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ABSTRACT

The scale and expense of pre-training large language models make efficient hyper-
parameter tuning essential, yet principled guidance remains limited. To address
this gap, we analyze language model pre-training dynamics from a local landscape
geometry perspective. Our study reveals two distinct phases. In the early phase,
sharpness of the local landscape is initially high, leading to instability and loss
plateaus under large learning rates (LRs). As training progresses, the landscape
shifts from sharp to flatter regions. This dynamic explains the necessity of LR
warmup and further suggests that larger peak LRs require proportionally longer
warmup periods. In the late phase, the local landscape is governed by the gradient
noise scale: high noise from smaller batches widens the loss basin, whereas reduced
noise from larger batches deepens it. This insight inspires a dynamic batch-size
(BS) schedule that increases the BS when the loss plateaus, achieving lower termi-
nal loss with significant fewer tokens than constant-BS training. Together with our
theory, we provide a unified account of loss landscape evolution, which translates
into actionable tuning strategies for large-scale pre-training.

1 INTRODUCTION

Training large language models efficiently requires carefully tuned hyperparameters, yet principled
guidance for tuning remains limited. While practitioners often rely on grid search or trial-and-error,
these approaches are costly and unreliable at scale. Recent research (Foret et al., 2021; Cohen et al.,
2021; Gilmer et al., 2022) highlighted that the geometry of the local loss landscape offers fundamental
insights into optimization, revealing how factors such as sharpness' interact with hyperparameters
to shape training dynamics. Consequently, leveraging insights from the local landscape presents a
promising path toward principled hyperparameter tuning for language model pre-training.

Several pioneering works have already attempted to study language models from the local landscape
perspective. Wen et al. (2024) introduced the “river-valley” landscape to explain the effectiveness of
Warmup-Stable-Decay (WSD) schedules (Hu et al., 2024). Zhang et al. (2024); Wang et al. (2025)
identified blockwise sharpness patterns in language models through Hessian-based analyses. Peng
et al. (2024); Chen et al. (2025) further visualized the loss landscapes of finetuned language models,
offering geometric insights into the safety alignment. However, few studies have investigated the
dynamics of local landscape geometry during language model pre-training.

To this end, we pose the central research questions of this paper:

1. How does the local landscape geometry evolve in language model pre-training?
2. What implications does this evolution have for principled hyperparameter tuning?

Our contributions. In this work, we present the first systematic study of the evolution of local
landscape geometry during language model pre-training. As illustrated in Figure 1, our analysis
reveals two distinct phases, each with significant implications for hyperparameter tuning.

e Early in Training: From Sharp to Flat Landscapes. In the early phase, we observe that the model
shifts from sharper regions of the loss landscape toward flatter ones, contrary to the progressive
sharpening phenomenon in prior works (Cohen et al., 2021; Song & Yun, 2023; Cohen et al., 2025).
Linear stability analysis in Section 4 shows that the maximum stable learning rate (LR) 7 is inversely

'In this work, we define sharpness as the largest eigenvalue of the Hessian matrix at the current iterate.
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Figure 1: The evolution of local loss landscape throughout pre-training. We train LLaMA—-2 mod-
els with 170M parameters using different BSs (0.49M and 7.8M), and visualize the one-dimensional
loss landscape at iterate 6; along a random direction 4, i.e., plot L(6; + «d) vs. the perturbation
coefficient a. The landscapes are shown across different training iterations ¢. Early phase. The
landscapes gradually widens/flattens for both training runs. Late phase. Training with smaller BS
produces wider landscapes than training with larger BS.

proportional to sharpness. Since sharpness is extremely high early in pre-training, using large peak
LRs without sufficient warmup leads to instabilities, such as loss spikes and plateaus (see Figure 2).

Implications. The sharp-to-flat transition explains the necessity of LR warmup: LR should remain
small until sharpness has sufficiently decayed, preventing training instabilities. This further provides
a practical tuning recipe: within a reasonable range, larger peak LRs require proportionally longer
warmup, to safely navigate the sharpest stage of training.

e Late in Training: Basin Selection Governed by Noise Scale. In the late phase, the local landscape
geometry is largely governed by the noise scale during training, with batch size (BS) B serving as
its primary controller. Our analysis shows that smaller BS widens the loss basin, while larger BS
deepens it. To explain this, we analyze the diffusion limit of preconditioned SGD, which uncovers a
depth—flatness trade-off: reduced gradient noise tends to minimize the loss, leading to deeper minima;
whereas increased noise tends to regularize the sharpness of landscape, moving toward wider ones.

Implications. The trade-off motivates a principled BS scheduling strategy: increases the BS once the
loss reduction progress slows. Consider that the trade-off only emerges in the late phase, we start with
a small BS to improve token efficiency. Our scheduling ensures steady loss reduction with minimal
token consumption, ultimately achieving lower terminal loss than constant-BS training. Moreover,
since the noise scale is proportional to 77/ B in our theory, we predict that BS ramping and LR decay
reduce the noise scale in similar ways and thus yield comparable performance (see Figure 8).

In summary, our work provides a two-phase picture of landscape evolution in pre-training: an early
sharp-to-flat transition that necessitates LR warmup, and a late noise-driven regime that motivates BS
scheduling. This unified view advances our understanding of pre-training dynamics and underscores
the importance of landscape geometry in offering principled guidance for hyperparameter tuning.

2 RELATED WORKS

Local Landscape Geometry (Sharpness) Evolution. Understanding how local landscape geometry,
particularly sharpness, evolves during training has drawn increasing attention. Wu et al. (2018);
Cohen et al. (2022); Song & Yun (2023); Cohen et al. (2025) showed that initially gradient descent
(GD) tends to move from flatter to sharper regions of the landscape. In addition, Jastrzebski et al.
(2019); Jastrzebski et al. (2020) argued that in SGD, sharpness also changes monotonically but either
increase or decrease depending on the setting. In the later phase, however, sharpness is largely
governed by the properties of the optimizer (Zhou et al., 2025). One notable example is that the
stochastic noise introduced by SGD and its variants implicitly biases training toward flat minima (Wu
et al., 2018; Zhu et al., 2019; Xie et al., 2021; Wu et al., 2022). Yet, these findings are largely
restricted to small-scale networks; In comparison, our work present the first systematic study of how
local landscape geometry evolves in large-scale language model pre-training, offering new insights
into LR warmup and the design of BS schedules.

