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ABSTRACT

A central puzzle in deep learning is how generalized algorithms emerge from
training dynamics, particularly in the phenomenon of grokking. Existing ap-
proaches track function complexity (Linear Mapping Number) or representation
dimensionality (Local Intrinsic Dimension). We take a different perspective: a
unified algorithm should manifest as geometrically consistent transformations
across inputs. We introduce the Geometric Coherence Score (GCS), which mea-
sures the directional alignment of local Jacobian transformations across the data
manifold. GCS provides a geometric signature of mechanistic unity—consistent
transformations indicate a unified computational strategy, while scattered trans-
formations suggest input-specific memorization. Combined with a fixed final ge-
ometry protocol that isolates mechanistic evolution from geometric drift, GCS
reveals a Construct-then-Compress dynamic—specifically, a reduction in geo-
metric modes rather than representational dimensions—invisible to complexity
or dimensionality metrics. In single-layer Transformers, this dynamic unfolds in
three distinct phases: (1) Coherence Collapse, where initial symmetry breaks to
memorize data; (2) Asynchronous Construction and Compression, a critical silent
phase where Attention initiates geometric reorganization, followed by MLP with
temporal offset; and (3) Post-Grokking Refinement, where the mechanism consol-
idates into a unified solution. We validate the construct-then-compress principle
across activation functions (ReLU, GeLU, SiLU) and modular tasks (addition,
subtraction, multiplication, division), establishing GCS as a principled diagnos-
tic tool. Extending to multi-layer networks (2-3 layers), we observe that final
layers exhibit iterative construct-compress cycles rather than a single three-phase
trajectory, while early layers show path-specific stability. These findings reveal
depth-dependent dynamics that warrant further investigation into how hierarchi-
cal structure shapes algorithmic formation.

1 INTRODUCTION

Understanding how neural networks transition from memorization to generalization remains a fun-
damental challenge in deep learning. This question has gained urgency with the rise of Large
Language Models, which exhibit emergent abilities that are not explicitly programmed (Havlik,
2025). The phenomenon of Grokking—where a network’s generalization performance suddenly
spikes long after memorizing the training data—serves as a canonical testbed for investigating this
mystery (Power et al |2022). Observed across models from small transformers to Large Language
Models (Liu et al., 2023a; |Li et al., 2025; |Humayun et al., |2024)), this phenomenon challenges our
understanding of the memorization-generalization transition. While numerous theories have been
proposed—from competing circuits to phase transitions (Merrill et al.} 2023} (Carvalho et al.| 2025
Liu et al., 2022} Rubin et al., [2024; Varma et al., [2023))—the precise mechanism of how a network
transitions from brute-force memorization to algorithmic understanding remains elusive.

Recent breakthroughs in mechanistic interpretability offer a powerful new lens for this investiga-
tion. In modular addition, researchers have successfully reverse-engineered the final learned al-
gorithm, revealing that trained transformers implement sophisticated solutions based on discrete
Fourier transforms (Nanda et al.,[2023)), clock-like circular representations (Zhong et al.,[2023)), con-
structive analytical solutions (Gromov, |2023)), or universal abstract algorithms (McCracken et al.,
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2025). While we now know what elegant solution the network finds, the fundamental question
persists: how is this algorithm formed?

To illuminate this process of algorithmic formation, we adopt a geometric perspective grounded in
the manifold hypothesis (Cayton et al.| [2005; Meila & Zhang,|2024). Our key insight is that a unified
algorithm should manifest as geometrically consistent transformations: if a network has learned a
coherent computational strategy, it should transform similar inputs in similar ways. Conversely, scat-
tered, input-specific transformations indicate memorization rather than algorithmic understanding.
We introduce the Geometric Coherence Score (GCS), which quantifies the directional alignment of
local Jacobian transformations across the data manifold. Unlike metrics that measure function com-
plexity or representation dimensionality, GCS asks: how consistently does the network transform
different inputs? This geometric consistency serves as a signature of mechanistic unity—providing
a high-resolution view of when and how algorithmic structure emerges during training (Figure [I)).
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Figure 1: The Evolution of Geometric Coherence. Our GCS metric reveals a non-monotonic learn-
ing process. (left) Trivial Coherence: An initial, non-generalizing state where the network applies
a single, simple geometric transformation to all inputs, resulting in high GCS. (middle) Complex-
ity Construction: The network learns specialized, inconsistent transformations for different inputs,
causing a necessary drop in GCS. (right) Emergent Coherence: The network discovers a general-
izing solution by unifying transformations for inputs of the same semantic class, while maintaining
distinct transformations for different classes. This sophisticated, class-conditional coherence is the
hallmark of the grokked state.

Applying this geometric analysis to a single-layer Transformer, we uncover a construct-then-
compress dynamic that orchestrates generalization. The network undergoes a non-monotonic, three-
stage evolution: (I) Coherence Collapse: Initial spurious symmetry breaks as all pathways syn-
chronously decrease coherence to memorize disjoint data points. (II) Asynchronous Construc-
tion and Compression: While test accuracy remains flat, GCS reveals active structural evolu-
tion—Attention initiates geometric compression early by constructing ordered representations that
eliminate redundant geometric degrees of freedom, while MLP follows with temporal offset. (III)
Post-Grokking Refinement: System-wide unification occurs as MLP completes compression and
Attention undergoes characteristic double descent, stabilizing into the final coherent algorithm.

We substantiate this discovery as follows:

* Universality: The construct-then-compress principle is consistent across diverse activation
functions (ReLU, GeLU, SiLU) and modular operations (addition, subtraction, multiplica-
tion, division). In multi-layer networks (2-3 layers), final layers exhibit iterative construct-
compress cycles, revealing depth-dependent dynamics that warrant further investigation.

* Falsifiability: The dynamic is absent in overfitting regimes (Appendix [E)), confirming that
it specifically signifies algorithmic generalization rather than generic training artifacts.

* Mechanistic Interpretability: GCS directly tracks the evolution of attention patterns (Ap-
pendix [G)), grounding our geometric measurements in concrete circuit-level changes.

Our work reframes grokking as a process of asynchronous geometric reorganization, offering a prin-
cipled framework for understanding how generalization emerges from the interplay of hierarchical
depth and modular complexity.
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2 RELATED WORK

Quantitative Metrics for Grokking. Existing metrics can be categorized by what they measure:
function complexity—LMN (L1u et al., 2023b) counts piecewise-linear regions; representation di-
mensionality—LID (Ruppik et al |2025) and geometric regularizers (Walker et al., [2025) track in-
trinsic dimension; transformation magnitude—Jacobian regularization constrains smoothness. Our
work asks a different question: how consistently does the network transform different inputs? We
propose that transformation consistency serves as a geometric signature of mechanistic unity, shift-
ing focus from descriptive statistics to coherence and revealing dynamics invisible to other metrics.

