∈B w
2
ij . W can

be calculated by minimizing social cost, which is the sum of MSE and data sharing costs.

W ⋆(ĉ) ∈ argmin

SC := E
∑
i∈B
∥
∑
j∈S

wi,jµ̂j − µi∥2 +
∑
j∈S

ĉj
∑
i∈B

w2
i,j

 (5)

Due to the unique quadratic structure of the objective, we have a closed-form solution of W in (6).
W ⋆(ĉ) = B(C + V +A)−1 (6)

1vi specified by W ⋆(ĉ) are super-additive in the set of data sellers
2vi specified by W ⋆(ĉ) are sub-additive in the set of data sellers
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where B = [⟨µi,µj⟩]i∈B,j∈S , C = [⟨µi,µk⟩]i,j∈S , V = diag(σ2
j ) and A = diag(ĉj). The proof

is provided in Appendix C.2.2.

Thanks to the trackable formulation, we can thus calculate different payments precisely and efficiently.
From our simulations detailed in Appendix D.1.1, we are able to accurately track how SC, utilities
and payments change with ĉj in Figure 4. It is clear that when both LOO and Data Shapley are used
as payment methods, the data owners are incentivized to misreport to maximize their own utilities,
which increases the social cost for the whole marketplace.

5 GAME-THEORETIC TRUTHFUL PAYMENT RULES

Since popular data valuation strategies perform poorly with respect to truthfulness, we turn to estab-
lished game-theoretical results that guarantee truthful seller reports. We adapt Myerson payment and
VCG payment in our data market scenario and characterize their properties. We further demonstrate
a scenario and a payment distribution rule where buyer IR is satisfied.

5.1 MYERSON PAYMENT RULE

Myerson payment is a classical truthful payment rule (Myerson, 1981), which pays sellers the reported
cost plus an integral term. Our specific scenario maps to the following equation in (7). Myerson
payment rule is IC and IR for all sellers, for which we provide a proof in Appendix C.3.1.

PMS
→j = ĉjfj(W

⋆(ĉj , ĉ−j)) +

∫ ∞

ĉj

fj(W
⋆(u, ĉ−j))du (7)

5.2 VCG PAYMENT RULE

VCG payment (Vickrey, 1961; Clarke, 1971; Groves, 1973) is another classical payment rule, which
calculates the externality of a specific seller to the social welfare, as in (8). The idea is to calculate
the differences between the social welfare of B ∪ S\{j} in seller j’s absence and the welfare when
seller j is present. By design, VCG payment rule is IC and IR for all sellers, for which we provide a
proof in Appendix C.3.1. Moreover, VCG payment is upper-bounded.

PV CG
→j =

∑
i∈B

vi(W
⋆(ĉj , ĉ−j))−

∑
k∈S\{j}

ĉkfk(W
⋆(ĉj , ĉ−j))

−

∑
i∈B

vi(W
⋆(∞, ĉ−j))−

∑
k∈S\{j}

ĉkfk(W
⋆(∞, ĉ−j))

 (8)

Claim 4. PV CG
→j ≤

∑
i∈B vi(W

⋆(cj , c−j)) − vi(W ⋆−j(cj , c−j)), where W ⋆−j is W ⋆ with the
jth column set to zero, and all other entries unchanged. (Proof in Appendix C.4)

5.3 CHARACTERIZATION OF THE TRUTHFUL PAYMENT RULES

Myerson and VCG payment rules ensure both IC and IR for data sellers. How do they compare to
each other? Theorem 5.1 shows that in general, Myerson is the smallest payment rule, thus optimal
from the buyers’ perspective. In certain scenarios, i.e. when W lives in an unconstrained domain, we
further have VCG payment equivalent to Myerson payment, which is proven in Theorem 5.2.

Theorem 5.1. Myerson payment is the smallest IC and IR (for data sellers) payment rule.

Proof can be checked at Appendix C.4.1.

Theorem 5.2. Myerson payment is equivalent to the VCG payment when the domain of W is
unconstrained.

Proof sketch. As W ⋆ is chosen to maximize the reported SW, we have
∂vi(W

⋆
i,:)

∂w⋆
i,j
− ĉj

∂f(W ⋆
:,j)

∂w⋆
i,j

= 0,

for all wi,j . Following this, we can show that ∂SW (W ⋆(ĉj ,ĉ−j))
∂ĉj

= −fj . Plugging this into the
integral calculation of Myerson payment, we prove the claim. Full proof in App C.4.2.

6
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Discussion. Myerson payment rule provides theoretical guarantees of being buyer-optimal. How-
ever, its computation can be costly since fj(W ⋆(u, ĉ−j)) requires optimizing SW (u, ĉ−j), the
complexity of which depends on the structure of vi and fj . VCG payment, on the other hand, is more
computationally feasible. Yet, it still requires leave-one-out retraining. Future work should explore
more computationally efficient implementations.

5.4 CAN WE ENSURE IR FOR DATA BUYERS?

Until now, we have focused solely on the seller side. But can our mechanism also benefit data
buyers? Interestingly, we can redistribute the payments made to sellers among buyers based on their
marginal contributions. This ensures SBB in the market and guarantees IR for data buyers when the
performance function is subadditive.