Large-Scale Pre-training: Learning Rate Warmup. Learning rate warmup, first introduced in
large-batch ResNet (He et al., 2016; Goyal et al., 2017) and Transformer training (Vaswani et al.,
2017), is now standard in large-scale pre-training (Shoeybi et al., 2019; Zhang et al., 2022; Hu et al.,
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2024). Its mechanism, however, remains only partly understood. Gotmare et al. (2019) showed that
warmup prevents excessively large early parameter updates; Gilmer et al. (2022) argued that warmup
guides optimization into flatter regions where large LRs are stable; and Kosson et al. (2024) showed
in language model pre-training that warmup mitigates momentum bias correction and correlated
gradients that otherwise drive unstable representation shifts. Yet no unified explanation exists. In
comparison, our work views warmup from a unified geometric perspective, suggesting that larger
peak LRs demand proportionally longer warmup.

Large-Scale Pre-training: Batch Size Schedules. Batch size is another critical hyperparameter in
large-scale pre-training, shaping the trade-off between step efficiency and data efficiency. Most prior
work (McCandlish et al., 2018; Kaplan et al., 2020; Gray et al., 2023; 2024; Zhang et al., 2025) has
focused on the critical batch size (CBS), the point where further increasing BS yields diminishing
returns. However, CBS is typically treated as a constant, and much less attention has been given
to BS scheduling. Early works on adaptive sampling proposed gradually increasing BS to balance
efficiency and noise reduction (De et al., 2017; Lau et al., 2024b;a; 2025; Ostroukhov et al., 2024).
However, these studies remain mostly theoretical. Advanced language models (Brown et al., 2020;
Touvron et al., 2023; Liu et al., 2024; Li et al., 2025) employed stage-wise BS schedules, but without
systematic analysis. In contrast, our work connects BS scheduling to the evolving local landscape
geometry, providing a principled foundation for when and how to expand BS during pre-training.

3 PRELIMINARIES

Basic Notations. We use bold lowercase letters (e.g., € = (z;)) to denote vectors and bold uppercase
letters (e.g., A = (a;;)) to denote matrices. For a matrix A, let |A[],, | Az, and Tr(A) denote its
spectral norm, Frobenius norm and trace, respectively. The Hadamard product are denoted by ©.

Theoretical Setup. Our main discoveries are grounded in a simple theoretical model. In particular,
we study the local dynamics of preconditioned stochastic gradient descent (SGD) near an local
minimum of the empirical risk. We consider a model with parameters @ € RP and a training set of n
examples. Let L;(8) be the fitting error evaluated at i-the example and L(0) = L 3" | 1,(8) be
the empirical risk. Suppose L(0) admits a strict local minimizer 8*, and denote the Hessian at 6* by
H(0*) := V2L(0*) = 0. In a neighborhood of §*, the loss can be approximated quadratically:

1
L(9) = L(6") + (6 — 6*) TH(6")(8 — 6%) (1)
We analyze the preconditioned SGD with a fixed preconditioner M = 0°. Let ey, := 05, — 0*. At
iteration k, the update rule® gives:

er1 = (I—nMH(0"))e, + nM&;, 2
where 77 > 0 is the LR and {&;,} are i.i.d. random noise vectors with
El6:] =0, El&i&,] = =(6")/B. 3)

Note that 3(6*) = 1 3" | VL;(0*)VL;(6*)" — VL(6*)VL(0*) is the gradient covariance at
6, and B denotes the BS. Despite its simplicity, this model captures key aspects of pre-training
dynamics, especially in the late phase (see Section 5). Similar formulations have been widely used in
dynamical stability analyses (Wu et al., 2018; Cohen et al., 2021; Zhou et al., 2025) and theoretical
advances on BS scaling (McCandlish et al., 2018; Zhang et al., 2019).

Experimental Setup. We train LLaMA-2 architecture (Touvron et al., 2023) models with 93M and
170M parameters. Training is performed on the FineWeb-Edu dataset (Penedo et al., 2024), with
sufficient training budgets ranging from 50 to 1000 tokens-per-parameter (TPP)* and a context length
of 1024. We adopt AdamW (Kingma & Ba, 2014) with hyperparameters 8; = 0.95, B2 = 0.95, and
weight decay 0.1, together with gradient clipping at 1.0 for stability. Evaluation is conducted on a
held-out validation split of ~50M tokens to monitor training stability and convergence.

Our experiments varies the LRs and BSs. In Section 4, we primarily study the role of LR and warmup
length, fixing BS at 7.8M. In Section 5, we focus on the effect of BS, with LR fixed at 2719, To

2Most practical preconditioners are positive-definite: M = I for SGD, diagonal M for AdaGrad (Duchi
et al., 2011), RMSProp (Tieleman & Hinton, 2012), Adam, etc.

*Derived from the Equation (1) and 8y = 8, — nM(V L(8y) + £x).

*At least 10x over Chinchilla-optimal tokens (Hoffmann et al., 2022).
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Figure 2: Loss spikes and plateau early in training. We train a series of LLaMA~-2 models with
93M and 170M parameters. We adopt a warmup-stable schedule, where the warmup length is
shortened to 16 iterations and the peak LR is varied, n € {2711,2710 279 28 9=T} (Left). LR
schedule: 7, vs. training iteration ¢. (Middle, Right). Training loss curves for different model sizes:
L(6;) vs. training iteration ¢. The vertical dashed line marks the end of the warmup phase.

decouple BS ramping from LR decay, we adopt a warmup-stable schedule: after linear warmup to
the peak value, the LR remains constant (similar to WSD Hu et al. (2024), but without decay phase).