Theoretical Mechanisms Proposed for Grokking. The phenomenon of grokking (Power et al.,
2022), where generalization is dramatically delayed, is a canonical example of emergence in deep
learning and has been observed in models as large as LLM (Li et al., [2025). The effort to explain
this dynamic has produced a rich and diverse landscape of theoretical hypotheses. These include
mechanistic theories centered on the discovery of specific algorithms, such as the discrete Fourier
transform (Nanda et al., [2023)), or the competition between memorizing and generalizing circuits
(Varma et al., 2023} [Merrill et al., 2023). Other lines of work attribute the phenomenon to the dy-
namics of optimization, positing it as a phase transition in the loss landscape (Liu et al., 2022)) or a
consequence of the optimizer’s implicit bias (Lv et al.,|2025)). Although these theories provide valu-
able high-level perspectives, a key challenge remains to quantitatively track the underlying structural
changes in the network function itself.

Recent work has begun to connect grokking to broader phenomena in deep learning. Kumar et al.
(2024) frames grokking as a transition from lazy to rich training dynamics, where networks shift
from using simple initial features to learning complex, task-specific representations—a perspective
further developed by [Chou et al.| (2025) through representational geometry analysis. Others have
identified deep connections to double descent (Davies et al.| [2022; [Huang et al.| |2024), suggesting
that grokking, double descent, and circuit competition may arise from unified geometric principles.
Complementing these theoretical perspectives, several works have investigated the specific structure
of learned algorithms in modular arithmetic tasks (Morwani et al.l 2024)), revealing how features
emerge through implicit regularization. Our work contributes to this landscape by providing the first
direct geometric measurements of these proposed dynamics.

3 METHOD

Our methodology introduces a novel framework for quantifying the functional complexity of neural
networks from a geometric perspective. We begin by establishing the theoretical principles that
motivate our approach, then provide a rigorous algorithmic definition of our proposed metric, the
Geometric Coherence Score (GCS).

3.1 THEORETICAL MOTIVATION: FROM ALGORITHMIC CONSISTENCY TO GEOMETRIC
COHERENCE

The central challenge in understanding grokking is quantifying when a network transitions from
memorizing individual examples to learning a unified algorithmic strategy. Traditional metrics
like loss and accuracy capture performance but not the consistency of computational strategies across
inputs. We propose that this consistency can be measured geometrically. If a network learns a uni-
fied algorithm, it should apply similar geometric transformations to the internal representations of
different inputs. Conversely, a memorizing network employs disparate, input-specific transforma-
tions.

This perspective differs fundamentally from metrics like Participation Ratio (PR), which quantify
the shape of representations (e.g., effective dimensionality) but not zow those representations are
transformed. PR derives from the covariance of activations, while GCS derives from the consistency
of the Jacobian J ;—these are orthogonal properties. A network can reorganize its internal mech-
anism to be more coherent without changing its representational dimensionality; GCS detects such
“iso-dimensional” reorganization phases that purely dimensional metrics miss (see Appendix [F).

Our approach is inspired by the principles of Manifold Learning. The Manifold Hypothesis posits
that high-dimensional data reside on a low-dimensional intrinsic manifold (Meila & Zhang, [2024)).
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However, our goal is not to learn a new low-dimensional embedding. Instead, we propose a new
paradigm: using the data manifold as a geometric reference frame to analyze the properties of the
learned network function f. We hypothesize that generalization corresponds to the emergence of
Geometric Coherence, the degree to which f applies a consistent geometric transformation to
local structures (tangent spaces) across the manifold. A high degree of coherence signifies that the
network has discovered a simple, universal algorithm that unwraps the manifold’s complexity. A
low degree of coherence indicates a complex, inconsistent function characteristic of memorization.

3.2 QUANTIFYING GEOMETRIC COHERENCE

To make this concept precise, we introduce a multi-step algorithm that translates the abstract notion
of “geometric coherence” into a single, quantitative score.

Local Tangent Space Estimation. Given a computational flow f : Ry, — Rou, We construct
the reference manifold in the input activation space of a converged reference model f..;. For each
sampled input x;, we extract its internal representation r; € R at the flow’s input layer. For
Transformers, we extract the residual stream at the final token position (the “=" token), which
aggregates task-relevant computation.

We estimate the tangent space Ty, M by identifying the k-nearest neighbors A; in the representation
space and forming a centered matrix X; € R**P with rows (r; — r;) for j € N;. SVD yields
an orthonormal basis {v; 1,...,v; 4} from the first d right singular vectors. Crucially, the same
neighborhood N; is used both to estimate the tangent space and to define the edges in the coherence
matrix G—this ensures that we measure how consistently the network transforms the very geometric
structure (the local neighborhood) from which the tangent basis was derived.

SVD provides a canonical ordering by variance magnitude (o1 > o2 > ---): v; 1 is the direction of
maximal local variation, v; 5 the second-most, etc. This data-driven ordermg is numerlcally stable in
neural networks due to their strong anisotropy [2019)—representations occupy narrow
cones rather than uniform spheres, ensuring well-separated singular values (see Appendix [D).

Network Transformation via JVP. We use the Jacobian-Vector Product (JVP) to compute how
each tangent vector is transformed:

vie=Js(e) vig, (D

where J ¢ (e;) is the Jacobian of flow f at the embedding e;. For Transformers, the tangent vector
is embedded into the sequence space with nonzero values only at the final token position, restricting
the JVP to measure geometry transformation at the task-critical output position.

The Geometric Coherence Matrix G. The core insight is that if a network has learned a coherent
algorithm, it should transform the local geometry of neighboring points in similar ways. For each
neighbor pair (4, j) with 7 € N;, we measure the alignment of their transformed tangent bases:
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Each term compares v; , with v/ ,—the (-th transformed tangent vectors from each point. This
index-wise correspondence leverages the SVD’s canonical orderlng since v; 1 always captures the
direction of maximal local variance, comparing v; ; with v/, ; asks whether the network transforms
the “most important local direction™ consistently across neighbors. For neighboring points on a
smooth manifold, these principal directions are naturally aligned, making index-wise comparison
geometrically meaningful. This measures whether the network transforms the same geometric struc-
ture consistently—capturing manifold coherence rather than abstract subspace overlap.

