
Sequential Multi-Agent
Dynamic Algorithm Configuration

Chen Lu1,2, Ke Xue1,2∗, Lei Yuan1,2, Yao Wang3,
Yaoyuan Wang3, Fu Sheng3, Chao Qian1,2∗

1 National Key Laboratory for Novel Software Technology, Nanjing University, China
2 School of Artificial Intelligence, Nanjing University, China

3 Advanced Computing and Storage Lab, Huawei Technologies Co., Ltd. Shenzhen, China
{xuek, qianc}@lamda.nju.edu.cn

Abstract

The performance of an algorithm often critically depends on its hyperparameter con-
figuration. Dynamic algorithm configuration (DAC) is a recent trend in automated
machine learning, which can dynamically adjust the algorithm’s configuration
during the execution process and relieve users from tedious trial-and-error tuning
tasks. Recently, multi-agent reinforcement learning (MARL) approaches have
improved the configuration of multiple heterogeneous hyperparameters, making
various parameter configurations for complex algorithms possible. However, many
complex algorithms have inherent inter-dependencies among multiple parameters
(e.g., determining the operator type first and then the operator’s parameter), which
are, however, not considered in previous approaches, thus leading to sub-optimal
results. In this paper, we propose the sequential multi-agent DAC (Seq-MADAC)
framework to address this issue by considering the inherent inter-dependencies of
multiple parameters. Specifically, we propose a sequential advantage decompo-
sition network, which can leverage action-order information through sequential
advantage decomposition. Experiments from synthetic functions to the config-
uration of multi-objective optimization algorithms demonstrate Seq-MADAC’s
superior performance over state-of-the-art MARL methods and show strong gen-
eralization across problem classes. Seq-MADAC establishes a new paradigm for
the widespread dependency-aware automated algorithm configuration. Our code is
available at https://github.com/lamda-bbo/seq-madac.

1 Introduction

Identifying proper configurations of hyperparameters is critical for many learning and optimization
algorithms [15, 26]. Algorithm configuration (AC) [14, 23] has emerged to alleviate the user’s burden
of manual trial-and-error tuning. However, the static configuration policies obtained by AC may not
achieve optimal performance, because algorithms may require different configurations at different
execution stages [37]. Dynamic AC (DAC) [2, 1] is a prevalent paradigm that enables dynamic
adaptation of the algorithm’s configuration during the execution process, which is more flexible
compared to AC. Specifically, DAC formulates the configuration process as a contextual Markov
decision process (MDP) and then leverages reinforcement learning (RL) [32] to learn dynamic
configuration policies. DAC has been shown to outperform static AC methods on many tasks, such as
learning rate tuning of deep neural networks [7] and step-size control of evolution strategies [35].

Due to the increasing complexity of real-world problem modeling, the performance of an algorithm
usually relies on multiple types of hyperparameters. Consider MOEA/D [48], a widely adopted

∗Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/lamda-bbo/seq-madac

evolutionary algorithm [49] for multi-objective optimization problems, as a case in point. It involves
four categories of configuration hyperparameters: weights, neighborhood size, reproduction operator
type, and parameters associated with the utilized reproduction operator. Each of these hyperparameters
is critical and exerts a significant impact on the algorithm’s performance [41]. For this challenging task
of tuning multiple hyperparameters, traditional DAC methods tend to be ineffective [35, 42]. These
methods typically tune one hyperparameter type while freezing the rest, a limitation that prevents
them from capturing the inter-relationships and dependencies across different hyperparameter types.
Recently, cooperative multi-agent RL (MARL) [47] approaches have been proposed to enhance
the dynamic configuration problem of multiple heterogeneous hyperparameters by modeling it as
a contextual multi-agent MDP (MMDP) [44], broadening DAC’s application scope and enabling
various hyperparameter configurations for complex algorithms.

In addition to multiple complex hyperparameters, another important barrier of real-world DAC
problems is that these hyperparameters are not completely decoupled, which may have inherent
inter-dependencies. For instance, when configuring MOEA/D for multi-objective optimization, once
the reproduction operator type is selected, the parameters associated with the utilized reproduction
operator can subsequently be determined. Unfortunately, previous approaches do not consider this
inherent property. Besides, current advanced MARL algorithms mainly focus on issues such as
coordination and adaptation mechanisms in non-stationary environment [47, 31, 46, 17, 22], which
are not specifically designed to handle the inherent inter-dependencies among agents.

In this paper, we propose a sequential multi-agent DAC (Seq-MADAC) framework to address this
issue by considering the inherent inter-dependencies of multiple parameters. Specifically, we formu-
late this task as a contextual sequential MMDP and propose a sequential advantage decomposition
network (SADN), which can leverage action-order information through sequential advantage de-
composition. We also theoretically demonstrate the rationality of SADN based on the individual
global max (IGM) principle [36]. Leveraging this beneficial property, SADN achieves effective
sequential decomposition of the demanding multiple-hyperparameter DAC task for joint action opti-
mization, significantly easing the issues of combinatorial explosion of the action space and complex
inter-dependencies. Empirically, we compare SADN with other methods that consider sequential
actions, including ACE [19] and SAQL [3], as well as a range of general advanced MARL algorithms,
including VDN [39], QMIX [31], MAPPO [46], HAPPO [17], and HASAC [22]. On controllable
synthetic functions, we demonstrate that in higher-dimensional problems and noisy scenarios, SADN
shows a more pronounced advantage in optimization efficiency and robustness. On more complex
and challenging multi-objective optimization problems, SADN shows superior performance over
state-of-the-art MARL methods and demonstrates strong generalization across problem classes.

Our contributions include three perspectives:

1. Formulating a sequential decision-making framework to model the DAC task with multi-
ple hyperparameters and inter-dependencies as a contextual sequential MMDP, enabling
sequential action ordering in dynamic hyperparameter configuration.

2. Introducing SADN with sequential advantage decomposition to exploit action-order infor-
mation for improved coordination and better credit assignment.

3. Conducting extensive experiments on both simple synthetic and complex multi-objective op-
timization problems to validate SADN’s effectiveness in superior optimization performance
and robust generalization capability.

2 Background

2.1 Dynamic Algorithm Configuration

Compared to the static configuration scheme of AC, DAC focuses on dynamically adjusting algorithm
configuration throughout the optimization process, which can be formulated as a contextual MDP
MI := Mi∼I [2], and can be addressed by leveraging RL techniques. Here, I represents the
problem instance space, and eachMi := ⟨S,A, Ti, ri⟩ corresponds to one target problem instance
i ∈ I [2, 9]. Such a context notion I enables studying policy generalization [16]. For a target
algorithm A with configuration hyperparameter space Θ, a DAC policy π ∈ Π takes the state s ∈ S
as input and outputs an action a ∈ A. Here, the state s ∈ S typically represents the historical
performance changes of algorithm A, while the action a ∈ A corresponds to a hyperparameter

2

configuration θ ∈ Θ of algorithm A. DAC aims at improving the performance of algorithm A on a
set of instances (e.g., optimization functions). Given a probability distribution p over the instance
space I, the objective of DAC is to identify an optimal policy π∗:

π∗ ∈ argmin
π∈Π

∫
i∈I

p(i)c(π, i)di,

where i ∈ I is an instance to be optimized, and c(π, i) ∈ R is the cost function of the target algorithm
with policy π on the instance i. Previous works have shown the superiority of DAC compared to the
static policies in many scenarios, e.g., learning rate adaptation in SGD [7], step-size adaptation in
CMA-ES [35], and heuristic selection in planning [37]. However, both traditional DAC methods and
these applications only involve a single type of hyperparameter. Dynamic configurations of complex
algorithms with multiple types of hyperparameters have been found to be difficult [9, 1].

MADAC [44] aims to simultaneously configure multiple hyperparameters of different types, in
order to cope with the increasing complexity of algorithm structure and the increasing number of
hyperparameters. To address this issue, MADAC models it as a cooperative multi-agent problem with
one agent configuring one parameter, to take the interactions of different parameters into account.
Another advantage of the cooperative multi-agent modeling framework is its capacity to address
the combinatorial explosion challenge associated with joint action spaces. However, in practice,
parameters may have inherent inter-dependencies on each other (e.g., determining the operator type
first and then the operator parameters [12]), which is not considered in MADAC. It is quite important
to take these inherent inter-dependencies into consideration, since we can explore the configuration
space more effectively without exploring illegal combinations, which may bring better results.

Recently, coupled action-dimensions with importance differences (CANDID) DAC [3] considers
the interaction effects among hyperparameters exhibiting different levels of importance, assuming
that the important parameters should be executed first. However, in practice, parameters exhibit
complex inherent inter-dependencies. Consequently, important parameters should not be prioritized
for adjustment if they depend on prior parameters. For example, while the operator parameter holds
greater importance, optimized performance is attained by first confirming the operator type before
adjusting the operator parameter. Moreover, CANDID DAC tries to address this issue by extending
independent Q-learning (IQL) [40] to sequential agent Q-learning (SAQL), i.e., adding the actions
made by prior agents to the state of subsequent agents. However, this may suffer from similar
disadvantages to IQL: The team reward is used directly in the individual agent’s training and does
not consider the credit assignment among agents, thus it cannot reveal the interactions between
the agents. What’s worse, it may lead to the non-convergence issue [31], because each agent’s
learning is interfered with by the learning process of others, and the team reward cannot provide the
corresponding guidance. Thus, how to propose a framework that can efficiently leverage the internal
relationships of the problem, including inherent parameter inter-dependencies and interactions among
agents, remains an ongoing challenge.

2.2 Multi-Agent Reinforcement Learning

A fully observable cooperative multi-agent system [45] can be formulated as an MMDP [5], defined
as M := ⟨N ,S, {Aj}nj=1, T , r⟩, where N represents n agents, S is the state space, and Aj is
agent j’s action space. At each time-step, agent j ∈ N acquires s ∈ S and then chooses an action
a(j) ∈ Aj . The joint action a = ⟨a(1), . . . , a(n)⟩ leads to next state s′ ∼ T (· | s,a) with a shared
reward r(s,a). The goal of an MMDP is to find a joint policy that maps the states to probability
distributions over joint actions, π : S → ∆(A1 ×A2 × · · · × An), where ∆(A1 ×A2 × · · · × An)
stands for the distribution over joint actions, with the goal of maximizing the global value function:
Qπ(s,a) = Eπ [

∑∞
t=0 γ

tr(st,at) | s0 = s,a0 = a] .