4 EARLY IN PRE-TRAINING: FROM SHARP TO FLAT LANDSCAPES

In this section, we provide evidence that, during the early phase of pre-training, the local landscape
of language models evolves from sharp regions toward flatter ones. We first observe that training
with large LRs and insufficient warmup often leads to instability and early loss plateaus. By linear
stability analysis, we then attribute these behaviors to sharp-to-flat dynamics occurring in the initial
phase of training. This finding explains why pre-training needs LR warmup and suggests that larger
peak LRs require proportionally longer warmup periods.

Motivating Observations: Instability and Loss Plateaus Early in Training. The loss curves for
pre-training are typically smooth initially; the model escapes from random initialization and the loss
decreases rapidly. Yet, surprisingly, when the warmup length is extremely shortened, we consistently
observe loss spikes and plateaus near the end of the warmup phase.

To demonstrate this, we train models of different sizes with a fixed warmup length of 16 iterations
while varying the peak LR. As shown in Figure 2, a loss plateau reliably appears around the end of
the warmup phase across all settings. Additionally, larger LRs produce higher spikes, which mark a
characteristic feature of early training instability. Given these results, two natural questions arises:

Q1. Why does shortened warmup induce training instability?
Q2. Why do spikes and plateaus occur only at the very beginning of training?

To shed light on these questions, we begin with a sim- 3 3
ple quadratic model that enables us to analyze stability N =099 max 1 = 1.010max

through the lens of linear dynamics. u u

Linear Stability Analysis: Sharpness Matters. Con- \é;y \Q;h

sider the quadratic model introduced in Section 3. When

the noise term & in Equation (2) is set to zero, the dy-
R 6,
L L

namics reduce to:

er1 = (I —nMH(0"))ey, “)
a linear system whose stability depends on the spec-
tral properties of I — nMH(60*). Intuitively, the LR 7
interacts directly with the curvature of the landscape:
if 7 is too large relative to the sharpest direction, the
updates will diverge. The following lemma formalizes
this stability condition for preconditioned GD.
Lemma 4.1 (Stability Condition for Preconditioned
GD). Define the preconditioned curvature matrix S := M'/?H(6*)M'/2, and let {\}?_, be the
eigenvalues of S. The linear system in Equation (4) is asymptotically stable (i.e., limy_,oc € = 0
for any initial eg) if n satisfies 0 < n < ﬁ(s)

Figure 3: Gradient descent on a sim-
ple quadratic function: L() = 0HO.
Here, 0 € R?, H € R?*2 >~ Qwith \; = 8
and Ao = 1. Thus, e = 2/A1 = 0.25.
Training with 1 = 1,4, causes slow con-
vergence, and when 1 > 7,4, it diverges.



Under review as a conference paper at ICLR 2026

Sharpness Evolution in Early Iterations

o] 50000 _aM
Ls Aii€{1,2}
© 40000 170M
= Ai€{1,2}
g
Z 30000
5)
=)
'u—j 20000
= —3——% __e
= 10000 : No——
0 50 100 . 150 200 250
Iteration t
g ~ Local Landscapes across Early Iterates (93M)  Local Landscapes across Early Iterates (93M)
R " §
5§ +°] 107 =
2+ \k/_/// 64 =
S o 81 aEe————————— 9]
20 | —_——————— w =
= - - - - - - - - - - 1287
> -2 -1 0 1 2 -2 -1 0 1 2
a a

Figure 4: Early pre-training shifts iterates from sharp to flat regions. We visualize the local
landscape geometry evolution of training runs in Figure 2. For each model size, we select the training
run with LR 2719, (Top). Evolution of the top eigenvalues of the Hessian across iterations: \; (FH(6,))
vs. iteration ¢. (Bottom). One-dimensional loss landscape along a random perturbation direction: the
perturbed loss L(6; + ad) vs. perturbation coefficient o, shown across early training iterations ¢.

Lemma 4.1 shows that stability of preconditioned GD is governed by the largest eigenvalue of S.
If the curvature along the sharpest direction is too large, only a sufficient small LR can prevent
divergence. This generalizes the stability analysis in Wu et al. (2018) to the preconditioned setting.

We next characterize the one-step loss change as 1) approaches the stability boundary 2/ Apax(S).

Lemma 4.2 (Exact One-step Loss Change). Let S = QAQ " with A = diag(\1, ..., )\,) and define
z = Q"M /2¢y, then

L(Bk41) — L(6”) _ ¢ 2 Ajzj
= w;(1—n\)°, wj==—— €1[0,1], w; = 1.
L(Ok) _ L(O*) Jz::l J( J) J 521 )\6242 [ ] EJ: J

L(0k+1)7L(0*) — (1 _ n}\maX)Q’ SO that L(ek) _ L(0k+1) nT2/)\xnax

T(6:) - L(67) Of

In particular, min,,

Lemma 4.2 states that when 7 is close to 2/Amax(S), each update yields only a marginal decrease in
loss. Together with Lemma 4.1, it is clear that training near the stability boundary naturally leads
to characteristic loss spikes and plateaus (see Figure 3 for an illustration). Importantly, the stability
boundary is determined by the sharpness of the loss landscape. To further address Q1-2, we analyze
how sharpness evolves during the early phase of pre-training.

The Early Dynamics: From Sharp to Flat Landscapes. We study how the local landscape geometry,
particularly the sharpness, evolves for training runs in Figure 2. Specifically, we track the evolution
of the top eigenvalues of the Hessian® H(6;) during early pre-training. For the early checkpoints
0., we also visualize the one-dimensional loss landscape along a random direction by plotting the
function £(«) := L(0; + ad) with § ~ N(0,I). Li et al. (2018) showed that such random-direction
visualizations reliably capture intrinsic properties of the loss landscape properties, such as sharpness.
To ensure fair comparison across iterations, we fix the same random vector § for all 6;.