Theorem 5.3. Assume vi is subadditive (i.e. has diminishing returns in W ). A payment rule defined
as follows is IR for all buyers.

ηij =
vi(W

⋆(c))− vi(W ⋆−j(c))∑
k∈B vk(W

⋆(c))− vk(W ⋆−j(c))
, Pi→j = ηijP→j (9)

Proof sketch. From Theorem 5.1, we know that the Myerson payment is always less than or equal
to the VCG payment. In Claim 4, we further upper bound the VCG payment by P→j . It is
straightforward to verify that distributing P→j among the data buyers according to the distribution
rule in Equation (9) ensures IR for all participants. Any smaller payment would also satisfy the IR
condition by construction. A detailed proof is provided in Appendix C.4.3.

Remark 3. When the performance function vi is super-additive, we currently lack a solution that
guarantees individual rationality (IR) for the buyer. Whether it is possible to design a suitable buyer
payment mechanism remains an open question.

6 EXPERIMENTS WITH RAG MARKET

In this section, we show how our data-market framework applies to a realistic setting: compensating
content contributors in a RAG market. Unlike the earlier setup with continuous allocation, the RAG
setting features discrete allocation. The core takeaway is unchanged: Data Shapley and LOO do not
generally ensure truthfulness, whereas Myerson and VCG payments do.

6.1 WHAT IS RAG?

RAG is short for Retrieval-Augmented Generation (Lewis et al., 2021). Before generating an answer,
it retrieves relevant documents from a knowledge source, then provides these documents as context
for LLMs to produce more accurate and grounded responses. It consists of two main parts: a retriever
R and a generator G. R takes in the user query q and a document corpus of s documents S (i.e.
|S| = s), and returns R(q,S) → Rs the set of all relevance scores. Top n documents are picked
based on the relevance score, resulting Cn ⊂ S. Usually there is a post-retrieval process to rerank
the documents (typically via an LLM judge) to avoid information overload (Gao et al., 2024). After
reranking, a subset of k documents Ck ⊂ S is passed to the generator G to generate output G(Ck).
In practice, there is a max k ≤ n limit on the documents that RAGs can utilize. This may be because
of constraints on the context-window (can fit at most k documents) or on the inference latency
(latency typically scales quadratically with context length). Hence, we limit the selection C to size k.

6.2 RAG MARKETPLACE SETUP

In this marketplace, we want to retrieve relevant documents according to user queries at low costs,
and at the same time, incentivize document owners to report true data costs. Contrast to the previous
analysis, here allocation w ∈ {0, 1}s is discrete, with each entry indicating whether a document is
utilized at the end, i.e., after reranking. In the RAG setting, we consider a single-buyer scenario,
since in practice users are charged per query (i.e., per purchase). Consequently, w is a vector rather
than a matrix. We choose fj(w) = w2

j , that is fj = wj ∈ {0, 1}.

7
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Figure 5: A example of our designed RAG marketplace. Data owners supply proprietary curated
datasets to improve question answering in exchange for compensation. Each of the curated dataset
varies in relevance to the buyer, quality of the dataset itself, as well as the cost to the data owner.
Experimental details are presented in Appendix D.3.

Valuation. For a selected subset C ⊆ S where C = {documenti | wi = 1}i∈[s]. The resulting
valuation of a selection w ∈ {0, 1}s is defined as the LLM Judge’s evaluation score over the response
G(C), on how the context-enhanced response answers the query q.

v(w) = LLM-Judge(q,G(C)) ∈ [0, 10] evaluating the response G(C) on the query q. (10)

Selection/allocation. The standard RAG process does not take costs into account. To address this,
we modify the reranking process. When reranking, we prioritize documents with low costs. The
allocation is thus a result of similarity-based retrieval and cost-aware reranking in (11). Given the
reported costs ĉ1, . . . ĉs, we find the allocation w that maximizes the social welfare i.e.

w∗ := argmax
w

[
SW = v(w)− ĉ⊤w

]
, or equivalently (11)

{w∗
i := 1 if doci ∈ C∗ o. w. 0}i∈[s], where

C∗ := argmax
C′⊆Cn s.t. |C′|≤k

LLM-Judge(q,G(C′))−
∑

{i:doci∈C′}

ĉi (12)

Payment. We only pay a document provider if it gets picked in the Cn i.e. it has sufficiently high
similarity to the query as judged by the retriever. The exact payment is determined by the marketplace
and the specific mechanism as shown in Figure 5. Note that all formulas from previous sections
defined in the continuous domain still apply, apart from Myerson payment. In this specific case, fj(·)
is a step function that jumps from 1 to 0 when the reported unit cost is over a threshold c̄j . Thus,
Myerson payment turns into PMS

→j = cj + (c̄j − cj). c̄j is the largest unit cost seller j can report
beyond that it will no longer gets retrieved by the reranker. We present pseudocode for an instance of
payment calculation in Appendix D.4.

