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ABSTRACT

The scale and expense of pre-training language models make efficient hyperparam-
eter tuning essential, yet a principled guidance is still missing. Recent work shows
that the geometry of loss landscape shapes training dynamics of neural networks
and further informs hyperparameter choices. In this work, we analyze language
model pre-training dynamics from a local landscape geometry perspective. Our
study reveals two distinct phases. In the early phase, sharpness of the local land-
scape is initially high, leading to instability and loss plateaus under large learning
rates (LRs). Later, the landscape shifts from sharp to flatter regions. This dynamic
explains the necessity of LR warmup and further suggests that larger peak LRs
require proportionally longer warmup periods. In the late phase, the local landscape
is governed by the gradient noise scale. Through diffusion-limit analysis, we prove
a depth–flatness trade-off : high noise from smaller batches widens the loss basin,
whereas reduced noise from larger batches deepens it. This theory motivates a
dynamic batch-size (BS) scheduler that begins with a small BS and increases it
late in training. Together, we provide a unified account of loss landscape evolution,
which translates into actionable tuning strategies for large-scale pre-training.

1 INTRODUCTION

Training language models efficiently requires carefully tuned hyperparameters, yet a principled
guidance for tuning remains unclear. While practitioners often rely on grid search or trial-and-error,
these approaches are costly and unreliable at scale. Recent research (Foret et al., 2021; Cohen
et al., 2021; Gilmer et al., 2022) has highlighted that the geometry of the local loss landscape offers
fundamental insights into optimization, revealing how factors such as sharpness1 (Keskar et al.,
2017; Zhang et al., 2017; Jiang et al., 2020) interact with hyperparameters to shape training dynamics.
Consequently, leveraging insights from the local landscape geometry presents a promising path
toward principled hyperparameter tuning for language model pre-training.

Several pioneering works have already attempted to study language models from the local landscape
geometry perspective. Zhang et al. (2024a); Wang et al. (2025) identified blockwise sharpness patterns
in language models through Hessian-based analyses. Wen et al. (2024) introduced the “river-valley”
landscape to explain the effectiveness of Warmup-Stable-Decay (WSD) schedules (Hu et al., 2024).
Peng et al. (2024); Chen et al. (2025) further visualized the loss landscapes of finetuned language
models, offering geometric insights into the safety alignment. However, few studies have investigated
the dynamics of local landscape geometry during language model pre-training.

To this end, we pose the central research questions of this paper:

1. How does the local landscape geometry evolve in language model pre-training?
2. What implications does this evolution have for principled hyperparameter tuning?

Our contributions. In this work, we present the first systematic study of the evolution of local
landscape geometry during language model pre-training. As illustrated in Figure 1, our analysis
reveals two distinct phases, each with significant implications for hyperparameter tuning.

• Early in Training: From Sharp to Flat Landscapes. In the early phase, we observe that the model
shifts from sharper regions of the loss landscape toward flatter ones, contrary to the progressive

1To avoid misunderstanding, we clarify the terminology in Table 1.
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Figure 1: The evolution of local loss landscape throughout pre-training. We train LLaMA-2 mod-
els with 170M parameters using different BSs (0.49M and 7.8M), and visualize the one-dimensional
loss landscape at iterate θt along a random direction δ, i.e., plot L(θt + αδ) vs. the perturbation
coefficient α. The landscapes are shown across different training iterations t. Early phase. The
landscapes gradually widen/flatten for both training runs. Late phase. Training with smaller BS
produces wider landscapes than training with larger BS.

sharpening phenomenon in prior works (Cohen et al., 2021; Song & Yun, 2023; Cohen et al., 2025).
Lyapunov stability analysis in Section 4 shows that the maximum stable learning rate (LR) is inversely
proportional to sharpness. Since sharpness is extremely high early in pre-training, using large peak
LRs without sufficient warmup leads to instabilities, such as loss spikes and plateaus (see Figure 2).

Implications. The sharp-to-flat transition explains the necessity of LR warmup: LR should remain
small until sharpness has sufficiently decayed, preventing training instabilities. This further provides
a practical tuning recipe: within a reasonable range, larger peak LRs require proportionally longer
warmup, to safely navigate the sharpest stage of training.

• Late in Training: Basin Selection Governed by Noise Scale. In the late phase, the local landscape
geometry is largely governed by the noise scale during training, with batch size (BS) B serving as
its primary controller. Our analysis shows that smaller BS widens the loss basin, while larger BS
deepens it. Theoretically, we analyze the diffusion limit of preconditioned SGD, which uncovers a
depth–flatness trade-off: reduced gradient noise tends to minimize the loss, leading to deeper minima;
whereas increased noise tends to regularize the sharpness of landscape, moving toward wider ones.

Implications. The trade-off, together with the extensive ramping-time experiment in Figure 6,
motivates a principled BS scheduling strategy: begins with a small BS and ramps it until the late
phase of training. Our scheduling ensures steady loss reduction with minimal token consumption,
ultimately achieving lower terminal loss than constant-BS training. Moreover, since the noise scale is
proportional to η/B in our theory, we predict that BS ramping and LR decay reduce the noise scale
in similar ways and thus yield comparable performance (see Figure 8).

In summary, our work provides a two-phase picture of landscape evolution in pre-training: an early
sharp-to-flat transition that necessitates LR warmup, and a late noise-driven regime that motivates BS
scheduling. This unified view advances our understanding of pre-training dynamics and underscores
the importance of landscape geometry in offering principled guidance for hyperparameter tuning.

2 RELATED WORKS

Local Landscape Geometry (Sharpness) Evolution. Understanding how local landscape geometry,
particularly sharpness, evolves during training has drawn significant attention before the success
of large language models. Wu et al. (2018); Cohen et al. (2022); Song & Yun (2023); Cohen et al.
(2025) showed that initially gradient descent (GD) tends to move from flatter to sharper regions of
the landscape. In addition, Jastrzębski et al. (2019); Jastrzebski et al. (2020) argued that in SGD,
sharpness also changes monotonically but either increase or decrease depending on the setting. In the
later phase, however, sharpness is largely governed by the properties of the optimizer (Zhou et al.,
2025). One notable example is that the stochastic noise introduced by SGD and its variants implicitly
biases training toward flat minima (Wu et al., 2018; Zhu et al., 2019; Xie et al., 2021; Wu et al., 2022).
Yet, these findings are largely restricted to small-scale networks; In comparison, our work presents
the first systematic study of how local landscape geometry evolves in large-scale language model
pre-training, offering new insights into LR warmup and the design of BS schedules.
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Large-Scale Pre-training: Learning Rate Warmup. Learning rate warmup, first introduced in
large-batch ResNet (He et al., 2016; Goyal et al., 2017) and Transformer training (Vaswani et al.,
2017), is now standard in large-scale pre-training (Shoeybi et al., 2019; Zhang et al., 2022; Hu et al.,
2024). Its mechanism, however, remains only partly understood. Gotmare et al. (2019) showed
that warmup prevents excessively large early parameter updates; Bergsma et al. (2025) attributed
the early updates to bias reduction, rather than curvature. Gilmer et al. (2022) argued that warmup
guides optimization into flatter regions where large LRs are stable; and Kosson et al. (2024) showed
in language model pre-training that warmup mitigates momentum bias correction and correlated
gradients that otherwise drive unstable representation shifts. Yet no unified explanation exists. In
comparison, our work views warmup from a unified geometric perspective, suggesting that larger
peak LRs demand proportionally longer warmup.

