

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONSTRUCT-THEN-COMPRESS: GEOMETRIC DYNAMICS OF GROKKING IN TRANSFORMERS

Anonymous authors

Paper under double-blind review

ABSTRACT

A central puzzle in deep learning is how generalized algorithms emerge from training dynamics, particularly in the phenomenon of grokking. Existing approaches track function complexity (Linear Mapping Number) or representation dimensionality (Local Intrinsic Dimension). We take a different perspective: a unified algorithm should manifest as geometrically consistent transformations across inputs. We introduce the **Geometric Coherence Score** (GCS), which measures the directional alignment of local Jacobian transformations across the data manifold. GCS provides a geometric signature of mechanistic unity—consistent transformations indicate a unified computational strategy, while scattered transformations suggest input-specific memorization. Combined with a fixed final geometry protocol that isolates mechanistic evolution from geometric drift, GCS reveals a **Construct-then-Compress** dynamic—specifically, a reduction in geometric modes rather than representational dimensions—invisible to complexity or dimensionality metrics. In single-layer Transformers, this dynamic unfolds in three distinct phases: (1) *Coherence Collapse*, where initial symmetry breaks to memorize data; (2) *Asynchronous Construction and Compression*, a critical silent phase where Attention initiates geometric reorganization, followed by MLP with temporal offset; and (3) *Post-Grokking Refinement*, where the mechanism consolidates into a unified solution. **We validate the construct-then-compress principle** across activation functions (ReLU, GeLU, SiLU) and modular tasks (addition, subtraction, multiplication, division), establishing GCS as a principled diagnostic tool. Extending to multi-layer networks (2–3 layers), we observe that final layers exhibit iterative construct-compress cycles rather than a single three-phase trajectory, while early layers show path-specific stability. These findings reveal depth-dependent dynamics that warrant further investigation into how hierarchical structure shapes algorithmic formation.

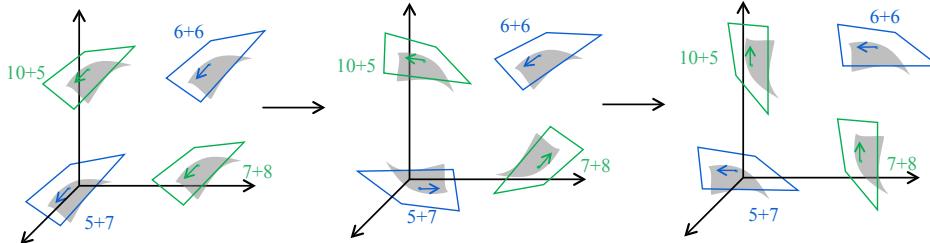
1 INTRODUCTION

Understanding how neural networks transition from memorization to generalization remains a fundamental challenge in deep learning. This question has gained urgency with the rise of Large Language Models, which exhibit emergent abilities that are not explicitly programmed (Havlík, 2025). The phenomenon of Grokking—where a network’s generalization performance suddenly spikes long after memorizing the training data—serves as a canonical testbed for investigating this mystery (Power et al., 2022). **Observed across models from small transformers to Large Language Models** (Liu et al., 2023a; Li et al., 2025; Humayun et al., 2024), this phenomenon challenges our understanding of the memorization-generalization transition. While numerous theories have been proposed—from competing circuits to phase transitions (Merrill et al., 2023; Carvalho et al., 2025; Liu et al., 2022; Rubin et al., 2024; Varma et al., 2023)—the precise mechanism of how a network transitions from brute-force memorization to algorithmic understanding remains elusive.

Recent breakthroughs in mechanistic interpretability offer a powerful new lens for this investigation. In modular addition, researchers have successfully reverse-engineered the final learned algorithm, revealing that trained transformers implement sophisticated solutions based on discrete Fourier transforms (Nanda et al., 2023), **clock-like circular representations** (Zhong et al., 2023), **constructive analytical solutions** (Gromov, 2023), or universal abstract algorithms (McCracken et al.,

054 2025). While we now know what elegant solution the network finds, the fundamental question
 055 persists: **how is this algorithm formed?**

057 To illuminate this process of algorithmic formation, we adopt a geometric perspective grounded in
 058 the manifold hypothesis (Cayton et al., 2005; Meilă & Zhang, 2024). Our key insight is that a unified
 059 algorithm should manifest as geometrically consistent transformations: if a network has learned a
 060 coherent computational strategy, it should transform similar inputs in similar ways. Conversely, scat-
 061 tered, input-specific transformations indicate memorization rather than algorithmic understanding.
 062 We introduce the Geometric Coherence Score (GCS), which quantifies the directional alignment of
 063 local Jacobian transformations across the data manifold. Unlike metrics that measure function com-
 064 plexity or representation dimensionality, GCS asks: *how consistently does the network transform
 065 different inputs?* This geometric consistency serves as a signature of mechanistic unity—providing
 066 a high-resolution view of when and how algorithmic structure emerges during training (Figure 1).



067 Figure 1: **The Evolution of Geometric Coherence.** Our GCS metric reveals a non-monotonic learn-
 068 ing process. **(left)** Trivial Coherence: An initial, non-generalizing state where the network applies
 069 a single, simple geometric transformation to all inputs, resulting in high GCS. **(middle)** Complex-
 070 ity Construction: The network learns specialized, inconsistent transformations for different inputs,
 071 causing a necessary drop in GCS. **(right)** Emergent Coherence: The network discovers a general-
 072 izing solution by unifying transformations for inputs of the same semantic class, while maintain-
 073 ing distinct transformations for different classes. This sophisticated, class-conditional coherence is the
 074 hallmark of the grokked state.

075
 076 Applying this geometric analysis to a single-layer Transformer, we uncover a construct-then-
 077 compress dynamic that orchestrates generalization. The network undergoes a non-monotonic, three-
 078 stage evolution: **(I) Coherence Collapse:** Initial spurious symmetry breaks as all pathways syn-
 079 chronously decrease coherence to memorize disjoint data points. **(II) Asynchronous Construc-
 080 tion and Compression:** While test accuracy remains flat, GCS reveals active structural evolution—
 081 Attention initiates geometric compression early by constructing ordered representations that
 082 eliminate redundant geometric degrees of freedom, while MLP follows with temporal offset. **(III)**
 083 **Post-Grokked Refinement:** System-wide unification occurs as MLP completes compression and
 084 Attention undergoes characteristic double descent, stabilizing into the final coherent algorithm.

085 We substantiate this discovery as follows:

- 086 • **Universality:** The construct-then-compress principle is [consistent across diverse activation](#)
 087 functions (ReLU, GeLU, SiLU) and [modular operations](#) (addition, subtraction, multiplication, division). In multi-layer networks (2–3 layers), final layers exhibit iterative construct-
 088 compress cycles, revealing depth-dependent dynamics that warrant further investigation.
- 089 • **Falsifiability:** The dynamic is absent in overfitting regimes (Appendix E), confirming that
 090 it specifically signifies algorithmic generalization rather than generic training artifacts.
- 091 • **Mechanistic Interpretability:** GCS directly tracks the evolution of attention patterns (Ap-
 092 pendix G), grounding our geometric measurements in concrete circuit-level changes.

093
 094 Our work reframes grokking as a process of asynchronous geometric reorganization, offering a prin-
 095 cipated framework for understanding how generalization emerges from [the interplay of hierarchical](#)
 096 depth and modular complexity.

108

2 RELATED WORK

109
110 **Quantitative Metrics for Grokking.** Existing metrics can be categorized by what they measure:
111 *function complexity*—LMN (Liu et al., 2023b) counts piecewise-linear regions; *representation di-*
112 *mensionality*—LID (Ruppik et al., 2025) and geometric regularizers (Walker et al., 2025) track in-
113 *trinsic dimension*; *transformation magnitude*—Jacobian regularization constrains smoothness. Our
114 work asks a different question: *how consistently does the network transform different inputs?* We
115 propose that transformation consistency serves as a geometric signature of mechanistic unity, shift-
116 ing focus from descriptive statistics to coherence and revealing dynamics invisible to other metrics.

117 **Theoretical Mechanisms Proposed for Grokking.** The phenomenon of grokking (Power et al.,
118 2022), where generalization is dramatically delayed, is a canonical example of emergence in deep
119 learning and has been observed in models as large as LLM (Li et al., 2025). The effort to explain
120 this dynamic has produced a rich and diverse landscape of theoretical hypotheses. These include
121 mechanistic theories centered on the discovery of specific algorithms, such as the discrete Fourier
122 transform (Nanda et al., 2023), or the competition between memorizing and generalizing circuits
123 (Varma et al., 2023; Merrill et al., 2023). Other lines of work attribute the phenomenon to the dy-
124 namics of optimization, positing it as a phase transition in the loss landscape (Liu et al., 2022) or a
125 consequence of the optimizer’s implicit bias (Lv et al., 2025). Although these theories provide valua-
126 ble high-level perspectives, a key challenge remains to quantitatively track the underlying structural
127 changes in the network function itself.

128 Recent work has begun to connect grokking to broader phenomena in deep learning. Kumar et al.
129 (2024) frames grokking as a transition from lazy to rich training dynamics, where networks shift
130 from using simple initial features to learning complex, task-specific representations—a perspective
131 further developed by Chou et al. (2025) through representational geometry analysis. Others have
132 identified deep connections to double descent (Davies et al., 2022; Huang et al., 2024), suggesting
133 that grokking, double descent, and circuit competition may arise from unified geometric principles.
134 Complementing these theoretical perspectives, several works have investigated the specific structure
135 of learned algorithms in modular arithmetic tasks (Morwani et al., 2024), revealing how features
136 emerge through implicit regularization. Our work contributes to this landscape by providing the first
137 direct geometric measurements of these proposed dynamics.

138

3 METHOD

139 Our methodology introduces a novel framework for quantifying the functional complexity of neural
140 networks from a geometric perspective. We begin by establishing the theoretical principles that
141 motivate our approach, then provide a rigorous algorithmic definition of our proposed metric, the
142 Geometric Coherence Score (GCS).

143

3.1 THEORETICAL MOTIVATION: FROM ALGORITHMIC CONSISTENCY TO GEOMETRIC 144 COHERENCE

145 The central challenge in understanding grokking is quantifying when a network transitions from
146 memorizing individual examples to learning a **unified algorithmic strategy**. Traditional metrics
147 like loss and accuracy capture performance but not the *consistency* of computational strategies across
148 inputs. We propose that this consistency can be measured geometrically. If a network learns a uni-
149 fied algorithm, it should apply similar geometric transformations to the internal representations of
150 different inputs. Conversely, a memorizing network employs disparate, input-specific transfor-
151 mations.