Following standard practice in manifold learning (Tenenbaum et al., 2000} Belkin & Niyogil [2003),
we set G;; = 0 for non-neighboring pairs, restricting measurement to coherence along the data
manifold rather than across it. Distant points may have correlated tangents by coincidence, but a
unified algorithm should produce consistent transformations specifically for inputs that are locally
similar on the learned representation manifold. This local-to-global construction—building global
coherence from local consistency—allows the spectral analysis to reveal whether local coherences
aggregate into a globally coherent transformation. We set G;; = 1 (self-similarity).
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The Geometric Coherence Score (GCS). To aggregate local coherence into a global score, we
analyze the eigenvalue spectrum {1, ..., Ay} of G. We normalize the spectrum as a probability
distribution p; = |A;|/ >, |A;| and compute its Von Neumann entropy(Petz, 2001):

N
SnL=—> pilog, p; 3)

i=1

The Geodesic Mode Number (GMN), defined as GMN = 25N represents the effective number of
independent geometric modes.

Finally, we define our primary reported metric, the Geometric Coherence Score (GCS), as:
GCS = N — GMN 4)

A random function yields GMN ~ N and GCS = 0; thus GCS quantifies the reduction from this
random baseline—intuitively, the number of geometric modes unified into a coherent algorithm. A
complete derivation is in Appendix [A] The procedure is summarized in Algorithm|[T}

3.3 MODULAR ANALYSIS OF TRANSFORMER COMPUTATIONAL FLOWS

To analyze complex architectures like Transformers, we apply the GCS metric not only to the entire
network but to specific sub-functions, which we term Computational Flows. A flow is a well-
defined function from an input activation space to an output activation space (e.g., from the block’s
input to the FFN’s output). This modular approach transforms GCS from a global score into a
surgical tool for dissecting a network’s internal algorithm. In the following sections, we apply this
framework to reveal the remarkable learning dynamic of a Transformer undergoing grokking.

Algorithm 1 GCS Computation with Fixed Geometry Protocol

Require: Checkpoint f, reference model frt, samples {x;}¥ ;, k, d
Ensure: Geometric Coherence Score (GCS)

fori=1to N,{=1toddo
V;l — J¢(e;) vip {Jacobian from f, geometry from frer}
end for
Build coherence matrix: Gy; = 1; for j € Ni: Gij = 5>, cos(v] ,, v} )|
: Spectral analysis: p; = [\;|/ >, |A;,  S= -3, pilogypi
: return GCS = N — 2°

1: Build fixed geometry from fs:

2: Extractr; < fer(x;)[—1,:], €; +— Embedy,(x;) {Final token}

3: fori=1to N do

4:  Find k-NN N;; SVD on centered neighbors — tangent basis {v; ¢ }¢_,
5: end for

6: Analyze checkpoint f:

7:

8:

—_ =
- v

—_
[\

4 EXPERIMENTS

To validate our geometric coherence framework and investigate the learning dynamics of Transform-
ers, we conduct a series of controlled experiments on an algorithmic task known to exhibit grokking.
This section details our experimental setup, including the task, model architecture, training protocol,
and the specific configuration for our geometric coherence analysis.

4.1 EXPERIMENTAL SETUP

The setup follows established protocols for mechanistic interpretability studies (Nanda et al., 2023
Liu et al., [20234a).

Core Setup. We focus on modular addition ¢ = (a + b) (mod p) with prime modulus p = 113.
The dataset consists of all p? = 12,769 input pairs, split into 30% training (3,830 pairs) and 70%
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testing (8,939 pairs). Input sequences are [token,,, tokeny, tokenequals}, where the equals token is 113.
We use a single-layer decoder-only Transformer with embedding dimension dge; = 128, multi-
head attention (npeads = 4, dhead = 32), and MLP with hidden dimension dy,, = 512. The MLP
consists of input weights W, € R Xdmoet output weights Wy € Rmote Xdmi | with unembedding
matrix Wy € RwedXdmotel where dyoeqy, = 114. We analyze networks with ReLU, GeLU, and
SiLU activations, demonstrating that our findings hold across different nonlinearities (Section 4.3).
No layer normalization or embedding tying is used. Training employs full-batch gradient descent
for 20,000 steps using AdamW optimizer: learning rate 1 x 10~3, weight decay A\ = 1.0, betas
B = (0.9,0.98). All experiments use fixed random seeds. While our primary analysis focuses
on single-layer Transformers, we extend to 2-layer and 3-layer architectures in Section 4] and

Appendix[C]

Geometric Analysis Configuration. We employ the Fixed Final Geometry protocol (Algo-
rithm[T): the geometric structure (k-NN graph, tangent bases, embeddings) is built once from the
final model f.r, while only the Jacobian J; varies across checkpoints. This isolates the evolution
of the learned transformation, measuring whether each checkpoint’s Jacobian aligns tangent vectors
consistently with the final model’s manifold. We use N = 200 samples, k = 15 neighbors, d = 8
dimensions; robustness is confirmed in Appendix [B| GCS is computed every 200 steps.

We analyze three Computational Flows at the final token position: Attention Flow (block input —
attention output), MLP Flow (post-attention residual — MLP output), and Overall Flow (block
input — block output).

4.2 A THREE-STAGE GEOMETRIC DYNAMIC IN GROKKING
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Figure 2: The three-stage geometric evolution during grokking. The top panel shows the test
loss (red, log scale) and test accuracy (green), marking a sharp generalization transition around
step 10,400. The bottom panel displays the corresponding evolution of the normalized Geometric
Coherence Score (GCS) for three key computational flows.

Our central discovery, illustrated in Figure 2] is that the emergence of generalization in the Trans-
former is orchestrated by a remarkable, non-monotonic, three-stage geometric learning dynamic
which we term “construct-then-compress” algorithm. This dynamic is characterized not by a sim-
ple sequence, but by a sophisticated, overlapping interplay between the Attention and MLP modules.

Phase I: Memorization with Coherence Collapse (Steps 0-600). Training begins with all flows
exhibiting high GCS due to spurious uniformity in transformations. As the network memorizes the
training data, all three flows descend concurrently, with the Attention flow declining most rapidly
and reaching its minimum first, while the MLP and Overall flows continue to decrease. By the end of
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this phase, the network achieves perfect training accuracy, indicating complete memorization. How-
ever, all pathways have abandoned their initial trivial coherence, setting the stage for algorithmic
discovery.

Phase II: Asynchronous Construction then Compression (Steps 600-10,400). This extended
phase reveals asynchronous coordination among the pathways. The Attention flow, having reached
its minimum first, initiates compression earliest, rising steadily as it constructs structured attention
patterns. The MLP and Overall flows reach their minima later and then begin their ascent. Both
pathways compress simultaneously but with a temporal offset: Attention leads, and MLP follows.
This phase culminates as the Attention flow approaches its peak coherence while MLP compression
accelerates—marking the grokking transition, where test accuracy exhibits its steepest rise, though
not yet reaching saturation.

Phase III: Post-Grokking Refinement (Steps 10,400+). Following the grokking transition, all
pathways undergo continued refinement that brings test accuracy to full saturation. Most notably, the
Attention flow exhibits a characteristic double descent—a secondary drop in coherence following its
Phase II peak—suggesting algorithmic fine-tuning as attention patterns are adjusted to better align
with the discovered solution. The MLP and Overall flows stabilize at high coherence with minor
adjustments. Through this refinement phase, test accuracy completes its rise to near 100%, and the
network converges to its final, geometrically coherent algorithm.