Large-Scale Pre-training: Batch Size Schedules. Batch size is another critical hyperparameter in
large-scale pre-training, shaping the trade-off between step efficiency and data efficiency. Most prior
work (McCandlish et al., 2018; Kaplan et al., 2020; Gray et al., 2023; 2024; Zhang et al., 2025) has
focused on the critical batch size (CBS), the point where further increasing BS yields diminishing
returns. However, CBS is typically treated as a constant, and much less attention has been given
to BS scheduling. Early works on adaptive sampling proposed gradually increasing BS to balance
efficiency and noise reduction (De et al., 2017; Lau et al., 2024b;a; 2025; Ostroukhov et al., 2024).
However, these studies remain mostly theoretical. Advanced language models (Brown et al., 2020;
Touvron et al., 2023; Liu et al., 2024; Li et al., 2025) employed stage-wise BS schedules, but without
systematic analysis. In contrast, our work connects BS scheduling to the evolving local landscape
geometry, providing a principled foundation for when and how to expand BS during pre-training.

3 PRELIMINARIES

Basic Notations. We use bold lowercase letters (e.g., x = (xi)) to denote vectors and bold uppercase
letters (e.g., A = (aij)) to denote matrices. For a matrix A, let ∥A∥2, ∥A∥F , and Tr(A) denote its
spectral norm, Frobenius norm and trace, respectively. The Hadamard product is denoted by ⊙.

Theoretical Setup. Our theory focuses on the preconditioned stochastic gradient descent (PSGD).
We consider a model with parameters θ ∈ Rp and a training set of n examples. Let Li(θ) be the
fitting error evaluated at the i-th example and L(θ) = 1

n

∑n
i=1 Li(θ) be the empirical risk. We

analyze the preconditioned SGD with a fixed positive-definite2 preconditioner M ≻ 0. At iteration k,
the update rule gives:

θk+1 = θk − ηM(∇L(θk) + ξk), (1)

where η > 0 is the LR and {ξk} are i.i.d. random noise vectors with

E[ξk] = 0, E[ξkξ⊤k ] = Σ(θk)/B. (2)

Note that Σ(θk) =
1
n

∑n
i=1 ∇Li(θk)∇Li(θk)

⊤ −∇L(θk)∇L(θk)
⊤ is the gradient covariance at

θk, and B denotes the BS. During the late phase of training, the model remains close to some global
minimum θ⋆ and the loss can be approximated quadratically:

L(θ) = L(θ⋆) +
1

2
(θ − θ⋆)

⊤
H(θ⋆)(θ − θ⋆), H(θ⋆) := ∇2L(θ⋆) ≻ 0. (3)

Similar formulations have been widely used in dynamical stability analyses (Wu et al., 2018; Cohen
et al., 2021; Zhou et al., 2025) and theoretical advances on BS scaling (McCandlish et al., 2018).

Experimental Setup. Our experiments are mainly conducted on LLaMA-2 architecture (Touvron
et al., 2023) models with 93M and 170M parameters. Training is performed on the FineWeb-Edu
dataset (Penedo et al., 2024), with sufficient training budgets ranging from 50 to 1000 tokens-per-
parameter (TPP)3 and a context length of 1024. We adopt AdamW (Kingma & Ba, 2014) with
hyperparameters β1 = 0.95, β2 = 0.95, and weight decay 0.1, together with gradient clipping at 1.0
for stability. The evaluation is conducted on a held-out validation split of approximately 50M tokens.
More experiments on larger scales, other architectures, and optimizers are deferred to Section D.

2Most practical preconditioners are positive-definite: M = I for SGD, diagonal M for AdaGrad (Duchi
et al., 2011), RMSProp (Tieleman & Hinton, 2012), Adam, etc.

3At least 10× over Chinchilla-optimal tokens (Hoffmann et al., 2022).
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Training Loss Curves (170M) Training Loss Curves (93M)Warmup-stable Schedule

Figure 2: Loss spikes and plateaus early in training. We train a series of LLaMA-2 models
with 93M and 170M parameters. We adopt a warmup-stable schedule, where the warmup length is
shortened to 16 iterations and the peak LR is varied, η ∈ {2−11, 2−10, 2−9, 2−8, 2−7}. (Left). LR
schedule: ηt vs. training iteration t. (Middle, Right). Training loss curves for different model sizes:
L(θt) vs. training iteration t. The vertical dashed line marks the end of the warmup phase.

Our experiments vary the LRs and BSs. In Section 4, we primarily study the role of LR and warmup
length, fixing BS at 7.8M. In Section 5, we focus on the effect of BS, with LR fixed at 2−10. To
decouple BS ramping from LR decay, we adopt a warmup-stable schedule: after linear warmup to
the peak value, the LR remains constant (similar to WSD (Hu et al., 2024), but without decay phase).

4 EARLY IN PRE-TRAINING: FROM SHARP TO FLAT LANDSCAPES

In this section, we provide evidence that, during the early phase of pre-training, the local landscape of
language models evolves from sharp regions toward flatter ones. We first observe that training with
large LRs and insufficient warmup often leads to instability and early loss plateaus. By Lyapunov
stability analysis, we then attribute these behaviors to sharp-to-flat dynamics occurring in the initial
phase of training. This finding explains why pre-training needs LR warmup and suggests that larger
peak LRs require proportionally longer warmup periods.

Motivating Observations: Instability and Loss Plateaus Early in Training. The loss curves for
pre-training are typically smooth initially; the model escapes from random initialization and the loss
decreases rapidly. Yet, surprisingly, when the warmup length is extremely shortened, we consistently
observe loss spikes and plateaus near the end of the warmup phase.

To demonstrate this, we train models of different sizes with a fixed warmup length of 16 iterations
while varying the peak LR. As shown in Figure 2, a loss plateau reliably appears around the end of
the warmup phase across all settings. Additionally, larger LRs produce higher spikes, which mark a
characteristic feature of early training instability. Given these results, two natural questions arise:

Q1. Why does shortened warmup induce training instability?
Q2. Why do spikes and plateaus occur only at the very beginning of training?

To shed light on these questions, we analyze the dynamics of PSGD via Lyapunov stability analysis.

Lyapunov Stability Analysis: Sharpness Matters. Let θk, θ̃k be two nearby trajectories, and define
their difference as ek := θ̃k − θk. When the noise term ξ is set to zero, the evolution of ek satisfies:

ek+1 = ek − ηM(∇L(θk + ek)−∇L(θk))
(Linearization)

= (I− ηMH(θk))ek, (4)

The dynamics in Equation (4) describe the local sensitivity of the iteration: if matrix (I− ηMH(θk))
repeatedly expands ek, small perturbations grow exponentially and the iterates are linearly unstable.
Intuitively, the LR η interacts directly with the curvature of the landscape: if η is too large relative to
the sharpest direction, the update rule amplifies perturbations and leads to loss spikes. The following
lemma formalizes this stability condition for preconditioned GD.
Lemma 4.1 (Stability Condition for Preconditioned GD). Define the preconditioned curvature matrix
S(θk) := M1/2H(θk)M

1/2, and let {λ}pi=1 be the eigenvalues of S(θk). The linear system in
Equation (4) is asymptotically stable (i.e., limk→∞ ek = 0) if η satisfies 0 < η < 2

λmax(S(θk)
, ∀k ≥ 0.