Many algorithms have been proposed to solve the cooperative MARL [47, 10], which can be basically
divided into two categories: value-based methods and policy gradient-based methods. Among the
value-based methods, VDN [39] addresses the problem of multi-agent collaboration through value
function decomposition. It makes a main assumption that the team Q-value function can be additively
decomposed into the simple sum of the local Q-values of each agent: Q(s,a) ≈

∑n
i=1 Qi(s, ai),

where Q(s,a) is the joint action value function for the whole team, s is the shared state, a is the joint
action, n is the number of agents, Qi(s, ai) is the agent i’s local individual action value function, and
ai is the action taken by agent i. One critical principle the value decomposition methods need to
satisfy is the Individual Global Max (IGM) principle defined in Definition 1.

3

Definition 1 (Individual Global Max [36]). For a joint action-value function Q : S × A → R, if
there exist individual action-value functions [Qi : S ×Ai → R]ni=1, such that the following holds:

argmax
a

Q(s,a) =


argmaxa1

Q1(s, a1)
argmaxa2

Q2(s, a2)
...

argmaxan
Qn(s, an)


then, we say that [Qi] satisfy IGM for Q, which means the decomposition satisfies the IGM principle.

This critical principle guarantees the optimal efficient decentralized execution, as each agent only
needs to choose its own optimal action regardless of other agents’ actions. Obviously, VDN’s additive
decomposition satisfies the IGM principle, but is restricted to its additive form, failing to model the
complex situations in many cooperative MARL scenarios. QMIX [31] uses a mixing network with
non-negative weights to learn a monotonic combination of local individual action value functions as
the joint action value function for the whole team, which extends the forms of factorization.

Another type of cooperative MARL algorithm is the policy gradient-based method. MAPPO [46]
extends the popular single-agent RL algorithm proximal policy optimization (PPO) [34] to the multi-
agent RL setting and achieves surprising effectiveness. However, MAPPO is mainly designed for
homogeneous agents with shared action space and policy parameters. HAPPO [17] further addresses
heterogeneous agents with a theoretical property of monotonic improvement guarantee. HASAC [22]
obtains the maximum entropy objective for MARL from probabilistic graphical models to escape
from converging to a suboptimal Nash Equilibrium. A2PO [30] is an agent-by-agent sequential
update algorithm with a theoretical guarantee of the monotonic policy improvement that accelerates
optimization with a semi-greedy agent selection rule. However, these recent works do not fit the
needs of DAC well. Their execution is fully decentralized, with each agent unaware of others’ current
actions, which ignores the inherent inter-dependencies between the agents’ actions.

ACE [19] models the multi-agent decision-making problem into a sequential decision-making problem
with the agents taking action one by one, formulating this as a sequentially expanded MDP (SE-MDP).
At each timestep, the agents make decisions based on the actions taken by their prior agents at the
current timestep, and the action value function of each individual agent is updated according to the
performance of their subsequent agents, which make decisions based on the taken action. The update
scheme of action value functions is as follows:

Qi(s,a1:i−1, ai)←
{
maxai+1

Qi+1(s,a1:i, ai+1), if i < n

r + γmaxa′
1
Q1(s

′, a′1) if i = n

The sequential modeling relieves the non-stationary training problem in MARL because the agents
are aware of their prior agents’ actions, which also fits the need of DAC for being able to capture the
inherent inter-dependencies between the agents’ actions. However, the update scheme of ACE can
suffer from fragile training due to its long sequence of action value function update. That is, if some
agents fail or fall into local optima within the long action value function update chain, the learning of
the whole chain will be affected and even damaged.

Recently, similar ideas of sequential action choosing have been applied to offline RL in the centralized
setting. Q-Transformer [6] and Q-Mamba [24] have been proposed for effective offline RL training
in a centralized manner, where advanced neural network architectures like transformer and Mamba
are integrated with the sequential Q function update scheme similar to ACE.

3 Method

3.1 Contextual Sequential Multi-Agent MDP

Previous works have paid attention to sequential modeling to cope with the high-dimensional action
spaces (Sequential MDP [27]) and non-stationary training (SE-MDP [19]) in MARL. The main idea is
to break the global state transition into a sequence of intermediate decision-making steps and select the
current timestep’s action one dimension by one dimension. That is, the original transition (s,a, s′) is
transformed into n intermediate decision making steps (s, a1), (s, a1, a2), . . . , (s, a1, a2, . . . , an, s′),
where n is the number of action dimension, and when selecting the i-th action ai for dimension

4

Global advantage estimation !𝐴(𝒔, 𝒂)

State Encoder

Reward 𝒓

Action 𝒂

State 𝒔

Algorithm Environment

Dynamic Configurations

Execution rollout 𝟏
Execution rollout 𝟐

Execution rollout …

Global advantage function 𝐴(𝒔, 𝒂)

𝐴! 𝒔, 𝑎!

Agent 𝟏 Agent 𝟐 Agent 𝟑 Agent 𝟒

𝐴" 𝒔, 𝑎!, 𝑎" 𝐴# 𝒔, 𝒂!:", 𝑎# 𝐴% 𝒔, 𝒂!:#, 𝑎%

𝑎! 𝒂!:# 𝒂!:$

Compute loss
and update

Figure 1: Workflow of the proposed sequential advantage decomposition network (SADN).

i, the previous selected actions a1:i−1 for dimension 1 to i − 1 are available for decision making.
Prior work shows that under the CANDID properties [3], sequential policies can coordinate action
selection between dimensions while avoiding the combinatorial explosion of the action space. Their
results encourage an extended study of sequential policies for DAC.

However, the previous sequential modeling is typically a single-agent MDP, with one agent selecting
actions one dimension by one dimension, which fails to model the complex cooperation and com-
munication among heterogeneous agents. Moreover, the different contributions of different action
dimensions to the global reward are neglected in the sequential single-agent MDP modeling, which
harms the learning efficiency and may lead to sub-optimal results.

In the DAC task, there are often different heterogeneous parameters (i.e., they are of different types
and have different effects on the final performance of the target algorithm) with complex inherent
inter-dependencies, which call for cooperation and communication among the tuning of different
parameters. What’s more, as the heterogeneous parameters have different effects on the target
algorithm’s performance, the tuning of them should be guided with differentiated credit assignment
according to their contribution to the improvement of the target algorithm’s performance.

Therefore, we formulate the Seq-MADAC task as a contextual sequential MMDP asMI :=Mi∼I ,
where I represents the space of problem instances, and Mi := ⟨N ,S, {Aj}nj=1, Ti, ri⟩ is each
sequential MMDP corresponding to one target problem instance i ∈ I. In a sequential MMDP, at
the timestep t, the agents are allowed to sequentially take their actions and communicate with each
other to make better decisions. That is, the available information for the i-th agent at timestep t is
(st, a

t
1, a

t
2, . . . , a

t
i−1) = (st,a

t
1:i−1), and the i-th agent selects its action ati accordingly. When all the

agents finish selecting their actions, the state transforms to the next state st+1 ∼ T (· | st,at) based
on the joint action at = (at1, . . . , a

t
n) = at

1:n, and all agents get a shared global reward r(st,a
t).

3.2 Sequential Advantage Decomposition Network

Recent sequential update schemes in MARL suffer from interference from other agents’ learning (i.e.,
SAQL [3]) or the fragility of the long action value function update chain (i.e., ACE [19]), while the
Seq-MADAC task requires MMDP modeling with differentiated credit assignment. Thus, we propose
a decomposition-based method called Sequential Advantage Decomposition Network (SADN) to
address these issues, whose decomposition does not need any assumption, with the IGM principle
satisfied. The workflow of our SADN is shown in Figure 1.

5

Firstly, we give the definition of the action value function and the advantage function of each agent
in the sequential setting. We define the action value function for the previous k agents at state s as
Qπ

1:k(s,a1:k), and the k-th agent’s advantage function based on state s and the actions a1:k−1 taken
by its prior agents as Aπ

k (s,a1:k−1, ak) in the sequential form in Definition 2 following [17].
Definition 2 ([17]). Let n be the total number of agents, a1:k denote the actions taken by agent 1 to
k at the current timestep, and Qπ(s,a) denote the global action value function. The corresponding
multi-agent state-action value function is defined as

Qπ
1:k(s,a1:k) := Eak+1:n∼πk+1:n

[Qπ(s,a1:k,ak+1:n)],

and the advantage function of agent k with the given state s and the actions a1:k−1 taken by its prior
agents is

Aπ
k (s,a1:k−1, ak) := Qπ

1:k(s,a1:k)−Qπ
1:k−1(s,a1:k−1).

Following Definition 2, we give the multi-agent advantage decomposition lemma [17] in the sequential
form in Lemma 1. For the proof, please see Appendix A.3.
Lemma 1 (Multi-Agent Advantage Decomposition [17]). In any cooperative Markov game, given
a joint policy π, the global advantage function Aπ(s,a), and n agents in total, for any state s, the
following equations hold:

Aπ(s,a) =

n∑
i=1

Aπ
i (s,a1:i−1, ai).

Inspired by the action value function decomposition and the implicit reward assignment by using a
decomposition network proposed in [39], as well as the multi-agent advantage decomposition lemma
in [17], we decompose the advantage function sequentially. In specific, the i-th agent maintains
a network that models the i-th advantage function Aπi(s,a1:i−1, ai) and selects the action that
maximizes it, and we compute the global advantage function by the sum of all individual advantage
functions, using Lemma 1. The i-th advantage function is updated implicitly when the global
advantage function is updated by backpropagating gradients. To update the global advantage function,
we maintain a global value network, like the critic in the actor-critic framework, and compute the
target global advantage function by Generalized Advantage Estimation (GAE, [33]) with λ = 0 (i.e.,
one-step temporal difference), which corresponds to the update scheme of action value function in
Q-learning (the detailed proof see Appendix A.1). The global advantage function update scheme is
as follows:

A(s,a)← A(s,a) + α · [r + γV (s′)− V (s)−A(s,a)],

where A(s,a) is the global advantage function, s is the current state, a is the joint action, s′ is the
next state, α is the steplength, γ is the discount factor, and V (s) is the global value function.

Our method also satisfies the IGM principle in the sequential setting, which is stated in Theorem 1.
Theorem 1. Selecting the best joint action a for state s to maximize the global action value function
is equivalent to sequentially selecting the best action ai for state s to maximize the agent i’s advantage
function. That is,

argmax
a

Q(s,a) =



argmax
a1

A1(s, a1)

argmax
a2

A2(s, argmax
a1

A1(s, a1), a2)

...
argmax

an

An(s, argmax
a1

A1(s, a1), argmax
a2

A2(s, argmax
a1

A1(s, a1), a2), . . . , an)

 .

