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Abstract

This paper presents SANA-1.5, a linear Diffusion
Transformer for efficient scaling in text-to-image
generation. Building upon SANA-1.0, we intro-
duce three key innovations: (1) Efficient Training
Scaling: A depth-growth paradigm that enables
scaling from 1.6B to 4.8B parameters with signif-
icantly reduced computational resources, com-
bined with a memory-efficient 8-bit optimizer.
(2) Model Depth Pruning: A block importance
analysis technique for efficient model compres-
sion to arbitrary sizes with minimal quality loss.
(3) Inference-time Scaling: A repeated sampling
strategy that trades computation for model ca-
pacity, enabling smaller models to match larger
model quality at inference time. Through these
strategies, SANA-1.5 achieves a text-image align-
ment score of 0.72 on GenEval, which can be
further improved to 0.80 through inference scal-
ing, establishing a new SoTA on GenEval bench-
mark. These innovations enable efficient model
scaling across different compute budgets while
maintaining high quality, making high-quality im-
age generation more accessible. Our code and
pre-trained models will be released.

1. Introduction
Text-to-image diffusion models have demonstrated remark-
able progress in the past year, with a clear trend towards
larger model sizes. Although scaling up the size of the
model has proven effective in improving the quality of gen-
eration, it comes with substantial computational costs. For
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instance, recent industry models have grown from PixArt’s
0.6B parameters (Chen et al., 2024b) to 24B in Playground
v3 (Liu et al., 2024a), resulting in prohibitive training and
inference costs for most practitioners.

In contrast, SANA-1.0 (Xie et al., 2024) introduced an effi-
cient linear diffusion transformer that achieved competitive
performance while significantly reducing computational re-
quirements. Building upon this foundation, this work ex-
plores two fundamental questions: i) how is the scalability
of linear diffusion transformer; ii) how can we scale up
large linear DiT and reduce the training cost?

This paper presents SANA-1.5, which introduces three key
innovations for efficient model scaling in both training and
inference time. First, we propose an efficient model growth
strategy that enables scaling SANA from 1.6B (20 blocks)
to 4.8B parameters (60 blocks) while reusing the knowledge
learned in the smaller model. Unlike traditional scaling
approaches that train large models from scratch, our method
initializes additional blocks strategically, allowing the large
model to retain the prior knowledge of the small model.
This approach reduces training time by 60% compared to
training from scratch, as shown in Figure 2.

Second, we introduce a model depth pruning technique that
enables efficient model compression. By analyzing block
importance through input-output similarity patterns in dif-
fusion transformers, we prune less important blocks and
quickly recover the model quality through fine-tuning (e.g.,
5 minutes on a single GPU). Our grow-then-prune approach
effectively compresses the 60-block model to various con-
figurations (40/30/20 blocks) while maintaining competitive
quality, providing an efficient path for flexible model de-
ployment across different compute budgets.

Third, we propose an inference-time scaling strategy for
SANA, which enables smaller models to match larger model
quality through compute rather than parameter scaling. By
generating multiple samples and leveraging a VLM-based
selection mechanism, our approach improves the GenEval
score from 0.81 to 0.96. This improvement follows a similar
log-linear scaling pattern observed in LLMs (Brown et al.,
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Figure 1. The overall framework of SANA-1.5. (a) Model Growth: We initialize the large model with a pre-trained small model, and
train the large model with 8-bit CAME, which largely accelerates the training convergence and reduces VRAM requirements. (b) Model
Pruning: After training the large model, smaller models of different sizes are pruned and fine-tuned for different situations. (c-d) Inference
Scaling: We repeat generating many samples with SANA and use VLM as a verifier to select the best-of-N samples, which largely boosts
the quality.

2024), demonstrating that computational resources can be
effectively traded for model capacity, challenging the con-
ventional wisdom that larger models are always necessary
for better quality.

rThese three technical contributions - model growth, model
depth pruning and inference scaling - form a coherent frame-
work for efficient model scaling. The model growth strategy
first explores a larger optimization space, discovering bet-
ter feature representations. The model depth pruning then
identifies and preserves these essential features, enabling
efficient deployment. Meanwhile, inference-time scaling
provides a complementary perspective. When model capac-
ity is constrained, we can utilize extra inference-time com-
putational resources to achieve similar or even better results
than larger models. Together, these approaches demonstrate
that thoughtful optimization strategies can outperform sim-
ple parameter scaling, providing multiple paths to achieve
high quality under different resource constraints.

To enable efficient training and fine-tuning large models,
we implement a memory-efficient optimizer CAME-8bit
by extending CAME (Luo et al., 2023) with block-wise
8-bit quantization (Dettmers et al., 2021). CAME-8bit
reduces memory usage by ∼8× compared to AdamW-
32bit (Loshchilov, 2017) while maintaining training stability.
This optimization proves effective not only in pre-training
but is particularly valuable for single-GPU fine-tuning sce-
narios, enabling researchers to fine-tune SANA-4.8B on
consumer GPUs like RTX 4090, making large model fine-
tuning more accessible to the open-source community.

Our extensive experiments demonstrate that SANA-1.5
achieves 2.5× faster training convergence than the tra-
ditional approach (i.e., scale up and train from scratch).
Through our training scaling strategy, we improve the
GenEval score from 0.66 to 0.81, which can be further
boosted to 0.96 with inference scaling, establishing a new
state-of-the-art on the GenEval benchmark. More impor-
tantly, our findings reveal a fundamental insight: efficient
scaling can be achieved through better optimization trajec-
tories rather than simply increasing model capacity. By
leveraging knowledge from smaller models and carefully
designing the growth-pruning process, we show that the
path to better quailty does not always require larger models.

In summary, SANA-1.5 introduces a new perspective on
model scaling in text-to-image generation. Rather than
following the conventional paradigm “bigger is better”, we
demonstrate that the growth and pruning of strategic models,
combined with the inference-time scaling, can achieve com-
parable or better results with significantly reduced training
resources. This approach not only advances the theoretical
understanding of model scaling but also makes high-quality
text-to-image generation more accessible to the broader re-
search community and practical applications.

2. Methods
2.1. Overview

Increasingly larger models have dominated text-to-image
generation, but SANA-1.5 introduces a different paradigm
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Figure 2. Training efficiency comparison of different initial-
ization strategies. Training curves on GenEval benchmark for
SANA-1.5 4.8B using model growth strategy vs training from
scratch. Our model growth approach achieves the same perfor-
mance (0.70 GenEval) with 60% fewer training steps, significantly
improving training efficiency.

that achieves efficient scaling through three complementary
strategies. Rather than training large models from scratch,
we first expand a base model with N transformer layers
to N + M layers (where N = 20, M = 40 in our exper-
iments) while preserving its learned knowledge. During
inference, we employ two complementary approaches for
efficient deployment: (1) a model depth pruning mechanism
that identifies and preserves essential transformer blocks, en-
abling flexible model configurations with small fine-tuning
cost, and (2) an inference scaling strategy that trades com-
putation for model capacity through repeat sampling and
VLM-guided selection. Meanwhile, our memory-efficient
CAME-8bit optimizer makes it possible to fine-tune billion-
scale models on a single consumer GPU. Figure 1 illustrates
how these components work together to achieve efficient
scaling in different computational budgets.