Lemma 4.1 shows that the Lyapunov stability is governed by the largest eigenvalue of S. If the
curvature along the sharpest direction is too large, only a sufficiently small LR can prevent divergence.
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Local Landscapes across Early Iterates (170M)Local Landscapes across Early Iterates (93M)

Sharpness Evolution in Early Iterations

Iteration 𝑡

Figure 3: Early pre-training shifts iterates from sharp to flat regions. We visualize the local
landscape geometry evolution of training runs in Figure 2. For each model size, we select the training
run with LR 2−10. (Top). Evolution of the top eigenvalues of the Hessian across iterations: λi(H(θt))
vs. iteration t. (Bottom). One-dimensional loss landscape along a random perturbation direction: the
perturbed loss L(θt + αδ) vs. perturbation coefficient α, shown across early training iterations t.

We next characterize the one-step loss change as η approaches the stability boundary 2/λmax(Sk).

Lemma 4.2 (One-step Loss Change). Let δk := θk+1 − θk. Suppose that along the segment
{θk + αδk : α ∈ [0, 1]}, we have 0 ≤ λmin(S(θk + αδk)) ≤ λmax(S(θk + αδk)) ≤ Λk. Then,

L(θk+1)− L(θk) ≤ −η(1− 1

2
ηΛk)(∇L(θk))

⊤M∇L(θk).

In particular, if η ↑ 2/Λk, the guaranteed decrease per step (L(θk)− L(θk+1))/η → 0 .

Lemma 4.2 states that when η is close to 2/Λk, each update yields only a marginal decrease in
loss. Together with Lemma 4.1, it is clear that training near the stability boundary naturally leads to
characteristic loss spikes and plateaus.

Importantly, the stability boundary is determined by the sharpness of the loss landscape. To further
address Q1-2, we analyze how sharpness evolves during the early phase of pre-training.

The Early Dynamics: From Sharp to Flat Landscapes. We study how the local landscape geometry,
particularly the sharpness, evolves for training runs in Figure 2. Specifically, we track the evolution
of the top eigenvalues of the Hessian4 H(θt) during early pre-training. For the early checkpoints
θt, we also visualize the one-dimensional loss landscape along a random direction by plotting the
function L(α) := L(θt + αδ) with δ ∼ N (0, I). Li et al. (2018) showed that such random-direction
visualizations reliably capture intrinsic properties of the loss landscape properties, such as sharpness.
To ensure fair comparison across iterations, we fix the same random vector δ for all θt.

In Figure 3 (top), the largest eigenvalues of the Hessian H(θt) start at high values5 and then decrease
sharply, indicating a substantial reduction in curvature along the sharpest direction. Furthermore,
in Figure 3 (bottom), the loss landscape along a random direction progressively widens as training
proceeds, confirming that the model shifts from sharp to flat regions even in the most directions.

A Tuning Recipe: Larger Peak LR, Longer Warmup. We have seen that training stability depends
on sharpness: when the landscape is steep, only a sufficiently small LR can keep updates stable; and
pre-training initially traverses from sharp landscapes to flatter ones. Now let us return to Q1 and Q2:

A1. If the warmup phase is shortened, the LR rises too quickly while the model is still in sharp
regions, leading to loss spikes and plateaus.

4Following Cohen et al. (2021), we use the Lanczos algorithm to calculate top eigenvalues of Hessian.
5In fact, at initialization, sharpness is extremely low but rises sharply after the first update. The sharpness

curves reported in Figure 3 therefore start from the first iteration.
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A2. As training progresses, the landscape becomes flatter and the same LR no longer threatens
stability, which explains why instability is confined to the very beginning.
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Figure 4: Larger Peak LR, Longer Warmup.
We train a series of LLaMA-2 models with
170M parameters and 100 TPP. We vary the peak
LRs η and warmup lengths Tw. We plot the best
validation loss L(θbst) vs. Tw for different η. For
each η, the optimal Tw is highlighted with a star.

Therefore, in practice, we need a sufficiently long
warmup phase to keep the LR small until sharp-
ness has decayed, thereby preventing loss spikes
and plateaus. This rationale further suggests a
practical tuning recipe: the larger the peak LR,
the longer the warmup should be, ensuring iter-
ates safely transition into flatter landscapes before
reaching full step size.

To validate this, we train models with varied peak
LRs η and warmup lengths Tw (in iterations). In
Figure 4, within a LR range of 2−8 to 2−11, larger
peak LRs require proportionally longer warmup to
achieve the optimal validation loss L(θbest). How-
ever, this proportionality does not hold universally.
When η = 2−7, the optimal warmup length re-
mains 210 iterations, the same as for η = 2−8.
Thus, the relationship applies within a reasonable
range, when both the peak LR and warmup length
are neither too small nor too large.

Comparison with Gilmer et al. (2022); Kalra
& Barkeshli (2024). These works also studied
warmup from a sharpness perspective but focused
mainly on standard image classification tasks (e.g.,
ResNet on CIFAR-10) and full-batch gradient descent. In contrast, our work investigates warmup in
the context of large-scale language model pre-training, visualizing the sharpness evolution under a
general and practical training setup.

5 LATE IN PRE-TRAINING: LOCAL LANDSCAPE GOVERNED BY NOISE SCALE

In this section, we turn to the local landscape geometry in the late phase. We observe that BS plays a
central role: training with a large BS tends to find a deeper basin of the landscape, whereas a small
BS favors a wider basin. Theoretically, we prove that this trade-off between widen or deepen is
governed by the noise scale. Building on this, we propose a BS scheduler for the data-limited regime:
use small BS early and ramp the BS late, which consumes fewer tokens to achieve the same loss.

The Effect of BS: Local Landscapes Late in Training. We conduct experiments to systematically
investigate the role of BS in shaping the local landscape geometry during the late phase of pre-training.
Specifically, we train models with different BSs for T = 20,480 iterations. Figure 5 (top left) shows
the validation loss curves for each run. Evidently, larger BS consistently leads to lower terminal loss
and faster convergence in term of iterations6. We then visualize the loss landscape around the final
iterate θT . In Figure 5 (top right), it is clear that small BS produces flatter basins, whereas large BS
yields deeper ones. To further demonstrate, Figure 5 (bottom) compares the landscape evolution of
runs with B = 0.49M and B = 7.8M, indicating that in the late training phase, larger BS tends to
deepen the basin, while smaller BS shifts toward wider basins.

Despite these results, two key questions remain:

Q3. Why is there a trade-off between widening and deepening the basin?
Q4. Which factor underlying the hyperparameter BS governs this trade-off?

To delve into Q3-4, we revisit the stochastic differential equation (SDE) in Jastrzębski et al. (2017).

Widen or Deepen: Noise Scale Governs Basin Selection. Following Jastrzębski et al. (2017),
we take the continuous-time limit of Equation (1). Suppose that the noise covariance satisfies7
η
BMΣ(θ⋆)M⊤ = 2τM+O(η) for some temperature τ > 0. As η → 0, the scaled discrete process

6In terms of processed tokens, small BS training converges faster.
7The assumption of noise covariance is justified in Section C.2.
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Validation Loss Curves Local Landscapes at Final Iterates

Local Landscapes across Late Iterates (0.49M)  Local Landscapes across Late Iterates (7.8M)  

Figure 5: Large BS deepens the basin, small BS widens the basin. We train a series of LLaMA-2
models (170M) for T = 20,480 iterations, using BSs B ∈ {0.49M, 0.98M, 1.9M, 3.9M, 7.8M}.
(Top left). Validation loss curves for different BSs: L(θt) vs. training iteration t. (Top right).
One-dimensional loss landscapes at the final iterates θT along a random perturbation direction:
perturbed loss L(θT + αδ) vs. perturbation coefficient α, visualized across different BSs. (Bottom).
One-dimensional loss landscape: the perturbed loss L(θt +αδ) vs. perturbation coefficient α, shown
across late training iterations t for B = 0.49M and B = 7.8M.