With this beneficial property, SADN provides an efficient and effective sequential decomposition of
the challenging high-dimensional task of joint action optimization, where the individual agent only
needs to focus on optimizing its own individual advantage function by taking its own action. It is of
great benefit because the IGM principle guarantees the consistency between the joint action optimality
and the individual action optimality, which significantly alleviates the problem of combinatorial
explosion of the action space and complex inter-dependencies. Detailed proofs are provided in
Appendix A.2 due to space limitation.

The advantage decomposition in the SADN allows each individual advantage net to be updated
independently and simultaneously, reducing their mutual influence and compounding errors. In

6

contrast, ACE sequentially updates the Q nets based on the output of the previous agent (i.e., more
centralized), which leads to compounding errors along the update chain, especially worsening in
the long sequence updates. Moreover, SADN decomposes the global advantage function sequen-
tially, where the individual advantages are learned relatively independently, and the action sequence
information is also captured in the update order of the advantage functions.

4 Experiment

4.1 Experimental Settings

To comprehensively evaluate the performance of SADN, we compare it with other RL methods
that consider sequential actions, including ACE [19] and SAQL [3], as well as a range of general
advanced MARL algorithms, including value-based methods like VDN [39] and QMIX [31], and
policy gradient-based methods like MAPPO [46], HAPPO [17] and HASAC [22]. We also compare
it with an extension of MAPPO, MAPPOar [11], which considers sequential actions by simply
adding the prior actions to the state of the subsequent agents. We also investigate HAPPO’s ability of
sequential modeling by adjusting the permutation of updating agents.

We consider the following environments for comparing these methods, where the details of these
environments can be found in Appendix B.

Sigmoid. The Sigmoid task [2] is basically an approximation task with hyperparameters changing
over time. For a sampled instance i and the h-th hyperparameter, the target sigmoid function to
approximate is defined as sig(t, si,h, pi,h) = 1

1+e−si,h(t−pi,h) , and the team reward at timestep t

on instance i is defined as rit =
∏H−1

h=0 (1 − |sig(t, si,h, pi,h) − ah,t|), where H is the number of
hyperparameters, and ah,t is the configuration for the h-th hyperparameter at timestep t.

Seq-Sigmoid. Despite considering multiple hyperparameters, the original Sigmoid lacks hyperpa-
rameters with inherent inter-dependencies, making it unable to reflect the actual situation and the
behavior of complex algorithms. Therefore, we modify the original Sigmoid into Seq-Sigmoid to
bring in the inherent inter-dependencies among hyperparameters. The main modification is that at
timestep t, the former hyperparameter’s value will determine a scaling factor αh,t, which controls
the latter hyperparameter’s slope si,h. In this way, the former hyperparameter’s configuration will
have a strong influence on the configuration of the latter hyperparameter. Moreover, in order to avoid
that having this dependency affects the configuration of the former hyperparameter itself, we use
the formula min(|sig(t, αh,t · si,h, pi,h)− ah,t| , |1− sig(t, αh,t · si,h, pi,h)− ah,t|) to measure the
approximation, which returns the same value when two values of ah,t are symmetrical about 0.5. The
pseudo-code of the Seq-Sigmoid benchmark is provided in Algorithm 1.

Algorithm 1 Benchmark Outline: Seq-Sigmoid
1: Benchmark Parameters: number H of hyperparameters, number Ch of choice for each hyper-

parameter h, episode length T ;
2: si ∼ U(−100, 100, H);
3: pi ∼ N (T/2, T/4, H);
4: for t ∈ {0, 1, . . . , T} do
5: The state at step t: statet = si ∪ pi ∪ {t};
6: actions: ah,t ∈

{
0
Ch

, 1
Ch

, . . . , Ch−1
Ch

}
for all 0 ≤ h < H and 0 ≤ t ≤ T ;

7: α0,t = 1, αh,t =

{
10 if ah−1,t ≥ 0.5

0.1 if ah−1,t < 0.5
, 0 < h < H;

8: rit ←
∏H−1

h=0 (1−min(|sig(t, αh,t · si,h, pi,h)− ah,t| , |1− sig(t, αh,t · si,h, pi,h)− ah,t|))
9: end for

Seq-Sigmoid-Mask. This benchmark masks si,h and pi,h (i.e., the agents can only observe statet =
{t}) and sets si,h = 1 to avoid too much randomness in Seq-Sigmoid, which makes the task a single
instance task. That is, we denote the instance as i0, and the goal is to approximate to sig(t, 1, pi0,h)),
but with randomness (i.e., pi0,h ∼ N (T/2, T/4, H)). This is to simulate the highly-random execution

7

Figure 2: Training curves of return value obtained by the compared methods on four Seq-Sigmoid
variant tasks, where the results are averaged over 6 runs.

of evolutionary algorithms, serving as a testbed for evaluating the DAC algorithms’ ability when
coping with randomness.

Seq-Sigmoid-Robust (n). This benchmark gives n hyperparameters completely random configura-
tions (regardless of how agents tune these n hyperparameters), while all other hyperparameters are
configured based on the actions. This is to simulate the complex scenarios where some agents can
not learn the proper actions, serving as a testbed for evaluating the robustness of DAC algorithms.

MOEA/D. MOEA/D [44, 48] is a challenging task [44] based on the well-known multi-objective
evolutionary algorithm MOEA/D with heterogeneous hyperparameters, which is a strong stochastic
benchmark due to the randomness of the evolutionary optimization process. The action space of
the MOEA/D environment includes four hyperparameters of MOEA/D: weights, neighborhood
size, types of the reproduction operator, and the corresponding hyperparameters of the reproduction
operators. The state includes the features of the problem instance, the optimization process, and
the evolution statistics of the current population. For the reward, we use the triangle-based reward
function proposed in [44], which has been proven effective in the MOEA/D environment.

4.2 RQ1: Is the sequential information useful?

On the original Sigmoid benchmark, we traditionally train the agents with a set of given instances
(i.e., a set of si,h and pi,h) and test them on other sampled instances. In order to better reflect the
generalization ability of the algorithms, we resample the instance (i.e., resample a new si,h and pi,h)
every time one episode is done and the environment is reset. Therefore, the agents are truly trained
over the distribution of the problem instances, and every point on the training curve can reflect the
generalization ability of the learned policy at the exact training phase.

Figure 2 demonstrates the smoothed training curves of the return values of our method and the
compared methods on Seq-Sigmoid and Seq-Sigmoid-Mask with 5/10 dimensions (i.e., 5/10 hy-
perparameters). As mentioned in the previous paragraph, we resample the instance every episode,
and thereby the training curves reflect the policies’ performance over the instance distribution at a
certain training phase. It can be observed that our method, SADN, outperforms other methods on
every benchmark, with faster convergence, less variance, and better final performance. Basically, the
methods exploiting the sequential information (i.e., SADN, ACE, and SAQL) succeed in capturing
the inherent inter-dependencies between the hyperparameters to some extent and achieve better
performance, especially on the Seq-Sigmoid-Mask benchmark, where the traditional MARL methods
fail to cope with the complex inter-dependencies and randomness. However, ACE shows a clear
performance decay on the Seq-Sigmoid benchmark. This phenomenon may stem from the disruption
of the long-chain action-value function update scheme in ACE by diverse problem instances, where
certain action-value functions in the chain fail to achieve adaptation to novel instances.

The comparison of the sequential methods based on the correct order and the reverse order is given in
Appendix C.2 due to space limitation. Basically, the reverse order underperforms the correct order

8

Figure 3: Training curves of return value obtained by the sequential methods on four Seq-Sigmoid-
Robust tasks, where the results are averaged over 6 runs.

and produces a larger variance due to the wrong capture of the inherent inter-dependencies between
the hyperparameters, except for HAPPO, which only considers the update order of the agents rather
than the order of taking actions. The comparison of using the correct and the reverse order provides
evidence for the effectiveness of modeling the inherent inter-dependencies correctly.

We also provide experimental results of our method and compared methods on the original Sigmoid
in Appendix C.1. The results show that the effectiveness of our method even without strong inter-
dependencies between the hyperparameters.

4.3 RQ2: How robust is SADN?

In complex dynamic parameter configuration problems, some agents often struggle to learn effectively,
e.g., the configuration range of one certain parameter is not suitable, causing the corresponding agent
to struggle to learn effectively. Especially in sequential scenarios, this issue can be more pronounced
because those hindering agents can give misleading information through communication to other
agents. Therefore, we test the methods designed for sequential decision-making on Seq-Sigmoid-
Robust to examine their ability to cope with this issue.

Figure 3 plots the training curves of SADN (ours), ACE and SAQL on Seq-Sigmoid-Robust with
5/10 dimensions and 1/2 random agents. SADN shows better performance and robustness when
coping with this complex situation, while ACE shows apparent performance decay because its fragile
long-chain update scheme suffers from the instability of learning caused by the random agents, and
SAQL sticks in poor performance due to the interference of the random agents.

4.4 RQ3: How does SADN perform on tuning real complex algorithms like MOEA/D?

In the MOEA/D environment, we set the proper parameter order as: 1) determining the neighbor-
hood size to decide whether to explore or exploit; 2) choosing the operator type; 3) choosing the
corresponding operator’s parameters; 4) deciding whether to update the weights to bring in new
subproblems. We compare our SADN with different state-of-the-art MARL methods, as well as the
RL methods that consider sequential actions. We use the Inverted Generational Distance (IGD) [4] as
the metric to measure the performance of the algorithms, which is the smaller the better.

As demonstrated in Table 1, the top three problems are the problems for training, and the bottom five
problems are for testing. Our proposed SADN achieves significantly superior performance on most
problem instances, and averagely ranks the best on all problem dimension settings. There are only
occasional cases where SADN underperforms the baseline, and all of them occur in the testing phase.
This may be owing to the very different function landscape that was not included in the training
phase, and the learned RL policy fails to generalize. This issue is always of concern regarding the
generalization ability of RL, and we believe good state and reward designs that capture commonalities
among various problem sets can further enhance generalization, as well as more diverse training
datasets. In general, our SADN shows strong generalization abilities across problem classes. The
comparison results of using the correct and the reverse order, which are provided in Appendix C.3 due

9

Table 1: IGD values obtained by SADN and the compared methods on different problems. Each
result consists of the mean of 10 runs. The best mean value on each problem is highlighted in bold.
The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior to, inferior to, and
almost equivalent to our method SADN, respectively, according to the Wilcoxon rank-sum test with
significance level 0.05.