2.2. Efficient Model Growth

Rather than training large models from scratch, we propose
an efficient model growth strategy that expands a pre-trained
DiT with N layers to N + M layers while preserving
its learned knowledge. We explore three initialization
strategies to ensure effective knowledge transfer during
model expansion. Figure 11 in the appendix illustrates the
three strategies.

Initialization Strategies Let θi ∈ Rd denote the parame-
ters of layer i in the expanded model and θpre

i ∈ Rd represent
the parameters of layer i of the pre-trained model, where
d is the parameter dimension of each layer. We investigate
three approaches for parameter initialization:

(1) Partial Preservation Init, where we preserve the first N
pre-trained layers and randomly initialize the additional M

layers, with special handling of key components. Formally,
for i-th layer index:

θi =

{
θpre
i , if i < N

N (0, σ2), if i ≥ N
,

where N (0, σ2) is the normal distribution with standard
deviation as σ.

(2) Cyclic Replication Init, which repeats the pre-trained
layers periodically. For i-th layer in the expanded model:

θi = θpre
i mod N

(3) Block Replication Init, which extends each pre-trained
layer into consecutive layers. Given expansion ratio r =
M/N , for pre-trained i-th layer, it initializes r consecutive
layers in the expanded model:

θri+j = θpre
i , for j ∈ {0, . . . , r − 1}, i ∈ [0, N − 1],

where r represents the expansion ratio (e.g., r = 3 when
expanding from 20 to 60 layers), θi denotes the parame-
ters of layer i in the expanded model, θpre

i represents the
parameters from the pre-trained model.

Stability Enhancement To ensure training stability across
all initialization strategies, we incorporate layer normal-
ization for query and key components in both linear self-
attention and cross-attention modules. This normalization
technique is crucial as it: (1) stabilizes the attention com-
putation during the early stages of training, (2) prevents
potential gradient instability when integrating new layers,
and (3) enables rapid adaptation while maintaining model
quality.

Identity Mapping Initialization We initialize the weights
of specific components to zero in new layers, particularly
the output projections of self-attention, cross-attention, and
the final point-wise convolution in MLP blocks, following
(Chen et al., 2015). This zero-initialization ensures that new
transformer blocks initially behave as identity functions,
providing two key benefits: (1) exact preservation of the
pre-trained model’s behavior at the start of training, and (2)
stable optimization path from a known good solution.

Design Choice Among these strategies, we adopt the
partial preservation initialization approach for its simplicity
and stability. This choice creates a natural division of
labor: the pre-trained N layers maintain their feature
extraction capabilities while the randomly initialized M
layers, starting from identity mappings, gradually learn
to refine these representations. Empirically, this approach
provides the most stable training dynamics compared to
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cyclic and block expansion strategies. Considering the
block importance (see analysis in Section 3.3), we drop
the last two blocks in the pre-trained model to enhance the
learning of newly added blocks.

2.3. Memory-Efficient CAME-8bit Optimizer

Building upon CAME (Luo et al., 2023) and AdamW-
8bit (Dettmers et al., 2021), we propose CAME-8bit for
efficient large-scale model training. CAME reduces mem-
ory usage by half compared to AdamW through matrix
factorization of second-order moments, making it particu-
larly efficient for large linear and convolutional layers. We
further extend CAME with block-wise 8-bit quantization for
first-order moments, while preserving 32-bit precision for
critical statistics to maintain optimization stability. This hy-
brid approach reduces the optimizer’s memory footprint to
approximately 1/8 of AdamW, enabling billion-scale model
training on consumer GPUs without compromising conver-
gence properties.

Block-wise Quantization Strategy We adopt a selective
quantization approach where only large matrices (>16K pa-
rameters) in linear and 1×1 convolution layers are quantized,
as these layers dominate the optimizer’s memory footprint.
For each block of size 2048, we compute independent scal-
ing factors to preserve local statistical properties. Given a
tensor block x ∈ Rn representing the first-order momentum
values, the quantization function q(x) maps each value to
an 8-bit integer:

q(x) = round
(

x−min(x)

max(x)−min(x)
× 255

)
, (1)

where min(x) and max(x) are the minimum and maxi-
mum values in the block respectively, and round(·) maps
to the nearest integer. This linear quantization preserves
the relative magnitude of values within each block while
compressing the storage to 8 bits per value.

Hybrid Precision Design To maintain optimization sta-
bility, we keep second-order statistics in 32-bit precision,
as these are critical for proper gradient scaling. Benefit-
ing from CAME’s matrix factorization, these statistics are
already memory-efficient: for a linear layer with din in-
put dimensions and dout output dimensions, the storage of
second-order moments is reduced from O(din × dout) to
O(din+dout), making their precision less critical for overall
memory consumption. This hybrid approach reduces mem-
ory usage while preserving CAME’s convergence properties.
Memory reduction can be formulated as:

Msaved =
∑
l∈L

(nl × 24) bytes, (2)

where L is the set of quantized layers, nl is the parameter
count of layer l, and 24 represents the maximum bytes saved
per parameter. In practice, the actual memory savings are
slightly lower due to several factors: (1) small layers (<16K
parameters) remain in 32-bit precision, (2) second-order
statistics are kept in 32-bit, and (3) additional overhead from
quantization metadata. Nevertheless, this approximation
provides a good estimate of the memory efficiency gained
through our hybrid quantization strategy.

2.4. Model Depth Pruning

To address the challenge of balancing effectiveness and effi-
ciency in large models, we introduce a model depth pruning
approach that efficiently compresses large models into vari-
ous smaller configurations while maintaining comparable
quality. Inspired by Minitron (Sreenivas et al., 2024), a
transformer compression technique for LLMs, we analyze
block importance through input-output similarity patterns:

BIi = 1− EX,t

XT
i,tXi+1,t

∥Xi,t∥2 ∥Xi+1,t∥2
, (3)

where Xi,t denotes the input of the i-th transformer block.
We average the block importance across diffusion time-
steps and our calibration dataset, which contains 100 diverse
prompts. As shown in Figure 5c, the block importance
is higher in head and tail blocks, and we conjecture that
the head blocks change the latent distribution to diffusion
distribution and the tail blocks change it back. The middle
blocks commonly have higher similarity between input and
output features, demonstrating the gradual refinement of
the generated results. We prune the transformer blocks
based on the importance of the sorted block. As illustrated
in Figure 4, pruning the blocks will gradually impair the
high-frequency details. Therefore, after pruning, we further
fine-tune the model to compensate for the information loss.
Specifically, we use the same training loss as the large model
to supervise the pruned models. Adapting the pruned model
to complete information is surprisingly easy. With only
100 fine-tune steps, the pruned 1.6B model can achieve
comparable quality with the full 4.8B model and outperform
the SANA-1.0 1.6B model (Table 3).