152 This perspective differs fundamentally from metrics like Participation Ratio (PR), which quantify
153 the *shape* of representations (e.g., effective dimensionality) but not *how* those representations are
154 transformed. PR derives from the covariance of activations, while GCS derives from the consistency
155 of the Jacobian \mathbf{J}_f —these are orthogonal properties. A network can reorganize its internal mech-
156 anism to be more coherent without changing its representational dimensionality; GCS detects such
157 “iso-dimensional” reorganization phases that purely dimensional metrics miss (see Appendix F).

158 Our approach is inspired by the principles of Manifold Learning. The **Manifold Hypothesis** posits
159 that high-dimensional data reside on a low-dimensional intrinsic manifold (Meilă & Zhang, 2024).

162 However, our goal is not to learn a new low-dimensional embedding. Instead, we propose a new
 163 paradigm: using the data manifold as a geometric reference frame to analyze the properties of the
 164 learned network function f . We hypothesize that generalization corresponds to the emergence of
 165 **Geometric Coherence**, the degree to which f applies a consistent geometric transformation to
 166 local structures (tangent spaces) across the manifold. A high degree of coherence signifies that the
 167 network has discovered a simple, universal algorithm that unwraps the manifold’s complexity. A
 168 low degree of coherence indicates a complex, inconsistent function characteristic of memorization.
 169

170 3.2 QUANTIFYING GEOMETRIC COHERENCE

172 To make this concept precise, we introduce a multi-step algorithm that translates the abstract notion
 173 of “geometric coherence” into a single, quantitative score.

174 **Local Tangent Space Estimation.** Given a computational flow $f : \mathcal{R}_{\text{in}} \rightarrow \mathcal{R}_{\text{out}}$, we construct
 175 the reference manifold in the input activation space of a converged reference model f_{ref} . For each
 176 sampled input \mathbf{x}_i , we extract its internal representation $\mathbf{r}_i \in \mathbb{R}^D$ at the flow’s input layer. For
 177 Transformers, we extract the residual stream at the **final token position** (the “=” token), which
 178 aggregates task-relevant computation.

179 We estimate the tangent space $T_{\mathbf{r}_i} \mathcal{M}$ by identifying the k -nearest neighbors \mathcal{N}_i in the representation
 180 space and forming a centered matrix $\mathbf{X}_i \in \mathbb{R}^{k \times D}$ with rows $(\mathbf{r}_j - \mathbf{r}_i)$ for $j \in \mathcal{N}_i$. SVD yields
 181 an orthonormal basis $\{\mathbf{v}_{i,1}, \dots, \mathbf{v}_{i,d}\}$ from the first d right singular vectors. Crucially, the *same*
 182 neighborhood \mathcal{N}_i is used both to estimate the tangent space and to define the edges in the coherence
 183 matrix \mathbf{G} —this ensures that we measure how consistently the network transforms the very geometric
 184 structure (the local neighborhood) from which the tangent basis was derived.

185 SVD provides a *canonical ordering* by variance magnitude ($\sigma_1 \geq \sigma_2 \geq \dots$): $\mathbf{v}_{i,1}$ is the direction of
 186 maximal local variation, $\mathbf{v}_{i,2}$ the second-most, etc. This data-driven ordering is numerically stable in
 187 neural networks due to their strong anisotropy (Ethayarajh, 2019)—representations occupy narrow
 188 cones rather than uniform spheres, ensuring well-separated singular values (see Appendix D).

189 **Network Transformation via JVP.** We use the Jacobian-Vector Product (JVP) to compute how
 190 each tangent vector is transformed:

$$191 \mathbf{v}'_{i,\ell} = \mathbf{J}_f(\mathbf{e}_i) \mathbf{v}_{i,\ell}, \quad (1)$$

193 where $\mathbf{J}_f(\mathbf{e}_i)$ is the Jacobian of flow f at the embedding \mathbf{e}_i . For Transformers, the tangent vector
 194 is embedded into the sequence space with nonzero values only at the final token position, restricting
 195 the JVP to measure geometry transformation at the task-critical output position.

196 **The Geometric Coherence Matrix \mathbf{G} .** The core insight is that if a network has learned a coherent
 197 algorithm, it should transform the local geometry of neighboring points in similar ways. For each
 198 neighbor pair (i, j) with $j \in \mathcal{N}_i$, we measure the alignment of their transformed tangent bases:

$$200 G_{ij} = \frac{1}{d} \sum_{\ell=1}^d \frac{|\langle \mathbf{v}'_{i,\ell}, \mathbf{v}'_{j,\ell} \rangle|}{\|\mathbf{v}'_{i,\ell}\| \|\mathbf{v}'_{j,\ell}\|} \quad (2)$$

203 Each term compares $\mathbf{v}'_{i,\ell}$ with $\mathbf{v}'_{j,\ell}$ —the ℓ -th transformed tangent vectors from each point. This
 204 index-wise correspondence leverages the SVD’s canonical ordering: since $\mathbf{v}_{i,1}$ always captures the
 205 direction of maximal local variance, comparing $\mathbf{v}'_{i,1}$ with $\mathbf{v}'_{j,1}$ asks whether the network transforms
 206 the “most important local direction” consistently across neighbors. For neighboring points on a
 207 smooth manifold, these principal directions are naturally aligned, making index-wise comparison
 208 geometrically meaningful. This measures whether the network transforms the *same geometric structure*
 209 consistently—capturing manifold coherence rather than abstract subspace overlap.

210 Following standard practice in manifold learning (Tenenbaum et al., 2000; Belkin & Niyogi, 2003),
 211 we set $G_{ij} = 0$ for non-neighboring pairs, restricting measurement to coherence *along* the data
 212 manifold rather than *across* it. Distant points may have correlated tangents by coincidence, but a
 213 unified algorithm should produce consistent transformations specifically for inputs that are locally
 214 similar on the learned representation manifold. This local-to-global construction—building global
 215 coherence from local consistency—allows the spectral analysis to reveal whether local coherences
 aggregate into a globally coherent transformation. We set $G_{ii} = 1$ (self-similarity).

216 **The Geometric Coherence Score (GCS).** To aggregate local coherence into a global score, we
 217 analyze the eigenvalue spectrum $\{\lambda_1, \dots, \lambda_N\}$ of \mathbf{G} . We normalize the spectrum as a probability
 218 distribution $p_i = |\lambda_i| / \sum_j |\lambda_j|$ and compute its Von Neumann entropy(Petz, 2001):
 219

$$220 \quad S_{\text{NL}} = - \sum_{i=1}^N p_i \log_2 p_i \quad (3)$$

223 The Geodesic Mode Number (GMN), defined as $\text{GMN} = 2^{S_{\text{NL}}}$, represents the effective number of
 224 independent geometric modes.

225 Finally, we define our primary reported metric, the **Geometric Coherence Score (GCS)**, as:
 226

$$227 \quad \text{GCS} = N - \text{GMN} \quad (4)$$

228 A random function yields $\text{GMN} \approx N$ and $\text{GCS} \approx 0$; thus GCS quantifies the reduction from this
 229 random baseline—intuitively, the number of geometric modes unified into a coherent algorithm. [A](#)
 230 [complete derivation is in Appendix A](#). The procedure is summarized in Algorithm 1.
 231

232 3.3 MODULAR ANALYSIS OF TRANSFORMER COMPUTATIONAL FLOWS

234 To analyze complex architectures like Transformers, we apply the GCS metric not only to the entire
 235 network but to specific sub-functions, which we term **Computational Flows**. A flow is a well-
 236 defined function from an input activation space to an output activation space (e.g., from the block’s
 237 input to the FFN’s output). This modular approach transforms GCS from a global score into a
 238 surgical tool for dissecting a network’s internal algorithm. In the following sections, we apply this
 239 framework to reveal the remarkable learning dynamic of a Transformer undergoing grokking.

241 **Algorithm 1** GCS Computation with Fixed Geometry Protocol

242 **Require:** Checkpoint f , reference model f_{ref} , samples $\{\mathbf{x}_i\}_{i=1}^N$, k, d
 243 **Ensure:** Geometric Coherence Score (GCS)
 244 1: **Build fixed geometry from** f_{ref} :
 245 2: Extract $\mathbf{r}_i \leftarrow f_{\text{ref}}(\mathbf{x}_i)[-1, :]$, $\mathbf{e}_i \leftarrow \text{Embed}_{f_{\text{ref}}}(\mathbf{x}_i)$ {Final token}
 246 3: **for** $i = 1$ to N **do**
 247 4: Find k -NN \mathcal{N}_i ; SVD on centered neighbors \rightarrow tangent basis $\{\mathbf{v}_{i,\ell}\}_{\ell=1}^d$
 248 5: **end for**
 249 6: **Analyze checkpoint** f :
 250 7: **for** $i = 1$ to N , $\ell = 1$ to d **do**
 251 8: $\mathbf{v}'_{i,\ell} \leftarrow \mathbf{J}_f(\mathbf{e}_i) \mathbf{v}_{i,\ell}$ {Jacobian from f , geometry from f_{ref} }
 252 9: **end for**
 10: **Build coherence matrix:** $G_{ii} = 1$; for $j \in \mathcal{N}_i$: $G_{ij} = \frac{1}{d} \sum_{\ell} |\cos(\mathbf{v}'_{i,\ell}, \mathbf{v}'_{j,\ell})|$
 11: **Spectral analysis:** $p_i = |\lambda_i| / \sum_j |\lambda_j|$, $S = - \sum_i p_i \log_2 p_i$
 12: **return** $\text{GCS} = N - 2^S$

257 4 EXPERIMENTS

259 To validate our geometric coherence framework and investigate the learning dynamics of Transformers,
 260 we conduct a series of controlled experiments on an algorithmic task known to exhibit grokking.
 261 This section details our experimental setup, including the task, model architecture, training protocol,
 262 and the specific configuration for our geometric coherence analysis.
 263

264 4.1 EXPERIMENTAL SETUP

266 The setup follows established protocols for mechanistic interpretability studies (Nanda et al., 2023;
 267 Liu et al., 2023a).