6.3 COMPARING AND EVALUATING PAYMENT MECHANISMS

Unique dynamics in the discrete case. Unlike the continuous case, where LOO and Shapley
payments vary with the reported cost, in the discrete RAG setting, these payments are independent
of the reported cost. This is because LOO/Shapley payments are dependent on the buyer valuation
v(w(ĉ)). Since each entry of w can either be 0 or 1, once a document is retrieved (wj = 1), buyer’s
valuation won’t change with ĉj . However, the retrieval decision itself still depends on the reported
cost. Since Shapley/LOO payments have no IR guarantees, it can be the case that Shapley/LOO
payments cannot cover the data costs when the data unit costs are relatively large. In this scenario,
data sellers will over-report to not be picked by the reranker, resulting in retrieval failures.

Real-life validation. We carry out a real-world experiment in a challenging medical-domain chatbot
setting. A user can pose a medical question, and the language model can search among the provided
medical knowledge base and offer retrieval grounded answers. The knowledge base is constructed

8
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Figure 6: RAG market with (n, k) = (10, 1) (document IDs are ranked according to the corresponding
social welfare when the respective document is retrieved). The documents’ unit costs are randomly
generated. Upper row: low unit costs (ĉ); bottom row: high unit costs. With higher unit costs, LOO
and Shapley payments fail to cover the data costs, incentivizing document owners to overreport; as a
result, no documents are retrieved or compensated.

using MedQuAD dataset (Ben Abacha & Demner-Fushman, 2019). We use DeepSeek-R1 (DeepSeek-
AI, 2025) to grade3 the retrieval-augmented answers by Qwen2.5-3B model (Yang et al., 2024). The
experimental results are presented in Figure 6, which confirms the above dynamics. Furthermore,
under the LOO, VCG, and Myerson payment mechanisms, only the retrieved documents in the final
set Ck receive compensation. In contrast, the Shapley method allocates payment to all documents in
Cn, offering a more equitable approach for content contributors. As expected, Myerson and VCG
mechanisms maintain truthfulness and individual rationality in all cases. In this specific scenario,
we further have Myerson payment equivalent to VCG payment. The same analysis applies to
multi-document retrieval, as illustrated by an example in Appendix D.5.

Largely reduced computational complexity in the discrete case. Because w takes discrete
values, computing the Myerson and VCG payments becomes inexpensive, making the approach more
practical for real-world deployment. Concretely, the integral in Myerson payment corresponds to
the area under the curve of fj(·) from cj to∞. In the discrete setting, fj reduces to a step function
that drops from 1 to 0 once document j is no longer selected by (11). For VCG payment, the extra
complexity lies in one more time of generation and retrieval, which is rather fast as well.

7 CONCLUSION

We revisit data valuation through the lens of market design and highlight the shortcomings of
commonly used methods like Leave-One-Out and Data Shapley when applied as pricing rules.
We demonstrate that these approaches can incentivize strategic misreporting, undermining market
efficiency. By adapting classical mechanisms such as Myerson and VCG to the data market context,
we provide truthful, individually rational, and socially efficient alternatives. Our framework not only
offers theoretical guarantees but is also practical, as shown in applications like RAG market.

Our findings open several directions for future work: 1) how to make the existing truthful payment
rule more computationally efficient? 2) how to improve the truthfulness of existing data valuation
methods? 3) how to handle other strategic behaviors by sellers like adversarial data?, and 4) designing
McAffee’s trade reduction style mechanisms (McAfee, 1992) when both buyers and sellers have
private valuations. More generally, a critical question facing research on data-market design is to
identify the exact inefficiencies in the marketplace that prices could alleviate. We point out that when
data costs are private and heterogeneous, prices can be used to truthfully surface these costs. There
are likely other roles for prices as well. Taken together, we hope our work initiates an important and
fruitful line of research on designing practical pricing strategies with game-theoretic considerations.

3We validate the LLM judge’s scoring quality in Appendix D.3.3
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A LIMITATIONS

Our analysis assumes a one-sided market where buyers’ valuation functions are known—a simplifica-
tion that enables theoretical traceability, but is rather unrealistic. We also consider the more general
two-sided setting where buyers’ valuations are private; however, only impossibility results can be
established in this case.

Additionally, our theoretical results are derived under the assumption of a continuous allocation
domain for W . In the discrete setting, such as in our RAG market example, we provide only empirical
findings. We encourage future work to extend these results and develop a more comprehensive
understanding across both settings.

B STATEMENTS

B.1 ETHICS STATEMENT

We target an emerging scenario, as data is becoming more important than ever. Our work has
a positive societal impact by offering a mechanism to compensate data contributors, potentially
mitigating copyright violations. Furthermore, the proposed payment scheme discourages strategic
misreporting by sellers, fostering a healthier and more efficient data marketplace.

B.2 LLM USAGE STATEMENT

We used LLMs to polish writing as well as modifying plotting scripts. Furthermore, we conducted
experiments using LLMs as generators and judges in the RAG market. We detailed the usage in
Appendix D.3.

C MISSING PROOFS

C.1 SECTION 3 PROOFS

C.1.1 PROOF FOR THE EXISTENCE OF OPTIMAL ALLOCATION

To guarantee the feasibility of the problem, we need to ensure that W ⋆ can be obtained as optimum
for

max[g(W ) :=
∑
i∈B

vi(W )−
∑
j∈S

ĉjfj(W )]

Apart from the continuity assumption, we further have vi upper bounded by li(0) and fj bounded
from below (by definition, we have fj ≥ 0), which stops the objective g(W ) from exploding upward.