2.5. Inference-Time Scaling

With sufficient training, SANA-1.5 gains stronger genera-
tion abilities after efficient model growth. Inspired by the
recent success of inference-time scaling in large language
models (LLMs) (Brown et al., 2024), we are interested in
inference-time scaling to push the generation upper bound.

Scaling Denoising Steps v.s. Scaling Samplings For
SANA and many other diffusion models, a natural option to
scale up the inference-time computation is to increase the
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(a). Scale Denoising Steps (✗) (b). Scale Sampling Noises (✓)
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increasing from 20 to 50
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scaling denoising steps.
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Figure 3. Comparing Scaling Between Denoising Steps and Samples with VLM Judgment Visualization. (a) Scaling denoising
steps show only minor improvements and often fail to self-correct artifacts, making it a poor option for scaling up. (b) In contrast,
scaling sampling noise proves more effective, with VLM specialists helping to verify and select images that match the prompts. (c) VLM
evaluates and ranks the best images in a tournament format.

number of denoising steps. However, using more denoising
steps is not ideal for scaling for two reasons. First, addi-
tional denoising steps cannot self-correct errors. Figure 3(a)
illustrates this with a sample, where objects misplaced at an
early stage remained unchanged in subsequent steps. Sec-
ond, the generation quality quickly reaches a plateau. As
shown in Figure 3, SANA produces visually pleasing results
with just 20 steps, showing no significant visual improve-
ment even increase 2.5× steps.

In contrast, scaling the number of sampling candidates is
a more promising direction. As presented in Figure 3(b),
a small model SANA (1.6B) can also generate correct re-
sults for difficult test prompts when given multiple attempts,
much like a sloppy/scattered student who can draw as re-
quested but sometimes makes mistakes during execution.
With enough opportunities to try, it can still provide a sat-
isfactory answer. Therefore, we choose to generate more
images and introduce a “patient teacher” to score the results,
which will be expanded in the following.

Visual Language Model (VLM) as the Judge To find
images that best match a given prompt, a model that under-
stands both text and images is needed. While popular mod-
els like CLIP (Radford et al., 2021) and SigLIP (Zhai et al.,
2023) offer multi-modal capabilities, their small context win-
dows (77 tokens for CLIP and 66 tokens for SigLIP) limit
their effectiveness. This limitation poses a problem since
SANA usually takes long, detailed descriptions as inputs. To
address this, we explored Visual Language Models to evalu-
ate prompt-matching for generated images. We tested com-
mercial multi-modal APIs, specifically GPT-4o (OpenAI,
2023b) and Gemini-1.5-pro (Team, 2024), but encountered
two significant issues. First, when evaluating single images
against prompts, both APIs lacked consistency in their rat-
ings across different runs. Second, when tasked with select-

ing the best-matching images from multiple options, both
models exhibited a strong bias toward the first-presented
options, regardless of image ordering or shuffling.

Instead of applying existing models or APIs, we trained
a specialized NVILA-2B (Liu et al., 2024b) to score the
images, which we named SaVILA: Sana generates then
VILA picks. We created a 2M prompt-matching dataset
with prompts generated in the GenEval style. We excluded
the prompts that are already existed in GenEval evalset and
generated the images using using Flux-Schnell (Labs, 2024)
to avoid overfitting. We then formatted these as multimodal
conversations, as shown below

• User: You are an AI assistant
specializing in image analysis and
ranking. Your task is to analyze and
compare image based on how well they
match the given prompt. <image> The
given prompt is: <prompt>. Please
consider the prompt and the image to
make a decision and response directly
with ’yes’ or ’no’

• SaVILA: ’yes’ / ’no’.

The fine-tuned SaVILA can effectively assess how well
images match their prompts and robustly filters out prompt-
mismatching images. During inference, we compare two
images in each round until the top-N candidates are deter-
mined

• When SaVILA responses one ‘yes’ and one ‘no’, we
pick the image with ‘yes’;

• When SaVILA responses both ‘yes’ or ‘no’, we pick
the image with higher confidence (logprob);
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Such tournament-style comparison robustly filters out
prompt-mismatching images and consistently boosts the
GenEval scores, as illustrated in Figure 3(c) and Table. 2.
More details of inference time scaling are attached in Ap-
pendix B.

3. Experiments
3.1. Experimental Setup

Model Architecture. Our final model (SANA-4.8B) scales
to 60 layers while maintaining the same channel dimension
(2240 per layer) and FFN dimension (5600) as SANA-1.6B.
The architecture, training data, and other hyperparameters
remain consistent with SANA-1.6B (Xie et al., 2024).

Training Details. We conduct distributed training using
PyTorch DDP across 64 NVIDIA A100 GPUs on 8 DGX
nodes. Our training pipeline follows a two-phase strategy:
we first pre-train the model with a learning rate of 1e-4,
followed by supervised fine-tuning (SFT) with a reduced
learning rate of 2e-5. The global batch size is dynamically
adjusted between 1024 and 4096 throughout the training
process. Following common practice in large language
model training, we initially pre-train on a large-scale dataset
before performing SFT on a high-quality dataset.

Evaluation Protocol. We adopt multiple evaluation metrics,
including FID, CLIP Score, GenEval (Ghosh et al., 2024),
and DPG Bench (Hu et al., 2024b), comparing it with SOTA
methods. FID and Clip Score are evaluated on the MJHQ-
30K (Li et al., 2024a) dataset, which contains 30K images
from Midjourney. GenEval and DPG-Bench both focus
on measuring text-image alignment, with 553 and 1,065
test prompts, respectively. We particularly emphasize the
GenEval as it better reflects text-image alignment and shows
more room for improvement than other metrics.

3.2. Main Results

Model Growth We compare SANA-4.8B with the most
advanced text-to-image generation methods in Table 1. The
scaling from SANA-1.6B to 4.8B Pre (Pre-trained) brings
substantial improvements: 0.06 absolute gains in GenEval
(from 0.66 to 0.72), 0.34 reduction in FID (from 5.76 to
5.42), and 0.2 improvement in DPG score (from 84.8 to
85.0). Compared to state-of-the-art methods, our 4.8B
model achieves comparable or better results than much
larger models like Playground v3 (24B) and FLUX (12B)
while using only a fraction of their parameters. We fur-
ther perform post-training on the 4.8B model using a high-
quality dataset, with details provided in Sec. 3.3. To dif-
ferentiate between the models, we refer to the pre-trained
model as Pre and the post-trained model as Ours. After post-
training, SANA-4.8B achieves a significant performance im-
provement on the GenEval benchmark, increasing from 0.72