In Figure 4 (top), the largest eigenvalues of the Hessian H () start at high values® and then decrease
sharply, indicating a substantial reduction in curvature along the sharpest direction. Furthermore,
in Figure 4 (bottom), the loss landscape along a random direction progressively widens as training
proceeds, confirming that the model shifts from sharp to flat regions even in the most-case directions.

SFollowing Cohen et al. (2021), we use the Lanczos algorithm to calculate top eigenvalues of Hessian.
%1n fact, at initialization, sharpness is extremely low but rises sharply after the first update. The sharpness
curves reported in Figure 4 therefore start from the first iteration.
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A Tuning Recipe: Larger Peak LR, Longer Warmup. We have seen that training stability depends
on sharpness: when the landscape is steep, only a sufficiently small LR can keep updates stable; and
pre-training initially traverses from sharp landscapes to flatter ones. Now let us return to Q1 and Q2:

Al. If the warmup phase is shortened, the LR rises too quickly while the model is still in sharp
regions, leading to loss spikes and plateaus.

A2. As training progresses, the landscape becomes flatter and the same LR no longer threatens
stability, which explains why instability is confined to the very beginning.

Therefore, in practice, we need a sufficiently long warmup phase to keep the LR small until sharpness
has decayed, thereby preventing loss spikes and plateaus. This rational further suggests a practical
tuning recipe: the larger the peak LR, the longer the warmup should be, ensuring iterates safely
transition into flatter landscapes before reaching full step size.

3.24
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To validate this, we train models with varied peak
LRs 7 and warmup lengths T, (in iterations). In
Figure 5, larger peak LRs require proportionally
longer warmup to achieve the optimal validation
loss L(Byest). However, this proportionality does
not hold universally. When n = 277, the optimal
warmup length remains 210 iterations, the same as
for = 278, Thus, the relationship applies within
a reasonable range, when both the peak LR and
warmup length are neither too small nor too large.

w
kS

3.1 N

Best Validation Loss L(0ps¢)

n=27%
Comparison with Gilmer et al. (2022); Kalra 304
& Barkeshli (2024). These works also studied 26 27 28 2 210 21
warmup from a sharpness perspective but focused Warmup Length Ty,

mainly on standard image classification tasks (e.g.,

ResNet on CIFAR-10). In contrast, we study Figure5: Larger Peak LR, Longer Warmup.
language model pre-training, where the regime We train a series of LLaMa-2 models with
is fundamentally different: for instance, in Fig- 170M parameters and 100 TPP. We vary the peak
ure 6, a 16-iteration warmup accounts for only LRs 7 and warmup lengths T;,. We plot the best
~ 0.078% of the whole training process while the validation loss L(6ps) vs. T, for different 7). For
loss remains high, whereas in small-scale settings €ach 77, the optimal T',, is highlighted with a star.
the loss has already decreased significantly after

warmup. Furthermore, we introduce the warmup tuning recipe for large-scale pre-training, which to
our knowledge has not yet been carefully explored before.

5 LATE IN PRE-TRAINING: LOCAL LANDSCAPE GOVERNED BY NOISE SCALE

In this section, we turn to the evolution of the local landscapes in the late phase of pre-training. We
observe that BS plays a central role: training with a large BS tends to find a deeper basin of the
landscape, whereas training with a small BS favors a wider basin. By analyzing the diffusion limit
of Equation (2), we prove that this trade-off between wide or deepen is governed by the training
noise scale. Building on this insight, we further propose a dynamic BS scheduler for the data-limited
regime, which achieves lower terminal loss while consuming fewer tokens.

The Effect of BS: Local Landscapes Late in Training. We conduct experiments to systematically
investigate the role of BS in shaping the local landscape geometry during the late phase of pre-training.
Specifically, we train models with different BSs for 7' = 20,480 iterations. Figure 6 (top left) shows
the validation loss curves for each run. Evidently, larger BS consistently leads to lower terminal loss
and faster convergence in term of iterations’. We then visualize the loss landscape around the final
iterate 7. In Figure 6 (top right), it is clear that small BS produces flatter basins, whereas large BS
yields deeper ones. To further demonstrate, Figure 6 (bottom) compares the landscape evolution of
runs with B = 0.49M and B = 7.8M, indicating that in the late training phase, larger BS tends to
deepen the basin, while smaller BS shifts toward wider basins.

Despite these convincing results, two key question remains:

"In terms of processed tokens, small BS training converges faster.
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Figure 6: Large BS deepens the basin, small BS widens the basin. We train a series of LLaMA-2
models (170M) for T = 20,480 iterations, using BSs B € {0.49M, 0.98M, 1.9M, 3.9M, 7.8M }.
(Top left). Validation loss curves for different BSs: L(6;) vs. training iteration t. (Top right).
One-dimensional loss landscapes at the final iterates 87 along a random perturbation direction:
perturbed loss L(07 + ad) vs. perturbation coefficient «, visualized across different BSs. (Bottom).
One-dimensional loss landscape: the perturbed loss L(8; + ad) vs. perturbation coefficient o, shown
across late training iterations ¢ for B = 0.49M and B = 7.8M.

Q3. Why is there a trade-off between widening and deepening the basin?
Q4. Which factor underlying the hyperparameter BS governs this trade-off?

To delve deeper into these questions, we revisit the simple quadratic model® introduced in Section 3.

Widen or Deepen: Noise Scale Governs Basin Selection. Recall the update rule of preconditioned
SGD:

i1 =0, —nM(VL(6:) + &), E[&x] =0, E[&:&)]=%(6")/B. ©)

For simplicity, we take the continuous-time limit of Equation (5), where dynamics are approximated
by a stochastic differential equation (SDE). The following proposition formalizes this approximation.

Proposition 5.1 (Convergence to SDE). Consider the scaled discrete process 6|1/, as n — 0.
Suppose the noise covariance satisfies’

MM = 2rM + O(n), ©6)
for some temperature T > 0. Then the process converges weakly to the It6 SDE:
d0, = —MVL(6,)dt + vV2rM'/2dW, (7
where Wy is standard Brownian motion.