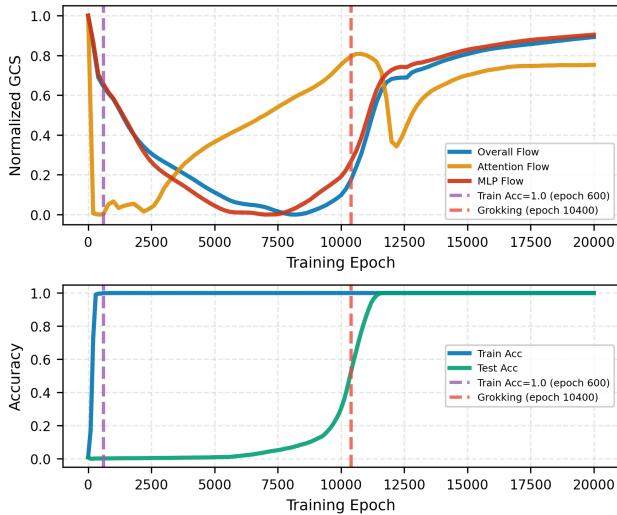
268 **Core Setup.** We focus on modular addition $c \equiv (a + b) \pmod{p}$ with prime modulus $p = 113$.
 269 The dataset consists of all $p^2 = 12,769$ input pairs, split into 30% training (3,830 pairs) and 70%

270 testing (8,939 pairs). Input sequences are $[\text{token}_a, \text{token}_b, \text{token}_{\text{equals}}]$, where the equals token is 113.
 271 We use a single-layer decoder-only Transformer with embedding dimension $d_{\text{model}} = 128$, multi-
 272 head attention ($n_{\text{heads}} = 4$, $d_{\text{head}} = 32$), and MLP with hidden dimension $d_{\text{mlp}} = 512$. The MLP
 273 consists of input weights $W_{\text{in}} \in \mathbb{R}^{d_{\text{mlp}} \times d_{\text{model}}}$, output weights $W_{\text{out}} \in \mathbb{R}^{d_{\text{model}} \times d_{\text{mlp}}}$, with unembedding
 274 matrix $W_U \in \mathbb{R}^{d_{\text{vocab}} \times d_{\text{model}}}$ where $d_{\text{vocab}} = 114$. **We analyze networks with ReLU, GeLU, and**
 275 **SiLU activations, demonstrating that our findings hold across different nonlinearities (Section 4.3).**
 276 No layer normalization or embedding tying is used. Training employs full-batch gradient descent
 277 for 20,000 steps using AdamW optimizer: learning rate 1×10^{-3} , weight decay $\lambda = 1.0$, betas
 278 $\beta = (0.9, 0.98)$. All experiments use fixed random seeds. **While our primary analysis focuses**
 279 **on single-layer Transformers, we extend to 2-layer and 3-layer architectures in Section 4.4 and**
 280 **Appendix C.**
 281

282 **Geometric Analysis Configuration.** We employ the **Fixed Final Geometry** protocol (Algorithm 1): the geometric structure (k -NN graph, tangent bases, embeddings) is built once from the
 283 final model f_{ref} , while only the Jacobian \mathbf{J}_f varies across checkpoints. This isolates the evolution
 284 of the learned transformation, measuring whether each checkpoint’s Jacobian aligns tangent vectors
 285 consistently with the final model’s manifold. We use $N = 200$ samples, $k = 15$ neighbors, $d = 8$
 286 dimensions; robustness is confirmed in Appendix B. GCS is computed every 200 steps.
 287

288 We analyze three Computational Flows at the final token position: **Attention Flow** (block input \rightarrow
 289 attention output), **MLP Flow** (post-attention residual \rightarrow MLP output), and **Overall Flow** (block
 290 input \rightarrow block output).

292 4.2 A THREE-STAGE GEOMETRIC DYNAMIC IN GROKKING



311 **Figure 2: The three-stage geometric evolution during grokking.** The top panel shows the test
 312 loss (red, log scale) and test accuracy (green), marking a sharp generalization transition around
 313 step 10,400. The bottom panel displays the corresponding evolution of the normalized Geometric
 314 Coherence Score (GCS) for three key computational flows.
 315

316 Our central discovery, illustrated in Figure 2, is that the emergence of generalization in the Trans-
 317 former is orchestrated by a remarkable, non-monotonic, **three-stage geometric learning dynamic**
 318 which we term “**construct-then-compress**” algorithm. This dynamic is characterized not by a sim-
 319 ple sequence, but by a sophisticated, overlapping interplay between the Attention and MLP modules.
 320

321 **Phase I: Memorization with Coherence Collapse (Steps 0–600).** Training begins with all flows
 322 exhibiting high GCS due to spurious uniformity in transformations. As the network memorizes the
 323 training data, all three flows descend concurrently, with the Attention flow declining most rapidly
 and reaching its minimum first, while the MLP and Overall flows continue to decrease. By the end of

324 this phase, the network achieves perfect training accuracy, indicating complete memorization. How-
 325 ever, all pathways have abandoned their initial trivial coherence, setting the stage for algorithmic
 326 discovery.

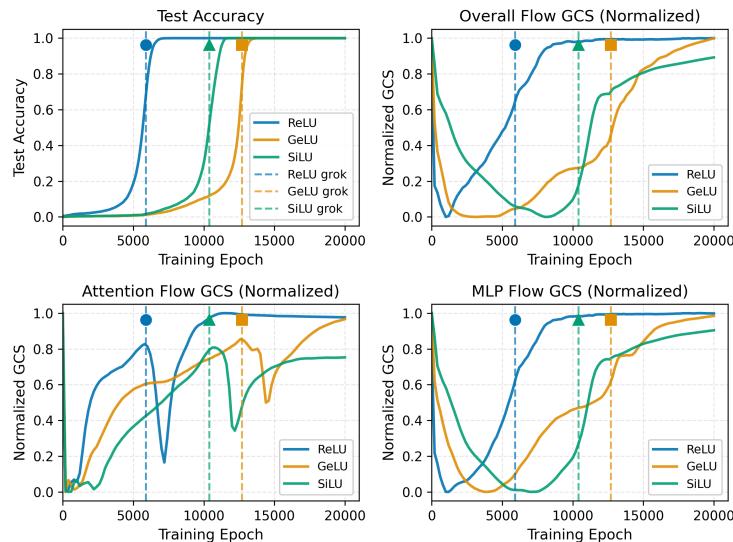
327 **Phase II: Asynchronous Construction then Compression (Steps 600–10,400).** This extended
 328 phase reveals asynchronous coordination among the pathways. The Attention flow, having reached
 329 its minimum first, initiates compression earliest, rising steadily as it constructs structured attention
 330 patterns. The MLP and Overall flows reach their minima later and then begin their ascent. Both
 331 pathways compress simultaneously but with a temporal offset: Attention leads, and MLP follows.
 332 This phase culminates as the Attention flow approaches its peak coherence while MLP compression
 333 accelerates—marking the grokking transition, where test accuracy exhibits its steepest rise, though
 334 not yet reaching saturation.

335 **Phase III: Post-Grokking Refinement (Steps 10,400+).** Following the grokking transition, all
 336 pathways undergo continued refinement that brings test accuracy to full saturation. Most notably, the
 337 Attention flow exhibits a characteristic *double descent*—a secondary drop in coherence following its
 338 Phase II peak—suggesting algorithmic fine-tuning as attention patterns are adjusted to better align
 339 with the discovered solution. The MLP and Overall flows stabilize at high coherence with minor
 340 adjustments. Through this refinement phase, test accuracy completes its rise to near 100%, and the
 341 network converges to its final, geometrically coherent algorithm.

343 4.3 ROBUSTNESS OF THE THREE-STAGE DYNAMIC

344 Having identified the three-stage dynamic in a single-layer Transformer, we now confirm its ro-
 345 bustness across diverse experimental conditions. The central question is whether this geometric
 346 choreography—Phase I coherence collapse, Phase II asynchronous construction-then-compression
 347 with Attention leading, and Phase III post-grokking refinement—represents a fundamental property
 348 of Transformer learning.

349 **Consistency Across Activation Functions.** We repeated our analysis using three activation func-
 350 tions (ReLU, GeLU, SiLU) on the modular addition task. Figure 3 reveals remarkable qualitative
 351 consistency: all three exhibit the same three-stage structure with identical temporal ordering (Atten-
 352 tion leads construction and compression, MLP follows), despite notable quantitative differences in
 353 learning speed and final GCS magnitude. ReLU networks grok fastest; SiLU networks are slowest.
 354 This invariance demonstrates that the three-stage dynamic emerges from the Transformer’s architec-
 355 tural inductive biases rather than particular nonlinear choices.



375 **Figure 3: Impact of Activation Functions on the Three-Stage Dynamic.** The construct-then-
 376 compress choreography (Phase I–II–III) persists across ReLU, GeLU, and SiLU despite timing vari-
 377 ations, where Attention leads MLP in geometric reorganization.

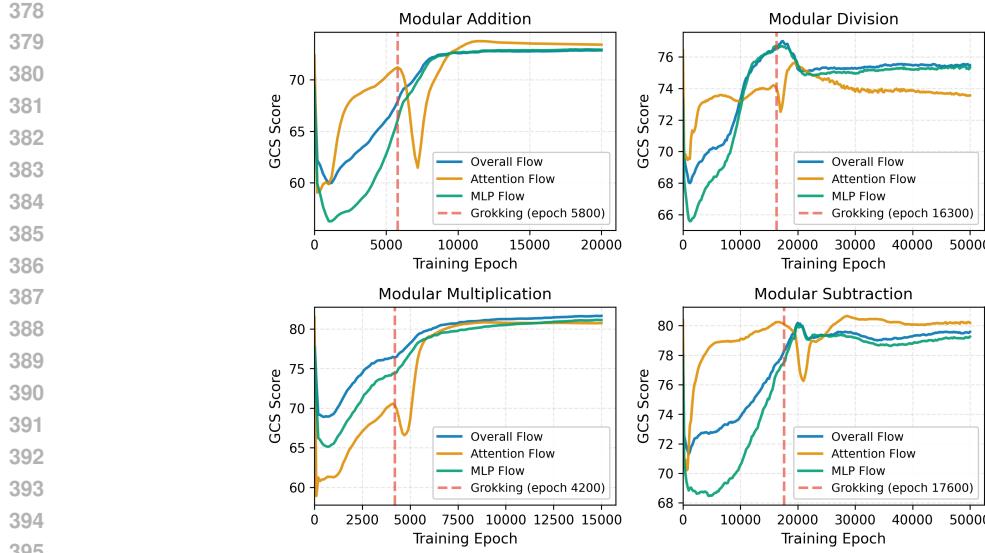


Figure 4: **Impact of Modular Tasks on the Three-Stage Dynamic.** While symmetric tasks (add, mul) show monotonic compression in Phase III, asymmetric tasks (div, sub) exhibit MLP double descent, reflecting higher algorithmic complexity.