Prune to 3.2B+FT
GenEval 0.684

Prune to 2.4B+FT
GenEval 0.675

Prune to 1.6B+FT
GenEval 0.672

Prompt:
A close-up photo of a 
person. The subject is 
a woman. She wore a 
blue coat with a gray 
dress underneath …

SANA 1.5 (4.8B)
GenEval 0.693

Prune to 3.2B
GenEval 0.673

Prune to 2.4B
GenEval 0.647

Prune to 1.6B
GenEval 0.571

Model Depth Pruning
Fine-tuning

Figure 4. Visual comparison of SANA-1.5 models with differ-
ent pruned configurations. Our adaptive depth pruning enables
efficient compression to various model sizes (from 1.6B to 4.8B).
While aggressive pruning may slightly affect fine-grained details,
the semantic content is well preserved, and the overall image qual-
ity can be easily recovered after brief fine-tuning (100 steps on 1
GPU), demonstrating the effectiveness of our pruning strategy.

to 0.81. Notably, SANA-4.8B demonstrates 0.81 GenEval
score, outperforming Playground v3’s 0.76, but with 5.5
times lower latency than FLUX-dev (23.0s). Our model
also maintains 6.5 times higher throughput than these larger
models (compared to FLUX-dev’s 0.04 samples/s), making
it more practical for real-world applications. The speed is
tested on one A100 GPU with FP16 Precision.

Model Pruning We compare among difference sizes of
SANA-1.5 and SANA-1.0 models in Figure 4 and Table 3.
For a fair comparison with SANA-1.0 1.6B, the SANA-1.5
4.8B model here is trained without supervised fine-tuning
from high-quality data. All results are evaluated on im-
ages of size 512×512. With a small computational cost,
the pruned and fine-tuned model outperforms the model
trained from scratch (0.672 v.s. 0.664), which is an efficient
approach to obtaining models of various sizes.

Inference Scaling We incorporate inference scaling with
the SANA-1.5 4.8B v2 model and compare it against other
large image generation models on the GenEval benchmark
(Table 2). By selecting samples from 2048 generated images,
the inference-scaled model outperforms naive single-image
generation by 15% in overall accuracy from 0.81 to 0.96,
with particularly significant improvements in the “Position”
(from 0.59 to 0.96), and “Color Attribution” (from 0.65 to
0.87). Furthermore, equipped with inference scaling, our
4.8B model outperforms Playground v3 (24B) by 20% in
overall accuracy (0.76 vs 0.96). These results demonstrate
that trading inference efficiency can enhance model gener-
ation quality and accuracy, even with much smaller base
model size (4.8B vs 24B).
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Table 1. Comprehensive comparison of our method with SOTA approaches in efficiency and performance. The speed is tested on
one A100 GPU with BF16 Precision. Throughput: Measured with batch=10. Latency: Measured with batch=1 and sampling step=20. We
highlight the best and second best entries.

Methods Throughput Latency Params FID ↓ CLIP ↑ GenEval ↑ DPG ↑(samples/s) (s) (B)

LUMINA-Next (Zhuo et al., 2024) 0.12 9.1 2.0 7.58 26.84 0.46 74.6
SDXL (Podell et al., 2023) 0.15 6.5 2.6 6.63 29.03 0.55 74.7
Playground v2.5 (Li et al., 2024a) 0.21 5.3 2.6 6.09 29.13 0.56 75.5
Hunyuan-DiT (Li et al., 2024d) 0.05 18.2 1.5 6.54 28.19 0.63 78.9
PixArt-Σ (Chen et al., 2024b) 0.4 2.7 0.6 6.15 28.26 0.54 80.5
DALLE 3 (OpenAI, 2023a) - - - - - 0.67 83.5
SD3-medium (Esser et al., 2024) 0.28 4.4 2.0 11.92 27.83 0.62 84.1
FLUX-dev (Labs, 2024) 0.04 23.0 12.0 10.15 27.47 0.67 84.0
FLUX-schnell (Labs, 2024) 0.5 2.1 12.0 7.94 28.14 0.71 84.8
Playground v3 (Liu et al., 2024a) 0.06 15.0 24 - - 0.76 87.0

SANA-1.0 0.6B (Xie et al., 2024) 1.7 0.9 0.6 5.81 28.36 0.64 83.6
SANA-1.0 1.6B (Xie et al., 2024) 1.0 1.2 1.6 5.76 28.67 0.66 84.8

SANA-1.5 4.8B Pre 0.26 4.2 4.8 5.42 29.16 0.72 85.0
SANA-1.5 4.8B Ours 0.26 4.2 4.8 5.99 29.23 0.81 84.7

Table 2. Detailed GenEval evaluation benchmark. SANA-1.5 + Inference Scaling with 2048 samples achieves absolute SoTA compared
to open-source and commercial methods. We used the numbers from Playground v3 (Liu et al., 2024a) for the baseline methods.

Method Overall Single Two Counting Colors Position Color Attribution

SDXL (Podell et al., 2023) 0.55 0.98 0.74 0.39 0.85 0.15 0.23
DALLE 3 (OpenAI, 2023a) 0.67 0.96 0.87 0.47 0.83 0.43 0.45
Flux-dev (Labs, 2024) 0.68 0.99 0.85 0.74 0.79 0.21 0.48
SD3 (Esser et al., 2024) 0.74 0.99 0.94 0.72 0.89 0.33 0.60
Playground v3 (Liu et al., 2024a) 0.76 0.99 0.95 0.72 0.82 0.50 0.54

SD1.5 (Rombach et al., 2022a) 0.42 0.98 0.39 0.31 0.72 0.04 0.06
+ Inference Scaling 0.87 1.00 0.97 0.93 0.96 0.75 0.62

SANA-1.5 4.8B Pre 0.72 0.99 0.85 0.77 0.87 0.34 0.54
SANA-1.5 4.8B Ours 0.81 0.99 0.93 0.86 0.84 0.59 0.65

+ Inference Scaling 0.96 1.00 1.00 0.97 0.94 0.96 0.87

Table 3. Evaluation of pruned SANA models. “3.2B” and “1.6B”
denote the model directly pruned from SANA-1.5 4.8B, and “+FT”
denotes efficiently fine-tuning the pruned model.

Method 4.8B 3.2B +FT 1.6B +FT SANA-1.0 1.6B

GenEval ↑ 0.693 0.673 0.684 0.571 0.672 0.664

3.3. Analysis

Comparison of Different Optimizers We compare
CAME-8bit with AdamW-8bit and their 32-bit counterparts
in Figure 6 for SANA-1.6B training. The 8-bit optimizers
(AdamW-8bit, Came-8bit) achieve comparable convergence
to their 32-bit counterparts while significantly reducing GPU
memory usage. Specifically, CAME-8bit reduces memory
consumption by 25% compared to AdamW (43GB vs 57GB)

Table 4. Model performance across different scales. Models are
first pre-trained and then fine-tuned (SFT) on high-quality data.