Problem Dim MOEA/D [48] SADN ACE [19] SAQL [3] VDN [39] QMIX [31] MAPPO [46] HAPPO [17] HASAC [22]

DTLZ2
6 4.593e-02 3.809e-02 3.851e-02 3.950e-02 3.905e-02 3.906e-02 3.790e-02 3.838e-02 4.045e-02
9 4.598e-02 3.875e-02 4.057e-02 4.337e-02 4.009e-02 4.120e-02 3.907e-02 4.095e-02 4.103e-02
12 4.599e-02 3.874e-02 4.063e-02 4.698e-02 3.958e-02 4.161e-02 3.970e-02 4.075e-02 4.140e-02

WFG4
6 5.729e-02 4.537e-02 4.626e-02 4.817e-02 4.904e-02 4.827e-02 4.639e-02 4.956e-02 5.703e-02
9 5.736e-02 5.190e-02 5.853e-02 5.365e-02 5.800e-02 5.541e-02 5.341e-02 6.138e-02 6.169e-02
12 5.751e-02 5.213e-02 5.751e-02 6.241e-02 5.687e-02 5.835e-02 5.340e-02 6.071e-02 6.187e-02

WFG6
6 5.855e-02 3.908e-02 3.962e-02 3.964e-02 4.080e-02 4.214e-02 3.937e-02 4.022e-02 4.536e-02
9 6.641e-02 4.884e-02 5.111e-02 4.384e-02 5.558e-02 7.416e-02 6.194e-02 5.921e-02 5.879e-02
12 6.864e-02 4.837e-02 5.490e-02 5.676e-02 5.444e-02 7.999e-02 6.067e-02 5.218e-02 4.993e-02

Training: +/−/≈ 0/9/0 0/8/1 1/8/0 0/9/0 0/9/0 1/8/0 0/9/0 0/8/1

DTLZ4
6 5.455e-02 3.895e-02 4.221e-02 5.019e-02 3.986e-02 4.331e-02 3.909e-02 3.987e-02 4.410e-02
9 6.229e-02 7.319e-02 4.492e-02 6.895e-02 4.361e-02 7.108e-02 6.168e-02 4.645e-02 4.678e-02
12 6.790e-02 7.852e-02 4.650e-02 8.589e-02 4.647e-02 5.532e-02 5.794e-02 5.107e-02 4.825e-02

WFG5
6 6.303e-02 4.749e-02 4.752e-02 5.390e-02 4.761e-02 4.786e-02 4.719e-02 4.746e-02 4.744e-02
9 6.351e-02 4.773e-02 4.792e-02 4.788e-02 4.784e-02 4.770e-02 4.762e-02 4.793e-02 4.780e-02
12 6.381e-02 4.793e-02 4.791e-02 4.954e-02 4.780e-02 4.778e-02 4.789e-02 4.799e-02 4.785e-02

WFG7
6 5.803e-02 3.893e-02 3.942e-02 3.958e-02 4.051e-02 4.207e-02 3.918e-02 3.980e-02 4.372e-02
9 5.812e-02 4.053e-02 4.470e-02 4.257e-02 4.566e-02 4.407e-02 4.119e-02 4.607e-02 4.632e-02
12 5.814e-02 4.060e-02 4.447e-02 4.975e-02 4.432e-02 4.445e-02 4.132e-02 4.597e-02 4.689e-02

WFG8
6 7.875e-02 1.018e-01 1.029e-01 1.054e-01 1.169e-01 1.054e-01 1.037e-01 1.156e-01 1.252e-01
9 9.680e-02 7.853e-02 9.787e-02 9.716e-02 8.720e-02 8.180e-02 7.880e-02 9.964e-02 9.991e-02
12 8.710e-02 7.891e-02 8.387e-02 9.023e-02 8.552e-02 8.279e-02 7.923e-02 8.636e-02 8.734e-02

WFG9
6 5.600e-02 3.987e-02 4.012e-02 4.010e-02 4.156e-02 4.266e-02 3.986e-02 4.041e-02 4.395e-02
9 5.748e-02 4.341e-02 4.552e-02 4.281e-02 7.965e-02 5.274e-02 4.573e-02 5.079e-02 5.429e-02
12 5.827e-02 4.249e-02 4.477e-02 7.291e-02 8.023e-02 5.246e-02 4.495e-02 6.556e-02 8.189e-02

Testing: +/−/≈ 1/12/2 2/9/4 0/11/4 2/12/1 2/11/2 4/5/6 2/11/2 2/10/3

average
rank

6 8 1.75 3.625 5.5 5.75 6.25 2 4.875 7.25
9 7.375 2.5 4.75 4.375 4.75 5.375 3.125 6.25 6.5
12 7.25 2.5 3.875 8.125 3.5 4.875 3.625 5.5 5.75

to space limitation, also demonstrate the effectiveness of correctly considering the parameter order
on the real-scenario multi-objective evolutionary algorithm. Generally, the correct order produces
better results than the reverse order within the same sequential methods.

Moreover, we also provide a discussion of the generalization ability across different dimensions in
Appendix C.4. Overall, the results demonstrate that our proposed method exhibits good generalization
abilities across different dimensions. However, cross-dimensional generalization remains a significant
challenge and is worth further investigation, such as through multi-dimensional mixed training and
employing multi-head models.

5 Conclusion

This paper considers the inherent inter-dependencies among hyperparameters in DAC, which are
natural and common in practice. We propose a contextual sequential MMDP formulation to capture
the inherent inter-dependencies among hyperparameters and also propose a sequential advantage
decomposition network to solve it. Experiments from synthetic white-box tasks with apparent inter-
dependencies to a complex real-scenario multi-objective evolutionary algorithm demonstrate the
effectiveness of our proposed method, as well as its strong generalization ability. One important
future work is to modularize the algorithms that support more flexible reconstruction of different
algorithm sub-modules to design diverse algorithm structures [12].

One limitation is that the hyperparameter order requires to be given in advance. In practice, there
is an intuitive and natural way to determine the order: setting it according to the sequence in which
the hyperparameters take effect during the execution of the algorithm. Specifically, in the code
implementation of the target algorithm, all hyperparameters take effect in a specific order, which is
the order we have set. This strategy aligns with our intuition and performs well in the experiments
of this paper. In the future, one could apply large language models to set the proper order of the
hyperparameter configuration, as well as causal models to automatically learn the hyperparameter’s
causal structure from the data [25].

10

Acknowledgment

The authors thank anonymous reviewers for their insightful and valuable comments. This work was
supported by the National Science and Technology Major Project (2022ZD0116600), the National
Science Foundation of China (62276124, 624B2069, 62506159), the Fundamental Research Funds
for the Central Universities (14380020), and the Young Elite Scientists Sponsorship Program by
CAST for PhD Students. The authors want to acknowledge support from the Huawei Technology
Cooperation Project.

References
[1] S. Adriaensen, A. Biedenkapp, G. Shala, N. Awad, T. Eimer, M. Lindauer, and F. Hutter. Auto-

mated dynamic algorithm configuration. Journal of Artificial Intelligence Research, 75:1633–
1699, 2022.

[2] A. Biedenkapp, H. F. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer. Dynamic algorithm
configuration: Foundation of a new meta-algorithmic framework. In Proceedings of the 24th
European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 2020.

[3] P. Bordne, M. A. Hasan, E. Bergman, N. Awad, and A. Biedenkapp. Candid dac: Leveraging
coupled action dimensions with importance differences in DAC. arXiv:2407.05789, 2024.

[4] P. A. N. Bosman and D. Thierens. The balance between proximity and diversity in multiobjective
evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 7(2):174–188, 2003.

[5] C. Boutilier. Planning, learning and coordination in multiagent decision processes. In Proceed-
ings of the 6th Conference on Theoretical Aspects of Rationality and Knowledge, De Zeeuwse
Stromen, The Netherlands, 1996.

[6] Y. Chebotar, Q. Vuong, K. Hausman, F. Xia, Y. Lu, A. Irpan, A. Kumar, T. Yu, A. Herzog,
K. Pertsch, et al. Q-transformer: Scalable offline reinforcement learning via autoregressive
q-functions. In Proceedings of 7th Conference on Robot Learning, Atlanta, Georgia, 2023.

[7] C. Daniel, J. Taylor, and S. Nowozin. Learning step size controllers for robust neural network
training. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, AZ,
2016.

[8] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-objective optimization test
problems. In Proceedings of the 9th Congress on Evolutionary Computation, Honolulu, HI,
2002.

[9] T. Eimer, A. Biedenkapp, M. Reimer, S. Adriaensen, F. Hutter, and M. Lindauer. DACBench: A
benchmark library for dynamic algorithm configuration. In Proceedings of the 30th International
Joint Conference on Artificial Intelligence, Montreal, Canada, 2021.

[10] Z. Feng, R. Xue, L. Yuan, Y. Yu, N. Ding, M. Liu, B. Gao, J. Sun, X. Zheng, and G. Wang.
Multi-agent embodied AI: Advances and future directions. arXiv:2505.05108, 2025.

[11] W. Fu, C. Yu, Z. Xu, J. Yang, and Y. Wu. Revisiting some common practices in cooperative
multi-agent reinforcement learning. In Proceedings of the 39th International Conference on
Machine Learning, Baltimore, Maryland, 2022.

[12] H. Guo, Z. Ma, J. Chen, Y. Ma, Z. Cao, X. Zhang, and Y.-J. Gong. ConfigX: Modular
configuration for evolutionary algorithms via multitask reinforcement learning. In Proceedings
of the 39th AAAI Conference on Artificial Intelligence, Philadelphia, Pennsylvania, 2025.

[13] S. Huband, P. Hingston, L. Barone, and L. While. A review of multiobjective test problems and a
scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 10(5):477–506,
2006.

[14] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306, 2009.

11

[15] F. Hutter, L. Kotthoff, and J. Vanschoren. Automated Machine Learning: Methods, Systems,
Challenges. Springer, 2019.

[16] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel. A survey of generalisation in deep
reinforcement learning. arXiv:2111.09794, 2021.

[17] J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang. Trust region policy
optimisation in multi-agent reinforcement learning. arXiv:2109.11251, 2021.