Consistency Across Modular Operations. Extending our analysis to all four fundamental modular operations (addition, subtraction, multiplication, division), we find that the three-stage dynamic is fully preserved across all tasks (Figure 4). Every operation exhibits the same temporal choreography: Phase I coherence collapse during memorization, Phase II asynchronous construction-then-compression with Attention leading, and Phase III post-grokking refinement.

The only task-dependent variation occurs in the *refinement pattern* of Phase III. Symmetric operations (addition, multiplication) show continued MLP compression—a monotonic rise toward stable high coherence. In contrast, asymmetric operations (division, subtraction) exhibit MLP *double descent* alongside the Attention double descent, suggesting that these algorithmically more complex tasks require additional geometric fine-tuning across *both* pathways before converging to their final solution. This variation enriches rather than contradicts our framework: the three-stage structure accommodates task-specific refinement dynamics while maintaining its core temporal choreography.

4.4 HIERARCHICAL ORGANIZATION IN MULTI-LAYER TRANSFORMERS

We extend our analysis to 2-layer and 3-layer Transformers on modular addition ($p = 113$), with detailed layer-wise GCS trajectories provided in Appendix C. An interesting pattern emerges: as depth increases, the final layer achieves *lower* geometric coherence while early layers maintain higher stability (Table 1).

Table 1: Final geometric coherence (GCS at convergence) on modular addition ($p = 113$). Deeper networks show progressively lower final-layer GCS, particularly in attention paths, suggesting more specialized geometric transformations in later layers.

Architecture	Layer	Overall	Attention	MLP
1-Layer	—	74.9	74.9	74.8
2-Layer	Layer 1	87.0	85.9	87.0
	Layer 2	66.8	64.4	68.8
3-Layer	Layer 1	68.8	68.7	68.7
	Layer 2	71.4	64.3	71.4
	Layer 3	61.0	58.6	62.5

432 **Depth-Dependent Geometric Specialization.** The progressive decrease in final-layer attention
 433 GCS—from 74.9 (1-layer) to 64.4 (2-layer) to 58.6 (3-layer)—reveals a consistent pattern: deeper
 434 networks employ increasingly *specialized* geometric transformations in their final layers, while early
 435 layers maintain higher coherence that provides stable representational foundations. This stratifica-
 436 tion suggests that multi-layer networks decompose the modular arithmetic task hierarchically, with
 437 early layers establishing structured features and final layers performing more input-specific compu-
 438 tations. The potential connection between this geometric specialization and depth-dependent algo-
 439 rithmic complexity (e.g., frequency utilization) remains an open question discussed in Section 5.

440 **Path-Specific Dynamics in Hierarchical Processing.** Table 2 reveals a nuanced pattern of geomet-
 441 ric restructuring across layers and paths. While the overall and MLP paths in early layers remain
 442 nearly static (ranges 0.2–1.3), attention dynamics vary by depth: in 2-layer networks, the early
 443 layer shows substantial attention restructuring (range 13.0), while in 3-layer networks, attention dy-
 444 namics distribute across middle layers (Layer 2 range 7.4) with the earliest layer remaining nearly
 445 static. In contrast, final layers show substantial restructuring across all paths. Notably, unlike the
 446 single three-phase trajectory observed in 1-layer networks, multi-layer final layers exhibit *iterative*
 447 *construct-compress cycles*—alternating phases of coherence increase and decrease—suggesting that
 448 hierarchical processing involves repeated refinement rather than a single pass. This path-specific di-
 449 vision of labor, where early layers maintain stable MLP transformations while final layers undergo
 450 iterative geometric reorganization, reveals depth-dependent dynamics distinct from single-layer be-
 451 havior.

452 Table 2: Geometric restructuring magnitude (GCS range) during training. Early layers show path-
 453 specific stability (overall and MLP nearly static); attention dynamics vary by depth—substantial
 454 in 2-layer (13.0), distributed to middle layers in 3-layer (7.4). Final layers show substantial re-
 455 structuring: 1-layer exhibits clear three-stage dynamics, while multi-layer final layers show iterative
 456 construct-compress cycles.

Architecture	Layer	Overall	Attention	MLP	Pattern
1-Layer	—	4.6	17.9	7.2	Three-stage
2-Layer	Layer 1	0.2	13.0	0.2	Stable (Attn dynamic)
	Layer 2	10.0	12.9	14.5	Iterative cycles
3-Layer	Layer 1	1.3	1.0	1.2	Nearly static
	Layer 2	0.8	7.4	0.8	Stable (Attn dynamic)
	Layer 3	9.7	6.2	14.5	Iterative cycles

5 DISCUSSION

470 **Universality of Geometric Dynamics.** By extending our analysis across diverse tasks and architec-
 471 tures, we establish that the construct-then-compress principle is robust across activation functions
 472 and modular operations. In single-layer networks, this manifests as a clear three-phase evolution; in
 473 multi-layer networks, final layers exhibit iterative construct-compress cycles, suggesting that hierar-
 474 chical processing involves repeated refinement. **This supports the “lazy-to-rich” framework (Chou**
 475 **et al., 2025; Kumar et al., 2024), but adds geometric precision: the “richness” is specifically the**
 476 **construction of coherent transformations, with depth introducing iterative refinement dynamics.**

477 **Geometric Grounding of Competing Circuits.** GCS provides a physical basis for the abstract
 478 competing circuits hypothesis (Merrill et al., 2023). We interpret the memorization circuit as geo-
 479 metrically incoherent (disjoint Jacobians) and the generalization circuit as coherent (aligned Ja-
 480 cobians). The steady rise of GCS during the accuracy plateau (Phase II) acts as an early warning
 481 system, visualizing the silent growth of the generalization circuit before it dominates behavior. **This**
 482 **connects time-wise grokking to model-wise double descent (Davies et al., 2022), identifying their**
 483 **shared geometric origin.**

484 **GCS vs. Dimensionality Metrics.** A key methodological contribution is the distinction between
 485 geometric coherence and representational dimensionality. During Phase II, we observe “iso-
 dimensional” organization: the Participation Ratio remains flat (indicating stable global dimension-

486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 196

540 Yufei Huang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Unified view of
 541 grokking, double descent and emergent abilities: A perspective from circuits competition. *CoRR*,
 542 abs/2402.15175, 2024. URL <https://doi.org/10.48550/arXiv.2402.15175>.
 543

544 Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always grok
 545 and here is why. In *Forty-first International Conference on Machine Learning*, 2024. URL
 546 <https://openreview.net/forum?id=zMue490KMr>.
 547

548 Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the trans-
 549 sition from lazy to rich training dynamics. In *The Twelfth International Conference on Learning
 550 Representations*, 2024. URL <https://openreview.net/forum?id=vt5mnLVIVO>.
 551

552 Ziyue Li, Chenrui Fan, and Tianyi Zhou. Grokking in llm pretraining? monitor memorization-to-
 553 generalization without test, 2025. URL <https://arxiv.org/abs/2506.21551>.
 554

555 Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. To-
 556 wards understanding grokking: An effective theory of representation learning. *Advances in Neu-
 557 ral Information Processing Systems*, 35:34651–34663, 2022.
 558

559 Ziming Liu, Eric J Michaud, and Max Tegmark. Omnidrok: Grokking beyond algorithmic data.
 560 In *The Eleventh International Conference on Learning Representations*, 2023a. URL <https://openreview.net/forum?id=zDiHoIWa0q1>.
 561

562 Ziming Liu, Ziqian Zhong, and Max Tegmark. Grokking as simplification: A nonlinear complexity
 563 perspective. In *UniReps: the First Workshop on Unifying Representations in Neural Models*,
 564 2023b. URL <https://openreview.net/forum?id=uviLSCIsvt>.
 565

566 Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, and Rui Yan. Language models “grok” to
 567 copy. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of
 568 the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
 569 Language Technologies (Volume 2: Short Papers)*, pp. 735–741, Albuquerque, New Mexico, April
 2025. Association for Computational Linguistics. ISBN 979-8-89176-190-2. doi: 10.18653/v1/
 2025.naacl-short.61. URL <https://aclanthology.org/2025.naacl-short.61/>.
 570

571 Charles H Martin and Michael W Mahoney. Implicit self-regularization in deep neural networks:
 572 Evidence from random matrix theory and implications for learning. *Journal of Machine Learning
 573 Research*, 22(165):1–73, 2021.
 574

575 Gavin McCracken, Gabriela Moisescu-Pareja, Vincent Létourneau, Doina Precup, and Jonathan
 576 Love. Uncovering a universal abstract algorithm for modular addition in neural networks. In
 577 *The Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025. URL
 578 <https://openreview.net/forum?id=zuHs6RHQwT>.
 579

580 Marina Meilă and Hanyu Zhang. Manifold learning: What, how, and why. *Annual Review of
 581 Statistics and Its Application*, 11(1):393–417, 2024.
 582

583 William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competi-
 584 tion of sparse and dense subnetworks. *arXiv preprint arXiv:2303.11873*, 2023.
 585

586 Depen Morwani, Benjamin L. Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham M. Kakade.
 587 Feature emergence via margin maximization: case studies in algebraic tasks. In *The Twelfth
 588 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=i9wDX850jR>.
 589

590 N. C. Murphy, R. Wortis, and W. A. Atkinson. Generalized inverse participation ratio as a possible
 591 measure of localization for interacting systems. *Physical Review B*, 83(18), May 2011. ISSN
 592 1550-235X. doi: 10.1103/physrevb.83.184206. URL <http://dx.doi.org/10.1103/PhysRevB.83.184206>.
 593

594 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress mea-
 595 sures for grokking via mechanistic interpretability. In *The Eleventh International Conference on
 596 Learning Representations, ICLR 2023*, May 2023.