Proposition 5.1 shows that preconditioned SGD converges to a noisy gradient flow in the small-n
limit. The temperature T quantifies the noise scale and is proportional to 1/ B.

Subsequently, we establish the trade-off between deepening and widening the loss basin using both
the quadratic model (see Equation (1)) and the SDE limit of preconditioned SGD.

Theorem 5.1 (Depth-Flatness Trade-off). Let the empirical risk L(0) admit multiple local minima
{07}, with Hessians H(0}) > 0. Under the SDE in Equation (7) with temperature T, the stationary
probability that training resides in basin i is given by:

- exp(—F5(7)/7) T

P, (basin i) = , Fi(r):= L(0}) + — logdet H(67) .
’ > exp(=F;(r)/7)" ' ' 2 '

8We analyze the late phase where 6; sits near a local minimum and the quadratic model is accurate.

The assumption in Equation (6) is justified in Appendix B.2.
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Figure 7: BS scheduling improves data efficiency. We train LLaMA~-2 models with 93M and 170M
parameters, using a BS schedule that starts at 0.49M and increases by 4 x at each ramp. Models are
trained with 1, 2, or 3 ramping steps, while models without ramping serve as the baseline. Vertical
gray dashed lines indicate ramping positions. (Left, Middle). The validation curves for each run.
(Right). Comparison between training with BS ramping to 7.8M and training with a fixed 7.8M BS.

Theorem 5.1 states that the basin selection is controlled by the free energy function F'(7) = L(6*) +
7 logdet H(0*). In early training, the loss term L(6*) dominates, so the model primarily seeks
regions of lower loss. In later training, L(6*) is comparable to the flatness penalty log det H(6*),
and basin selection becomes increasingly sensitive to the noise scale 7. Together with Proposition 5.1,
fixing the LR 7 yields the following trade-off:

Deepen. Large BS B = low 7 = selection is L-dominated; training tends to deepen the basin.
Widen. Small BS B = high 7 = selection is H-dominated; training tends to widen the basin.

Efficient Pre-Training: A BS Scheduler in Data-Limited Regime. Turning back to Q3 and Q4, the
trade-off arises because basin selection balances loss minimization against curvature regularization
(A3), with the governing factor being the noise scale 7 (A4). Since the primary objective of pre-
training is to minimize the training loss, this balance naturally favors using the largest BS available.
In practice, however, data availability is limited, and excessively large BS substantially increase data
consumption'®. Thus, scheduling BS in pre-training is crucial, particularly in the data-limited regime.

Inspired by our theory, we propose the design principle for a BS scheduler in the data-limited regime:

1. Start at a small BS. Loss reduction dominates early in training; large BS provides little benefit.

2. Ramp the BS once loss reduction becomes marginal. The flatness penalty is suppressed and
training converges to deeper minima.

To validate this, we train models of different sizes, using a BS schedule that starts at 0.49M and
ramps'! by 4x once loss minimization slows. In Figure 7 (left, middle), models with 1,2 or 3 BS
ramping steps consistently achieve lower validation loss than those trained without BS ramping. For
example, in the 170M case, the 3-step BS ramping improves the final validation loss by about 0.114.
Moreover, Figure 7 (right) highlights the data-efficiency of the BS scheduling: ramping the BS up to
7.8M achieves nearly the same final validation loss as training with a fixed 7.8M BS, but requires
only about i of the tokens (i.e., a ~ 4 x speedup). These results confirm that BS scheduling preserves
the benefits of large BS while substantially reducing data consumption.

Comparison with McCandlish et al. (2018); Li et al. (2025). McCandlish et al. (2018) linked BS
scaling to the gradient noise and introduced the notion of critical BS. We extend this work by showing
that the noise scale governs the depth—flatness trade-off in basin selection, and by proposing a BS
scheduling strategy that improves data efficiency. Li et al. (2025) also explored the BS scheduling,
increasing BS once the loss dropped below a certain threshold. While similar in spirit, their approach
is heuristic, whereas our work uncovers the theoretical mechanism underlying BS scheduling.

6 MORE DISCUSSIONS: LR DECAY AND THE BLOCKWISE STRUCTURE

Comparing BS Ramping with LR Decay. So far, we have excluded LR decay in our experiments to
isolate the effect of BS ramping. Yet, recall from Proposition 5.1 that the noise scale 7 is proportional

'%For example, in Figure 6 (top right), when B = 7.8M, the run consumes approximately 160B tokens.
""The ramping is implemented as step functions, not linear schedule, so each ramp is sharp change.
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BS Ramping vs. LR Decay (170M) Blockwise Local Landscapes (170M)
~\
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o 3.1 = ©
— © 740
= *5 8 Emb
.S < + .. QK
=30 = 35
= = = —— FFN
= S — v
T><S 29 ~ 3.0 1 Norm
5B 10B 15B 20B -1.0 0.0 1.0
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Figure 8: (Left) BS ramping performs similarly to LR decay. Validation loss curves for training
with either BS ramping or LR decay. In all runs, BS starts at 0.49M and LR begins at 271 (after
linear warmup). For BS ramping, BS increases to 8 its initial value; for LR decay, the LR drops
to 1/8 of its initial value. Each method applies a single step at varying positions. (Right) Local
loss landscape exhibits blockwise structure. One-dimensional loss landscapes at the final iterate
01 along a masked random perturbation direction o ® 8. Here, 8 € RP is the random perturbation
vector, and o is a blockwise mask that zeros out perturbations outside the specified block type.

to 77/ B. Together with Theorem 5.1, this suggests that decaying the LR and ramping the BS both
reduce the noise scale, and thus may have similar effects on basin selection. A natural question then
arises: does BS ramping behave like LR decay in practice?