Params. (B) Stage Train Steps GenEval ↑

0.6 pre-train >200K 0.64
+ SFT ∼10K 0.68 (+4%)

1.6 pre-train >200K 0.66
+ SFT ∼10K 0.69 (+3%)

4.8 pre-train >100K 0.69
+ SFT ∼10K 0.72 (+3%)

with no degradation in training convergence speed. Note
that CAME-8bit reduces optimizer state memory usage pro-
portionally to model size, yielding greater memory savings
for larger models.
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(a) SANA 1.6B trained from scratch. (b) SANA-4.8B trained from scratch. (c) SANA 4.8B with model growth.

Figure 5. Analysis of block importance (BI) across different models: (a) SANA-1.0 1.6B, (b) SANA 4.8B trained from scratch, and (c)
our final SANA-1.5 4.8B with initialization.

Figure 6. Training loss curves for different
optimizers on a 1.6B parameter diffusion
model. The CAME-8bit reduces memory
consumption by 25% compared to AdamW
while maintaining the convergence speed.

Figure 7. Comparison of different initial-
ization strategies. Partial Preservation Init
shows stable training behavior while Cyclic
and Block Replication strategies suffer from
training instability (NaN losses).

 3
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Figure 8. Inference-time Scaling Results.
Scaling up inference time compute consis-
tently yields better GenEval scores, and
helps the small model to achieve compara-
ble or better performance with larger ones.

Comparison of Different Initialization Strategies We
compare the three types of initialization strategies in Fig-
ure 7. Partial Preservation Init shows stable training be-
havior while Cyclic and Block Replication strategies suffer
from training instability (NaN losses). Such observation
is also supported by the block importance analysis in Fig-
ure 5. The feature distribution of the 4.8B model is different
from the 1.6B model due to the model capacity, and thus,
replication of the block weight increases the difficulty of
convergence to the final distribution.

Block Importance Instructing Model Growth The anal-
ysis of block importance instructs both our initialization
strategy and pruning approach. The block importance of the
pre-trained SANA-1.0 model is shown in Figure 5a, where
more information resides in the head and tail blocks. Dur-
ing model scaling, we initially attempted to append new
blocks directly after all the pre-trained blocks. However, we
observed that the newly added blocks failed to learn effec-
tive information and became stuck in local minima. The
primary reason is that the well-learned pre-trained features
dominate the feature representation through skip connec-
tions. Therefore, we remove the last two blocks, which are
more task-relevant, before adding new blocks. This process
effectively facilitates learning in the later blocks.

Block Importance Instructing Model Depth Pruning
As shown in Figure 5c, blocks in the middle to the end
have low importance scores, especially when compared with
the model trained from scratch (Figure 5b). This indicates
potential for model size reduction. Based on this observa-
tion, we prune the blocks in SANA-1.5 4.8B according to
their sorted importance scores. In Figure 4, pruning the
blocks (gradually reducing from 60 to 20 blocks) impairs
high-frequency information. The lack of high-frequency
details degrades the accuracy of GenEval benchmark to
0.571. However, the image layout and semantic information
are well preserved. Therefore, high-frequency information
can be quickly recovered with 100 steps of fine-tuning on a
single GPU.

High-quality Data Fine-tuning While extensive pre-
training on large-scale datasets leads to quality saturation,
fine-tuning on a curated dataset (3M samples from 50M pre-
training data) significantly and efficiently improves model
capabilities of different model sizes. Specifically, by fine-
tuning on image-text pairs with CLIP score > 25, our 4.8B
model achieves a 3% improvement in GenEval score com-
pared to the pre-trained model, as shown in Table 4.

Furthermore, we created a new small-scale SFT data
set, consisting of 144,291 images generated from 18,240
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prompts in the GenEval style. Each prompt generates 7.91
“correct” images on average. We limit each prompt to gen-
erate at most 10 correct images to prevent overfitting. The
correct image is filtered by the GenEval toolkit. Note that
we excluded the prompts already existing in GenEval evalset
and generated images using Flux-Schnell to avoid overfit-
ting. As shown in Table 2, this new SFT data improves the
GenEval result of SANA-1.5-4.8B from 0.72 (v1) to 0.81
(v2). Figure 9 presents a comprehensive comparison be-
tween SANA-1.5-4.8B and current state-of-the-art methods
across multiple challenging scenarios. The results demon-
strate SANA-1.5-4.8B’s consistent superiority in generated
image quality, as evidenced by both quantitative metrics and
visual assessment.

Bright scene, aerial view, ancient city, fantasy, gorgeous light, mirror reflection, high detail, wide angle lens.

An astronaut riding a horse on the moon, oil painting by Van Gogh.

SANA 1.5 4.8BSD3Medium FLUX-dev FLUX-schnell SANA 1.0 1.6B

A story-book illustration of a giant god-like person made of stone, half-burried in a green valley …

Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.

A smart monkey with a laptop, in pixel art style

Figure 9. Comparison of SANA-1.5 against SoTA methods. We
evaluate SANA-1.5 alongside contemporary approaches using
identical text prompts, including challenging cases with noisy
inputs and long-form text. For detailed assessment, please zoom
into the comparative samples.

Inference Time Scaling Figure 8 demonstrates the bene-
fits of scaling up inference-time computation. First, SANA’s
accuracy on GenEval consistently improves with more sam-
plings. Second, inference-time scaling enables smaller
SANA models to match or even surpass the accuracy of
larger ones (1.6B + scaling is better than 4.8B). This re-
veals the potential of scaling up inference and allows SANA
to push toward new state-of-the-art results. As shown in
Table 2, our best SANA model with inference scaling out-
performs all previous commercial and community models.

The only limitation is increased computational cost: sam-
pling N images requires N × 49, 140G FLOPs for SANA
generation and 2N×4, 518G FLOPs for SaVILA judgment
and comparison. We leave the efficiency for future work.

4. Related Work
We put a relatively brief overview of related work in the
main text, with a more comprehensive version in the ap-
pendix. Text-to-image generation has evolved rapidly, from
Stable Diffusion (Rombach et al., 2022b) to more recent
architectures like DiT (Peebles & Xie, 2022) and its vari-
ants (Chen et al., 2024c; Labs, 2024; Esser et al., 2024).
Efficiency-focused works like SnapGen (Hu et al., 2024a),
PixArt-α (Chen et al., 2024c) and SANA (Xie et al., 2024)
have significantly reduced training and inference costs. Au-
toregressive models (Tang et al., 2024; Tian et al., 2024;
Sun et al., 2024) are also developed rapidly and achieve
comparable quality as diffusion models. Research in lan-
guage (Kaplan et al., 2020) and vision domains (Li et al.,
2024b; Liang et al., 2024) both revealed power-law rela-
tionships. In the image generation field, (Xu et al., 2023;
2024) has explored RLHF to align model with human pref-
erences. More recent concurrent work (Singhal et al., 2025;
Ma et al., 2025) have explored various strategies to improve
generation quality without increasing model size.