θ⌊t/η⌋ converges weakly to the Itô SDE:

dθt = −M∇L(θt)dt+
√
2τM1/2dWt (5)

where Wt is standard Brownian motion and the noise scale τ is proportional to η/B.

Building on Equation (5) and the local quadratic model in Equation (3), we establish the trade-off
between deepening and widening the loss basin.
Theorem 5.1 (Depth-Flatness Trade-off). Let the empirical risk L(θ) admit multiple local minima
{θ⋆

i }mi=1 with Hessians H(θ⋆
i ) ≻ 0. Under the SDE in Equation (5) with temperature τ , the stationary

probability that training resides in basin i is given by:

Pτ (basin i) =
exp(−Fi(τ)/τ)∑
j exp(−Fj(τ)/τ)

, Fi(τ) := L(θ⋆
i ) +

τ

2
log detH(θ⋆

i ) .

Theorem 5.1 states that the basin selection is controlled by the free energy function F (τ) = L(θ⋆) +
τ
2 log detH(θ⋆). In early training, the loss term L(θ⋆) dominates, so the model primarily seeks
regions of lower loss. In later training, L(θ⋆) is comparable to the flatness penalty log detH(θ⋆),
and basin selection becomes increasingly sensitive to the noise scale τ ∝ η/B.

Efficient Pre-Training: A BS Scheduler in Data-Limited Regime. Turning back to Q3 and Q4, the
trade-off arises because basin selection balances loss minimization against curvature regularization
(A3), with the governing factor being the noise scale τ (A4). Since the primary objective of pre-
training is to minimize the training loss8, this balance naturally favors largest BS available (small τ ).
In practice, however, data availability is limited, and excessively large BS substantially increase data
consumption9. Thus, scheduling BS in pre-training is crucial, particularly in the data-limited regime.

• BS Scheduler: Design Principle I. Inspired by our theory, loss reduction dominates early in
training, during which large BS yields limited benefit. This suggests the first design principle.

Design Principle I. Start the training process with a small BS before increasing it later.

Related ideas were noted by Li et al. (2025); Merrill et al. (2025), often referred to as BS warmup.
However, a key difference in our design lies in when the BS should be increased. Surprisingly, we
find that ramping BS later in training yields consistently greater performance.

8Note that our analysis focuses on how reduced noise (e.g., via larger BS) helps the optimizer move into
deeper minima, conceptually different from the flat-minima perspective in fully interpolating regimes.

9For example, in Figure 5 (top right), when B = 7.8M, the run consumes approximately 160B tokens.
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Figure 6: (Left) Collapse of loss curves under different BS schedules. Validation loss curves
for training with different BS scheduling. In all runs, BS starts at 0.49M. For blue curves, BS is
ramped up to 4× its initial value; for red curves, BS is ramped to 2×. The ramping times, T2× or
T4×, are varied across different positions. (Middle, Right) Ramping BS is more efficient late in
training. We evaluate a two-stage BS-ramping schedule with ramp times T1 and T2. For the red
curves, we fix T2 = 10B and vary T1; for the blue curves, we fix T1 = 10B and vary T2. (Middle).
Illustration of BS schedulers. (Right). Final validation loss vs. the relative ramping time, i.e.,
(T1)/T, (T2 − T1)/T ∈ [0, 0.5], where T denotes the total training tokens.
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Figure 7: BS scheduling improves data efficiency. We train LLaMA-2 models with 93M and 170M
parameters, using a BS schedule that starts at 0.49M and increases by 4× at each ramp. Models are
trained with 1, 2, or 3 ramping steps, while models without ramping serve as the baseline. Vertical
gray dashed lines indicate ramping positions. (Left, Middle). The validation curves for each run.
(Right). Comparison between training with BS ramping to 7.8M and training with a fixed 7.8M BS.

• BS Scheduler: Design Principle II. To study this, we train models with different BS schedulers
while keeping total training iterations fixed. In Figure 6 (left), all runs begin with an initial BS of
0.49M and ramp up to either 4× or 2× that value at different training iterations. Remarkably, all
loss curves eventually collapse onto the same trajectory, regardless of when the BS ramping occurs.
Note that when measured at the same training iteration, ramping the BS earlier results in higher data
consumption. This indicates that early BS ramping offers no efficiency advantage, achieving the
same loss but consuming more data.

We next evaluate BS schedules under a fixed token budget. Specifically, we consider a two-stage
BS-ramping scheduler characterized by ramp times T1 and T2. To isolate the effect of each stage,
we vary either T1 or T2 while keeping the other fixed. See Figure 6 (middle) for an illustration. In
Figure 6 (right), a clear trend emerges: BS ramping is most effective when applied late in training
(i.e., with T1 and T2 large), whereas ramping too early consistently harms final performance.

Together, since BS ramping ultimately leads all runs onto the same trajectory, delaying it allows
maximal progress (lower loss) along that trajectory under a data-limited budget. This behavior also
aligns with our theory. In the late phase of training, the flatness penalty becomes comparable to the
loss term, and BS ramping sharply reduces the noise scale, driving rapid convergence toward deeper
minima. This consistency between theory and practice leads to our second principle.

Design Principle II. Ramp the batch size late in training—when loss reduction becomes marginal.

To further validate our design principle, we train models using a BS schedule that starts at 0.49M and
ramps by 4× whenever loss minimization slows. In Figure 7 (left, middle), models with 1, 2 or 3
BS ramping steps achieves significant lower validation loss. While additional ramping steps provide
diminishing returns, each step still offers a measurable improvement. Moreover, Figure 7 (right)
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BS Ramping vs. LR Decay (170M) The Interplay of BS Ramping & LR Decay
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Figure 8: (Left) BS ramping performs similarly to LR decay. Validation loss curves for training
with either BS ramping or LR decay. For BS ramping, BS increases to 16× its initial value; for LR
decay, the LR drops to 1/16 of its initial value. Each method applies a single step at varying positions.
(Right) Interplay between BS ramping and LR decay. We evaluate four different scheduling
strategies. At the 10B tokens, (a) LR drops to 1/4 of its initial value; (b) LR drops to 1/16; (c) BS
ramps to 16×. (d) LR drops to 1/4 and BS ramps to 4×. In all runs (both left and right), BS starts at
0.49M and LR begins at 2−10 (after linear warmup).

highlights the data-efficiency of the BS scheduling: ramping the BS up to 7.8M achieves nearly the
same final validation loss as training with a fixed 7.8M BS, but requires only about 1

4 of the tokens
(i.e., a ∼ 4× speedup). These results confirm that our BS scheduling design preserves the benefits of
large BS while substantially reducing data consumption.

Comparison with McCandlish et al. (2018); Merrill et al. (2025). McCandlish et al. (2018) linked
BS scaling to the gradient noise and introduced the notion of CBS. Merrill et al. (2025) explored the
BS scheduling (BS warmup), doubling BS once the CBS exceeds the current BS. We extend these
works by showing that the noise scale governs the depth–flatness trade-off in basin selection, and by
proposing a BS scheduling design principle that ramps the BS late in training.