[18] S. Kukkonen and K. Deb. A fast and effective method for pruning of non-dominated solutions
in many-objective problems. In Proceedings of the 9th International Conference on Parallel
Problem Solving from Nature, Reykjavik, Iceland, 2006.

[19] C. Li, J. Liu, Y. Zhang, Y. Wei, Y. Niu, Y. Yang, Y. Liu, and W. Ouyang. Ace: Cooperative
multi-agent q-learning with bidirectional action-dependency. In Proceedings of the 37th AAAI
Conference on Artificial Intelligence, Washington, DC, 2023.

[20] K. Li. Decomposition multi-objective evolutionary optimization: From state-of-the-art to future
opportunities. arXiv:2108.09588, 2021.

[21] K. Li, A. Fialho, S. Kwong, and Q. Zhang. Adaptive operator selection with bandits for a multi-
objective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary
Computation, 18(1):114–130, 2013.

[22] J. Liu, Y. Zhong, S. Hu, H. Fu, Q. Fu, X. Chang, and Y. Yang. Maximum entropy heterogeneous-
agent reinforcement learning. In Proceeding of the 12th International Conference on Learning
Representations, Vienna, Austria, 2024.

[23] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stützle. The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43–58, 2016.

[24] Z. Ma, Z. Cao, Z. Jiang, H. Guo, and Y.-J. Gong. Meta-black-box-optimization through offline
q-function learning. In Proceedings of 42th International Conference on Machine Learning,
Vancouver, Canada, 2025.

[25] Z. Ma, J. Chen, H. Guo, and Y.-J. Gong. Neural exploratory landscape analysis for meta-
black-box-optimization. In Proceeding of the 13th International Conference on Learning
Representations, Singapore, 2025.

[26] Z. Ma, H. Guo, Y.-J. Gong, J. Zhang, and K. C. Tan. Toward automated algorithm design: A
survey and practical guide to meta-black-box-optimization. IEEE Transactions on Evolutionary
Computation, in press, 2025.

[27] L. Metz, J. Ibarz, N. Jaitly, and J. Davidson. Discrete sequential prediction of continuous actions
for deep RL. arXiv:1705.05035, 2017.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[29] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu. MOEA/D with adaptive weight adjustment.
IEEE Transactions on Evolutionary Computation, 22(2):231–264, 2014.

[30] Y. Qing, S. Liu, J. Cong, K. Chen, Y. Zhou, and M. Song. A2PO: Towards effective offline
reinforcement learning from an advantage-aware perspective. In Advances in Neural Information
Processing Systems 37, Vancouver, Canada, 2024.

[31] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson. Qmix: Mono-
tonic value function factorisation for deep multi-agent reinforcement learning. In Proceedings
of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018.

[32] S. R. S. and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

12

[33] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv:1506.02438, 2015.

[34] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, 2017.

[35] G. Shala, A. Biedenkapp, N. H. Awad, S. Adriaensen, M. Lindauer, and F. Hutter. Learning
step-size adaptation in CMA-ES. In Proceedings of the 16th International Conference on
Parallel Problem Solving from Nature, Leiden, The Netherlands, 2020.

[36] K. Son, D. Kim, W. J. Kang, D. Hostallero, and Y. Yi. QTRAN: Learning to factorize with
transformation for cooperative multi-agent reinforcement learning. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, 2019.

[37] D. Speck, A. Biedenkapp, F. Hutter, R. Mattmüller, and M. Lindauer. Learning heuristic
selection with dynamic algorithm configuration. In Proceedings of the 31th International
Conference on Automated Planning and Scheduling, Guangzhou, China, 2021.

[38] J. Sun, X. Liu, T. Bäck, and Z. Xu. Learning adaptive differential evolution algorithm from
optimization experiences by policy gradient. IEEE Transactions on Evolutionary Computation,
25(4):666–680, 2021.

[39] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi, M. Jaderberg, M. Lanctot,
N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel. Value-decomposition networks for coop-
erative multi-agent learning based on team reward. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, Stockholm, Sweden, 2018.

[40] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vi-
cente. Multiagent cooperation and competition with deep reinforcement learning. PloS one,
12(4):e0172395, 2017.

[41] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh. A survey of multiobjective evolution-
ary algorithms based on decomposition. IEEE Transactions on Evolutionary Computation,
21(3):440–462, 2017.

[42] D. Vermetten, S. van Rijn, T. Bäck, and C. Doerr. Online selection of CMA-ES variants. In
A. Auger and T. Stützle, editors, Proceedings of the 21st Genetic and Evolutionary Computation
Conference, pages 951–959, Prague, Czech Republic, 2019.

[43] Z. Wang, Q. Zhang, A. Zhou, M. Gong, and L. Jiao. Adaptive replacement strategies for
MOEA/D. IEEE Transactions on Cybernetics, 46(2):474–486, 2016.

[44] K. Xue, J. Xu, L. Yuan, M. Li, C. Qian, Z. Zhang, and Y. Yu. Multi-agent dynamic algorithm
configuration. In Advances in Neural Information Processing Systems 35, New Orleans, LA,
2022.

[45] Y. Yang and J. Wang. An overview of multi-agent reinforcement learning from game theoretical
perspective. arXiv:2011.00583, 2020.

[46] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness
of ppo in cooperative multi-agent games. In Advances in Neural Information Processing Systems
35, New Orleans, LA, 2022.

[47] L. Yuan, Z. Zhang, L. Li, C. Guan, and Y. Yu. A survey of progress on cooperative multi-agent
reinforcement learning in open environment. arXiv:2312.01058, 2023.

[48] Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

[49] Z.-H. Zhou, Y. Yu, and C. Qian. Evolutionary Learning: Advances in Theories and Algorithms.
Springer, 2019.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims are that sequential modeling is more effective in the DAC
task and experiments in section 4 proves it.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In section 5, we discuss the limitations of our work as requiring experts
providing parameter order in advance.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [Yes]
Justification: In Appendix A, we provide the proof of the advantage update scheme, our
method’s IGM principle satisfaction, and the lemma proposed in [17]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Appendix B, we propose the detailed information about the environment
setting parameters and the algorithms’ hyperparameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In the Abstract, we provide an anonymized URL to our source code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Appendix B, we propose the detailed information about the environment
setting parameters and the algorithms’ hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In section 4, our experiments are all conducted on various different seeds and
use the mean value as the results. We use the Wilcoxon rank-sum test with significance level
0.05 to measure whether we get significantly better performance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All the experiments are easy to carry out, which has little requirement for
computer resources, and the detailed information of the computer resources we use see
Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper does not involve human subjects or participants, and only uses
open-source benchmarks. This paper focuses on algorithm configuration, which has little
societal impact and potential harmful consequences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper focuses on algorithm configuration, which has little societal impact
and potential harmful consequences.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve released models and datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper of all the open-source code and benchmarks we use
in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the documentation alongside our code in an anonymized URL.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper focuses on algorithm configuration, which does not involve crowd-
sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper focuses on algorithm configuration, which does not involve crowd-
sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Every components of our method does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Proof

A.1 Deriving the global advantage update scheme from the Q-learning update scheme

In this appendix, we derive our global advantage update scheme (i.e., the GAE with λ = 0):
A(s,a)← A(s,a) + α[r + γV (s′)− V (s)−A(s,a)]

from the Q-learning update scheme
Q(s,a)← Q(s,a) + α[r + γmax

a′
Q(s′,a′)−Q(s,a)]

as follows:
Q(s,a)← Q(s,a) + α[r + γmax

a′
Q(s′,a′)−Q(s,a)]

A(s,a) + V (s)← A(s,a) + V (s) + α[r + γmax
a′

(A(s′,a′) + V (s′))−A(s,a)− V (s)]

A(s,a)← A(s,a) + α[r + γmax
a′

A(s′,a′) + γV (s′)−A(s,a)− V (s)]

A(s,a)← A(s,a) + α[r + γV (s′)− V (s)−A(s,a)]

Note that in Q-learning, we choose the action greedily with respect to the learned Q-function by
π(s) := argmaxa∈A Q(s, a), and V (s) = Eπ[

∑∞
t=0 γ

trt|s0 = s] = maxa∈A Q(s, a). Therefore,
maxa′ A(s′,a′) = maxa′ Q(s′,a′)− V (s′) = 0.

A.2 Proof of Theorem 1

Theorem 1. Selecting the best joint action a for state s to maximize the global action value function
is equivalent to sequentially selecting the best action ai for state s to maximize the agent i’s advantage
function. That is,

argmax
a

Q(s,a) =



argmax
a1

A1(s, a1)

argmax
a2

A2(s, argmax
a1

A1(s, a1), a2)

...
argmax

an

An(s, argmax
a1

A1(s, a1), argmax
a2

A2(s, argmax
a1

A1(s, a1), a2), . . . , an)

 .

Proof. Let a∗ denote the optimal action that maximizes the Q-function (that is, a∗ =
argmaxa Q(s,a)), and for the agent i, its policy based on the actions of its prior agents be de-
noted as πi(s,a1:i−1) := argmaxai

Ai(s,a1:i−1, ai) and the joint policy π := (π1, π2, . . . , πn).

By induction, we prove that for the agent i, if its prior agents have selected the optimal actions a∗
1:i−1,

it can select its optimal action a∗i by maximizing its advantage function Ai(s,a
∗
1:i−1, ai).

For agent n:
a∗n = argmax

an

Q(s,a∗
1:n−1, an)

= argmax
an

[Q(s,a∗
1:n−1, an)− Ean∼πn [Q(s,a∗

1:n−1, an)]]

= argmax
an

An(s,a
∗
1:n−1, an)

where the second equation holds because Ean∼πn

[
Q(s,a∗

1:n−1, an)
]

is a constant, and the third
equation refers to the definition of An(s,a

∗
1:n−1, an) in Definition 2.