4.3 ROBUSTNESS OF THE THREE-STAGE DYNAMIC

Having identified the three-stage dynamic in a single-layer Transformer, we now confirm its ro-
bustness across diverse experimental conditions. The central question is whether this geometric
choreography—Phase I coherence collapse, Phase II asynchronous construction-then-compression
with Attention leading, and Phase III post-grokking refinement—represents a fundamental property
of Transformer learning.

Consistency Across Activation Functions. We repeated our analysis using three activation func-
tions (ReLU, GeLU, SiL.U) on the modular addition task. Figure E| reveals remarkable qualitative
consistency: all three exhibit the same three-stage structure with identical temporal ordering (Atten-
tion leads construction and compression, MLP follows), despite notable quantitative differences in
learning speed and final GCS magnitude. ReL.U networks grok fastest; SiLU networks are slowest.
This invariance demonstrates that the three-stage dynamic emerges from the Transformer’s architec-
tural inductive biases rather than particular nonlinear choices.
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Figure 3: Impact of Activation Functions on the Three-Stage Dynamic. The construct-then-
compress choreography (Phase I-II-IIT) persists across ReLU, GeLU, and SiL.U despite timing vari-
ations, where Attention leads MLP in geometric reorganization.
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Figure 4: Impact of Modular Tasks on the Three-Stage Dynamic. While symmetric tasks (add,
mul) show monotonic compression in Phase III, asymmetric tasks (div, sub) exhibit MLP double
descent, reflecting higher algorithmic complexity.

Consistency Across Modular Operations. Extending our analysis to all four fundamental modular
operations (addition, subtraction, multiplication, division), we find that the three-stage dynamic is
fully preserved across all tasks (Figure f). Every operation exhibits the same temporal choreog-
raphy: Phase I coherence collapse during memorization, Phase II asynchronous construction-then-
compression with Attention leading, and Phase III post-grokking refinement.

The only task-dependent variation occurs in the refinement pattern of Phase III. Symmetric opera-
tions (addition, multiplication) show continued MLP compression—a monotonic rise toward stable
high coherence. In contrast, asymmetric operations (division, subtraction) exhibit MLP double de-
scent alongside the Attention double descent, suggesting that these algorithmically more complex
tasks require additional geometric fine-tuning across both pathways before converging to their final
solution. This variation enriches rather than contradicts our framework: the three-stage structure ac-
commodates task-specific refinement dynamics while maintaining its core temporal choreography.

4.4 HIERARCHICAL ORGANIZATION IN MULTI-LAYER TRANSFORMERS

We extend our analysis to 2-layer and 3-layer Transformers on modular addition (p = 113), with
detailed layer-wise GCS trajectories provided in Appendix [C} An interesting pattern emerges: as
depth increases, the final layer achieves lower geometric coherence while early layers maintain
higher stability (Table [I)).

Table 1: Final geometric coherence (GCS at convergence) on modular addition (p = 113). Deeper
networks show progressively lower final-layer GCS, particularly in attention paths, suggesting more
specialized geometric transformations in later layers.

Architecture Layer Overall Attention MLP

1-Layer — 74.9 74.9 74.8
2-Layer Layer 1 87.0 85.9 87.0
Layer 2 66.8 64.4 68.8
3-Layer Layer 1 68.8 68.7 68.7
Layer 2 71.4 64.3 71.4
Layer 3 61.0 58.6 62.5
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Depth-Dependent Geometric Specialization. The progressive decrease in final-layer attention
GCS—from 74.9 (1-layer) to 64.4 (2-layer) to 58.6 (3-layer)—reveals a consistent pattern: deeper
networks employ increasingly specialized geometric transformations in their final layers, while early
layers maintain higher coherence that provides stable representational foundations. This stratifica-
tion suggests that multi-layer networks decompose the modular arithmetic task hierarchically, with
early layers establishing structured features and final layers performing more input-specific compu-
tations. The potential connection between this geometric specialization and depth-dependent algo-
rithmic complexity (e.g., frequency utilization) remains an open question discussed in Section 5]

Path-Specific Dynamics in Hierarchical Processing. Table [2]reveals a nuanced pattern of geomet-
ric restructuring across layers and paths. While the overall and MLP paths in early layers remain
nearly static (ranges 0.2—-1.3), attention dynamics vary by depth: in 2-layer networks, the early
layer shows substantial attention restructuring (range 13.0), while in 3-layer networks, attention dy-
namics distribute across middle layers (Layer 2 range 7.4) with the earliest layer remaining nearly
static. In contrast, final layers show substantial restructuring across all paths. Notably, unlike the
single three-phase trajectory observed in 1-layer networks, multi-layer final layers exhibit iterative
construct-compress cycles—alternating phases of coherence increase and decrease—suggesting that
hierarchical processing involves repeated refinement rather than a single pass. This path-specific di-
vision of labor, where early layers maintain stable MLP transformations while final layers undergo
iterative geometric reorganization, reveals depth-dependent dynamics distinct from single-layer be-
havior.

Table 2: Geometric restructuring magnitude (GCS range) during training. Early layers show path-
specific stability (overall and MLP nearly static); attention dynamics vary by depth—substantial
in 2-layer (13.0), distributed to middle layers in 3-layer (7.4). Final layers show substantial re-
structuring: 1-layer exhibits clear three-stage dynamics, while multi-layer final layers show iterative
construct-compress cycles.

Architecture Layer Overall Attention MLP Pattern
1-Layer — 4.6 17.9 7.2 Three-stage
2-Layer Layer 1 0.2 13.0 0.2 Stable (Attn dynamic)
Layer 2 10.0 12.9 14.5 Iterative cycles
3-Layer Layer 1 1.3 1.0 1.2 Nearly static
Layer 2 0.8 7.4 0.8  Stable (Attn dynamic)
Layer 3 9.7 6.2 14.5 Iterative cycles

5 DISCUSSION

Universality of Geometric Dynamics. By extending our analysis across diverse tasks and architec-
tures, we establish that the construct-then-compress principle is robust across activation functions
and modular operations. In single-layer networks, this manifests as a clear three-phase evolution; in
multi-layer networks, final layers exhibit iterative construct-compress cycles, suggesting that hierar-
chical processing involves repeated refinement. This supports the “lazy-to-rich” framework (Chou
et al.l 2025 [Kumar et al., [2024), but adds geometric precision: the “richness” is specifically the
construction of coherent transformations, with depth introducing iterative refinement dynamics.