Now, it is left to show that the optimum is attainable. According to Claim 1, fj is non-decreasing in
the norm of j-th column of W , denoted as W:,j , we have limW→∞ g(W )→ −∞. Thus, we have
the argmax W ⋆ <∞, that is, W ⋆ is feasible.
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C.2 SECTION 4 PROOFS

C.2.1 PROOF FOR CLAIM 1

W ⋆(ĉ) is chosen to optimize the following function according to our setup

max
∑
i∈B

vi(W
⋆(ĉ))−

∑
j∈S

ĉjfj(W
⋆(ĉ))

We prove by contradiction. Suppose there exist two reported costs cj < c′j such that:

fj(W
⋆(c′j , c−j)) > fj(W

⋆(cj , c−j))

By optimality of the allocation W , we have that:∑
i∈B

vi(W
⋆(cj , c−j))− cjfj(W ⋆(cj , c−j))−

∑
k ̸=j

ckfk(W
⋆(cj , c−j))

≥
∑
i∈B

vi(W
⋆(c′j , c−j))− cjfj(W ⋆(c′j , c−j))−

∑
k ̸=j

ckfk(W
⋆(c′j , c−j))

(13)

and similarly,

∑
i∈B

vi(W
⋆(c′j , c−j))− c′jfj(W ⋆(c′j , c−j))−

∑
k ̸=j

ckfk(W
⋆(c′j , c−j))

≥
∑
i∈B

vi(W
⋆(cj , c−j))− c′jfj(W ⋆(cj , c−j))−

∑
k ̸=j

ckfk(W
⋆(cj , c−j)).

(14)

Adding these two inequalities together, we find:

(c′j − cj)
[
fj(W

⋆(c′j , c−j))− fj(W ⋆(cj , c−j))
]
≤ 0.

Since by assumption c′j > cj , it must be the case that:

fj(W
⋆(c′j , c−j)) ≤ fj(W ⋆(cj , c−j)),

contradicting our initial assumption. Therefore, the function fj is monotonically non-increasing in
the seller’s reported cost cj

C.2.2 DERIVATION OF W IN MEAN ESTIMATION MARKET

We offer the proof for the derivation of closed-form W in Section 4.3. The construction of mean
estimation market is inspired by Theorem 2 from Lee et al. (2022).

SC := E
∑
i∈B
∥
∑
j∈S

wi,jµ̂j − µi∥2 +
∑
j∈S

ĉj
∑
i∈B

w2
i,j (15)

E∥
∑
j∈S

wi,jµ̂j −
∑
j∈S

wi,jµj +
∑
j∈S

wi,jµj − µi∥2 +
∑
j∈S

ĉjw
2
i,j

=
∑
j∈S

w2
i,jσ

2
j + (

∑
j∈S

wi,jµj)
⊤(

∑
j∈S

wi,jµj)

− 2
∑
j∈S

wi,jµ
⊤
j µi + µ⊤

i µi +
∑
j∈S

ĉjw
2
i,j

=Wi,:(V +A)W⊤
i,: +Wi,:CW⊤

i,: − 2Wi,:B
⊤
i,: + µ⊤

i µi

(16)

Let B = [⟨µi,µj⟩]i∈B,j∈S , C = [⟨µi,µk⟩]i,j∈S , V = diag(σ2
j ) and A = diag(ĉj). We have

W⊤
i,: = (V +A+C)−1B⊤

i,:

13
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Thus,
W ⋆(ĉ) = B(V +A+C)−1

SC =
∑
i∈B

[
µ⊤

i µi −Bi,:(V +A+C)−1B⊤
i,:

]
C.2.3 PROOF FOR CLAIM 3

Proof. For seller j, the utility is

uj = PLOO
→j − cjf(W ⋆(ĉj , ĉ−j))

=
∑
i∈B

vi(W
⋆(ĉj , ĉ−j))− vi(W ⋆(∞, ĉ−j))− cjf(W ⋆(ĉj , ĉ−j))

(17)

Let the constrained set be

Ω =
{
R|B|×|S|

∣∣∣ ψq(W ) ≤ 0 for every q
}
,

where q is an index labeling the different constraint functions imposed on the allocation matrix W .

Let Φ(W ⋆(c)) denote the social welfare when the costs are c ∈ R|S|. The stationarity condition
from the Karush–Kuhn–Tucker (KKT) conditions is

∇WΦ(W ⋆(ĉ)) +
∑
q

λq∇Wψq(W
⋆(ĉ)) = 0,

together with complementary slackness

λqψq(W ) = 0, λq ≥ 0.

We now check
d

dĉj
Φ(W ⋆(ĉ)) = ∇WΦ(W ⋆(ĉ)) · dW

⋆(ĉ)

dĉj
+
∂Φ(W ⋆(ĉ))

∂ĉj
.

The first term vanishes by the KKT condition, while the second term equals −fj(W ⋆(ĉ)). Thus,

d

dĉj
Φ(W ⋆(ĉ)) = −fj(W ⋆(ĉ)).

Next, consider the utility of seller j:

uj = P LOO
→j − cjfj(W ⋆(ĉ)).

By expanding P LOO
→j , we can write

uj = Φ(W ⋆(ĉ)) + (ĉj − cj)fj(W ⋆(ĉ)) +
∑
k ̸=j

ĉkfk(W
⋆(ĉ)) + h−j ,

where h−j does not depend on ĉj .