We now assume that for the agent i+ 1 to n, this property holds, and for the agent i:
a∗i = argmax

ai

Q(s,a∗
1:i−1, ai, argmax

ai+1:n

Q(s,a∗
1:i−1, ai,ai+1:n))

= argmax
ai

Eai+1:n∼πi+1:n
[Q(s,a∗

1:i−1, ai,ai+1:n)]

= argmax
ai

{Eai+1:n∼πi+1:n
[Q(s,a∗

1:i−1, ai,ai+1:n)]− Eai:n∼πi:n
[Q(s,a∗

1:i−1,ai:n)]}

= argmax
ai

Ai(s,a
∗
1:i−1, ai)

21

where the second equation holds because the inductive hypothesis implies that if the i-th agent selects
the optimal a∗i , πi+1:n(s,a

∗
1:i) = a∗

i+1:n, and thus we have

∀ai,ai+1:n,Eai+1:n∼πi+1:n [Q(s,a∗
1:i−1, a

∗
i ,ai+1:n)] = Q(s,a∗

1:i−1, a
∗
i ,a

∗
i+1:n)

≥ Q(s,a∗
1:i−1, ai,ai+1:n)

which means

∀ai,Eai+1:n∼πi+1:n [Q(s,a∗
1:i−1, a

∗
i ,ai+1:n)] ≥ Eai+1:n∼πi+1:n

[Q(s,a∗
1:i−1, ai,ai+1:n)]

Therefore, a∗i = argmaxai
Eai+1:n∼πi+1:n [Q(s,a∗

1:i−1, ai,ai+1:n)], and the second equation holds.
The third equation holds because Eai:n∼πi:n [Q(s,a∗

1:i−1,ai:n)] is a constant, and the forth equation
refers to the definition of Ai(s,a

∗
1:i−1, ai) in Definition 2.

Therefore, by induction, we conclude:

∀i, a∗i = argmax
ai

Ai(s,a
∗
1:i−1, ai)

Notably, when i = 1, a∗1 = argmaxa1
A1(s, a1), and for subsequent agents, the agent

2 will select a∗2 = argmaxa2
A2(s, a

∗
1, a2), and so on, with the agent n selecting a∗n =

argmaxan
An(s,a

∗
1:n−1, an).

Thus, we have completed the proof of Theorem 1.

A.3 Proof of Lemma 1

Lemma 1 (Multi-agent Advantage Decomposition [17]). In any cooperative Markov game, given
a joint policy π, the global advantage function Aπ(s,a), and n agents in total, for any state s, the
following equations hold:

Aπ(s,a) =

n∑
i=1

Aπ
i (s,a1:i−1, ai)

Proof. Similar to the proof in [17], according to the Definition 2, we have

Aπ(s,a) = Qπ(s,a)− V π(s)

=

n∑
i=1

Qπ
1:i(s,a1:i)−Qπ

1:i−1(s,a1:i−1)

=
n∑

i=1

Aπ
i (s,a1:i−1, ai)

which finishes the proof.

B Detailed settings and information of the environments

In this section, we introduce our detailed experimental settings, including network architectures,
experimental configurations, and hyperparameter settings.

B.1 Seq-Sigmoid

In this subsection, we introduce the original Sigmoid benchmark, the Seq-Sigmoid benchmark, and
its variants in detail.

Sigmoid [2]. The pseudo-code of the Sigmoid benchmark is provided in Algorithm 2. The Sigmoid
task is basically an approximation task with parameters changing over time, with the approximation
target as sig(t, si,h, pi,h), the state provided in line 5, and the reward at t calculated in line 7.

22

Algorithm 2 Benchmark Outline: Sigmoid
1: Benchmark Parameters: number H of hyperparameters, number Ch of choice for each hyper-

parameter h, episode length T ;
2: si ∼ U(−100, 100, H);
3: pi ∼ N (T/2, T/4, H);
4: for t ∈ {0, 1, . . . , T} do
5: The state at step t: statet = si ∪ pi ∪ {t};
6: Select actions: ah,t ∈

{
0
Ch

, 1
Ch

, . . . , Ch−1
Ch

}
for all 0 ≤ h < H and 0 ≤ t ≤ T ;

7: rit ←
∏H−1

h=0 (1− |sig(t, si,h, pi,h)− ah,t|);
8: end for

Seq-Sigmoid. The pseudo-code of the Seq-Sigmoid benchmark is provided in Algorithm 1. The
main modification (i.e., in lines 7 and 8) is that, at timestep t, the former parameter’s value will
determine a scaling factor αh,t, which controls the latter parameter’s slope si,h. In this way, the former
parameter configuration will have a strong influence on the configuration of the latter parameter.
Moreover, to avoid having this dependency affect the configuration of the former parameter itself, we
use the formula min(|sig(t, αh,tsi,h, pi,h)− ah,t| , |1− sig(t, αh,tsi,h, pi,h)− ah,t|) to measure the
approximation, which returns the same value when two ah,t are symmetrical about 0.5.

Seq-Sigmoid-Mask. The pseudo-code of the Seq-Sigmoid-Mask benchmark is provided in Algo-
rithm 3. The main modification compared to the Seq-Sigmoid benchmark is that we mask si,h and
pi,h (i.e., the statet ∈ {t} in line 4) and set si,h = 1 (i.e., in line 7) to avoid too much randomness.

Algorithm 3 Benchmark Outline: Seq-Sigmoid-Mask
1: Benchmark Parameters: number H of hyperparameters, number Ch of choice for each hyper-

parameter h, episode length T ;
2: pi ∼ N (T/2, T/4, H);
3: for t ∈ {0, 1, . . . , T} do
4: The state at step t: statet = {t};
5: Select actions: ah,t ∈

{
0
Ch

, 1
Ch

, . . . , Ch−1
Ch

}
for all 0 ≤ h < H and 0 ≤ t ≤ T ;

6: α0,t = 1, αh,t =

{
10 if ah−1,t ≥ 0.5

0.1 if ah−1,t < 0.5
, 0 < h < H;

7: rit ←
∏H−1

h=0 (1−min(|sig(t, αh,t · 1, pi,h)− ah,t| , |1− sig(t, αh,t · 1, pi,h)− ah,t|));
8: end for

Seq-Sigmoid-Robust (n). The pseudo-code of the Seq-Sigmoid-Robust (n) benchmark is provided
in Algorithm 4. The benchmark gives random configurations for the n parameters, no matter
how the corresponding agents tune them in Seq-Sigmoid (i.e., in line 7), with other parameters
configured properly, to simulate the ineffective learning of some agents in complex dynamic algorithm
configuration scenarios. In particular, we give random configurations for the ⌊n/2⌋-th parameter in
Seq-Sigmoid-Robust (1) and the ⌊n/2⌋-th and the ⌊n/2⌋+ 1-th parameters in Seq-Sigmoid-Robust
(2).

B.2 MOEA/D

MOEA/D is the proposed DAC benchmark [44] based on a real-scenario multi-objective evolutionary
algorithm MOEA/D [48] with heterogeneous parameters, which is a strong stochastic benchmark due
to the randomness of the evolution optimization process.

MOEA/D algorithm The multi-objective evolutionary algorithm MOEA/D is originally designed
to solve the Multi-objective Optimization Problems (MOPs), which can be defined as

min F (x) = (f1(x), . . . , fm(x)) s.t. x ∈ Ω,

where x = (x1, . . . , xD) is a solution, F : Ω → Rm constitutes m objective functions, Ω =
[xL

i , x
U
i]

D ⊆ RD is the solution space, and Rm is the objective space. MOP aims to find a set of

23

Algorithm 4 Benchmark Outline: Seq-Sigmoid-Robust (n)
1: Benchmark Parameters: number H of hyperparameters, number Ch of choice for each hyper-

parameter h, episode length T , n random hyperparameter indexes h1, h2, . . . , hn;
2: si ∼ U(−100, 100, H);
3: pi ∼ N (T/2, T/4, H);
4: for t ∈ {0, 1, . . . , T} do
5: The state at step t: statet ∈ si ∪ pi ∪ {t};
6: Actions: ah,t ∈

{
0
Ch

, 1
Ch

, . . . , Ch−1
Ch

}
for all 0 ≤ h < H and 0 ≤ t ≤ T ;

7: Reselect ai,t, i ∈ {h1, h2, . . . , hn} at random;

8: α0,t = 1, αh,t =

{
10 if ah−1,t ≥ 0.5

0.1 if ah−1,t < 0.5
, 0 < h < H;

9: rit ←
∏H−1

h=0 (1−min(|sig(t, αh,tsi,h, pi,h)− ah,t| , |1− sig(t, αh,tsi,h, pi,h)− ah,t|));
10: end for

solutions that represent the best possible trade-offs between competing objectives. The objective
vectors of these solutions are collectively called the Pareto front (PF), defined as follows:
Definition 3. A solution x∗ is Pareto-optimal with respect to Eq. (B.2), if ∄x ∈ Ω such that
∀i : fi(x) ≤ fi(x

∗) and ∃i : fi(x) < fi(x
∗). The set of all Pareto-optimal solutions is called

Pareto-optimal Set (PS). The set of the corresponding objective vectors of PS, i.e., {F (x) | x ∈ PS},
is called Pareto Front (PF).

MOEA/D consists of two main processes, decomposition and collaboration [48, 41, 20]. In decompo-
sition, MOEA/D solves a number of sub-problems through a number of weights and an aggregation
function to approximate the PF. Several aggregation functions have been proposed for MOEA/D.
Here, we introduce the common Tchebycheff approach (TCH) used in our paper as follows:

Given a weight vector w = (w1, . . . , wm) where wi ≥ 0,∀i ∈ {1, . . . ,m} and
∑m

i=1 wi = 1, the
sub-problem by TCH is formulated as

min
x∈Ω

g(x | w, z∗) = max
1≤i≤m

{wi · |fi(x)− z∗i |},

where z∗ = (z∗1 , . . . , z
∗
m) is the ideal point consisting of the best objective values obtained so far.

The fundamental intuition behind collaboration is that adjacent sub-problems tend to share similar
properties. For instance, they may have similar objective functions and/or optimal solutions [20].
In particular, the neighborhood of a sub-problem is controlled by the Euclidean distance of its
corresponding weight vector with respect to the others, as well as the hyperparameter neighborhood
size: two sub-problems are neighbors of each other if the distance between them is smaller than the
neighborhood size. In the selection process for a sub-problem, parent solutions are randomly selected
from the corresponding neighborhood of each sub-problem. The sub-problem solutions within the
same neighborhood are then replaced with the newly generated offspring solution if it is better than
the current one.

The pseudo-code of MOEA/D is shown in Algorithm 5.

Action The action space of MOEA/D is of four dimensions, corresponding to the four heterogeneous
MOEA/D parameters:

1. Weights. In MOEA/D, weights are used to transform an MOP into multiple single-objective
sub-problems. Inspired by MOEA/D-AWA [29], we set the action space for weights by adjusting
(T) or not adjusting (N) the weights. If the action is T, the weights will be updated; otherwise, the
weights will remain the same. The weights adaptation mechanism is as follows.