5. Conclusion
This paper presents a comprehensive approach to efficient
model scaling, addressing both training and inference com-
pute challenges. For training efficiency, we propose a
memory-efficient optimizer CAME-8bit and a stable model
growth strategy. For inference scaling and acceleration, we
introduce repeat sampling and depth pruning techniques.
These approaches collectively enable significant quality im-
provements under limited computing budgets, making large-
scale generative models more accessible. This work con-
tributes to democratizing large-scale AI research by making
it more accessible to researchers with limited resources.

Impact Statement
Misusing generative AI models to generate NSFW con-
tent is a challenging issue for the community. To enhance
safety, we have equipped SANA together with a safety check
model (Zeng et al., 2024a). Specifically, the user prompt will
first be sent to the safety check model to determine whether
it contains NSFW(not safe for work) content. While SANA-
1.5 demonstrates efficient model scaling, challenges remain
in complex generation tasks, particularly text rendering and
human details. Our work makes large-scale model training
more accessible, while encouraging responsible develop-
ment and deployment to prevent misuse.
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A. Full Related Work
Text to Image Generation Text-to-image generation has undergone rapid evolution in model architectures and efficiency.
The field gained momentum with Stable Diffusion (Rombach et al., 2022b), and later witnessed a pivotal shift towards
Diffusion Transformers (DiT) (Peebles & Xie, 2022) architectures. PixArt-α (Chen et al., 2024c) demonstrated competitive
quality while significantly reducing training costs to just 10.8% of Stable Diffusion v1.5’s requirements (Rombach et al.,
2022b). Recent large-scale models like FLUX (Labs, 2024) and Stable Diffusion 3 (Esser et al., 2024) have pushed the
boundaries in compositional generation capabilities, while Playground v3 (Liu et al., 2024a) achieved state-of-the-art image
quality through full integration with Large Language Models (LLMs) (Dubey et al., 2024). PixArt-Σ (Chen et al., 2024b)
further enabled direct 4K resolution image generation with a compact 0.6B parameter model. In parallel, efficiency-focused
innovations like SANA (Xie et al., 2024) introduced breakthrough capabilities in high-resolution synthesis through deep
compression autoencoding (Chen et al., 2024a) and linear attention mechanisms, making deployment possible even on laptop
GPUs. These developments showcase the field’s progression toward both more powerful and more accessible text-to-image
generation.

Diffusion Model Pruning Neural network pruning (Han et al., 2016) is an effective technique for improving the efficiency
of neural models, particularly for deployment on resource-constrained devices. By removing redundant weights, it reduces
both model size and computational complexity. In LLMs, researchers have successfully applied pruning to shrink models
for various applications (Sreenivas et al., 2024; Ma et al., 2023). For generative models, (Li et al., 2020) employ neural
architecture search (Cai et al., 2019) to prune GAN channels (Goodfellow et al., 2014). SnapFusion (Li et al., 2024c) extends
this to diffusion models, using elastic depth (Cai et al., 2019) to prune UNet blocks (Ho et al., 2020), managing to deploy
Stable Diffusion on mobile phones. Similarly, MobileDiffusion (Zhao et al., 2023) shrinks UNet depth and distills the model
for single-step inference. Our approach targets the recent DiT architecture (Peebles & Xie, 2023). We instead use a heuristic
method to identify and prune less important blocks directly, avoiding the overhead of search.

Training Scaling in LLM and DiT Training scaling laws have been extensively studied in both language (Kaplan et al.,
2020; Alabdulmohsin et al., 2022) and vision (Li et al., 2024b; Zhai et al., 2021; Liang et al., 2024) domains. For language
models, research has revealed power-law relationships between model accuracy and factors like model size, dataset size, and
compute (Kaplan et al., 2020). These scaling patterns have been consistently observed across several orders of magnitude.
Recently, similar scaling properties have been discovered in diffusion-based text-to-image generation. Studies show that
DiT’s pre-training loss follows power-law relationships with computational resources (Liang et al., 2024). Furthermore,
extensive experiments on scaling both denoising backbones and training sets reveal that increasing transformer blocks is
more parameter-efficient than increasing channel numbers for improving text-image alignment. The quality and diversity of
the training set prove more crucial than mere dataset size (Li et al., 2024b). These findings provide valuable insights for
determining optimal model architectures and data requirements in both domains.

Inference Scaling Law Recent studies have revealed significant insights into inference scaling laws for large language
models. The pioneering work “Large Language Monkeys” (Brown et al., 2024) discovered that coverage (the fraction of
problems solved) scales with the number of samples following a log-linear relationship. Building upon this, self-consistency
approaches demonstrated that sampling multiple reasoning paths and selecting the most consistent answer can substantially
improve model accuracy (Wang et al., 2022). This was further enhanced by progressive-hint prompting techniques (Zheng
et al., 2023), achieving significant gains on various reasoning benchmarks. Recent theoretical work (Wu et al., 2024) shows
that smaller models paired with advanced inference algorithms can outperform larger models under the same computation
budget. However, studies on compound inference systems (Chen et al., 2024d) reveal that increasing LLM calls shows
non-monotonic behavior, performing better on “easy” queries but worse on “hard” ones. These findings collectively
demonstrate the importance of optimizing inference strategies rather than simply scaling up model size or increasing the
sampling budget. Concurrent works (Singhal et al., 2025; Ma et al., 2025) have also independently explored and validated
the effectiveness of inference scaling in diffusion models.

B. Inference-Time Scaling Details
Dataset. To finetune NVILA (Liu et al., 2024b) for SANA inference-time scaling, we generated 2.5M images and evaluated
their alignment with the given prompts using the GenEval toolkit. We utilize 15,654 unique prompts and generate 160 images
per prompt using Flux-Schnell. Our prompts are constructed in a style similar to GenEval, incorporating 80 object classes
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Figure 11. Illustration of initialization strategies. (a) Partial Preservation Init, which preserves the pre-trained layers and randomly
initialize the new layers. (b) Cyclic Replication Init, which repeats the pre-trained layers periodically. (c) Block Replication Init, which
extends each pre-trained layer into consecutive layers.

from Mask2Former along with attributes such as color, spatial location, quantity, and various relationships. Importantly,
our prompts do not overlap with the GenEval test set. To evaluate the generated images, we leverage the GenEval toolkit.
Finally, we train NVILA using the prompts, images, and their corresponding labels (yes or no).

Training Setup. We follow the setting in NVILA with learning 2× 10−5, Adam optimizer, cosine scheduler with warmup
ratio 0.03 and batch size of 8 per device and train the 2M dataset with one epoch.

C. More Implementation Details
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Figure 10. Architecture design of linear self-attention and
cross-attention blocks in SANA. Both attention blocks incor-
porate RMSNorm on query and key for training large model
more stable, where linear self-attention is used for content en-
coding and vanilla cross-attention for text condition injection.