Differentiating with respect to ĉj gives

duj
dĉj

= (ĉj − cj)
∂fj(W

⋆(ĉ))

∂ĉj︸ ︷︷ ︸
≤0

+
∑

k∈S\{j}

ĉk
∂fk(W

⋆(ĉ))

∂ĉj︸ ︷︷ ︸
̸=0

Since
∑

k∈S\{j} ĉk
∂fk
∂ĉj
̸= 0, as the allocation to other buyers will change with ĉj . In order to have

optimality, we would have ĉj ̸= cj .

14
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C.3 SECTION 5 PROOFS

C.3.1 PROOF FOR MYERSON (SECTION 5.1) AND VCG PAYMENTS (SECTION 5.2

Myerson Payments. fj is monotonically non-increasing in ĉj , which we prove in Claim 1. We prove
by illustration in Figure 7. When seller j reports truthfully, the utility is equivalent to the size of
the blue area in the leftmost figure (s1). When seller j under-reports, the utility becomes s1 − s2;
when seller j over-reports, the utility becomes s1 − s3. Thus, Myerson payment results in the highest
utility when the report is truthful. By design, it is IR, as the utility s1 is greater than 0.

Figure 7: Myerson payment illustration.

VCG Payments. Let data seller j have true cost cj with reported cost t. The other sellers have their
reported costs ĉ−j .

We have seller j’s utility being

uj(t) = P vcg
i − cjfj(W ⋆(t, ĉ−j))

=
∑
i∈B

vi(W
⋆(t, ĉ−j))−

∑
k∈S\{j}

ĉkfk(W
⋆(t, ĉ−j))− cjfj(W ⋆(t, ĉ−j))− h−j

(18)

where h−j is a term that is not dependent on t. Ignoring h−j , this becomes the social welfare when
the costs are (cj , ĉ−j),

By definition, W ⋆(t, ĉ−j)) optimizes the social welfare when the costs are (t, ĉ−j). But seller j’s
true utility depends on the actual cost cj . Therefore, the only way seller j ensures the system selects
an allocation that maximizes their utility is to report truthfully, i.e., set t = cj

C.4 PROOF FOR CLAIM 4

Proof. For B ∪ S\{j}, we have W ⋆(∞, c−j) being the maximum of SW (c−j). This gives∑
i∈B

vi(W
⋆(∞, c−j))−

∑
k∈S\{j}

ckfk(W
⋆(∞, c−j)) ≥

∑
i∈B

vi(W
−j(cj , c−j))−

∑
k∈S\{j}

ckfk(W
−j(cj , c−j))

(19)

Plugging (19) in (8) gives the claimed inequality.

C.4.1 PROOF FOR THEOREM 5.1

Proof. For the rest, we denote f(W ⋆(u, ĉ−j)) as fj(u).

From the IC condition, we have

p(cj)− cjfj(cj) ≥ p(c′j)− cjfj(c′j), (20)

p(c′j)− c′jfj(c′j) ≥ p(cj)− c′jfj(cj), (21)

c′j [f(cj)− f(c′j)] ≥ p(cj)− p(c′j) ≥ cj [f(cj)− f(c′j)] (22)

15
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Let c′j = u, and cj = u+ h, with h→ 0+, we have

uf ′(u) ≥ p′(u) ≥ (u+ h)f ′(u) (23)

and thus
uf ′(u) = p′(u) (24)

We have

p(u) =

∫ u

∞
p′(u) =

∫ u

∞
uf ′(u)

= uf(u)−
∫ u

∞
f(u)du

= uf(u) +

∫ ∞

u

f(u)du+ C

(25)

Constrained to IR, we need to have
∫∞
u
f(u)du + C ≥ 0. The integral is non-negative, so IR is

satisfied iff C ≥ 0. When C = 0, we have p(u) equivalent to Myerson payment.

C.4.2 DETAILED PROOF FOR THEOREM 5.2

Proof. Keep other sellers’ reported ck (k ̸= j) fixed, we have social welfare as a function of seller j’
reported cj

SW (W ⋆(ĉj , ĉ−j)) =
∑
i∈B

vi(W
⋆
i,:(ĉj , ĉ−j))−

∑
j∈S

ĉjf(W
⋆
:,j(ĉj , ĉ−j)) (26)

As W ⋆ is chosen by the system to maximize the reported social welfare, we have

∂vi(W
⋆
i,:)

∂w⋆
i,j

− ĉj
∂f(W ⋆

:,j)

∂w⋆
i,j

= 0, ∀wi,j (27)

We further show that ∂SW (W ⋆(ĉj ,ĉ−j))
∂ĉj

= −fj

∂SW (W ⋆(ĉj , ĉ−j))

∂ĉj
=
∑
i∈B

∑
k∈S

∂vi(W
⋆
i,:)

∂w⋆
i,k

∂w⋆
i,k

∂ĉj

− f(W ⋆
:,j)−

∑
k∈S

ĉk
∑
i∈B

∂fk(W
⋆)

∂w⋆
i,k

∂w⋆
i,k

∂ĉj

(27)
= − f(W ⋆

:,j)

(28)