594 Dénes Petz. Entropy, von neumann and the von neumann entropy: Dedicated to the memory of
 595 alfred wehrl. In *John von Neumann and the foundations of quantum physics*, pp. 83–96. Springer,
 596 2001.

597

598 Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
 599 alization beyond overfitting on small algorithmic datasets, 2022. URL <https://arxiv.org/abs/2201.02177>.

600

601 Noa Rubin, Inbar Seroussi, and Zohar Ringel. Grokking as a first order phase transition in two layer
 602 networks. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 603 <https://openreview.net/forum?id=3ROGstX3IR>.

604

605 Benjamin Matthias Ruppik, Julius von Rohrscheidt, Carel van Niekerk, Michael Heck, Renato
 606 Vukovic, Shutong Feng, Hsien chin Lin, Nurul Lubis, Bastian Rieck, Marcus Zibrowius, and
 607 Milica Gasic. Less is more: Local intrinsic dimensions of contextual language models. In
 608 *The Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025. URL
 609 <https://openreview.net/forum?id=dXqqFte3KT>.

610

611 Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
 612 nonlinear dimensionality reduction. *science*, 290(5500):2319–2323, 2000.

613

614 Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
 615 grokking through circuit efficiency, 2023. URL <https://arxiv.org/abs/2309.02390>.

616

617 Thomas Walker, Ahmed Imtiaz Humayun, Randall Balestrieri, and Richard Baraniuk. Grokalign:
 618 Geometric characterisation and acceleration of grokking, 2025. URL <https://arxiv.org/abs/2506.12284>.

619

620 Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two
 621 stories in mechanistic explanation of neural networks. In *Thirty-seventh Conference on Neural
 622 Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=S5wmbQc1We>.

623

624

625

626

627 **A THEORETICAL DERIVATION OF GCS BOUNDS**

628

629 To validate the physical interpretation of the Geometric Coherence Score (GCS), we derive its be-
 630 havior in two theoretical limit cases: Total Geometric Incoherence (representing pure memoriza-
 631 tion) and Perfect Geometric Coherence (representing ideal algorithmic unification). This derivation
 632 demonstrates that GCS functions as a rigorous measure of complexity reduction.

633

634

635 **A.1 CASE 1: TOTAL GEOMETRIC INCOHERENCE (THE MEMORIZATION LIMIT)**

636 Consider a network in a state of pure memorization, where each data point is processed indepen-
 637 dently. In this regime, the local geometric transformation at any point \mathbf{x}_i is uncorrelated with the
 638 transformation at its neighbor \mathbf{x}_j . Consequently, the tangent vectors become orthogonal or randomly
 639 oriented in the high-dimensional space.

640

641 **Mathematical Formulation:** The pairwise geometric similarity G_{ij} approaches zero for all dis-
 642 tinct pairs, while self-similarity remains unity:

643

644

645

646

647

$$G_{ij} \approx \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \quad (5)$$

Thus, the coherence matrix \mathbf{G} approximates the identity matrix $\mathbf{I}_N \in \mathbb{R}^{N \times N}$.

648 **Spectral Analysis:** The eigenvalues of the identity matrix satisfy $\det(\mathbf{I}_N - \lambda \mathbf{I}_N) = (1 - \lambda)^N = 0$.
 649 Hence, the spectrum is perfectly degenerate:
 650

$$651 \quad \lambda_1 = \lambda_2 = \dots = \lambda_N = 1 \quad (6)$$

653 We normalize this spectrum to obtain the probability distribution p :
 654

$$655 \quad p_i = \frac{\lambda_i}{\sum_{j=1}^N \lambda_j} = \frac{1}{N}, \quad \forall i \in \{1, \dots, N\} \quad (7)$$

658 This yields a uniform distribution over the geometric modes.
 659

660 **GCS Computation:** The Von Neumann entropy S_{NL} is maximized for the uniform distribution:
 661

$$663 \quad S_{\text{NL}} = -\sum_{i=1}^N p_i \log_2 p_i = -\sum_{i=1}^N \frac{1}{N} \log_2 \left(\frac{1}{N} \right) = \log_2 N \quad (8)$$

666 The Geodesic Mode Number (GMN) and GCS are derived as:
 667

$$669 \quad \text{GMN} = 2^{S_{\text{NL}}} = 2^{\log_2 N} = N \quad (9)$$

$$670 \quad \text{GCS} = N - \text{GMN} = N - N = 0 \quad (10)$$

672 **Conclusion:** In the limit of total incoherence, the network exhibits N independent geometric de-
 673 grees of freedom, resulting in a GCS of exactly 0.
 674

675 A.2 CASE 2: PERFECT GEOMETRIC COHERENCE (THE ALGORITHMIC LIMIT)

677 Consider a network that has discovered a unified, generalizable algorithm (e.g., a consistent rotation
 678 across a manifold). In this ideal limit, the network applies an identical geometric transformation to
 679 all points, resulting in perfect alignment between all local tangent spaces.
 680

681 **Mathematical Formulation:** In the theoretical limit where all points exhibit identical transfor-
 682 mations (relaxing the k-NN constraint for analytical purposes), the geometric similarity between
 683 any pair of points is maximal. The coherence matrix \mathbf{G} approaches the all-ones matrix \mathbf{J}_N (where
 684 $G_{ij} = 1, \forall i, j$).
 685

686 **Spectral Analysis:** The all-ones matrix \mathbf{J}_N has rank 1. To find its eigenvalues, note that $\mathbf{J}_N \mathbf{v} =$
 687 $N \mathbf{v}$ when $\mathbf{v} = [1, 1, \dots, 1]^\top$, while any vector orthogonal to \mathbf{v} is mapped to zero. Thus:
 688

$$689 \quad \lambda_1 = N, \quad \lambda_2 = \dots = \lambda_N = 0 \quad (11)$$

691 The normalized probability distribution p becomes a Kronecker delta distribution (pure state):
 692

$$693 \quad p_1 = \frac{N}{N} = 1, \quad p_i = \frac{0}{N} = 0 \text{ for } i > 1 \quad (12)$$

696 **GCS Computation:** The entropy of this pure state vanishes:
 697

$$698 \quad S_{\text{NL}} = -1 \cdot \log_2(1) - \sum_{i=2}^N 0 \cdot \log_2(0) = 0 \quad (13)$$

701 where we use the convention $0 \log_2(0) = 0$. The GMN and GCS are derived as:

702

703

704
$$GMN = 2^0 = 1 \quad (14)$$

705
$$GCS = N - 1 \quad (15)$$

706

707

708 **Conclusion:** In the limit of perfect coherence, the network’s geometric behavior collapses into a single effective mode ($GMN = 1$), resulting in a maximal GCS of $N - 1$.

709

710

A.3 INTERPRETATION

711

712

713

714

715

716

717 These derivations confirm that $GCS = N - GMN$ serves as a linear measure of complexity reduction. It quantifies the number of redundant geometric degrees of freedom the network has successfully eliminated, ranging from 0 (chaos/memorization) to $N - 1$ (order/algoritmic discovery). The Von Neumann entropy, borrowed from quantum information theory, naturally captures the effective dimensionality of the geometric transformation space, making GCS a principled measure of algorithmic compression.

718

719

B HYPERPARAMETER ROBUSTNESS

720

721

722

723

724

725

726 A critical aspect of our geometric analysis is ensuring that the observed learning dynamics are not artifacts of specific hyperparameter choices. We evaluate the sensitivity of the Geometric Coherence Score (GCS) to two key parameters: the intrinsic dimension d of the local tangent spaces, and the number of evaluation samples N . Our robustness analysis demonstrate that the core geometric phenomena—specifically the three-stage dynamic and the grokking transition—are robust across wide parameter ranges.

727

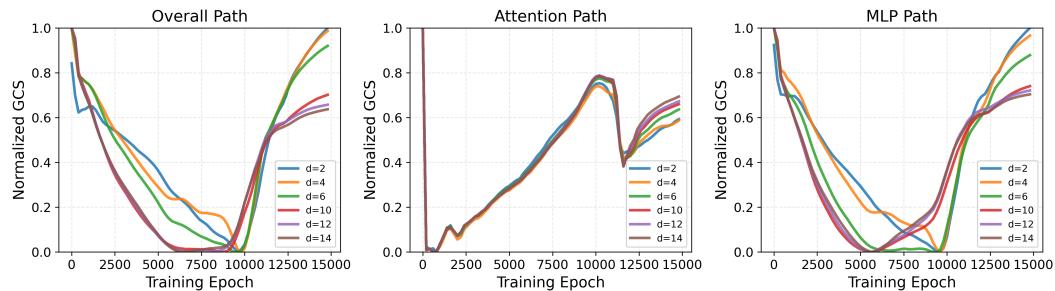
728

B.1 ROBUSTNESS TO INTRINSIC DIMENSION d

729

730

731

732 The intrinsic dimension d determines the rank of the local linear approximation used to probe the network’s geometry. To understand its impact, we conducted experiments with $d \in \{2, 4, 6, 8, 10, 12, 14\}$, keeping the neighborhood size fixed at $k = 15$ and sample size at $N = 200$.

742 **Figure 5: Intrinsic Dimension Robustness.** **(Left)** Normalized GCS curves for the Attention Flow
 743 across varying dimensions d . The characteristic U-shape dynamic is preserved universally. **(Right)**
 744 Pairwise correlation matrix of GCS trajectories between different d values. The high correlation
 745 ($r > 0.90$) confirms that different dimensions capture the same underlying geometric evolution.

746

747 As shown in Figure 5, our analysis reveals strong consistency across dimensions:

748

749

750

751

752

753

754

755

Shape Consistency: All tested dimensions d produce highly congruent GCS trajectories. The characteristic “U-shape” curve—marking the transition from memorization to construction and finally compression—is clearly visible in all cases. **High Correlation:** We computed the Pearson correlation coefficient between the GCS trajectories of different d values. The cross-dimension correlations consistently exceed 0.90, with an average correlation of 0.97 relative to our chosen baseline of $d = 8$. This confirms that low-dimensional probes ($d = 2$) and higher-dimensional probes ($d = 14$) are measuring the same fundamental geometric process. **Selection of $d = 8$:** While lower dimensions ($d = 2$) exhibit a higher dynamic range (sensitivity), they risk underspecifying the geometric complexity of the 128-dimensional representation space. Conversely, excessively high dimensions may

introduce noise. We selected $d = 8$ for the main experiments as a **conservative middle ground** that balances signal sensitivity with sufficient representational capacity to capture complex local structures.