6 MORE DISCUSSIONS: LR DECAY AND BS RAMPING

So far, we have excluded LR decay in our experiments to isolate the effect of BS ramping. Yet, recall
that the noise scale τ is proportional to η/B. Our theory suggests that decaying the LR and ramping
the BS both reduce the noise scale, and thus may have similar effects on basin selection.

Comparing BS Ramping with LR Decay. To study this, we train models using either BS ramping or
LR decay. Both methods apply a one-time step change: BS ramping multiplies the BS by 16 at Tramp,
while LR decay divides the LR by 16 at Tdecay. We align Tramp and Tdecay so that the changes occur at
the same positions, enabling a direct comparison of their effects. In Figure 8 (left), BS ramping and
LR decay produce remarkably similar validation loss curves across all change positions, consistent
with the idea that both reduce the noise scale in comparable ways.

Interacting BS Ramping with LR Decay. Furthermore, we study the combined effect of using both
BS ramping and LR decay. Specifically, we decay the LR by 4× and simultaneously ramp the BS by
4× at 10B tokens. We compare this hybrid schedule with three baselines: at the same point, we (a)
drops the LR by 4×, (b) drops the LR by 16× and (c) ramps the BS by 16×. We denote the hybrid
schedule by (d). In Figure 8 (right), three of the schedules (b c d) produce nearly identical loss curves.
Crucially, these three configurations yield the same noise scale, since they preserve the ratio η/B. In
contrast, schedule (a) results in a noticeably different trajectory.

In summary, our results reinforce our theoretical prediction: training dynamics in the late phase are
governed primarily by the noise scale τ ∝ η/B. LR decay reduce the noise scale in the same manner
as BS ramping, and any hybrid scheduler that preserves η/B will exhibit nearly identical behavior.

7 CONCLUSION AND LIMITATIONS

In conclusion, we present a unified theoretical and empirical view of how local landscape geometry
evolves during language model pre-training. Our analysis reveals two phases: an early sharp-to-flat
transition and a late noise-governed regime. The early dynamics explain the necessity of LR warmup,
suggesting that larger peak LRs require proportionally longer warmup lengths. The late regime shows
that noise scale controls a trade-off between widening and deepening loss basin, motivating a BS
scheduling that starts with small BS and increases the BS late in training.
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Limitations. The current theory primarily relies on strong assumptions, such as infinite-small LR in
SDE. A natural future direction is to generalize the theory to more realistic settings. Additionally,
the current theory cannot fully explain the collapse of loss curves under different BS schedules.
Understanding the learning dynamics under different BS schedules remains an open question.
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Dmitry Kamzolov. Adabatchgrad: Combining adaptive batch size and adaptive step size. arXiv
preprint arXiv:2402.05264, 2024. 3
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A TERMINOLOGIES

Terminology General Meaning Usage in This Paper
Sharpness A measure of curvature in the loss

landscape, often characterized via
the Hessian. Different works may
define it differently.

We define sharpness as the curvature
along the sharpest direction of the
loss landscape. Mathematically, it
is presented as the largest eigenvalue
of the Hessian λmax(H(θt)) or of
the preconditioned curvature matrix
λmax(S(θt)).

Flat/sharp mini-
mum

A minimum is a point where the
gradient vanishes ∇L(θ) = 0 and
the loss does not decrease in a
small neighborhood. A sharp min-
imum has large curvature; a flat
minimum has small curvature.

We use these terms sparingly and fol-
low the standard definitions from the
sharpness/flat-minima literature.

Wide/deep basin A loss basin is a region of the
landscape surrounding a minimum.
A wide basin rises loss slowly in
most directions, whereas a deep
basin has a significantly lower min-
imum value compared to its sur-
roundings.

We use these terms to establish the
depth–flatness trade-off: large noise
scales tend to find wide basins, while
small noise scales tend to find deeper
regions with lower loss.

Table 1: Terminology and usage in this paper.

B BROADER LIMITATIONS

While our work provides a unified geometric view of pre-training dynamics, it is subject to several
broader limitations.

Scale and data diversity. Our experiments use decoder-only Transformers up to 530M parameters,
trained on subsets of FineWeb-Edu with at most 1000 tokens-per-parameter. While this range is
realistic for many pre-training settings, it is still much smaller than the multi-billion-parameter,
multi-trillion-token regimes used in frontier models. The behavior of the early sharp-to-flat transition
and the later noise-dominated regime may look different at those larger scales due to factors such as
stronger path-dependence, data-mixture effects, or very long context windows. In addition, all of
our experiments use English web text. Other domains—such as code, multilingual data, speech, or
vision–language corpora, may exhibit different curvature patterns or gradient-noise characteristics.
Further work is needed to understand how our observations generalize across scales and data types.

Architectural coverage. Our experiments focus mainly on LLaMA-style models that use RMSNorm
and RoPE, along with a smaller set of GPT-2–like models that use LayerNorm, GELU, and different
depth/width configurations. We observe the same qualitative early sharp-to-flat behavior across these
families, but we do not systematically vary architectural components such as attention mechanisms,
normalization placement (pre-norm vs. post-norm), activation functions, parameter sharing, or
mixture-of-experts routing. We also do not yet study how architectural changes, such as replacing
RMSNorm with LayerNorm or altering normalization statistics, affect the depth–flatness trade-off or
the recommended learning-rate and batch-size schedules. A more comprehensive architectural study
is left for future work.

Optimizer and hyperparameter dependence. Most of our experiments fix a particular optimizer
configuration with standard hyperparameters, and gradient clipping. However, adaptive methods
maintain evolving state (e.g., moving averages of first and second moments) whose transient behavior
interacts non-trivially with curvature. Therefore, verifying our findings in a more general hyperpa-
rameter space is an important direction for future research. Additionally, we only considered the
WSD-like schedulers. Other schedulers, such as cosine scheduler should be considered as well.
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C MISSING PROOF

C.1 EARLY IN PRE-TRAINING: LYAPUNOV STABILITY ANALYSIS

Lemma C.1 (Stability Condition for Preconditioned GD). Define the preconditioned curvature
matrix S(θk) := M1/2H(θk)M

1/2, and let {λ}pi=1 be the eigenvalues of S(θk). The linear system
in Equation (4) is asymptotically stable (i.e., limk→∞ ek = 0) if η satisfies

0 < η <
2

λmax(S(θk)
, ∀k ≥ 0. (6)

Proof. Since ek+1 = (I− ηMHk)ek, the linear system is asymptotically stable if all eigenvalues of
I− ηMHk have magnitude less than 1. Note that:

I− ηMHk = M1/2(I− ηSk)M
−1/2, (7)

so the eigenvalues are 1− ηλj(Sk). The stability condition |1− ηλj | < 1 for all j is equivalent to:

0 < η <
2

λmax(Sk)
. (8)

Lemma C.2 (Exact one-step loss change). Define:

S(θ) := M1/2H(θ)M1/2,

gk := M1/2∇L(θk),

δk := θk+1 − θk = −ηM∇L(θk).

Then the true loss change can be written exactly as

L(θk+1)− L(θk) = −η∥∇L(θk)∥2M + η2
∫ 1

0

(1− t) g⊤
k S(θk + tδk)gk dt, (9)

where ∥∇L(θk)∥2M := (∇L(θk))
⊤
M∇L(θk).

Proof. Let δk := θk+1 − θk = −ηM∇L(θk) and define the scalar function

ϕ(t) := L(θk + tδk), t ∈ [0, 1].

Then
L(θk+1)− L(θk) = ϕ(1)− ϕ(0).