Thus, we can calculate the integral part of the Myerson payment as∫ ∞

cj

f(W ⋆
:,j(u, ĉ−j))du = SW (W ⋆(ĉj , ĉ−j))− SW (W ⋆(∞, ĉ−j)) (29)

As Myerson payment will incentivizes truthful reporting, we have

PMS
→j =cjf(W

⋆
:,j(cj , c−j)) +

∫ ∞

cj

f(W ⋆
:,j(u, c−j))du

=cjf(W
⋆
:,j(cj , c−j)) +

∑
i∈B

vi(W
⋆
i,:(cj , c−j))−

∑
j∈S

cjf(W
⋆
:,j(cj , c−j))

−

∑
i∈B

vi(W
⋆
i,:(∞, c−j))−

∑
j∈S

cjf(W
⋆
:,j(∞, c−j))

 = PV CG
→j

(30)
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C.4.3 PROOF OF THEOREM 5.3

Proof. As PMC
→j is the minimal payment rule that fulfills IC and IR for sellers, we must have

PMC
→j < P vcg

→j . Claim 4 indicates

PMS
→j ≤ P

vcg
→j ≤

∑
i∈B

vi(W
⋆(cj , c−j))− vi(W ⋆−j(cj , c−j)) (31)

Following the choice of ηij , we have

Pi→j ≤ vi(W ⋆(cj , c−j))− vi(W ⋆−j(cj , c−j)) (32)

We can thus bound the payment from buyer i by

Pi→ =
∑
j

ηijP→j ≤
∑
j

vi(W
⋆(c))− vi(W ⋆−j(c))

subadditive
≤ vi(W

⋆(c))− vi(0) (33)

The final inequality is a consequence of the sub-additivity assumption, under which the aggregate
contribution of data sellers is bounded above by the sum of their separate contributions.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 MEAN ESTIMATION MARKETS

D.1.1 EXPERIMENTAL SETUP

Choose the true data dimension as 3, that is µ ∈ R3. We first randomly sample true means {µi}i∈|B|
and {µj}j∈|S|, where |B| = 5 and |S| = 10. The true means are sampled from a normal distribution
with mean 1 and variance 1. By assuming that sellers have unbiased local mean estimates, we only
need to sample local variations {σ2

j }
|B|
j=1, which is sampled from Unif[0, 1). The true unit costs c are

sampled uniformly from 1 to 10.

D.1.2 COMPARISON OF DIFFERENT TRUTHFUL PAYMENT RULES

We focus on the seller with index j = 0 and analyze its payment and cost while keeping the reported
costs of other sellers fixed. This allows us to easily compute and compare different payment rules as
we vary the true cj . In the mean estimation market, W ⋆(ĉj , ĉ−j) can have negative entries. Thus,∑

k ̸=j fk(W
⋆(ĉj , ĉ−j)) can decrease or increase with cj , while fj(W ⋆(ĉj , ĉ−j)) always decrease

with cj . This is shown in Figure 8, where the results of two randomly generated mean estimation
markets are presented. Since W lies in an unconstrained domain, we have VCG payment equivalent
to Myerson payment, as shown in Figure 9a, where the value mismatch is due to numerical issues.

D.1.3 MIS-REPORTING FOR UNTRUTHFUL PAYMENT RULES

Let true cj = 5. We compute the payment values and resulted utility when varying the reported ĉj .
Given our choice of W , social cost is always minimized at ĉj = cj . However, with LOO and Shapley
payment rule, the resulted utilities peak at a different value than cj , as shown in Figure 4.

LOO Payment Rule. To maximize its utility, seller j will mis-report ĉj = 9. The resulting
PoA = SW (W ⋆(6, c−j))/SW (W ⋆(5, c−j)) = 1.02.

Shapley Payment Rule. To maximize its utility, seller j will mis-report ĉj = 8. The resulting
PoA = SW (W ⋆(8, c−j))/SW (W ⋆(5, c−j)) = 1.08

D.2 DATA MIXTURE MARKET

Our framework extends to LLM training as well. For simplicity, we consider a single buyer that is
seeking for purchasing data from different data sellers to arrive at a good pretrained model. From
Ye et al. (2024), the relationship between proportions of data mixtures and the validation loss in the

17
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Figure 8: How data sharing cost changes with seller j’s reported cost factor ĉj for Mean Estimation
Market.
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(b) Data Mixture Market

Figure 9: Comparison of different truthful payment rules with respect to varying true cost cjs

target domain can be modeled via (34), assuming fixed token budgets. b and k are constant scalars,
and t = [ti] ∈ R|S| captures the how the training data of seller j helps reduce validation loss on the
target domain. w ∈ R|S| denotes the proportion of pertaining data from each seller j.

L = b+ k exp

∑
j∈S

tjwj

 (34)

Following our framework, the data mixtures can be determined from minimizing the social cost
objective in (35).

w ∈ argmin
w

L(w) +
∑
j∈S

ĉjw
2
j (35)

In practice, (34) can be estimated using a small LM on small datasets. To pre-determine the data
mixtures via a smaller LM is a standard practice in LLM pre-training. Here we randomly sample
some values to be (k, b, t). Given that W here are row-stochastic, the rank of truthful payment
methods again confirms our theoretical analysis, as shown in Figure 9b.
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D.3 RAG MARKET

D.3.1 EXPERIMENTAL DETAILS

Dataset: MedQuAD dataset Ben Abacha & Demner-Fushman (2019), which is a medical dataset
containing 47,457 QA pairs.