Attention with QK Norm As shown in Figure 10, we intro-
duce RMS normalization (Zhang & Sennrich, 2019) to Query
and Key in both linear attention’s self-attention block and
vanilla cross-attention module to stabilize the training of large
diffusion models. Similar to the findings in (Esser et al., 2024),
we observe that the attention logits in ReLU-based linear atten-
tion (Cai et al., 2023) also grow uncontrollably and frequently
exceed the numerical range of FP16 precision (6.5e5), which
leads to training instability (NaN). By incorporating QK nor-
malization, we effectively address this issue in large linear
transformers. Notably, although our pretrained SANA-1.0
1.6B was not initially trained with QK normalization, we also
find that it quickly adapts to these additional normalization
layers within just 1K fine-tuning step (Esser et al., 2024). This
modification, combined with bf16 mixed precision and our
proposed CAME-8bit optimizer (Section 2.3), enables effi-
cient scaling of linear transformer models while maintaining
training stability.

Multilingual Auto-labeling Pipeline In Figure 13, we present the results of our multilingual multi-caption auto-labeling
pipeline. For each image, we use GPT-4 to translate small-scale data, only 100K English prompts, into: pure Chinese,
English-Chinese mixed, and emoji-enriched text. This approach enables us to build a comprehensive multilingual training
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Figure 12. Performance comparison of model growth and training from scratch across FID, CLIP score, and DPGBench metrics.
Our model growth strategy demonstrates superior performance over training from scratch, achieving either better results within the same
training duration or equivalent performance with approximately 60% less training time.

dataset that captures diverse ways of describing the same visual content. More results are shown in Figure 14. As a result,
we fine-tune SANA with only a few iterations(∼10K), then it demonstrates more stable and accurate outputs for Chinese
text and emoji expressions.

Comparison of Different Initialization Strategies We illustrate the three types of initialization strategies in Figure 11.
Partial Preservation Init preserves the pre-trained layers and randomly initialize the new layers (Figure 11(a)). Cyclic
Replication Init repeats the pre-trained layers periodically (Figure 11(b)). Block Replication Init extends each pre-trained
layer into consecutive layers (Figure 11(c)). Among these strategies, we adopt the partial preservation initialization approach
for its simplicity and stability. Empirically, this approach provides the most stable training dynamics compared to cyclic and
block expansion strategies, as shown in Figure 7.

D. More Results
Model Growth Results As shown in Figure 12, our model growth strategy consistently outperforms training from scratch
across FID, CLIP score, and DPG benchmarks. Specifically, our approach achieves better quality within the same training
duration or reaches equivalent quality with an approximately 60% reduction in training time compared to training from
scratch.

Comparison between different pruned model sizes As shown in Figure 16, we compare different sizes of SANA-1.5
and SANA-1.0 models. Starting from SANA-1.5 4.8B model (GenEval score 0.693), our pruned variants maintain strong
accuracy with 3.2B (0.684) and 1.6B (0.672) parameter counts, consistently outperforming SANA-1.0 1.6B (0.665). This
flexible pruning approach allows us to obtain models of any desired size while preserving quality. In particular, larger
models demonstrate superior capabilities in image details, pixel quality, and semantic alignment.

More Visualization Images In Figure 18, we show more images generated by our model with various prompts. SANA
demonstrates comprehensive generation capabilities across multiple aspects, including high-fidelity detail rendering, accurate
semantic understanding, and reliable text generation. The samples showcase the model’s versatility in handling diverse
scenarios, from intricate textures and complex compositions to accurate text rendering and faithful prompt interpretation.
These results highlight the robust image quality of the model in both artistic and practical generation tasks.

More Inference-Time Scaling Examples We provide additional inference-time scaling examples in Figure 17. During the
tournament, VLM judges and filters prompt-mismatching images. We highlight winners with bold green lines and include
the winning rationale. Images with incorrect object counts (e.g., the 4th image in Figure 17b) lose the comparison and are
filtered by VLM. When two images match the prompt with similar quality, VLM fairly judges that ”Both images match the
prompt” as shown in Figure 17a and selects one based on preference. Therefore, SANA-1.5 inference scaling effectively
filter out those “bad” generations and improves GenEval scores.

Prompt Rewrite Enhancement As discussed in (Wang et al., 2024; Han et al., 2024), at inference time, we employ
GPT-4o to rewrite user prompts by adding more details, which leads to richer and more detailed visualization results. This
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You will be provided with an image description. You have three separate goals.
The first one is to translate it into Chinese. Try to use simple words that native Chinese would say.

The second one is to replace nouns or verbs in the original description with emojis if possible. You should 
ensure the non-emoji part is English. The replaced word should not appear together with its replacement. 
Only verbs and nouns are replaced.

The third one is to create a description of a mixture of English, and Chinese words and emojis. You can pick 
the Chinese or English version of description, then replace only verbs and nouns with the other language or 
emojis if possible. The replaced word should not appear together with its replacement. Only verbs and 
nouns are replaced.

You will output a JSON object containing the following information:

{
    "Chinese": "<string>", // Chinese description
    ”Mix": "<string>" // mixture description
    ”Emoji": "<string>", // emoji description
}

Do not output anything else.

Chinese:⼀个办公室⼯作⼈员穿着沙滩⾐和冲浪裤，靠在办公椅上，看着他的⼤桌⾯设置，放松⽽快乐的
姿势，戴着沙滩草帽，办公室环境，像⼉童书籍的⻛格插图。
Mix:⼀个 oPice⼯作⼈员穿着 beach wear 和 surfing pants，靠在 oPice chair 上，看着他的⼤ desktop 
setup 在他的 oPice desk，放松⽽ happy 的姿势，戴着 beach straw hat, oPice environment，像 children's 
book 的⻛格插图。
Emoji: illustration of a 🧑💼 dressed in a 🏖 and 🩳, reclining on a 🪑, looking at his big 💻 setup on his 🖥, 
relaxed and happy body posture, with 🏖 straw hat, oPice environment, illustrated in the style of a children's 
book, Illustration

GPT-4 User

Original: illustration of an oPice worker dressed in a beach wear and surfing pants, reclining on an oPice 
chair, looking at his big desktop setup on his oPice desk, relaxed and happy body posture, with beach straw 
hat, oPice environment, illustrated in the style of a children's book, Illustration

Figure 13. Illustration of our multi-lingual prompt translation pipeline. We leverage GPT-4 to translate 100k English prompts into
four formats: (1) Pure English (2) Pure Chinese (3) English-Chinese mixture (4) Emoji-mixed prompts. Example shows a single English
prompt translated into these parallel versions, demonstrating how we construct our multi-lingual training data.