The sparsity level of each solution x(i) is calculated based on vicinity distance [18]:

SL
(
x(i), {x(p)}Np=1

)
=

m∏
j=1

l(x(i), j),

where l(x(i), j) is the Euclidean distance between x(i) and its j-th nearest neighbor in the population
{x(p)}Np=1. In the calculation, the m closest neighbors in the population are used, where m denotes

24

Algorithm 5 MOEA/D
Input: Population size N , number T of iterations
Output: A set of Pareto-optimal solutions

1: Initialize a population {x(i)}Ni=1 of solutions, and a corresponding set W = {w(i)}Ni=1 of weight
vectors

2: t← 0
3: while t < T do
4: for i = 1 : N do
5: Randomly select parent solutions from the neighborhood of w(i), denoted as Θw(i)

6: Use crossover and mutation operators to generate an offspring solution x′(i)

7: Evaluate the offspring solution to obtain F (x′(i))
8: Update the ideal point z∗:
9: for j ∈ {1, 2, . . . ,m} do

10: if fj(x′(i)) < z∗
j then

11: z∗
j ← fj(x

′(i))
12: end if
13: end for
14: Update the corresponding solution of each sub-problem within Θw(i)

by x′(i):
15: for w(j) ∈ Θw(i)

do
16: if g(x′(i) | w(j), z∗) < g(x(j) | w(j), z∗) then
17: x(j) ← x′(i)

18: end if
19: end for
20: end for
21: t← t+ 1
22: end while

the number of objectives. Sub-problems corresponding to the solutions with sparsity levels in the
bottom 5%, namely the overcrowded solutions, are subsequently removed.

To ensure that the total number of the sub-problems is still N , 0.05N new sub-problems and their
corresponding solutions should be added, which come from an elite population that keeps all historical
non-dominated solutions, with a maximum capacity of 1.5N . When the size of the elite population
surpasses this capacity, the solutions with the lowest sparsity level are eliminated. For every solution
x′ in the elite population, its sparsity level is calculated with respect to the current population (i.e.,
SL(x′,Pop), where Pop represents the set of the remaining 0.95N solutions). Subsequently, the
solution with the highest sparsity level with respect to the current population is selected from the elite
population and added to the current population. This selection and addition procedure is carried out
for 0.05N times. For each newly added solution, the corresponding sub-problem (i.e., weight vector)
is generated in a specific way as Algorithm 3 in [29].

2. Neighborhood size. The neighborhood size is used to control the maximum distance between
solutions and their neighbors. A small size aims to exploit the local area, while a large size aims to
explore a wide objective space [43]. The action space is of four dimensions, that is, 15, 20, 25 and
30, where 20 is the default value.

3. Types of reproduction operators. We consider four types of DE operators with different search
abilities introduced in [21]. For reproducing an offspring solution for the i-th sub-problem, let
x(i) and x′(i) denote its current solution and the generated offspring solution, respectively, and the
equations for four types of DE operators are shown as follows:

• OP1: x′(i) = x(i) + F ×
(
x(r1) − x(r2)

)
,

• OP2: x′(i) = x(i) + F ×
(
x(r1) − x(r2)

)
+ F ×

(
x(r3) − x(r4)

)
,

• OP3: x′(i) = x(i) +K ×
(
x(i) − x(r1)

)
+ F ×

(
x(r2) − x(r3)

)
+ F ×

(
x(r4) − x(r5)

)
,

• OP4: x′(i) = x(i) +K ×
(
x(i) − x(r1)

)
+ F ×

(
x(r2) − x(r3)

)
.

25

Table 2: State at step t in MOEA/D.

Index Parts of state Feature Notes

0 1 1/m m: Number of objectives
1 1 1/D D: Number of variables

2 2 t/T Computational budget that has been used
3 2 Nstag/T Stagnant count ratio

4 3 HVt Hypervolume value
5 3 NDRatiot Ratio of non-dominated solutions
6 3 Distt Average distance

7 3 HVt −HVt−1 Change of HV between steps t and t− 1
8 3 NDRatiot −NDRatiot−1 Change of NDRatio between steps t and t− 1
9 3 Distt −Distt−1 Change of Dist between steps t and t− 1

10 3 Mean(List(HV, t, 5)) Mean of HV in the last 5 steps
11 3 Mean(List(NDRatio, t, 5)) Mean of NDRatio in the last 5 steps
12 3 Mean(List(Dist, t, 5)) Mean of Dist in the last 5 steps
13 3 Std(List(HV, t, 5)) Standard deviation of HV in the last 5 steps
14 3 Std(List(NDRatio, t, 5)) Standard deviation of NDRatio in the last 5 steps
15 3 Std(List(Dist, t, 5)) Standard deviation of Dist in the last 5 steps

16 3 Mean(List(HV, t, t)) Mean of HV in all the steps so far
17 3 Mean(List(NDRatio, t, t)) Mean of NDRatio in all the steps so far
18 3 Mean(List(Dist, t, t)) Mean of Dist in all the steps so far
19 3 Std(List(HV, t, t)) Standard deviation of HV in all the steps so far
20 3 Std(List(NDRatio, t, t)) Standard deviation of NDRatio in all the steps so far
21 3 Std(List(Dist, t, t)) Standard deviation of Dist in all the steps so far

Here, x(r1),x(r2),x(r3),x(r4), and x(r5) are different parent solutions randomly selected from the
neighborhood of x(i). The scaling factor F > 0 controls the impact of the vector differences on the
mutant vector, and K ∈ [0, 1] functions similarly to F .

4. Parameters of reproduction operators. The parameters (particularly the scaling factor) of the
reproduction operators in MOEA/D have a significant effect on the algorithm’s performance [38].
We set the scaling factor K to a fixed value of 0.5 as recommended [21], and dynamically adjust
the scaling factor F with four discrete dimensions, i.e., 0.4, 0.5, 0.6 and 0.7, with 0.5 serving as the
default value.

State The state of MOEA/D includes three parts: 1. The feature of the problem instance (e.g., the
numbers of objectives and variables); 2. The feature of the optimization process (e.g., the budget
has been used); 3. Information about the evolution situation of the population (e.g., the hypervolume
value and the average distance of the current population). The detailed state feature is demonstrated
in Table 2.

Transition One step of transition takes place at one generation change in the evolutionary process
of MOEA/D.

Reward A positive reward of the MOEA/D environment is assigned to the agent team when a
better solution is found compared to the current best solution. Since optimization becomes harder
when the current best solution is more optimal with time, we should assign more reward to better
solutions found in the latter stage. We use the triangle-based reward function proposed in [44] defined
as follows, which has been proved effective in the MOEA/D environment.

At step t,

rt =

{
(1/2) · (p2t+1 − p2t) if f(st+1) < f∗

t

0 otherwise
,

where

pt+1 =

{
f(s0)−f(st+1)

f(s0)
if f(st+1) < f∗

t

pt otherwise
,

26

and f∗
t is the minimum metric value found until step t.

Problem instance The problem instances of MOEA/D include the well-known multi-objective
optimization problems (MOP) benchmarks DTLZ [8] and WFG [13] with variable numbers of
objectives and problem dimensions, which cover different difficulty levels of MOPs.

B.3 Hyperparameters of the algorithms compared in the experiments

For all the compared MARL algorithms, we use their default suggested hyperparameter settings
in EPyMARL2 (i.e., VDN [39], QMIX [31], MAPPO [46]) or their official implementation (i.e.,
HASAC [22]). For a fair comparison, we use the same hyperparameters for algorithms of the same
type (i.e., we use the same hyperparameters for the value-based methods: SADN, ACE [19], SAQL [3],
VDN [39] and QMIX [31], as well as the same hyperparameters for the policy gradient-based PPO
methods: MAPPO [46] and HAPPO [17]). The detailed hyperparameters in the experiments are
given in Table 3. For a fair comparison, we use one single 64-dimensional hidden layer for all the
value networks and the policy networks.

Table 3: The hyperparameters of the compared algorithms in the MOEA/D environment, and "-"
means the certain algorithm does not have that hyperparameter.

Hyperparameter SADN ACE SAQL VDN QMIX MAPPO HAPPO HASAC

Hidden layer size 64 64 64 64 64 64 64 64

Learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 3e-4 3e-4 5e-4

Batch size 32 32 32 32 32 10 10 10

Discount 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Target update interval 200 200 200 200 200 200 200 50

Number of steps to look ahead 1 - - - - 5 5 20

Entropy coef - - - - - 0.01 0.01 -

Grad norm clip 10 10 10 10 10 10 10 -

More detailed information can be found in our code available at https://github.com/
lamda-bbo/seq-madac.

C Additional results

C.1 Results on the original Sigmoid benchmark

We compare our method with the famous decomposition value-based method VDN [39], as well as the
widely used value-based single-agent RL algorithm DQN [28] on the original Sigmoid benchmark.
As shown in Figure 4, our method can achieve competitive and even better results compared to
the effective decomposition-based VDN when there are no strong inter-dependencies among the
parameters. Moreover, the single-agent RL algorithm DQN fails to learn effectively because of the
combinatorial explosion of the action space on the 5D Sigmoid, and even fails to train on the 10D
Sigmoid, which is also observed in [44], emphasizing the importance of the multi-agent modeling.

C.2 Comparison of the correct order and the reserve order on Seq-Sigmoid and
Seq-Sigmoid-Mask

The comparison of the sequential methods based on the correct order and the reverse order is shown
in Figure 5. Basically, the reverse order produces lower performance and larger variance than the
correct order due to the wrong capture of the inherent inter-dependencies between the parameters,
which misleads the learning of the whole team. There is an exception, HAPPO, which only considers
the update order of the agents rather than the order of taking actions. HAPPO avoids suffering from

2https://github.com/uoe-agents/epymarl

27

https://github.com/lamda-bbo/seq-madac
https://github.com/lamda-bbo/seq-madac
https://github.com/uoe-agents/epymarl

Figure 4: Training curves of the return value obtained by the compared methods on the original
Sigmoid benchmark.

the misleading of the reverse order, but fails to exploit the sequential information of the correct
order as well. The comparison of using the correct and the reverse order provides evidence for the
effectiveness of modeling the inherent inter-dependencies correctly, which also leads to more efficient
training.