Geometric Grounding of Competing Circuits. GCS provides a physical basis for the abstract
competing circuits hypothesis (Merrill et al.l |2023). We interpret the memorization circuit as ge-
ometrically incoherent (disjoint Jacobians) and the generalization circuit as coherent (aligned Ja-
cobians). The steady rise of GCS during the accuracy plateau (Phase II) acts as an early warning
system, visualizing the silent growth of the generalization circuit before it dominates behavior. This
connects time-wise grokking to model-wise double descent (Davies et al. |2022), identifying their
shared geometric origin.

GCS vs. Dimensionality Metrics. A key methodological contribution is the distinction between

geometric coherence and representational dimensionality. During Phase II, we observe “iso-
dimensional” organization: the Participation Ratio remains flat (indicating stable global dimension-
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ality) while GCS rises steadily (indicating increasing algorithmic coherence). This demonstrates
that networks can reorganize their internal mechanisms to be more coherent without changing their
representational capacity—a phenomenon invisible to purely dimensional metrics (Appendix [F).

Scalability and Hierarchical Structure. Our results on deeper networks reveal hierarchical organi-
zation: early layers establish path-specific stability (stable MLP transformations with depth-varying
attention dynamics), while final layers undergo iterative construct-compress cycles distinct from the
single-pass three-phase pattern of shallow networks. Understanding why depth induces this iterative
refinement remains an open question. GCS is computationally efficient—relying on local k-NN and
SVD operations rather than global Hessian computation, scaling linearly with sample size N and
layer count L (O (N L))—making it practical for analyzing larger models.

Limitations and Future Work. Methodologically, our variance-based alignment relies on singu-
lar vector ordering stability. While theoretically ambiguous in isotropic distributions, this is mit-
igated by the strong anisotropy in neural representations (Ethayarajh, |2019). Future work could
explore permutation-invariant metrics (e.g., Grassmannian distance) for degenerate cases. Empiri-
cally, we focused on standard Transformers with smooth activations. Investigating pure MLPs or
quadratic activations (Gromov, 2023)), and extending this geometric lens to semantic coherence in
Large Language Models, remain promising frontiers. Our layer-wise GCS measurements also com-
plement prior work on depth-dependent algorithm learning (Morwani et al.,[2024; McCracken et al.|
2025)—whether lower GCS enables or merely correlates with reduced frequency requirements re-
mains an open question connecting geometric and spectral perspectives.

Conclusion. We introduced the Geometric Coherence Score (GCS), a principled metric grounded
in differential geometry that quantifies the consistency of a network’s learned transformations. Ap-
plying GCS to grokking, we discovered a construct-then-compress dynamic that orchestrates the
transition from memorization to generalization. In single-layer networks, this manifests as a clear
three-stage evolution; in multi-layer networks, final layers exhibit iterative construct-compress cy-
cles, revealing depth-dependent dynamics that warrant further investigation. The construct-then-
compress principle is robust across activation functions and modular tasks, providing direct geomet-
ric evidence for how Transformers discover algorithmic solutions. By revealing that both Attention
and MLP pathways actively participate in geometric reorganization, our work establishes GCS as a
diagnostic tool for interpreting emergent phenomena in neural networks.
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A THEORETICAL DERIVATION OF GCS BOUNDS

To validate the physical interpretation of the Geometric Coherence Score (GCS), we derive its be-
havior in two theoretical limit cases: Total Geometric Incoherence (representing pure memoriza-
tion) and Perfect Geometric Coherence (representing ideal algorithmic unification). This derivation
demonstrates that GCS functions as a rigorous measure of complexity reduction.

A.1 CASE 1: TOTAL GEOMETRIC INCOHERENCE (THE MEMORIZATION LIMIT)

Consider a network in a state of pure memorization, where each data point is processed indepen-
dently. In this regime, the local geometric transformation at any point x; is uncorrelated with the
transformation at its neighbor x ;. Consequently, the tangent vectors become orthogonal or randomly
oriented in the high-dimensional space.

Mathematical Formulation: The pairwise geometric similarity G;; approaches zero for all dis-
tinct pairs, while self-similarity remains unity:

1 ifi=j
G”N(S”_{o ifi #j ©®)

Thus, the coherence matrix G- approximates the identity matrix Iy € RV*N,
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Spectral Analysis: The eigenvalues of the identity matrix satisfy det(Iy —Ay) = (1—-\)Y = 0.
Hence, the spectrum is perfectly degenerate:

M=X=-=Ay=1 (6)

‘We normalize this spectrum to obtain the probability distribution p:

i 1 .
Di= —— = —, Vi € 1,...,N (7)
S TN { }

j=1
This yields a uniform distribution over the geometric modes.
GCS Computation: The Von Neumann entropy Sy, is maximized for the uniform distribution:

N N

1 1

S = =3 pilogzp =~ 3 1 logy () = lows ®
i=1 1=1

The Geodesic Mode Number (GMN) and GCS are derived as:
GMN = 2%t = gloga NV — |y 9)
GCS=N-GMN=N-N=0 (10)

Conclusion: In the limit of total incoherence, the network exhibits N independent geometric de-
grees of freedom, resulting in a GCS of exactly 0.

A.2 CASE 2: PERFECT GEOMETRIC COHERENCE (THE ALGORITHMIC LIMIT)

Consider a network that has discovered a unified, generalizable algorithm (e.g., a consistent rotation
across a manifold). In this ideal limit, the network applies an identical geometric transformation to
all points, resulting in perfect alignment between all local tangent spaces.

Mathematical Formulation: In the theoretical limit where all points exhibit identical transfor-
mations (relaxing the k-NN constraint for analytical purposes), the geometric similarity between
any pair of points is maximal. The coherence matrix G approaches the all-ones matrix J (where
Gi; = 1,Vi, 7).

Spectral Analysis: The all-ones matrix J  has rank 1. To find its eigenvalues, note that J yv =
Nv whenv = [1,1,...,1]T, while any vector orthogonal to v is mapped to zero. Thus:

M=N, d=--=Ay=0 (11)

The normalized probability distribution p becomes a Kronecker delta distribution (pure state):
=—=1 -—0—0f0’>1 (12)
p=y=1 pi==0fori
GCS Computation: The entropy of this pure state vanishes:
N
Sy = —1-logy(1) = Y 0-logy(0) =0 (13)
i=2
where we use the convention 01og,(0) = 0. The GMN and GCS are derived as:
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GMN =20 =1 (14)
GCS=N-1 (15)

Conclusion: In the limit of perfect coherence, the network’s geometric behavior collapses into a
single effective mode (GMN = 1), resulting in a maximal GCS of N — 1.