Compute the derivatives:

ϕ′(t) = (∇L(θk + tδk))
⊤
δk,

ϕ′′(t) = δ⊤k H(θk + tδk)δk.

By Taylor’s theorem with integral remainder:

ϕ(1)− ϕ(0) = ϕ′(0) +

∫ 1

0

(1− t)ϕ′′(t) dt.

Now evaluate at t = 0:

ϕ′(0) = (∇L(θk))
⊤
δk = −η(∇L(θk))

⊤
M∇L(θk) = −η∥∇L(θk)∥2M.

For the second derivative term:

ϕ′′(t) = δ⊤k H(θk + tδk)δk = η2g⊤
k S(θk + tδk)gk,

since δk = −ηM∇L(θk) and gk = M1/2∇L(θk), and thus

δ⊤k H(·)δk = η2g⊤
k S(·)gk.

Substituting both terms yields the result.
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Lemma C.3 (One-step Loss Change). Let δk := θk+1 − θk. Suppose that along the segment
{θk + αδk : α ∈ [0, 1]}, we have 0 ≤ λmin(S(θk + αδk)) ≤ λmax(S(θk + αδk)) ≤ Λk. Then,

L(θk+1)− L(θk) ≤ −η(1− 1

2
ηΛk)(∇L(θk))

⊤M∇L(θk).

In particular, if η ≤ 2/Λk, each update is guaranteed to non-increasing in loss, i.e., L(θk+1) ≤
L(θk). Instead, if η ↑ 2/Λk, the guaranteed decrease per step (L(θk)− L(θk+1))/η → 0 .

Proof. From Lemma C.2, we have

g⊤
k S(θk + tδk)gk ≤ Λk∥gk∥2

for all t, since S(·) is symmetric. Therefore,

L(θk+1)− L(θk) ≤ −η∥∇L(θk)∥2M + η2Λk∥gk∥2
∫ 1

0

(1− t) dt

= −η∥∇L(θk)∥2M + 1
2η

2Λk∥gk∥2.

Note that ∥gk∥2 = ∥∇L(θk)∥2M, yielding the result.

C.2 LATE IN PRE-TRAINING: SDE ANALYSIS

C.2.1 DISCRETE-TIME SOLUTION

Lemma C.4 (Eigenbasis Decomposition). Let S := M1/2H(θ⋆)M1/2 with eigendecomposition
S = QΛQ⊤, Λ = diag(λ1, . . . , λd). Define G := Q⊤M1/2Σ(θ⋆)M1/2Q/B. In coordinates
wk := Q⊤M−1/2ek, the recursion gives:

wk+1 = (I− ηΛ)wk + ηζk, E[ζkζ⊤
k ] = G

The stationary covariance Σw has diagonal elements:

(Σw)jj =
η2Gjj

1− (1− ηλj)
2 =

ηGjj

2λj − ηλ2
j

(10)

Proof. First, we verify that S = M1/2H(θ⋆)M1/2 can be eigendecomposed. Since both M and
H(θ⋆) are positive definite matrices, S is also positive definite matrix. By the spectral theorem, S
admits the eigendecomposition S = QΛQ⊤, where Q is orthogonal and Λ = diag(λ1, . . . , λd) with
λi > 0.

Starting from ek+1 = Aek + ηMξk with A = I − ηMH(θ⋆), we change variables to wk =
Q⊤M−1/2ek.

wk+1 = Q⊤M−1/2ek+1 = Q⊤M−1/2(Aek + ηMξk)

= Q⊤M−1/2(I− ηMH(θ⋆))ek + ηQ⊤M1/2ξk

= Q⊤M−1/2ek − ηQ⊤M1/2H(θ⋆)ek + ηQ⊤M1/2ξk

= wk − ηQ⊤M1/2H(θ⋆)M1/2Qwk + ηQ⊤M1/2ξk

= wk − ηQ⊤SQwk + ηQ⊤M1/2ξk

= (I− ηΛ)wk + ηQ⊤M1/2ξk

Defining ζk := Q⊤M1/2ξk, we get:

E[ζkζ⊤
k ] = Q⊤M1/2E[ξkξ⊤k ]M1/2Q = Q⊤M1/2Σ(θ⋆)M1/2Q/B =: G
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As matrix (I− ηΛ) is diagonal, the recursion now decouples into independent scalar equations for
each component j:

(wk+1)j = (1− ηλj)(wk)j + η(ζk)j .

For each component j, the stationary variance satisfies:

(Σw)jj = (1− ηλj)
2(Σw)jj + η2Gjj (11)

Solving for (Σw)jj :

(Σw)jj =
η2Gjj

1− (1− ηλj)2
=

η2Gjj

1− (1− 2ηλj + η2λ2
j )

=
η2Gjj

2ηλj − η2λ2
j

=
ηGjj

2λj − ηλ2
j

C.2.2 CONTINUOUS-TIME LIMIT

We now take the continuous-time limit (η → 0) to derive a simpler universal theory. The exact
solution for the variance in the eigenbasis from Lemma C.4, i.e., (Σw)jj = ηGjj/(2λj − ηλ2

j ),
guides the necessary scaling for the continuous-time limit. Because (Σw)jj converges to a finite
non-zero value as η → 0, the numerator ηGjj must remain finite. This suggests defining a quantity τ
such that for each mode j:

ηGjj → 2τ as η → 0.

We strengthen this to :
ηG → 2τI as η → 0.

Recalling that G = Q⊤M1/2Σ(θ⋆)M1/2Q/B, this condition in the original coordinate system
translates to the required scaling for the noise covariance:

η

B
MΣ(θ⋆)M⊤ → 2τM.

Proposition C.1 (Convergence to SDE). Consider the scaled discrete process θ⌊t/η⌋ as η → 0.
Suppose the noise covariance satisfies

η

B
MΣ(θ⋆)M⊤ = 2τM+O(η), (12)

for some temperature τ > 0. Then the process converges weakly to the Itô SDE:

dθt = −M∇L(θt)dt+
√
2τM1/2dWt (13)

where Wt is standard Brownian motion.

Proof. Consider the discrete preconditioned SGD update:

θk+1 = θk − ηM(∇L(θk) + ξk),

Define the scaled process θ(η)(t) = θ⌊t/η⌋. The increment ∆θk = θk+1 − θk satisfies:

E[∆θk | θk = θ] = −ηM∇L(θ),

Cov(∆θk | θk = θ) =
η2

B
MΣ(θ⋆)M⊤.

Given the scaling condition Equation (12), the covariance is O(η).

The generator L(η) of the discrete process for a smooth function f is:

L(η)f(θ) =
1

η
E[f(θk+1)− f(θk) | θk = θ].

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Using a Taylor expansion and taking conditional expectation:

E[f(θk+1)− f(θk) | θ] = −η∇f(θ)⊤M∇L(θ) +
1

2
E[(∆θ)⊤∇2f(θ)∆θ] +O(η3/2).

For the second term, with ∆θ = −ηM(∇L(θ) + ξk):

E[(∆θ)⊤∇2f(θ)∆θ] = η2E[(∇L(θ) + ξk)
⊤M⊤∇2f(θ)M(∇L(θ) + ξk)]

= η2E[ξ⊤k M⊤∇2f(θ)Mξk] +O(η2)

= η2Tr(M⊤∇2f(θ)ME[ξkξ⊤k ]) +O(η2)

=
η2

B
Tr(M⊤∇2f(θ)MΣ(θ⋆)) +O(η2)

=
η2

B
Tr(MΣ(θ⋆)M⊤∇2f(θ)) +O(η2)

where we used E[ξ⊤Aξ] = Tr(AE[ξξ⊤]) and trace cyclicity Tr(ABC) = Tr(CAB).