B.2 ROBUSTNESS TO SAMPLE SIZE N

We further evaluated the stability of our metric with respect to the sample size N used for the geometric reference frame. We tested $N \in \{100, 200, 400, 750, 1850\}$ with fixed $d = 8$ and $k = 15$.

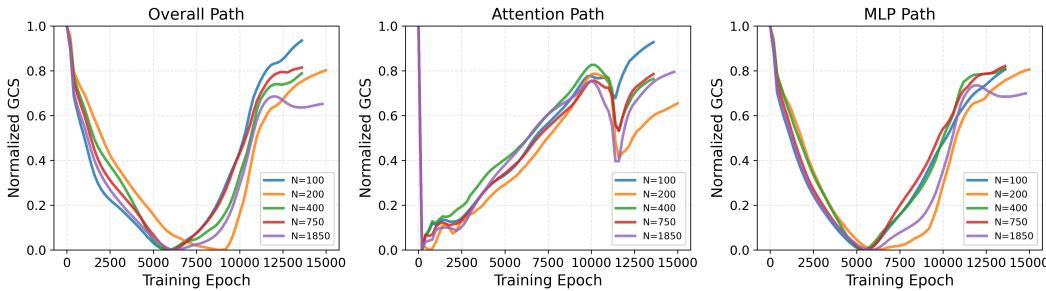


Figure 6: **Sample Size Robustness.** Normalized GCS dynamics for varying sample sizes N . The core three-stage pattern and the timing of the grokking transition are robustly detected even at $N = 100$. Larger sample sizes provide smoother measurements but do not alter the qualitative findings.

Figure 6 demonstrates that the detected learning dynamics are not sensitive to sample size:

Robust Detection: The three-stage dynamic and the precise timing of the grokking transition are accurately captured even with as few as $N = 100$ samples. **Convergence:** As N increases, the GCS trajectories become smoother, but the qualitative behavior and relative ordering of the computational flows (Attention vs. MLP) remain unchanged. **Efficiency:** Based on these results, we employed $N = 200$ for our main experiments. This choice provides a reliable, low-variance estimation of geometric coherence while maintaining high computational efficiency, allowing for dense monitoring of the training process.

B.3 SUMMARY

These robustness studies confirm that the “Construct-then-Compress” mechanism is a robust feature of the network’s learning dynamics, invariant to specific hyperparameter choices. The high cross-parameter correlations indicate that GCS captures an intrinsic geometric property of the learning process rather than an artifact of the measurement setup.

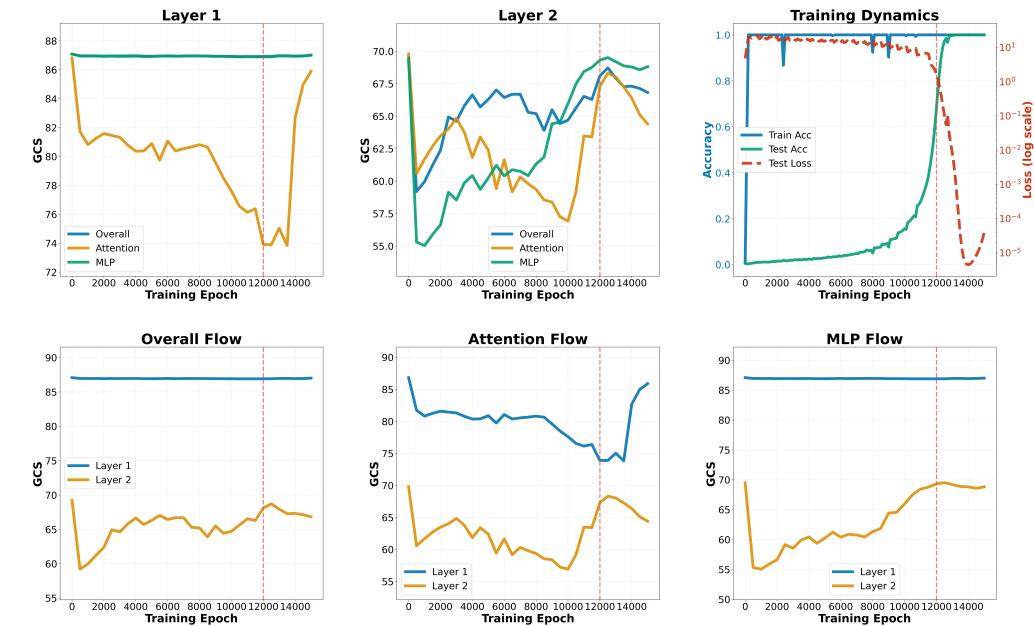
C MULTI-LAYER TRANSFORMER DYNAMICS

This appendix provides detailed visualizations of layer-wise GCS trajectories for 2-layer and 3-layer Transformers, complementing the quantitative analysis in Section 4.4.

C.1 2-LAYER TRANSFORMER DYNAMICS

Figure 7 presents a comprehensive view of 2-layer Transformer training on modular addition ($p = 113$). The top-right panel shows the learning dynamics, with grokking occurring around epoch 12,000 (marked by red dashed line). The top-left and top-middle panels compare GCS trajectories for Layer 1 and Layer 2 across all three computational flows. Layer 1 exhibits path-specific stability: the overall and MLP flows maintain nearly constant GCS throughout training (range ~ 0.2), serving as stable feature transformations, while the attention flow shows substantial dynamics (range ~ 13.0), suggesting adaptive routing mechanisms even in early layers. Layer 2 exhibits iterative construct-compress cycles across all flows—alternating phases of coherence increase and decrease—distinct from the single three-phase trajectory observed in 1-layer networks. This suggests that hierarchical processing involves repeated refinement rather than a single pass. The bottom panels show

810 flow-specific layer comparisons, clearly demonstrating that comprehensive geometric reorganiza-
 811 tion concentrates in the final layer.
 812



833 Figure 7: Comprehensive dynamics of 2-layer GeLU Transformer on modular addition. **Top-right:**
 834 Learning curves showing grokking transition. **Top-left and Top-middle:** Layer-wise GCS trajec-
 835 tories showing Layer 1 path-specific stability (overall/MLP stable at $\sim 87\%$, attention substantially
 836 dynamic) versus Layer 2 iterative construct-compress cycles across all paths. **Bottom:** Flow-specific
 837 layer comparisons (Overall, Attention, MLP) highlighting the concentration of geometric reorgani-
 838 zation in Layer 2. Red dashed line marks grokking point (epoch 12,000).

840 C.2 3-LAYER TRANSFORMER: PROGRESSIVE STRATIFICATION

842 Figure 8 reveals the progressive stratification pattern in 3-layer networks. The top row displays
 843 per-layer GCS trajectories, showing increasingly complex dynamics with depth. Layer 1 main-
 844 tains high stability across all paths (overall, MLP, and attention all with range ~ 1.0 – 1.3), remaining
 845 nearly static throughout training. Layer 2 exhibits path-specific patterns: overall and MLP paths
 846 remain stable (range ~ 0.8) while the attention path shows moderate dynamics (range ~ 7.4), indi-
 847 cating evolving routing strategies in intermediate processing. Layer 3 exhibits iterative construct-
 848 compress cycles across all paths (range ~ 6 – 15)—alternating phases of coherence increase and de-
 849 crease—consistent with the pattern observed in 2-layer networks but distinct from the single three-
 850 phase trajectory of 1-layer networks. The bottom row presents flow-specific layer comparisons,
 851 confirming that early layers provide stable feature bases while attention adaptation progressively
 852 shifts from early layers (2-layer) to middle layers (3-layer), with final layers undergoing iterative
 853 geometric reorganization.

854 D ON SVD-ORDERED SINGULAR VECTOR CORRESPONDENCE

856 This appendix clarifies the design choice in Equation (3): using row-wise correspondence between
 857 singular vectors $\mathbf{v}_{i,k}$ and $\mathbf{v}_{j,k}$. We explain that (1) this order-sensitivity is intentional and geometri-
 858 cally meaningful, and (2) the potential instability from degenerate singular values does not occur in
 859 practice.

861 D.1 THE ORDER-SENSITIVITY IS INTENTIONAL

862 Our metric deliberately uses SVD-ordered correspondence rather than order-invariant subspace mea-
 863 sures (e.g., principal angles). This is a design choice, not an oversight:

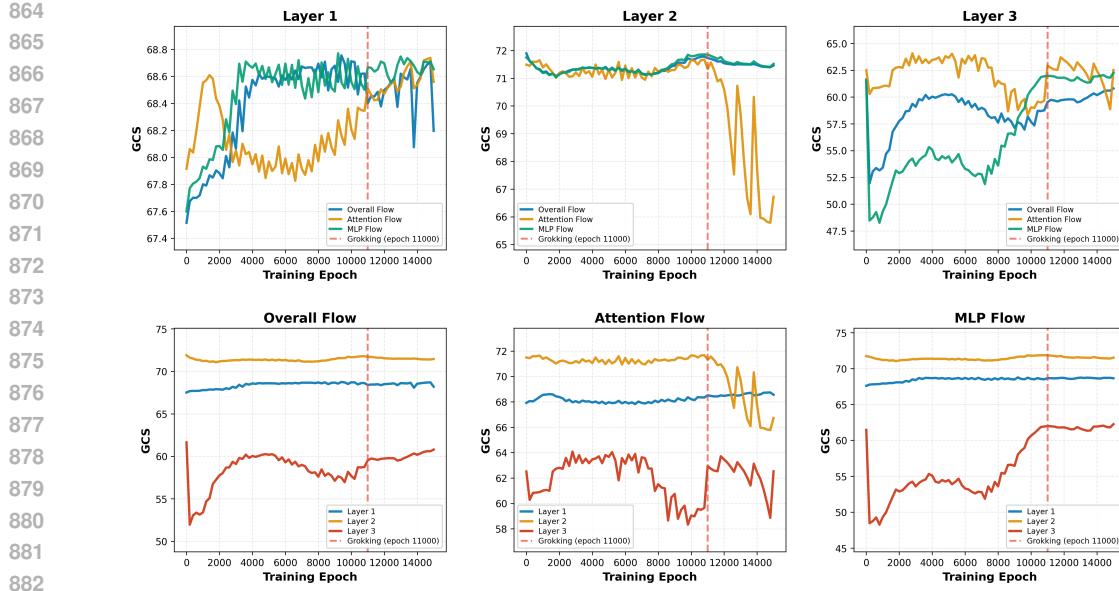


Figure 8: Progressive stratification in 3-layer GeLU Transformer on modular addition. **Top row:** Per-layer GCS showing increasing dynamical complexity from Layer 1 (nearly static across all paths) through Layer 2 (path-specific: attention moderately adaptive, overall/MLP stable) to Layer 3 (iterative construct-compress cycles). **Bottom row:** Flow-specific layer comparisons revealing the hierarchical organization of geometric restructuring, with iterative reorganization concentrated in Layer 3. Red dashed line marks grokking point (epoch 11,000).