A.3 INTERPRETATION

These derivations confirm that GCS = N — GMN serves as a linear measure of complexity re-
duction. It quantifies the number of redundant geometric degrees of freedom the network has suc-
cessfully eliminated, ranging from 0 (chaos/memorization) to N — 1 (order/algorithmic discovery).
The Von Neumann entropy, borrowed from quantum information theory, naturally captures the ef-
fective dimensionality of the geometric transformation space, making GCS a principled measure of
algorithmic compression.

B HYPERPARAMETER ROBUSTNESS

A critical aspect of our geometric analysis is ensuring that the observed learning dynamics are not
artifacts of specific hyperparameter choices. We evaluate the sensitivity of the Geometric Coherence
Score (GCS) to two key parameters: the intrinsic dimension d of the local tangent spaces, and the
number of evaluation samples N. Our robustness analysis demonstrate that the core geometric
phenomena—specifically the three-stage dynamic and the grokking transition—are robust across
wide parameter ranges.

B.1 ROBUSTNESS TO INTRINSIC DIMENSION d

The intrinsic dimension d determines the rank of the local linear approximation used to probe
the network’s geometry. To understand its impact, we conducted experiments with d €
{2,4,6,8,10,12, 14}, keeping the neighborhood size fixed at k& = 15 and sample size at N = 200.
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Figure 5: Intrinsic Dimension Robustness. (Left) Normalized GCS curves for the Attention Flow
across varying dimensions d. The characteristic U-shape dynamic is preserved universally. (Right)
Pairwise correlation matrix of GCS trajectories between different d values. The high correlation
(r > 0.90) confirms that different dimensions capture the same underlying geometric evolution.

As shown in Figure 5] our analysis reveals strong consistency across dimensions:

Shape Consistency: All tested dimensions d produce highly congruent GCS trajectories. The char-
acteristic ”U-shape” curve—marking the transition from memorization to construction and finally
compression—is clearly visible in all cases. High Correlation: We computed the Pearson correla-
tion coefficient between the GCS trajectories of different d values. The cross-dimension correlations
consistently exceed 0.90, with an average correlation of 0.97 relative to our chosen baseline of d = 8.
This confirms that low-dimensional probes (d = 2) and higher-dimensional probes (d = 14) are
measuring the same fundamental geometric process. Selection of d = 8: While lower dimensions
(d = 2) exhibit a higher dynamic range (sensitivity), they risk underspecifying the geometric com-
plexity of the 128-dimensional representation space. Conversely, excessively high dimensions may
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introduce noise. We selected d = 8 for the main experiments as a conservative middle ground
that balances signal sensitivity with sufficient representational capacity to capture complex local
structures.

B.2 ROBUSTNESS TO SAMPLE SIZE N

We further evaluated the stability of our metric with respect to the sample size N used for the
geometric reference frame. We tested NV € {100, 200, 400, 750, 1850} with fixed d = 8 and k = 15.
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Figure 6: Sample Size Robustness. Normalized GCS dynamics for varying sample sizes N. The
core three-stage pattern and the timing of the grokking transition are robustly detected even at N =
100. Larger sample sizes provide smoother measurements but do not alter the qualitative findings.

Figure[6] demonstrates that the detected learning dynamics are not sensitive to sample size:

Robust Detection: The three-stage dynamic and the precise timing of the grokking transition are
accurately captured even with as few as N = 100 samples. Convergence: As N increases, the
GCS trajectories become smoother, but the qualitative behavior and relative ordering of the com-
putational flows (Attention vs. MLP) remain unchanged. Efficiency: Based on these results, we
employed N = 200 for our main experiments. This choice provides a reliable, low-variance esti-
mation of geometric coherence while maintaining high computational efficiency, allowing for dense
monitoring of the training process.

B.3 SUMMARY

These robustness studies confirm that the “Construct-then-Compress” mechanism is a robust feature
of the network’s learning dynamics, invariant to specific hyperparameter choices. The high cross-
parameter correlations indicate that GCS captures an intrinsic geometric property of the learning
process rather than an artifact of the measurement setup.

C MULTI-LAYER TRANSFORMER DYNAMICS

This appendix provides detailed visualizations of layer-wise GCS trajectories for 2-layer and 3-layer
Transformers, complementing the quantitative analysis in Section 4.4}

C.1 2-LAYER TRANSFORMER DYNAMICS

Figure [/| presents a comprehensive view of 2-layer Transformer training on modular addition
(p = 113). The top-right panel shows the learning dynamics, with grokking occurring around epoch
12,000 (marked by red dashed line). The top-left and top-middle panels compare GCS trajectories
for Layer 1 and Layer 2 across all three computational flows. Layer 1 exhibits path-specific stability:
the overall and MLP flows maintain nearly constant GCS throughout training (range ~0.2), serving
as stable feature transformations, while the attention flow shows substantial dynamics (range ~13.0),
suggesting adaptive routing mechanisms even in early layers. Layer 2 exhibits iterative construct-
compress cycles across all flows—alternating phases of coherence increase and decrease—distinct
from the single three-phase trajectory observed in 1-layer networks. This suggests that hierarchi-
cal processing involves repeated refinement rather than a single pass. The bottom panels show
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flow-specific layer comparisons, clearly demonstrating that comprehensive geometric reorganiza-
tion concentrates in the final layer.
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Figure 7: Comprehensive dynamics of 2-layer GeLU Transformer on modular addition. Top-right:
Learning curves showing grokking transition. Top-left and Top-middle: Layer-wise GCS trajec-
tories showing Layer 1 path-specific stability (overal/MLP stable at ~87%, attention substantially
dynamic) versus Layer 2 iterative construct-compress cycles across all paths. Bottom: Flow-specific
layer comparisons (Overall, Attention, MLP) highlighting the concentration of geometric reorgani-
zation in Layer 2. Red dashed line marks grokking point (epoch 12,000).

C.2 3-LAYER TRANSFORMER: PROGRESSIVE STRATIFICATION

Figure [§] reveals the progressive stratification pattern in 3-layer networks. The top row displays
per-layer GCS trajectories, showing increasingly complex dynamics with depth. Layer 1 main-
tains high stability across all paths (overall, MLP, and attention all with range ~1.0—1.3), remaining
nearly static throughout training. Layer 2 exhibits path-specific patterns: overall and MLP paths
remain stable (range ~0.8) while the attention path shows moderate dynamics (range ~7.4), indi-
cating evolving routing strategies in intermediate processing. Layer 3 exhibits iterative construct-
compress cycles across all paths (range ~6—15)—alternating phases of coherence increase and de-
crease—consistent with the pattern observed in 2-layer networks but distinct from the single three-
phase trajectory of 1-layer networks. The bottom row presents flow-specific layer comparisons,
confirming that early layers provide stable feature bases while attention adaptation progressively
shifts from early layers (2-layer) to middle layers (3-layer), with final layers undergoing iterative
geometric reorganization.