Procedures:

• Create a vector store using answers from MedQuAD dataset using Faiss library (Douze
et al., 2024). The embedding model used is text-embedding-3-large from Ope-
nAIEmbeddings.

• Generate user queries from the questions from MedQuAD, the goal is to make the similarity
search less straightforward, so that it requires some semantic understanding to retrieve the
correct document.

• Conduct Top-n similarity-based retrieval and cost-aware reranking. Get the final k docu-
ments.

• Feed the retrieved k documents into the LLM generator, which is Qwen2.5-3B, Yang et al.
(2024), and generate the context-enhanced answer.

• The LLM judge (DeepSeek-R1, DeepSeek-AI (2025)) evaluates the answer given the
query and return a score between 0 and 10.

• Calculate the different payments for the documents in Cn.

In practice, due to the combinatorial complexity of the decision space—specifically, the
(
n
k

)
possible

combinations from Cn —the reranking process is simplified not to consider interactions among the
selected k documents. Each of the n documents is scored independently, and the top k documents
favored by the LLM judge are selected. Our experiment follows the same setup.

D.3.2 PROMPT FOR THE RAG MARKET

Listing 1: LLM as a Judge Prompt
You will be given a user_question and system_answer couple.
Your task is to provide a 'total rating' scoring how well the

system_answer answers the user concerns expressed in the
user_question.

Give your answer as a float on a scale of 0 to 10, where 0 means
that the system_answer is not helpful at all, and 10 means
that the answer completely and helpfully addresses the
question.

Provide your feedback as follows:

Feedback:::
Total rating: (your rating, as a float between 0 and 10)

Now here are the question and answer.

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

Listing 2: Question Generation Prompt

You emulate a user of our medical question answering application.
Formulate 4 questions this user might ask based on a provided

disease.
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Make the questions specific to this disease.
The record should contain the answer to the questions, and the

questions should
be complete and not too short. Use as few words as possible from

the record.

The record:

question: {question}
answer: {answer}
source: {source}
focus_area: {focus_area}

Provide the output in parsable JSON without using code blocks:

{{"questions": ["question1", "question2", ..., "question4"]}}

D.3.3 ARE LLM JUDGES TRUSTWORTHY?

We randomly sampled 200 queries from the MedQuAD dataset, each associated with a known ground
truth answer. To prevent trivial matches based on string similarity, we rewrote the queries so that the
retrieval step could not rely solely on lexical overlap. The retrieval corpus consisted of all answer
entries from MedQuAD. For this experiment, we used top-1 retrieval only, and the retrieved document
was then used for answer generation. Among the 200 retrievals, 158 correctly matched the ground
truth documents.

Note that, besides the ground-truth document, other documents in the corpus may still provide partial
answers to the query. However, we expect the LLM Judge to assign higher scores when the correct
(ground-truth) context is retrieved—and this is exactly what we observe: the average score was 8.23
when responses used ground-truth context, compared to 7.04 when they did not. This suggests that
LLM Judge scores meaningfully reflect the quality of the retrieved documents.

D.4 PAYMENT CALCULATION PSEUDOCODE IN RAG MARKET

P Shapley
→j is not included in the pseudo code, due to its complex format. To get P Shapley

→j , one can first
calculate P LOO

→j for all subsets of [n]\{j}, and calculate the average.

Algorithm 1 Payment calculation in a RAG Market with k = 1

Require: LLM judge scores s = [si]
n
i=1, Costs p = [pi]

n
i=1 with n ≥ 2

1: {Compute Social welfare ϕ}
2: for i← 1 to n do
3: ϕi = si − pi
4: end for
5: {Pick winner and record its price}
6: j ← argmaxi ϕi
7: cj ← pj
8: {Sort ϕ in descending order}
9: (Sorted SW ϕ̃, SortedIdx I)← sorted(ϕ, descending)

10: {Myerson payment}
11: PMyerson

→j ← cj + (ϕ̃1 − ϕ̃2 − cj) = ϕ̃1 − ϕ̃2
12: PVCG

→j ← ϕ̃1 − ϕ̃2
13: P LOO

→j ← s[I[1]]− s[I[2]]
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D.5 ILLUSTRATIVE EXAMPLES FOR THE RAG MARKET

Example 1 (Truthful LOO Payment with Low Unit Costs). For document 1, it will report truthfully,
as PLOO

1 = v(doc 1 ∪ doc2)− v(doc2) = 0.2 is irrelevant to document 1 owner’s reported cost ĉ1
and greater than document 1’s unit cost. The owner of Document 2 also has no incentive to misreport,
since even reporting the minimum possible cost ĉ2 = 0 does not lead to retrieval; its utility remains
lower than that of Document 1 (0.8).