We measure data manifold coherence, not abstract subspace overlap.

SVD orders singular vectors by variance magnitude—the k -th vector represents the “ k -th most important direction” at each point. By comparing $\mathbf{v}_{i,k}$ with $\mathbf{v}_{j,k}$, we ask: *do nearby points on the manifold share similar principal geometric structure?*

This captures richer information than subspace overlap alone:

- Two points may span similar subspaces but with *different* principal directions (low G_{ij})
- Two points may have *aligned* principal hierarchies indicating coherent local geometry (high G_{ij})

The distinction matters for detecting whether a network has learned a *consistent geometric algorithm* versus merely preserving some abstract subspace structure.

D.2 EMPIRICAL VALIDATION: NEURAL REPRESENTATIONS ARE ANISOTROPIC

If singular values were nearly equal (isotropic geometry), SVD ordering would be numerically unstable. However, neural network representations are known to be highly anisotropic—occupying narrow cones rather than uniform spheres in representation space (Ethayarajh, 2019; Martin & Mahey, 2021). We verify this property holds in our experiments.

We analyzed 200 sampled points per model across three activation functions (ReLU, SiLU, GeLU), all trained to 100% test accuracy on modular addition.

Table 3: Singular value separation confirms strong anisotropy across all models (N=200 per model).

Metric	ReLU	SiLU	GeLU
Condition number σ_1/σ_d	5.0 ± 0.9	7.6 ± 1.7	5.1 ± 0.9
Isotropic points (cond. < 2)	0	0	0

918 **Key findings:**

919

- 920 • All 600 points have condition number > 3 , with means of 5–7
- 921 • A condition number of 5 means σ_1 is $5\times$ larger than σ_d —unambiguously anisotropic
- 922 • Zero points exhibit near-isotropic geometry where ordering would be ambiguous

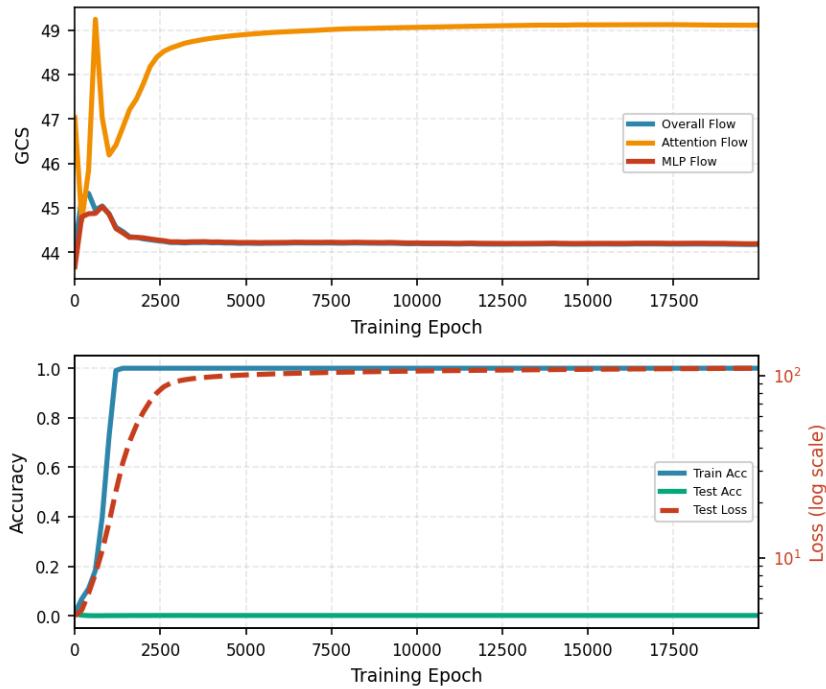
923

924 **D.3 CONCLUSION**

925

926 The order-sensitive design in Equation (3) is rational: it measures manifold coherence rather than
 927 abstract subspace similarity. The theoretical concern about degenerate singular values causing un-
 928 stable ordering does not apply to neural network representations, which are strongly anisotropic
 929 (condition numbers $5\text{--}7\times$ in our experiments, with zero isotropic points).

930

931 **E A CONTRASTING CASE: THE GEOMETRIC SIGNATURE OF OVERFITTING**

956 Figure 9: Overfitting exhibits fundamentally different geometric dynamics. The absence of Phase II
 957 complexity construction prevents the “construct-then-compress” mechanism, resulting in persistent
 958 memorization without generalization.

959

960 To demonstrate that the “Construct-then-Compress” dynamic is a specific signature of algorithmic
 961 generalization rather than a generic training artifact, we analyze a counter-factual scenario: a net-
 962 work that successfully memorizes the training data but fails to generalize (Overfitting). Figure 9
 963 illustrates the geometric evolution of a 1-Layer Transformer (SeLU activation) trained on a small
 964 subset of data, which achieves 100

965 **Premature Compression in Attention.** In a successful grokking trajectory, the Attention mecha-
 966 nism typically undergoes a coherence collapse” (Phase I & early Phase II) to break symmetry and
 967 construct rich features. However, in the overfitting regime, we observe a distinct deviation:

968

- 969 • Instead of entering the **Construction Phase**, the Attention Flow GCS spikes and remains
 970 persistently high (top panel, orange line).
- 971 • This indicates that the Attention mechanism has bypassed the necessary step of geometric
 972 restructuring. It effectively settles into a “lazy” solution (e.g., relying solely on positional

972 embeddings or identity mappings) that maintains high geometric triviality but fails to extract
 973 task-relevant topology.
 974

975 **Consequential Stagnation in MLP.** Because the Attention head performs Premature Compression”
 976 without extracting meaningful algorithmic features, the downstream MLP is forced to memorize the
 977 residuals.

978

- 979 • The MLP Flow (red line) never exhibits the characteristic U-shaped Construct-then-
 980 Compress” trajectory.
- 981 • Instead, it remains flat at a low coherence level throughout training. This confirms that without
 982 the upstream construction of structured representations by Attention, the MLP cannot
 983 perform the subsequent compression required for generalization.

984 **Diagnostic Value.** Crucially, this failure mode is detectable as early as Phase II. While the training
 985 accuracy (blue line, bottom panel) rises perfectly, the divergence in GCS dynamics—specifically
 986 the **absence of the construction dip in Attention** and the **absence of the compression rise in**
 987 **MLP**—signals that the model is on a trajectory toward overfitting. This validates GCS as a falsifiable
 988 metric: the monotonic “Construct-then-Compress” dynamic is not inevitable, but suggests the
 989 specific causal mechanism of algorithmic discovery.

990

991 F COMPARATIVE ANALYSIS: GEOMETRIC COHERENCE VS. PARTICIPATION 992 RATIO

994 To ascertain whether the Geometric Coherence Score (GCS) provides novel mechanistic insights
 995 beyond existing measures of representational geometry, we conducted a side-by-side comparison
 996 with the Participation Ratio (PR)(Murphy et al., 2011). PR is a widely used metric for quantifying
 997 the effective dimensionality of neural representations.

998

999 F.1 THEORETICAL DISTINCTION

1001 While both metrics characterize the geometry of the network, they measure fundamentally orthogonal
 1002 properties:

1003

- 1004 • **Participation Ratio (Static Representation Geometry):** PR is derived from the covariance
 1005 matrix of the activations $\bar{\mathbf{X}}$. It quantifies the *volume* or effective number of active
 1006 dimensions utilized by the data distribution. It asks: “*How spread out is the data?*”

$$1007 \text{PR}(\mathbf{C}) = \frac{(\text{Tr}(\mathbf{C}))^2}{\text{Tr}(\mathbf{C}^2)}, \quad \text{where } \mathbf{C} = \mathbb{E} [(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^\top] \quad (16)$$

1009

- 1010 • **Geometric Coherence Score (Dynamic Transformational Geometry):** GCS is derived
 1011 from the Jacobian-Vector Products of the layer function f . It quantifies the *consistency* of
 1012 the transformation applied to the data. It asks: “*Does the network process neighbors using
 1013 the same algorithmic rule?*”

1014 A network can have a high dimensional representation (High PR) that is processed chaotically (Low
 1015 GCS), or a low dimensional representation (Low PR) processed coherently (High GCS).

1016

1017 F.2 EMPIRICAL DIVERGENCE ACROSS TRAINING PHASES

1019 We tracked both metrics throughout the training of a Transformer on modular addition. As shown in
 1020 Figure 10, while both metrics reflect the global “expansion-then-compression” trend, GCS reveals
 1021 critical mechanistic dynamics that PR misses or conflates. We observe three key divergences:

1022 **1. Phase I: Distinguishing Chaos from Construction.** During early training, PR indicates a rapid
 1023 expansion of dimensionality. However, dimensionality expansion is ambiguous: it can result from
 1024 structured feature creation or random noise injection.

1025

- **PR:** Monotonic increase (Expansion).