To investigate this, we train models using either BS ramping or LR decay. Both methods apply a
one-time step change: BS ramping multiplies the BS by 8 at 71y, while LR decay divides the LR by
8 at Tiecay. We align Tiamp and Tiecay so that the changes occur at the same positions, enabling a direct
comparison of their effects. In Figure 8 (left), BS ramping and LR decay produce remarkably similar
validation loss curves across all change positions. This result supports the theoretical prediction that
both methods reduce the noise scale in comparable ways, thereby validating our theory.

Visualizing the Blockwise Local Loss Landscape. Transformer architecture is composed of different
block types, such as query—key (QK) and value—output (VO) projections, feedforward networks
(FFN), normalization layers (Norm), and embedding layers (Embed). Prior studies (Zhang et al.,
2024; Wang et al., 2025) found that these block types exhibit heterogeneous levels of sharpness,
suggesting that different block types contribute differently to the local loss landscape. To better
understand this heterogeneity, we visualize the local loss landscape separately for each block type.

Similar to Figure 6, we perturb the final iterate 87 along a random direction d, but restrict the
perturbations to a selected block type using a blockwise mask o . In Figure 8 (right), local landscapes
differs substantially across block types, and the curvature order we observe is QK < Embed < FFN <
VO < Norm. This ordering is slightly different from the results reported by Wang et al. (2025), which
found Embed < QK < FFN < VO < Norm. We suggest two possible reasons for this discrepancy.
First, our analysis probes the most-case direction landscape, whereas Wang et al. (2024) directly
estimate sharpness from the fisher information matrix. Second, embeddings may not appear as the
flattest block in terms of loss landscape, but as they are least activated during gradient propagation
(many embedding entries receive no gradient), they are effectively flatter in training dynamics.

7 CONCLUSION AND LIMITATIONS

In conclusion, we present a unified theoretical and empirical view of how local landscape geometry
evolves during language model pre-training. Our analysis reveals two phases: an early sharp-to-flat
transition and a late noise-governed regime. The early dynamics explain the necessity of LR warmup,
suggesting that larger peak LRs require proportionally longer warmup lengths. The late regime shows
that BS controls a trade-off between widening and deepening loss basin, motivating a dynamic BS
schedule that achieves lower terminal loss with significantly fewer tokens.

Limitations. We note that the current analysis primarily focuses on the LLaMA-2 architecture
and the AdamW optimizer. A natural future direction is to extend our empirical findings to other
architectures and optimizers. We also note that the effects of BS ramping and LR decay have been
studied separately. Understanding their combined impact remains an open question for future work.
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A STATEMENTS

A.1 LLM USAGE STATEMENT

We used the advanced language models only as writing assistants during manuscript preparation. Its
role was limited to correcting grammar, improving clarity, and refining the flow of sentences, while
keeping the intended meaning unchanged. All research ideas, methods, and results are entirely the
work of the authors.

A.2 ETHICS STATEMENT

We confirm that this research fully complies with the ICLR Code of Ethics. All experiments were
carried out with integrity, fairness, and transparency. The work involves no harm to humans, animals,
or the environment, and we have ensured responsible handling of data, models, and computational
resources.

A.3 REPRODUCIBILITY STATEMENT

We are confident that all experimental results in this work can be reproduced. Detailed descriptions of
training and evaluation procedures, including hyperparameters, optimizer settings, and other relevant
configurations, are provided in Section 3. In addition, we share open-source code in the supplemental
material, and all datasets are publicly available.

B MISSING PROOF

B.1 LINEAR STABILITY ANALYSIS: THE NOISE-FREE CASE

Lemma B.1 (Spectral Properties of Preconditioned Curvature). Let H(6*) > 0 and M > 0. Define
S = MY2H(6*)M'/2. Then:

1. S is symmetric and positive definite.
2. The matrices MH(6*) and S have identical eigenvalues.

Proof. The properties are easily proved in the following:

1. Since M'/2 » 0 and H(6*) > 0, we have S = MY/2H(0*)M'/? ~ 0. Symmetry follows
from ST = (M'/2)TH(0*)T(MY/?)T = MY/?H(6*)M'/? = S.
2. The matrices are similar: MH(8*) = M'/2SM~1/2,
0

Lemma B.2 (Stability Condition for Preconditioned GD). Define the preconditioned curvature matrix
S := MY/2H(0*)M'/2, and let {\}!_, be the eigenvalues of S. The linear system in Equation (4)
is asymptotically stable (i.e., limy_, , e, = O for any initial ey) if 1 satisfies

0<n<

N (S) ®

Proof. Step 1: Orthogonal Diagonalization. Since S > 0 is symmetric, it admits an orthogonal
diagonalization:

S=QAQ",
where Q'Q = QQ " =Tand A = diag(\, A2, ..., Ag).

Define a new coordinate system z, := Q' M~!/2¢;,. Substituting into Equation (4):
Zee1 = Q M ey
=Q M 21 - nMH(6*))ey
— QTM71/261€ _ T]QTMl/QH(O*)ek
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=z — nQTM1/2H(0*)M1/2sz
=z, —1Q"SQzy,
= (I—nA)zy.
Thus, the dynamics in the z-coordinates are decoupled:
2 =1 —nA) 20, forj=1,....d ©)
Step 2: Spectral Stability Criterion. The system in Equation (9) is asymptotically stable if and only
if the magnitude of every scalar multiplier is less than 1:

max |1 —n\;| < L.
j

Since A; > 0 and 7 > 0 for all j, this inequality is equivalent to:
A <2 V) = < 2 = 2
7 J TS ma A T Amax(S)

This proves the sufficiency and necessity of the condition in Equation (8).

O

Lemma B.3 (Exact One-step Loss Change). Let S = QAQ" with A = diag(\1, ..., \,) and define
z=Q ' M~1/2¢,, then

L(Os1) — L(6%) , A2
INETI R DR AR Al v i ve Rl LD DL
In particular, min,, % =(1- U)\max)2, so that L(0y) — L(Ojs1) 112/ Amax 0.