Therefore:
1

2
E[(∆θ)⊤∇2f(θ)∆θ] =

η2

2B
Tr(MΣ(θ⋆)M⊤∇2f(θ)) +O(η2).

Using the scaling condition Equation (12), we have :

η2

2B
Tr(MΣ(θ⋆)M⊤∇2f(θ)) =

η

2
Tr

(
2τM∇2f(θ)

)
+O(η2) = ητTr(M∇2f(θ)) +O(η2).

Thus,
L(η)f(θ) = −∇f(θ)⊤M∇L(θ) + τTr(M∇2f(θ)) +O(η).

As η → 0, L(η)f(θ) converges to:

Lf(θ) = −∇f(θ)⊤M∇L(θ) + τTr(M∇2f(θ)),

which is the generator of the Itô SDE:

dθt = −M∇L(θt)dt+
√
2τM1/2dWt.

By the weak convergence theory (e.g., via the martingale problem or generator convergence), the
process θ(η)(t) converges weakly to the solution of this SDE.

Proposition C.2 (Gibbs Stationary Distribution). The SDE in Equation (13) has stationary distribu-
tion:

p∞(θ) ∝ exp(−L(θ)/τ) (14)

Proof. The generator of the SDE (5) is Lf = −M∇L · ∇f + τ tr(M∇2f). The Fokker-Planck
equation for the probability density p(t,θ) is:

∂tp = L∗p = ∇ · (M∇Lp) + τ∇ · (M∇p)

where L∗ is the adjoint operator. Setting ∂tp = 0 for stationarity:

0 = ∇ · (M∇Lp∞) + τ∇ · (M∇p∞)

= ∇ · (M∇Lp∞ + τM∇p∞)

This implies the current J = M∇Lp∞ + τM∇p∞ has zero divergence. For a potential-driven
system, we require J = 0:

M∇Lp∞ + τM∇p∞ = 0

∇Lp∞ + τ∇p∞ = 0 (since M ≻ 0)
∇p∞
p∞

= −∇L

τ

Integrating: log p∞ = −L/τ + const, which gives Equation (14).
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Theorem C.1 (Free Energy Minimization). Let the empirical risk L(θ) admit multiple local minima
{θ⋆

i }mi=1 with Hessians H(θ⋆
i ) ≻ 0. Under the SDE in Equation (13) with temperature τ , the

stationary probability that training resides in basin i is given by:

Pτ (basin i) =
exp(−Fi(τ)/τ)∑
j exp(−Fj(τ)/τ)

, Fi(τ) := L(θ⋆
i ) +

τ

2
log detH(θ⋆

i ). (15)

Proof. From the Gibbs distribution Equation (14), the probability mass in basin i is:

Pτ (basin i) =

∫
Bi

e−L(θ)/τdθ∫
Rd e−L(θ)/τdθ

where Bi is the basin of attraction around minimum θ⋆
i .

For the numerator, using the quadratic approximation L(θ) = L(θ⋆
i ) +

1
2 (θ − θ⋆

i )
⊤H(θ⋆

i )(θ − θ⋆
i )

in basin i we get:∫
Bi

e−L(θ)/τdθ =

∫
Rd

exp

(
−L(θ⋆

i )

τ
− 1

2τ
(θ − θ⋆

i )
⊤H(θ⋆

i )(θ − θ⋆
i )

)
dθ

= e−L(θ⋆
i )/τ

∫
Rd

exp

(
− 1

2τ
(θ − θ⋆

i )
⊤H(θ⋆

i )(θ − θ⋆
i )

)
dθ

The integral is a multivariate Gaussian with covariance τH(θ⋆
i )

−1. Using the standard formula for
Gaussian integrals: ∫

Rd

exp

(
−1

2
y⊤Σ−1y

)
dy = (2π)d/2(detΣ)1/2

With Σ = τH(θ⋆
i )

−1, we have detΣ = τd(detH(θ⋆
i ))

−1 and Σ−1 = τ−1H(θ⋆
i ):∫

Rd

exp

(
− 1

2τ
(θ − θ⋆

i )
⊤H(θ⋆

i )(θ − θ⋆
i )

)
dθ = (2π)d/2(τd(detH(θ⋆

i ))
−1)1/2

= (2πτ)d/2(detH(θ⋆
i ))

−1/2

Therefore: ∫
Bi

e−L(θ)/τdθ = e−L(θ⋆
i )/τ (2πτ)d/2(detH(θ⋆

i ))
−1/2

= (2πτ)d/2 exp

(
−L(θ⋆

i )/τ − 1

2
log detH(θ⋆

i )

)
= (2πτ)d/2 exp

(
−1

τ

(
L(θ⋆

i ) +
τ

2
log detH(θ⋆

i )
))

= (2πτ)d/2 exp(−Fi(τ)/τ)

Similarly, the total partition function is:

Z(τ) =

∫
Rd

e−L(θ)/τdθ = d

m∑
j=1

∫
Bj

e−L(θ)/τdθ

= (2πτ)d/2
m∑
j=1

exp(−Fj(τ)/τ)

Therefore:

Pτ (basin i) =
(2πτ)d/2 exp(−Fi(τ)/τ)

(2πτ)d/2
∑

j exp(−Fj(τ)/τ)
=

exp(−Fi(τ)/τ)∑
j exp(−Fj(τ)/τ)

This completes the proof of the free energy formula Equation (15).
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D EXPERIMENTAL SETUPS AND MORE RESULTS

D.1 EXPERIMENTAL SETUPS

Models. We utilize two popular classes of LLM models for our pre-training experiments:

• GPT-2. We use GPT-2 (small) model (Radford et al., 2019), implemented via the nanoGPT
code base (Karpathy, 2022). Following nanoGPT, the model employs Gaussian Error Linear
Unit (GELU) activations and standard Layer Normalization (LayerNorm). Detailed model
configurations are provided in Table 2.

• LLaMA. LLaMA (Touvron et al., 2023) is another popular decoder-only Transformer architec-
ture, incorporating Rotary Positional Encoding (RoPE) (Su et al., 2024), Swish-Gated Linear
Unit (SwiGLU), and Root mean square layer normalization (RMSNorm). For implementation,
we utilize the LLaMA code from HuggingFace Transformers Library (Wolf et al., 2020).
Additional model configurations are detailed in Table 2.

Datasets. Training is performed on the FineWeb-Edu dataset (Penedo et al., 2024). We adopt the
a subset randomly sampled from the whole dataset of around 100B GPT-2 tokens. The same dataset
has been widely used in literature on LLM pre-training.

Optimizers. To generalize our findings across different optimizers, we choose:

• AdamW. AdamW (Kingma & Ba, 2014) is adopted with hyperparameters β1 = 0.95, β2 =
0.95, and weight decay 0.1.

• Muon. Muon (Keller et al., 2024) is used with momentum of 0.95 and weight decay 0.1.
• Adam-mini. The hyperparameter of Adam-mini (Zhang et al., 2024b) is the same as AdamW.
• Lion. Lion (Chen et al., 2024) is used with hyperparameters β1 = 0.95, β2 = 0.98. The LR of

Lion η is divided by 10× compared with the LR of AdamW in the same experiments, and the
weight decay λ is ramped up to 10× to keep the effective LR λη = 0.1.

All these optimizers are used with gradient clipping at 1.0 for stability.