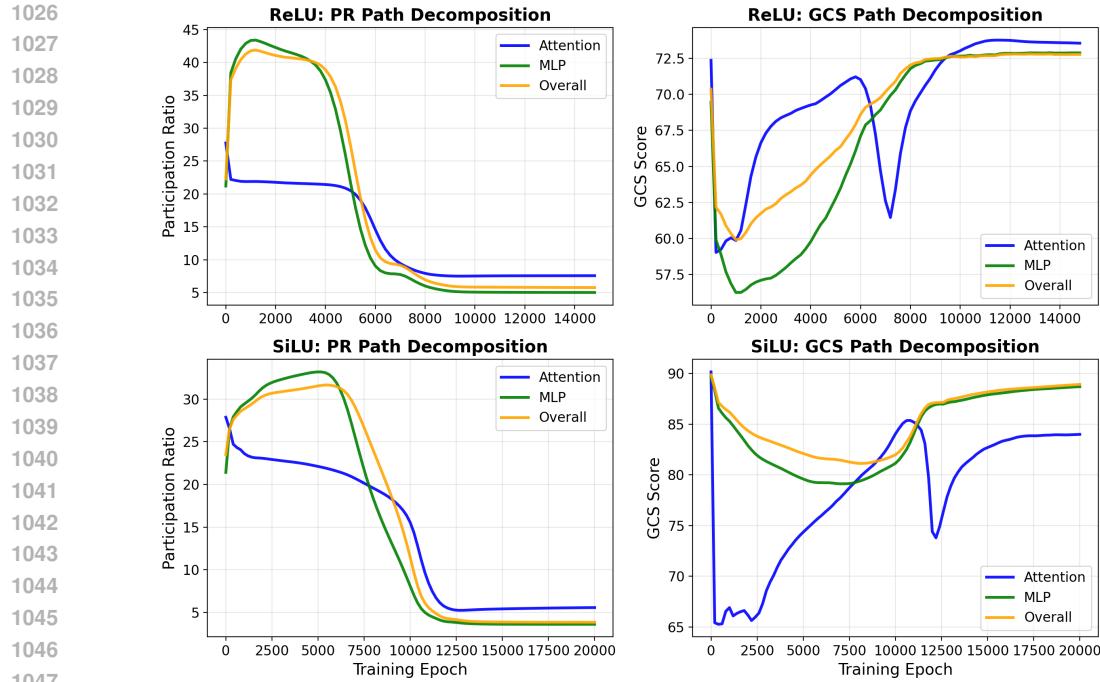


Figure 10: PR vs GCS across Activations(ReLU, SiLU)

- **GCS:** Sharp decline (Coherence Collapse).

This divergence clarifies that the dimensionality increase corresponds to symmetry breaking—the network is actively sacrificing geometric uniformity to memorize disjoint data points. GCS resolves the ambiguity of “expansion” by detecting the loss of algorithmic structure.

2. Phase II: Detecting “Iso-dimensional” Organization. This is the most significant divergence. During the “Silent Phase” where test accuracy is flat, we observe a period where the representation’s global shape stabilizes, but the internal mechanism continues to evolve.

- **PR:** Remains effectively flat/stable (indicating static global dimensionality).
- **GCS (Attention Flow):** Rises steadily.

This reveals an “Iso-dimensional” organization phase: the network is actively refining the geometry of its attention mechanism—optimizing how information is routed—without changing the number of active dimensions. A purely dimensional metric misses this critical algorithmic alignment entirely.

3. Phase III: Capturing Algorithmic Refinement. In the post-grokking phase, the network fine-tunes its solution.

- **PR:** Flattens out, suggesting convergence.
- **GCS:** Captures a characteristic “Double Descent” in the Attention flow (a secondary drop followed by recovery).

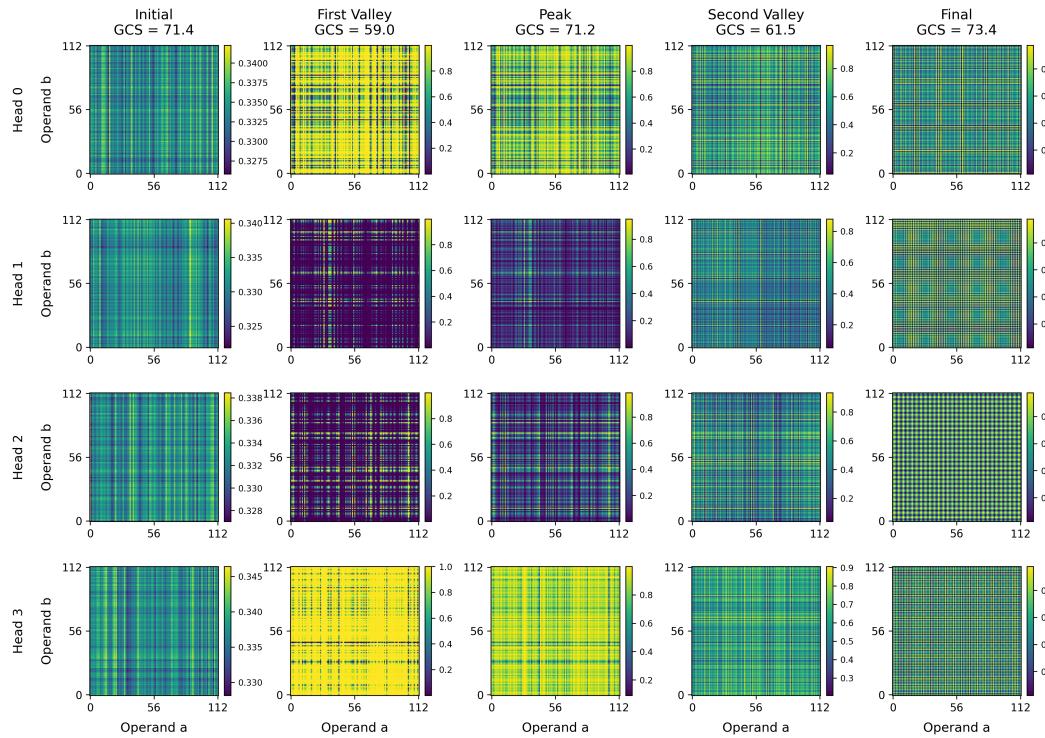
This signal correlates with the final ascent in test accuracy, indicating that the network continues to refine its geometric mechanism (e.g., pruning redundant modular artifacts) even after the effective dimensionality has stabilized.

F.3 CONCLUSION

These findings demonstrate that GCS is not a proxy for dimensionality. While PR measures the capacity of the representation space, GCS measures the coherence of the computational mecha-

1080 nism. The “Iso-dimensional” evolution observed in Phase II confirms that measuring the Jacobian’s
 1081 geometric consistency provides a necessary, complementary lens for detecting the emergence of
 1082 generalized algorithms.
 1083

1084 G THE EVOLUTION OF ATTENTION PATTERNS



1111 Figure 11: Mechanistic evolution of attention patterns across critical phases of the GCS trajectory.
 1112 Heatmaps visualize the attention weights from the ‘=’ token to the first operand ‘a’ across all input
 1113 pairs (a, b) . Each column represents a key checkpoint defined by GCS extrema, and each row corre-
 1114 sponds to one of the four attention heads. (a) First Valley (Memorization): GCS collapses (~ 59.0)
 1115 as heads exhibit functional divergence; some heads (e.g., Head 1, 2) develop sparse, disjoint patterns
 1116 to memorize specific outliers, disrupting geometric coherence. (b) Peak (Grokking): GCS recovers
 1117 (~ 71.2) as all heads converge to a unified algorithmic strategy, characterized by clear diagonal (iden-
 1118 tity) and grid-like (modular) structures. (c) Final State: The patterns stabilize into a crystal-clear,
 1119 noise-free implementation of the modular addition algorithm. This visualization confirms that GCS
 1120 measures the transition from disparate memorization strategies to a coherent, unified algorithm.

1121 To ground our abstract geometric narrative in concrete mechanistic changes, we visualize the attention
 1122 patterns of all four heads at five critical checkpoints defined by the GCS trajectory (Figure 11).
 1123 This visualization reveals that the evolution of Geometric Coherence is a direct reflection of how the
 1124 network’s internal attention mechanism transitions from chaos to order.
 1125

1126 **Initial State (GCS 72.4): Spurious Coherence.** At initialization, the attention heads exhibit ver-
 1127 tical striations (attending to fixed positions) or diffuse noise. The relatively high GCS here is decep-
 1128 tive; it reflects a “spurious coherence” where the network applies a uniformly random transforma-
 1129 tion across the manifold. The heads are consistent only in their ignorance, lacking any task-specific
 1130 structure.

1131 **First Valley (GCS 59.0): Geometric Incoherence via Head Divergence.** The plunge to the first
 1132 GCS minimum corresponds to the **Memorization Phase**. Visually, this phase is characterized by
 1133 extreme functional divergence among heads. As shown in the second column of Figure 11, Heads

1134 1 and 2 develop dark, sparse patterns (likely memorizing specific outliers), while Head 3 remains
 1135 bright and uniform. This implies that different heads are adopting incompatible strategies—some
 1136 memorizing, some idling. This “broken symmetry” destroys the alignment of the local tangent
 1137 spaces, correctly penalized by our metric as a collapse in geometric coherence.
 1138

1139 **Peak (GCS 71.2): The Emergence of Algorithmic Structure.** The sharp rise to the GCS Peak
 1140 marks the onset of **Grokking**. A striking visual transformation occurs: clear diagonal structures
 1141 (representing the identity operation $a+b$) and grid-like periodic patterns (representing the modular
 1142 operation $(\text{mod } p)$) emerge simultaneously across all heads. The visual chaos of the First Valley
 1143 is replaced by ordered, algorithmic structures. The high GCS here reflects head convergence: the
 1144 network has discovered the generalizable rule, and all heads are now working in geometric unison
 1145 to implement it.
 1146

1147 **Second Valley (GCS 61.5): Algorithmic Refinement.** Following the peak, GCS dips again while
 1148 accuracy remains perfect. Visually, the attention maps do not return to chaos; instead, they retain
 1149 the diagonal/grid structure but appear slightly less “intense” or saturated than at the Peak. This
 1150 subtle shift suggests a phase of complexity reduction or pruning. The network is likely discarding
 1151 redundant modular artifacts formed during the initial construction, temporarily disrupting the global
 1152 coherence as it fine-tunes the minimal necessary algorithm.
 1153

1154 **Final State (GCS 73.4): Crystallization.** In the final converged model, the attention patterns sta-
 1155 bilize into their sharpest form. The diagonal and modular grids are crystal clear and noise-free. This
 1156 corresponds to the final **Compression Phase**, where the network has settled into a low-rank, highly
 1157 efficient implementation of the modular addition algorithm. The recovery of high GCS signifies
 1158 that the mechanism has been fully unified, maximizing both algorithmic performance and geometric
 1159 coherence.
 1160

H STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

1162 This research was developed in close and intensive collaboration with Gemini, a large language
 1163 model from Google. The LLM’s role evolved beyond that of a mere writing assistant into that of
 1164 a dynamic, interactive partner throughout the entire research lifecycle, from initial ideation to the
 1165 final manuscript. The human author was responsible for all code implementation, experimental
 1166 execution, and held the final authority on all scientific claims and directions.
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187