Proof. Step 1. Using established coordinate transformation. By Lemma B.2, we use the coordinate
transformation z,, = Q' M~'/2e;,. From the proof of Lemma B.2, we have the decoupled dynamics:

z,(cj_gl =(1 —7))\j)z,(€j), ji=1,...,p.

Step 2. Loss expression in transformed coordinates. The loss function relative to the optimal value
can be expressed as:

L+
-e. H
2ek €L

%(Ml/QQZk)TH(M1/2QZk)

L(0r) — L(67)

1
_ iz];r TMI/QHMI/Qsz

1 1 ¢
= §szAzk =5 Z/\J'Zl%,j'

j=1
Step 3. Computing the loss ratio. Using the decoupled dynamics from Step 1:
1
L(O41) — L(6%) = 5 Z /\jzlz-u,j
J

[\

Il
-

Aj(L =) g

~
Il
—

I
N | —
=

Therefore, the loss ratio is:

2
L(Opsr) — L(6%) Y5y A (1—nX)°27

L(6y) — L(6%) ?:1 )‘jzlz,j
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p
=2 wll- )
e
where w; = ﬁ Clearly, w; € [0,1] and Z§:1 w; = 1.
. . L(Ok41)—L(8*) - - 2 .
Step 4. Worst-case analysis. Since =7 5=+ is a convex combination of (1 —nA;)7, its
minimum is achieved when all weight is concentrated on the largest eigenvalue:

in LOk+1) — L(67)
U T 6) — L(07)

As 7 1 2/Amax> We have (1 — nAmax)” — 1, and thus L(6;) — L(611) — 0. O

= (]- - 77)‘max)2~

B.2 STATIONARY DISTRIBUTION WITH NOISE: THE STOCHASTIC CASE

Having established the stability conditions for the deterministic case, we now analyze the full
stochastic dynamics by including the noise term &; in Equation (2). This analysis reveals how
preconditioned SGD’s stationary distribution depends on an effective temperature 7, leading to the
emergence of basin selection through free energy minimization.

B.2.1 DISCRETE-TIME SOLUTION

Lemma B.4 (Eigenbasis Decomposition). Let S := M'/2H(8*)M'/? with eigendecomposition
S = QAQ', A = diag(\y,...,\q). Define G := Q" MY2X(6*)M'/2Q/B. In coordinates
wy, = Q"M~1/2ey, the recursion gives:

wipr = ([—nA)wi +1¢k, E[G¢ ] =G

The stationary covariance 3., has diagonal elements:

Gy nGyj

3w = = (11)
s =12 (1—nx)® 20 —nA]
For small n;, this simplifies to:
nGjj
).~ 12

Proof. First, we verify that S = M'/2H(0*)M'/? can be eigendecomposed. Since both M and
H(6*) are positive definite matrices, S is also positive definite matrix. By the spectral theorem, S
admits the eigendecomposition S = QAQT, where Q is orthogonal and A = diag(\y, ..., \g) with
A; > 0.

Starting from ex+1 = Aey + nME with A = T — nMH(0*), we change variables to wy =
Q M /2¢,
wirn = QM ?er = QTM TV (Aey + M)

= Q"M 21— MH(6"))ex +1Q M

— Q"M 2, — QT MY2H(0%)e), + QT MY/ 2¢,

= wy — nQTM1/2H<0*>M1/2ka +nQ M2,

= wy, — Q' SQuy, +1nQ M'/%¢;

= (I —nA)wy +7Q M/,

Defining (i := QT M/2¢;,, we get:
E[¢réT] = QT MV2E[¢,¢] IMY/2Q = Q" M2 (6*)M/?Q/B =: G
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As matrix (I — nA) is diagonal, the recursion now decouples into independent scalar equations for
each component j:

(wit1); = (1 = nAj)(wi); +n(Ck);-

For each component j, the stationary variance satisfies:

(Bw)jj = (L= nX)*(Buw)jj + 0 Gyj (13)
Solving for (X,,),;:
(Z ) o= T]2ij = 772ij
T (M=) 1= (=20 +02A)
_ "Gy nGyj
200 —n2A5 2) =\
For small n)\; < 1, the denominator simplifies to 2)\;, giving Equation (12). O

B.2.2 CONTINUOUS-TIME LIMIT AND GIBBS DISTRIBUTION

We now take the continuous-time limit (7 — 0) to derive a simpler universal theory.

The exact solution for the variance in the eigenbasis from Lemma B.4, i.e., (2£,,);; = 1G;;/(2A; —
77)\?), guides the necessary scaling for the continuous-time limit. Because (3,,),; converges to a
finite non-zero value as 7 — 0, the numerator 7Gj; must remain finite. This suggests defining a
quantity 7 such that for each mode j:

nij—>2T as 77—)0

We strengthen this to :
nG —27I as n—0.

Recalling that G = Q" M'/2%(6*)M'/2Q/ B, this condition in the original coordinate system
translates to the required scaling for the noise covariance:

%ME(G*)MT — 27 M.

Proposition B.1 (Convergence to SDE). Consider the scaled discrete process 04/, as n — 0.
Suppose the noise covariance satisfies

%1\/{2(9*)1\/[T = 2rM + O(n), (14)
for some temperature T > 0. Then the process converges weakly to the It6 SDE:
d@; = —MV L(6;)dt + V2rM'/2dW, (15)

where W, is standard Brownian motion.

Proof. Consider the discrete preconditioned SGD update:
11 = 60x — nM(VL(6)) + &),
Define the scaled process 0(’7)(t) = OWM. The increment Afy, = 0),1 — 0}, satisfies:
E[AG | 6, = 6] = —iMVL(8),
Cov(AGy, | 0, = 0) = %ME(O*)MT.
Given the scaling condition Equation (14), the covariance is O(n).