Table 2: Model configurations.

Acronym Size dmodel dFF n_head depth

GPT-2 (small) 124M 768 3072 12 12
LLaMA (93M) 93M 512 2048 16 8
LLaMA (170M) 170M 768 3072 12 8
LLaMA (270M) 270M 1024 4096 16 8
LLaMA (530M) 530M 1536 6144 24 8

D.2 MORE RESULTS UNDER VARIOUS SETUPS.

In this section, we extend our findings to other architectures, optimization algorithms, and larger
training scales. Due to computational constraints, we primarily focus on validating the sharp-to-flat
early dynamics and the proposed BS scheduling principle across these settings. We also explore the
warmup–tuning recipe on additional architectures.

Extension to GPT-2 Architectures. See Figures 9 and 10 for details.

Extension to Other Optimizers. See Figure 11 for Adam-mini, and see Figure 12 for Lion.

Extension to Larger Models. See Figure 13 for models with 270M and 530M parameters.

D.3 ABLATION STUDIES ON EARLY INSTABILITIES.

In this section, we conduct ablation studies on the root cause of instabilities, such as loss spikes and
plateaus, observed in early training.
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Figure 9: Extensive to GPT-2 architectures. (Left). Early sharp-to-flat dynamics. Evolution
of the top eigenvalues of the Hessian across iterations: λi(H(θt)) vs. iteration t. (Right). BS
scheduling improves data efficiency. BS scheduling improves data efficiency. We use a BS
schedule that starts at 0.49M and increases by 4× at each ramp. Models are trained with 1, 2, or
3 ramping steps, while models without ramping serve as the baseline. Vertical gray dashed lines
indicate ramping positions.
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Figure 10: Extensive to GPT-2 architectures. Larger Peak LR, Longer Warmup. We train a
series of GPT-2 models with 100 TPP. We vary the peak LRs η and warmup lengths Tw. We plot the
best validation loss L(θbst) vs. Tw for different η. The optimal Tw is highlighted with a star.
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Figure 11: Extensive to Adam-mini optimizer. (Left). Early sharp-to-flat dynamics. Evolution
of the top eigenvalues of the Hessian across iterations: λi(H(θt)) vs. iteration t. (Right). BS
scheduling improves data efficiency. BS scheduling improves data efficiency. We use a BS
schedule that starts at 0.49M and increases by 4× at each ramp. Models are trained with 1, 2, or
3 ramping steps, while models without ramping serve as the baseline. Vertical gray dashed lines
indicate ramping positions.

Is it the unstable optimizer? To disentangle optimizer-induced instability from landscape-induced
instability, we repeated the experiments using Muon, a substantially more stable optimizer than
AdamW. In Figure 14, the loss spikes and plateaus consistently occurs under Muon when warmup is
shortened or the peak LR is increased. This rules out the possibility that the behavior stems from
AdamW’s startup issues.
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Figure 12: Extensive to Lion optimizer. (Left). Early sharp-to-flat dynamics. Evolution of the
top eigenvalues of the Hessian across iterations: λi(H(θt)) vs. iteration t. (Right). BS scheduling
improves data efficiency. BS scheduling improves data efficiency. We use a BS schedule that starts
at 0.49M and increases by 4× at each ramp. Models are trained with 1, 2, or 3 ramping steps, while
models without ramping serve as the baseline. Vertical gray dashed lines indicate ramping positions.
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Figure 13: Extensive to Larger Scale. (Left). Early sharp-to-flat dynamics. Evolution of the
top eigenvalues of the Hessian across iterations: λi(H(θt)) vs. iteration t. (Right). BS scheduling
improves data efficiency. BS scheduling improves data efficiency. We use a BS schedule that starts
at 0.49M and increases by 4× at each ramp. Models are trained with 1, 2, or 3 ramping steps, while
models without ramping serve as the baseline. Vertical gray dashed lines indicate ramping positions.
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Muon Training Loss Curves (170M)

Figure 14: Muon consistently shows loss spikes and plateaus early in training. We train a series
of LLaMA-2 models with 170M parameters. We adopt a warmup-stable schedule, where the warmup
length is shortened to 16 iterations and the peak LR is varied, η ∈ {2−11, 2−10, 2−9, 2−8, 2−7}.
(Left). LR schedule: ηt vs. training iteration t. (Middle, Right). Training loss curves for different
model sizes: L(θt) vs. training iteration t. The vertical dashed line marks the end of the warmup
phase.

What if we use longer warmup? We vary only the warmup length while fixing the peak LR at 2−7.
In Figure 15 (left), shorter warmup lengths lead to higher possibilities of loss spikes This behavior is
consistent with the sharp-to-flat dynamics. Early in training, the model resides in sharper regions of
the landscape, where only sufficiently small LRs ensure stable updates. Therefore, warmup is needed
to gradually increase the LR until the trajectory enters flatter regions that can tolerate larger LRs.

What if zero warmup and small BS? We also conduct experiments with no warmup and small
batch size. In Figure 15 (right), the loss spikes become even more significant. This aligns with our
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Figure 15: (Left.) Shorter warmup, more loss spikes. We train a series of LLaMA-2 models
with 170M parameters. We adopt a warmup-stable schedule, where the warmup length varies from
{25, 26, 27, 28, 29, 210} iterations and the peak LR is fixed η = 2−7. (Right). Zero warmup
and small BS leads to larger loss spikes. We train a series of LLaMA-2 models with 170M
parameters. We adopt a constant LR schedule, where no warmup and the peak LR is varied,
η ∈ {2−11, 2−10, 2−9, 2−8, 2−7}. We also use the 0.49M BS.

BS Ramping vs. LR Decay (170M) Blockwise Local Landscapes (170M)
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Figure 16: Local loss landscape exhibits blockwise structure. One-dimensional loss landscapes at
the final iterate θT along a masked random perturbation direction σ⊙ δ. Here, θ ∈ Rp is the random
perturbation vector, and σ is a blockwise mask that zeros out perturbations outside the specified
block type.

explanation: with no warmup, the LR jumps immediately to a large value while sharpness is still
extremely high, causing a spike almost at initialization. More importantly, small BS does not replace
warmup, and the instability still appears because of the sharpness.

D.4 BLOCKWISE LANDSCAPE STRUCTURE

Visualizing the Blockwise Local Loss Landscape. Transformer architecture is composed of different
block types, such as query–key (QK) and value–output (VO) projections, feedforward networks
(FFN), normalization layers (Norm), and embedding layers (Embed). Prior studies (Zhang et al.,
2024a; Wang et al., 2025) found that these block types exhibit heterogeneous levels of sharpness,
suggesting that different block types contribute differently to the local loss landscape. To better
understand this heterogeneity, we visualize the local loss landscape separately for each block type.

Similar to Figure 5, we perturb the final iterate θT along a random direction δ, but restrict the
perturbations to a selected block type using a blockwise mask σ. In Figure 16 (right), local landscapes
differ substantially across block types, and the curvature order we observe is QK<Embed<FFN<
VO<Norm. This ordering is slightly different from the results reported by Wang et al. (2025), which
found Embed<QK< FFN<VO<Norm. We suggest two possible reasons for this discrepancy.
First, our analysis probes the most direction landscape, whereas Wang et al. (2025), following Wang
et al. (2024), directly estimate sharpness from the fisher information matrix. Second, embeddings
may not appear as the flattest block in terms of loss landscape, but as they are least activated during
gradient propagation (many embedding entries receive no gradient), they are effectively flatter in
training dynamics.
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