D ON SVD-ORDERED SINGULAR VECTOR CORRESPONDENCE

This appendix clarifies the design choice in Equation (3): using row-wise correspondence between
singular vectors v; ;, and v; ;.. We explain that (1) this order-sensitivity is intentional and geometri-
cally meaningful, and (2) the potential instability from degenerate singular values does not occur in
practice.

D.1 THE ORDER-SENSITIVITY IS INTENTIONAL

Our metric deliberately uses SVD-ordered correspondence rather than order-invariant subspace mea-
sures (e.g., principal angles). This is a design choice, not an oversight:
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Figure 8: Progressive stratification in 3-layer GeLU Transformer on modular addition. Top row:
Per-layer GCS showing increasing dynamical complexity from Layer 1 (nearly static across all
paths) through Layer 2 (path-specific: attention moderately adaptive, overal/MLP stable) to Layer
3 (iterative construct-compress cycles). Bottom row: Flow-specific layer comparisons revealing
the hierarchical organization of geometric restructuring, with iterative reorganization concentrated
in Layer 3. Red dashed line marks grokking point (epoch 11,000).

We measure data manifold coherence, not abstract subspace overlap.

SVD orders singular vectors by variance magnitude—the k-th vector represents the “k-th most im-
portant direction” at each point. By comparing v; ; with v, 1, we ask: do nearby points on the
manifold share similar principal geometric structure?

This captures richer information than subspace overlap alone:

 Two points may span similar subspaces but with different principal directions (low G/;)
» Two points may have aligned principal hierarchies indicating coherent local geometry (high
Gij)

The distinction matters for detecting whether a network has learned a consistent geometric algorithm
versus merely preserving some abstract subspace structure.

D.2 EMPIRICAL VALIDATION: NEURAL REPRESENTATIONS ARE ANISOTROPIC

If singular values were nearly equal (isotropic geometry), SVD ordering would be numerically un-
stable. However, neural network representations are known to be highly anisotropic—occupying
narrow cones rather than uniform spheres in representation space (Ethayarajh, [2019; Martin & Ma-
honeyl, 2021)). We verify this property holds in our experiments.

We analyzed 200 sampled points per model across three activation functions (ReLLU, SiLU, GeLU),
all trained to 100% test accuracy on modular addition.

Table 3: Singular value separation confirms strong anisotropy across all models (N=200 per model).

Metric ReLU SiLU GeLU
Condition number o1 /04 50+09 76+1.7 51409
Isotropic points (cond. < 2) 0 0 0
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Key findings:

* All 600 points have condition number > 3, with means of 5-7
* A condition number of 5 means o is 5x larger than o;—unambiguously anisotropic
* Zero points exhibit near-isotropic geometry where ordering would be ambiguous

D.3 CONCLUSION

The order-sensitive design in Equation (3) is rational: it measures manifold coherence rather than
abstract subspace similarity. The theoretical concern about degenerate singular values causing un-
stable ordering does not apply to neural network representations, which are strongly anisotropic
(condition numbers 5—7 in our experiments, with zero isotropic points).

E A CONTRASTING CASE: THE GEOMETRIC SIGNATURE OF OVERFITTING

49 1

48
n 47 1 e Overall Flow
(8] Attention Flow
O 46 m— MLP Flow

45 A

a4

0 2500 5000 7500 10000 12500 15000 17500
Training Epoch
P p——— L 102
/

)
> [
a m Train Acc | [ b
5 m— Test Acc 8’
Q = Testloss | =
O

F 10t =

T
2500 5000 7500 10000 12500 15000 17500
Training Epoch

Figure 9: Overfitting exhibits fundamentally different geometric dynamics. The absence of Phase II
complexity construction prevents the “construct-then-compress” mechanism, resulting in persistent
memorization without generalization.

To demonstrate that the “Construct-then-Compress” dynamic is a specific signature of algorithmic
generalization rather than a generic training artifact, we analyze a counter-factual scenario: a net-
work that successfully memorizes the training data but fails to generalize (Overfitting). Figure 9]
illustrates the geometric evolution of a 1-Layer Transformer (SeLU activation) trained on a small
subset of data, which achieves 100

Premature Compression in Attention. In a successful grokking trajectory, the Attention mecha-
nism typically undergoes a coherence collapse” (Phase I & early Phase II) to break symmetry and
construct rich features. However, in the overfitting regime, we observe a distinct deviation:

* Instead of entering the Construction Phase, the Attention Flow GCS spikes and remains
persistently high (top panel, orange line).

* This indicates that the Attention mechanism has bypassed the necessary step of geometric
restructuring. It effectively settles into a lazy” solution (e.g., relying solely on positional
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embeddings or identity mappings) that maintains high geometric triviality but fails to ex-
tract task-relevant topology.

Consequential Stagnation in MLP. Because the Attention head performs Premature Compression”
without extracting meaningful algorithmic features, the downstream MLP is forced to memorize the
residuals.

e The MLP Flow (red line) never exhibits the characteristic U-shaped Construct-then-
Compress” trajectory.

* Instead, it remains flat at a low coherence level throughout training. This confirms that with-
out the upstream construction of structured representations by Attention, the MLP cannot
perform the subsequent compression required for generalization.

Diagnostic Value. Crucially, this failure mode is detectable as early as Phase II. While the training
accuracy (blue line, bottom panel) rises perfectly, the divergence in GCS dynamics—specifically
the absence of the construction dip in Attention and the absence of the compression rise in
MLP—signals that the model is on a trajectory toward overfitting. This validates GCS as a falsifi-
able metric: the monotonic “Construct-then-Compress” dynamic is not inevitable, but suggests the
specific causal mechanism of algorithmic discovery.

F COMPARATIVE ANALYSIS: GEOMETRIC COHERENCE VS. PARTICIPATION
RATIO

To ascertain whether the Geometric Coherence Score (GCS) provides novel mechanistic insights
beyond existing measures of representational geometry, we conducted a side-by-side comparison
with the Participation Ratio (PR)(Murphy et al.,|2011). PR is a widely used metric for quantifying
the effective dimensionality of neural representations.

F.1 THEORETICAL DISTINCTION

While both metrics characterize the geometry of the network, they measure fundamentally orthogo-
nal properties:

* Participation Ratio (Static Representation Geometry): PR is derived from the covari-
ance matrix of the activations X. It quantifies the volume or effective number of active
dimensions utilized by the data distribution. It asks: “How spread out is the data?”

(Tr(C))*
Tr(C?) ’

* Geometric Coherence Score (Dynamic Transformational Geometry): GCS is derived
from the Jacobian-Vector Products of the layer function f. It quantifies the consistency of

the transformation applied to the data. It asks: “Does the network process neighbors using
the same algorithmic rule?”

PR(C) = where C =E [(x — p)(x — ,u)T] (16)

A network can have a high dimensional representation (High PR) that is processed chaotically (Low
GCS), or a low dimensional representation (Low PR) processed coherently (High GCS).