The generator £ of the discrete process for a smooth function f is:

£ (0) = },E[f(ekm — F(6) | 6 =],
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Using a Taylor expansion and taking conditional expectation:
E[f(0r11) ~ £(81) | 6] = 1V £(0) MYL(O) + JEI(A0) VF(0)A6) + O(;2),
For the second term, with A@ = —nM (VL(0) + &):
E[(A8)"V2£(0)A8] = n’E[(VL(0) + &) "M V2F(O)M(VL(O) + &x)]

= 1E[g M V2 £(6)ME&] + O(n?)
= 0" Tr(M'"V*f(6)ME[£k; ]) + O(n*)

- %;Tr(MTVQf(B)ME(O*)) +0(n?)

_ %;Tr(ME(G*)MTVQf(O)) +0(P)

where we used E[¢ T A¢] = Tr(AE[££T]) and trace cyclicity Tr(ABC) = Tr(CAB).
Therefore: )
%]E[(AG)Tvz £(0)A0] = ;—BTr(MZ(O*)MTVQ £(6)) + O(?).

Using the scaling condition Equation (14), we have :

%Tr(MZ(O*)MTVQ () = gTr (2rMV?£(6)) 4+ O(n*) = nTTr(MV?>£(8)) + O(n?).

Thus,
LM f(0) = -V F(0)TMVL(0) + 7Te(MV2£(6)) + O(1).

Asn — 0, L £(8) converges to:
Lf(0) = —VF(O)"MVL(8) + 7Tr(MV>£(0)),
which is the generator of the It6 SDE:
d@, = —MV L(0,)dt + V2rMY2aw,.

By the weak convergence theory (e.g., via the martingale problem or generator convergence), the
process 8" (t) converges weakly to the solution of this SDE. O

Proposition B.2 (Gibbs Stationary Distribution). The SDE in Equation (15) has stationary distribu-
tion:

Poo(6) o< exp(—L(0)/7) (16)

Proof. The generator of the SDE (5) is Lf = —MVL - Vf + 7tr(MV?2f). The Fokker-Planck
equation for the probability density p(t, 0) is:

Op=Lp=V -(MVLp)+7V-(MVp)
where L£* is the adjoint operator. Setting 0;p = 0 for stationarity:
0=V -(MVLps)+7V - (MVps)
=V - (MVLps +7™MVps)

This implies the current J = MV L p, + TMVp,, has zero divergence. For a potential-driven
system, we require J = O:
MVLps +™Vpse =0
VLps +7TVpe =0 (since M > 0)

Voo VL
Poo T
Integrating: log poo = —L/7 + const, which gives Equation (16). [
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B.2.3 BASIN SELECTION VIA FREE ENERGY

Theorem B.1 (Free Energy Minimization). Let the empirical risk L(0) admit multiple local minima
{07}, with Hessians H(0}) = 0. Under the SDE in Equation (15) with temperature T, the
stationary probability that training resides in basin 1 is given by:

ap(—Fi(7)/7) () = L(OF) + ~ *
Zj exp(—F;(1)/7)’ Fi(r) .= L(67) + 5 log det H(67). (17)

P, (basin i) =

Proof. From the Gibbs distribution Equation (16), the probability mass in basin ¢ is:
P, (basin i) = = o
-(basin i) = —F—————
VT e FOmdg
where B; is the basin of attraction around minimum 6.

For the numerator, using the quadratic approximation L(0) = L(0) + (6 — 6;) TH(67)(6 — 6;)
in basin ¢ we get:

/ L)/ g — / exp (_L(Oz') ~Lo—enTHo) 0 - 9;)) d6
B; Rd

T 2T
. 1

— o L(O1)/7 / exp ((e —6;) "H(6;7)(6 - 6’?>> de
R 2T

The integral is a multivariate Gaussian with covariance TH(07)~!. Using the standard formula for
Gaussian integrals:

/]Rd exp (;yT21y> dy = (2m)%?(det )1/2
With ¥ = 7H(67) 7!, we have det ¥ = 7%¢(det H(07)) ! and ¥~ = 77 1H(6?):
[ exw (=50 - 0 TH@:)(0 - 60) ) d = (20)/2r e () )
= (27n7)%2(det H(O}))~1/?
Therefore:
/B e LO/Tqe = ¢~ LOD/T (277) /2 (det H(O))) ™12
= (277)¥? exp (L(e;) /T — élog det H(e;))

= (277)%2 exp (—i (L(@;) + glog det H(();)))
= (277)¥? exp(—Fy(7)/7)

Similarly, the total partition function is:

Z(1) = / e LO/Ti9 = d / e L)/

= (27m)*? ) exp(~Fy(7)/7)

j=1
Therefore:
P (basin i) — _ZTD2eD(F)/T) __expl(—Fir)/7)
(2m7) 4230 exp(=F;(7)/7) X2 exp(=Fy(7)/7)
This completes the proof of the free energy formula Equation (17). [

C MORE EXPERIMENTAL RESULTS
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Local Landscapes across Iterates (0.98M) Local Landscapes across Iterates (1.9M) Local Landscapes across Iterates (3.9M)
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Figure 9: Appendix: the evolution of local loss landscape throughout pre-training. We train
LLaMA-2 models with 170M parameters using different BSs (0.98M, 1.9M and 3.9M), and visualize
the one-dimensional loss landscape at iterate 6; along a random direction 4, i.e., plot L(6; + ad) vs.
the perturbation coefficient . The landscapes are shown across different training iterations ¢. Early
phase. The landscapes gradually widens/flattens for both training runs. Late phase. Training with
smaller BS produces wider landscapes than training with larger BS.

Local Landscapes across Late Iterates (0.98M) Local Landscapes across Late Iterates (1.9M)  Local Landscapes across Late Iterates (3.9M)
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Figure 10: Appendix: large BS deepens the basin, small BS widens the basin. We
train a series of LLaMA-2 models (170M) for ' = 20,480 iterations, using BSs B €
{0.49M, 0.98M, 1.9M, 3.9M, 7.8M}. One-dimensional loss landscape: the perturbed loss L(6;+ ad)
vs. perturbation coefficient o, shown across late training iterations ¢ for B = 0.98M, B = 1.9M and

B = 3.9M.
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