LLM judge score v unit cost c SW ϕ
doc1 0.9 0.1 0.8
doc2 0.7 0.05 0.65

Example 2 (Untruthful LOO Payment with High Unit Costs). Now imagine the unit data costs
are higher. In this scenario, document 1 should still get retrieved if both report truthfully. Yet,
PLOO
1 = v(doc 1 ∪ doc2) − v(doc2) = 0.2 < c1. That is, the payment is not IR for document 1

owner. Document 1 owner will over-report the cost, so document 1 will never get retrieved. Since the
payment is negative, the owner of document 2 also has no incentive to participate and will prefer to
over-report their cost. As a result, neither document will be retrieved due to over-reporting.

LLM judge score v unit cost c SW ϕ
doc1 0.9 0.3 0.6
doc2 0.7 0.2 0.5

Example 3 (Top2 Retrieval). If all document owners report truthfully, both doc1 and doc2 will be
retrieved. PLOO

1 = v(doc 1∪ doc2)− v(doc2∪ doc3) = 0.2 > c1 and PLOO
2 = v(doc 1∪ doc2)−

v(doc1 ∪ doc3) = 0.1 > c2. In this scenario, no document owner will lie about their true costs.
Shapley payment is the same as the LOO payment in this case.

For VCG payment, following the (8), we have

P VCG
1 = u(doc 1 ∪ doc2)− u(doc 2 ∪ doc3) + c1 = 0.3 (36)

P VCG
2 = u(doc 1 ∪ doc2)− u(doc 1 ∪ doc3) + c2 = 0.2 (37)

For Myerson payment, we first need to decide the exact ĉ′j for each document owner above which it
will no longer get retrieved. For doc1, it is 0.3, and for doc1 it is 0.2. So we have

P LOO
1 = c1 + (ĉ′1 − c1) = 0.3, P LOO

2 = c2 + (ĉ′2 − c2) = 0.2 (38)

We see that VCG and LOO payments are still equivalent.

Table 1: Costs for each doc

unit cost c
doc 1 0.1
doc 2 0.05
doc 3 0.1

Table 2: Utility for each 2-doc retrieval

LLM judge score v true costs SW ϕ
doc1, doc2 0.9 0.15 0.75
doc2, doc3 0.7 0.15 0.55
doc1, doc3 0.8 0.2 0.6

E CHALLENGES WITH PRIVATE BUYER PERFORMANCE

So far, we have looked into the scenario where buyers’ performance function is assumed to be known.
In practice, such functions are usually private, especially when entering into a new market with no
historical records. Or when sharing the performance functions violates the buyer’s privacy. In such
cases, we show that it is impossible to design any payment rule that simultaneously achieves IC, IR,
WBB, and SE. In fact, the social cost may be arbitrarily far from the efficient solution. This result is
similar in spirit to the celebrated Myerson–Satterthwaite theorem (Myerson & Satterthwaite, 1983)
proving the impossibility of efficient bilateral trade (double auctions). The negative results open up a
new challenge for designing valuation and pricing rules for data markets.
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E.1 AN IMPOSSIBILITY RESULT

Theorem E.1 (cr. Holmström (1979)). Assume all participants’ valuation vi ∈ Vi. If V = ×Vi is a
convex domain, then Groves mechanism that is defined by the allocation rule

W ⋆ ∈ argmax
W∈W

∑
i

v̂i(W )

and payment rule
pi = hi(−v̂i)−

∑
j ̸=i

v̂j(W )

is the unique IC mechanism, up to the choice of hi
Theorem E.2 (Impossibility Result). When buyers and sellers both have their private types to report,
no single mechanism can simultaneously satisfy IR, WBB, IC and SE. Further, any mechanism that
ensures WBB, IR, and IC can result in arbitrarily poor social efficiency.

Proof. We consider a simple one-buyer-one-seller case, where the reported valuations are

v̂b = l̂b(0)− l̂b(w⋆
bs), v̂s = −ĉsf(w⋆

bs) (39)

where w⋆
bs ∈ argmin l̂b(0) − l̂b(w⋆

bs) − ĉ(w⋆
bs). Truthfulness requires Groves payment rule, thus

pb = h(vs) − vs and ps = h(vb) − vb. With truthful reporting, we have social efficiency directly
follows as the coordinator chooses socially optimal W ⋆.

Now we check IR and WBB conditions, with IR, we have

vb + vs ≥ max(h(vb), h(vs)) (40)

With WBB, we have
vb + vs ≤ h(vb) + h(vs) (41)

Let vb → 0, we have vs ≥ max(h(0), h(vs)). This implies vs ≥ h(vs). Analogously, vb ≥ h(vb).
Let δb = vb − h(vb) and δs = vs − h(vs), we have δb ≥ 0 and δs ≥ 0. Plugging in (41), we have

δb + δs + h(vb) + h(vs) ≤ h(vb) + h(vs)

which suggests δb + δs ≤ 0. It can only be δb = δs = 0. That is, pb = ps = 0. Both the buyer and
the seller only take their own valuations into account. As the seller’s valuation will be negative as
long as w⋆

bs > 0, constrained to IR conditions, there will not be trade happening.

Now let’s check the Price of Anarchy (PoA):

PoA =
lb(0)

minwbs
lb(wbs) + csf(wbs)

(42)

PoA can be arbitrarily large if minwbs
lb(wbs) + csf(wbs) → 0, when happens when seller s has

exactly the data buyer b needs, which makes buyer b’s loss goes to 0, and the cost cs is 0.
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