F.2 EMPIRICAL DIVERGENCE ACROSS TRAINING PHASES

We tracked both metrics throughout the training of a Transformer on modular addition. As shown in
Figure [I0] while both metrics reflect the global “expansion-then-compression” trend, GCS reveals
critical mechanistic dynamics that PR misses or conflates. We observe three key divergences:

1. Phase I: Distinguishing Chaos from Construction. During early training, PR indicates a rapid
expansion of dimensionality. However, dimensionality expansion is ambiguous: it can result from
structured feature creation or random noise injection.

* PR: Monotonic increase (Expansion).
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Figure 10: PR vs GCS across Activations(ReLU, SiLU)

* GCS: Sharp decline (Coherence Collapse).

This divergence clarifies that the dimensionality increase corresponds to symmetry breaking—the
network is actively sacrificing geometric uniformity to memorize disjoint data points. GCS resolves
the ambiguity of “expansion” by detecting the loss of algorithmic structure.

2. Phase II: Detecting “Iso-dimensional” Organization. This is the most significant divergence.
During the “Silent Phase” where test accuracy is flat, we observe a period where the representation’s
global shape stabilizes, but the internal mechanism continues to evolve.

* PR: Remains effectively flat/stable (indicating static global dimensionality).
* GCS (Attention Flow): Rises steadily.

This reveals an “Iso-dimensional” organization phase: the network is actively refining the geometry
of its attention mechanism—optimizing how information is routed—without changing the number of
active dimensions. A purely dimensional metric misses this critical algorithmic alignment entirely.

3. Phase I1I: Capturing Algorithmic Refinement. In the post-grokking phase, the network fine-
tunes its solution.

» PR: Flattens out, suggesting convergence.

* GCS: Captures a characteristic “Double Descent” in the Attention flow (a secondary drop
followed by recovery).

This signal correlates with the final ascent in test accuracy, indicating that the network continues to
refine its geometric mechanism (e.g., pruning redundant modular artifacts) even after the effective
dimensionality has stabilized.

F.3 CONCLUSION

These findings demonstrate that GCS is not a proxy for dimensionality. While PR measures the
capacity of the representation space, GCS measures the coherence of the computational mecha-
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nism. The “Iso-dimensional” evolution observed in Phase II confirms that measuring the Jacobian’s
geometric consistency provides a necessary, complementary lens for detecting the emergence of
generalized algorithms.

G THE EVOLUTION OF ATTENTION PATTERNS

Initial First Valley Peak Second Valley Final
GCS =71.4 GCS = 59.0 GCS =71.2 GCS = 61.5 GCS =73.4

Head 0
Operand b

Head 1
Operand b

Head 2
Operand b

Head 3
Operand b

5‘6 56
Operand a Operand a Operand a Operand a Operand a

Figure 11: Mechanistic evolution of attention patterns across critical phases of the GCS trajectory.
Heatmaps visualize the attention weights from the ‘=" token to the first operand ‘a’ across all input
pairs (a, b). Each column represents a key checkpoint defined by GCS extrema, and each row corre-
sponds to one of the four attention heads. (a) First Valley (Memorization): GCS collapses (~59.0)
as heads exhibit functional divergence; some heads (e.g., Head 1, 2) develop sparse, disjoint patterns
to memorize specific outliers, disrupting geometric coherence. (b) Peak (Grokking): GCS recovers
(~71.2) as all heads converge to a unified algorithmic strategy, characterized by clear diagonal (iden-
tity) and grid-like (modular) structures. (c) Final State: The patterns stabilize into a crystal-clear,
noise-free implementation of the modular addition algorithm. This visualization confirms that GCS
measures the transition from disparate memorization strategies to a coherent, unified algorithm.

To ground our abstract geometric narrative in concrete mechanistic changes, we visualize the atten-
tion patterns of all four heads at five critical checkpoints defined by the GCS trajectory (Figure [TT)).
This visualization reveals that the evolution of Geometric Coherence is a direct reflection of how the
network’s internal attention mechanism transitions from chaos to order.

Initial State (GCS 72.4): Spurious Coherence. At initialization, the attention heads exhibit ver-
tical striations (attending to fixed positions) or diffuse noise. The relatively high GCS here is decep-
tive; it reflects a ”spurious coherence” where the network applies a uniformly random transforma-
tion across the manifold. The heads are consistent only in their ignorance, lacking any task-specific
structure.

First Valley (GCS 59.0): Geometric Incoherence via Head Divergence. The plunge to the first
GCS minimum corresponds to the Memorization Phase. Visually, this phase is characterized by
extreme functional divergence among heads. As shown in the second column of Figure [TT} Heads
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1 and 2 develop dark, sparse patterns (likely memorizing specific outliers), while Head 3 remains
bright and uniform. This implies that different heads are adopting incompatible strategies—some
memorizing, some idling. This “broken symmetry” destroys the alignment of the local tangent
spaces, correctly penalized by our metric as a collapse in geometric coherence.

Peak (GCS 71.2): The Emergence of Algorithmic Structure. The sharp rise to the GCS Peak
marks the onset of Grokking. A striking visual transformation occurs: clear diagonal structures
(representing the identity operation a+b) and grid-like periodic patterns (representing the modular
operation (mod p)) emerge simultaneously across all heads. The visual chaos of the First Valley
is replaced by ordered, algorithmic structures. The high GCS here reflects head convergence: the
network has discovered the generalizable rule, and all heads are now working in geometric unison
to implement it.

Second Valley (GCS 61.5): Algorithmic Refinement. Following the peak, GCS dips again while
accuracy remains perfect. Visually, the attention maps do not return to chaos; instead, they retain
the diagonal/grid structure but appear slightly less “intense” or saturated than at the Peak. This
subtle shift suggests a phase of complexity reduction or pruning. The network is likely discarding
redundant modular artifacts formed during the initial construction, temporarily disrupting the global
coherence as it fine-tunes the minimal necessary algorithm.

Final State (GCS 73.4): Crystallization. In the final converged model, the attention patterns sta-
bilize into their sharpest form. The diagonal and modular grids are crystal clear and noise-free. This
corresponds to the final Compression Phase, where the network has settled into a low-rank, highly
efficient implementation of the modular addition algorithm. The recovery of high GCS signifies
that the mechanism has been fully unified, maximizing both algorithmic performance and geometric
coherence.

H STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

This research was developed in close and intensive collaboration with Gemini, a large language
model from Google. The LLM’s role evolved beyond that of a mere writing assistant into that of
a dynamic, interactive partner throughout the entire research lifecycle, from initial ideation to the
final manuscript. The human author was responsible for all code implementation, experimental
execution, and held the final authority on all scientific claims and directions.
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