C.3 Comparison of the correct order and the reserve order on MOEA/D

The results in Table 4 demonstrate the effectiveness of correctly considering the parameter order on
the real-scenario multi-objective evolutionary algorithm. Generally, the correct order produces better
results than the reverse order within the same sequential methods, which evidently shows that the
sequential information of the correct order can boost better performance, and the improvement of
the performance comes from the correct order, rather than simply making the actions selected by
the previous agents available to the subsequent agents. There are two exceptions: for MAPPO and
SAQL, the rank using the reverse order is better than that using the correct order. This is because
these two methods cannot efficiently make full use of the action sequence information, causing the
performance of the correct order to occasionally be far from optimal, and sometimes even worse than
the reverse order. For MAPPO, it is not originally designed to capture the sequence information, and
we basically add the previous agent’s action to the next agent’s state, according to [11]. For SAQL,
as an extension to IQL [40], it lacks reward allocation and fails to reveal the interactions among the
agents, which leads to a weak ability to make use of the action sequence information.

C.4 Discussion on generalization ability with different dimensions

We test the cross-dimension results of SADN on the MOEA/D benchmark as shown in Table 5.
Overall, the results demonstrate that our proposed method exhibits good generalization ability across
different dimensions. However, we acknowledge that cross-dimensional generalization remains a
significant challenge, and we will further investigate and improve its generalization capability in the
future, such as through multi-dimensional mixed training and employing multi-head models.

C.5 Runtime analysis of different methods

We test the training time of the compared methods on the 10D Seq-Sigmoid benchmark for 1,050,000
steps and the MOEA/D benchmark for 405,000 steps. The results are shown in Table 6.

Due to the independent and simultaneous update of the individual advantage nets, SADN demonstrates
good efficiency in terms of training and inference time, noting that we test the learned policies at fixed
intervals during the training process. In summary, to achieve the best average rank, the running time

28

Figure 5: Training curves of return value obtained by correct order and reverse order on four Seq-
Sigmoid variant tasks, where the results are averaged over 3 runs.

of our SADN is only slower than two value decomposition-based methods, i.e., VDN and QMIX,
while faster than SAQL, ACE, as well as the policy gradient-based MAPPO, HAPPO, and HASAC.

D Computation resource used

The experiments are conducted on 4 GPUs (each with 82.58 TFLOPS and 24 GB) and an AMD
EPYC 7513 CPU (32 cores). For our method SADN, one training run of 1e6 steps on the 10 D
Seq-Sigmoid benchmark takes approximately 4 hours, while one training run of 4e5 steps on the
MOEA/D benchmark takes about 14 hours. Among all algorithms, our proposed SADN ranks second,
slightly slower than the fastest method, VDN.

29

Table 4: IGD values of the compared methods with the correct order and reverse order (denoted as
-r) on different problems. Each result consists of the mean of 10 runs. The best mean value on each
problem is highlighted in bold. The symbols ’+’, ’−’ and ’≈’ indicate that the result is significantly
superior to, inferior to, and almost equivalent to our method SADN, respectively, according to the
Wilcoxon rank-sum test with significance level 0.05. The top three problems are the problems for
training, and the bottom five problems are for testing.

Problem Dim MOEA/D SADN SADN-r ACE [19] ACE-r SAQL [3] SAQL-r MAPPOar [11] MAPPOar-r

DTLZ2
6 4.593e-02 3.809e-02 3.819e-02 3.851e-02 4.615e-02 3.950e-02 4.061e-02 3.804e-02 3.786e-02
9 4.598e-02 3.875e-02 4.158e-02 4.057e-02 4.619e-02 4.337e-02 4.354e-02 4.308e-02 4.167e-02
12 4.599e-02 3.874e-02 4.176e-02 4.063e-02 4.634e-02 4.698e-02 4.734e-02 3.886e-02 4.284e-02

WFG4
6 5.729e-02 4.537e-02 4.847e-02 4.626e-02 6.282e-02 4.817e-02 4.747e-02 4.677e-02 4.576e-02
9 5.736e-02 5.190e-02 6.026e-02 5.853e-02 6.725e-02 5.365e-02 5.375e-02 5.471e-02 5.356e-02
12 5.751e-02 5.213e-02 6.021e-02 5.751e-02 6.983e-02 6.241e-02 5.958e-02 5.351e-02 5.797e-02

WFG6
6 5.855e-02 3.908e-02 4.027e-02 3.962e-02 5.811e-02 3.964e-02 3.995e-02 3.944e-02 3.921e-02
9 6.641e-02 4.884e-02 7.757e-02 5.111e-02 5.992e-02 4.384e-02 4.432e-02 6.093e-02 5.949e-02
12 6.864e-02 4.837e-02 7.674e-02 5.490e-02 7.908e-02 5.676e-02 5.755e-02 5.786e-02 6.710e-02

Training: +/−/≈ 0/9/0 0/8/1 0/8/1 0/9/0 1/8/0 1/8/0 0/7/2 1/8/0

DTLZ4
6 5.455e-02 3.895e-02 3.980e-02 4.221e-02 5.598e-02 5.019e-02 4.856e-02 3.932e-02 4.008e-02
9 6.229e-02 7.319e-02 5.366e-02 4.492e-02 5.765e-02 6.895e-02 5.833e-02 6.252e-02 5.847e-02
12 6.790e-02 7.852e-02 5.196e-02 4.650e-02 6.667e-02 8.589e-02 8.688e-02 5.336e-02 6.211e-02

WFG5
6 6.303e-02 4.749e-02 4.748e-02 4.752e-02 6.145e-02 5.390e-02 5.539e-02 4.713e-02 4.719e-02
9 6.351e-02 4.773e-02 4.778e-02 4.792e-02 6.156e-02 4.788e-02 4.787e-02 5.070e-02 4.798e-02
12 6.381e-02 4.793e-02 4.759e-02 4.791e-02 6.169e-02 4.954e-02 4.983e-02 4.751e-02 4.980e-02

WFG7
6 5.803e-02 3.893e-02 3.994e-02 3.942e-02 5.819e-02 3.958e-02 3.980e-02 3.922e-02 3.907e-02
9 5.812e-02 4.053e-02 4.954e-02 4.470e-02 5.878e-02 4.257e-02 4.235e-02 4.285e-02 4.154e-02
12 5.814e-02 4.060e-02 4.950e-02 4.447e-02 5.936e-02 4.975e-02 4.986e-02 4.115e-02 4.437e-02

WFG8
6 7.875e-02 1.018e-01 1.077e-01 1.029e-01 1.177e-01 1.054e-01 1.031e-01 1.005e-01 1.026e-01
9 9.680e-02 7.853e-02 9.191e-02 9.787e-02 1.053e-01 9.716e-02 9.299e-02 7.947e-02 7.911e-02
12 8.710e-02 7.891e-02 9.195e-02 8.387e-02 9.330e-02 9.023e-02 8.947e-02 7.873e-02 8.164e-02

WFG9
6 5.600e-02 3.987e-02 4.053e-02 4.012e-02 5.495e-02 4.010e-02 4.219e-02 3.994e-02 3.975e-02
9 5.748e-02 4.341e-02 5.831e-02 4.552e-02 5.562e-02 4.281e-02 4.168e-02 4.677e-02 4.446e-02
12 5.827e-02 4.249e-02 5.839e-02 4.477e-02 7.265e-02 7.291e-02 6.463e-02 5.299e-02 4.986e-02

Testing: +/−/≈ 1/12/2 3/10/2 2/9/4 1/13/1 0/11/4 2/11/2 3/8/4 4/9/2

average
rank

6 7.5 2 5.625 4.5 8.625 5.75 6.25 2.5 2.25
9 7.375 2.5 5.5 4.75 7.5 4.375 3.625 5.625 3.75
12 6.25 2.25 5.25 2.75 8 6.75 6.875 2.5 4.375

30

Table 5: Cross-dimension test of SADN on the MOEA/D benchmark. SADN-n refers to the model
trained exclusively on problems with n dimensions.

dim MOEA/D SADN-6 SADN-9 SADN-12

DTLZ2
6 4.593 3.809 3.854 3.810
9 4.598 3.928 3.875 3.840

12 4.599 3.936 3.882 3.874

WFG4
6 5.729 4.537 4.543 4.521
9 5.736 4.973 5.190 4.922

12 5.751 5.260 5.322 5.213

WFG6
6 5.855 3.908 3.919 3.913
9 6.641 5.044 4.884 5.010

12 6.864 5.036 5.138 4.837

DTLZ4
6 5.455 3.895 3.970 3.968
9 6.229 5.700 7.319 5.587

12 6.790 7.593 8.176 7.852

WFG5
6 6.303 4.749 4.764 4.759
9 6.351 4.814 4.773 4.788

12 6.381 4.824 4.823 4.793

WFG7
6 5.803 3.893 3.886 3.893
9 5.812 3.980 4.053 3.990

12 5.814 4.176 4.159 4.060

WFG8
6 7.875 10.18 10.56 10.67
9 9.680 9.020 7.853 8.948

12 8.710 8.013 8.191 7.891

WFG9
6 5.600 3.987 3.997 3.989
9 5.748 4.387 4.341 4.370

12 5.872 4.274 4.423 4.249
average rank 3.708 2.083 2.5 1.708

Table 6: The training time of the compared methods on the 10D Seq-Sigmoid benchmark for
1,050,000 steps and the MOEA/D benchmark for 405,000 steps

SADN ACE SAQL VDN QMIX MAPPO HAPPO HASAC

10DSeq-Sigmoid 4h28’ 5h01’ 6h34’ 3h23’ 3h29’ 12h32’ 16h39’ 21h17’
MOEA/D 14h56’ 16h20’ 19h46’ 14h48’ 15h23’ 17h44’ 20h02’ 23h52’

31

	Introduction
	Background
	Dynamic Algorithm Configuration
	Multi-Agent Reinforcement Learning

	Method
	Contextual Sequential Multi-Agent MDP
	Sequential Advantage Decomposition Network

	Experiment
	Experimental Settings
	RQ1: Is the sequential information useful?
	RQ2: How robust is SADN?
	RQ3: How does SADN perform on tuning real complex algorithms like MOEA/D?

	Conclusion
	Proof
	Deriving the global advantage update scheme from the Q-learning update scheme
	Proof of Theorem 1
	Proof of Lemma 1

	Detailed settings and information of the environments
	Seq-Sigmoid
	MOEA/D
	Hyperparameters of the algorithms compared in the experiments

	Additional results
	Results on the original Sigmoid benchmark
	Comparison of the correct order and the reserve order on Seq-Sigmoid and Seq-Sigmoid-Mask
	Comparison of the correct order and the reserve order on MOEA/D
	Discussion on generalization ability with different dimensions
	Runtime analysis of different methods

	Computation resource used