Original: A cute black swan surrounded by colorful flowers, 
depicted in the style of an oil painting with vibrant colors and 
textured brush strokes. The background is filled with various 
blossoms of di@erent sizes and hues, creating a lively atmosphere 
that complements the adorable swan's expression.
Chinese: ⼀只可爱的⿊天鹅被五颜六⾊的花朵围绕，画⻛像油画
⼀样，⾊彩鲜艳，笔触有质感。背景充满了各种⼤⼩和颜⾊的花
朵，营造出⼀种⽣动的氛围，衬托出可爱天鹅的表情。
Mix: ⼀只 cute 🦢 被🌸🌼🌺 围绕，画⻛像 oil painting ⼀样，⾊彩
鲜艳，笔触有质感。背景充满了各种🌷 的不同⼤⼩和颜⾊，营
造出⼀种 lively 氛围，衬托出可爱🦢 的 expression。
Emoji: A cute 🦢 surrounded by 🌸🌼🌺, depicted in the style of an 
oil painting with vibrant colors and textured brush strokes. The 
background is filled with various 🌷 of di@erent sizes and hues, 
creating a lively atmosphere that complements the adorable 🦢's 
expression.

Figure 14. More illustration of the multi-lingual dataset.
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Figure 15. SANA’s multi-lingual capabilities unlocked through efficient fine-tuning. Comparing image generation quality be-
tween baseline model (left, English-only training) and our model (right, fine-tuned with 100k multi-lingual samples) on mixed En-
glish/Chinese/emoji prompts.

demonstrates the importance of prompt engineering in maximizing model capabilities. The comparisons are shown in
Figure 19.

E. Discussion of Potential Misuse of SANA-1.5
Misusing generative AI models to generate NSFW content is a challenging issue for the community. To enhance safety, we
have equipped SANA-1.5 together with a safety check model (e.g., ShieldGemma-2B (Zeng et al., 2024b)). Specifically, the
user prompt will first be sent to the safety check model to determine whether it contains NSFW(not safe for work) content.
If the user prompt does not contain NSFW, it will continue to be sent to SANA-1.5 to generate an image. If the user prompt
contains NSFW content, the request will be rejected. After extensive testing, we found that ShieldGemma can perfectly filter
out NSFW prompts entered by users under strict thresholds, and our pipeline will not create harmful AI-generated content.
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SANA 1.5 (4.8B)
GenEval 0.693

SANA 1.5 (3.2B)
GenEval 0.684

SANA 1.5 (1.6B)
GenEval 0.672

SANA 1.0 (1.6B)
GenEval 0.664Prompt

An antique botanical 
illustration drawn with fine 
lines and a touch of 
watercolour whimsy …

Pirate ship trapped in a 
cosmic maelstrom nebula, 
rendered in cosmic beach 
whirlpool engine …

Color photo of a corgi made 
of transparent glass, standing 
on the riverside in Yosemite 
National Park…

Figure 16. Comparison among different sizes of SANA 1.5 and SANA 1.0. With model scaling and pruning, SANA 1.5 achieves better
performance than SANA 1.0 of the same size, while maintaining flexibility in model capacity selection. Larger models demonstrate
enhanced capabilities in detail rendering, image quality, and semantic alignment.
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VLM 
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VLM 
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Prompt: a photo of an orange tennis racket 
and a yellow sports ball

VLM 
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VLM 
Judge

VLM 
Judge

Prompt: a photo of a purple suitcase and 
an orange pizza

(a) Prompt: a photo of a purple suitcase and an orange pizza

VLM 
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VLM 
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VLM 
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Prompt: a photo of an orange tennis racket 
and a yellow sports ball

VLM 
Judge

VLM 
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VLM 
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Prompt: a photo of a purple suitcase and 
an orange pizza

(b) Prompt: a photo of an orange tennis racket and a yellow sports ball

Figure 17. Visualization of SANA-1.5 inference-time scaling. During the tournament, VLM judges and filters prompt-mismatching
images.
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1. A charming 3D-rendered cartoon toucan with exaggerated features, styled in a whimsical yet detailed manner. The character features a disproportionately large, bright orange beak that dominates its face, complemented by a single oversized expressive brown eye. Its plumage combines classic black and 
white coloring - a fluffy white chest and belly area contrasts beautifully with sleek black feathers covering its back and wings. The bird sports a distinctive messy crest of navy blue feathers on top of its head, giving it a playful, disheveled appearance. The texturing is remarkably detailed, showing individual 
feathers and subtle variations in the plumage. The character stands on thin, sturdy legs with detailed scaled texture. The lighting setup creates depth and dimension, casting soft shadows that emphasize the bird's round, appealing form against a neutral gradient background. The overall design strikes a 
perfect balance between cartoon stylization and realistic texturing, making it suitable for animation or game character design

2. A magical castle emerges from the pages of an ancient open book, creating an enchanting winter tableau. The Gothic-style castle, with its soaring spires and numerous towers, stands majestically atop a snow-covered rocky outcrop. The castle's gray stone walls are illuminated by warm golden light 
pouring from countless arched windows and doorways, creating a welcoming glow against the misty twilight sky.  The architecture features intricate details: pointed turrets capped with snow, ornate flying buttresses, and delicate Gothic windows. Small flags flutter from the highest towers, while ravens 
soar dramatically against the moody sky, their silhouettes adding movement to the scene.  In the foreground, a weathered leather-bound book lies open, its pages aged and filled with text in an elegant script. Autumn leaves and snowflakes scatter across its pages, bridging the gap between the real world 
and the magical realm rising from its pages. Soft bokeh lights dance in the background, suggesting magical sparkles or floating lanterns.  The color palette combines cool blues and grays of the winter scene with warm amber glows from the castle windows and scattered lighting elements. The mood is 
enhanced by a subtle fog that wraps around the castle's base, creating an ethereal atmosphere. The composition suggests a story coming to life, where fantasy and reality merge in a single, spellbinding moment.

3. Big elephant made of bananas
4. still life photography of two porcelain cherries with blue and white floral pattern, Chinese pottery style decoration, one cherry stem has a glowing sparkler, magical sparks against turquoise background, high-end product photography, soft diffused lighting, clean composition, delicate ceramic texture, fine 

detailed Ming-style floral prints, crisp shadows, glossy ceramic surface reflections, festive celebratory mood, studio lighting setup, sharp focus, luxury product aesthetic
5. poster design with huge text "AGI IS COMING" rendered in glitch art style, digital distortion effects, fragmented typography, corrupted data aesthetics, black ink base with RGB channel splits, cyberpunk graffiti elements, scattered binary code, broken pixel artifacts, CRT scan lines, datamosh effects, 

quantum computing visual motifs.

1. a cyberpunk cat with a neon sign that says ”SANA 1.5"
2. SANA's meme cosmic adventure continues! Our Tabby cat astronaut, clad in a sleek white spacesuit, stands proudly on the lunar surface. With one paw raised, she holds aloft a flag bearing the iconic SANA logo - The flag flutters in the vacuum of space, its message clear: 'SANA' boldly emblazoned across 

its fabric. In the background, a small lunar lander rests on the gray, rocky terrain, its ladder extended. A second astronaut, also in a white spacesuit, floats nearby, tethered to the lander. The Earth looms large in the distance, its blue and white surface a stark contrast to the black void of space. This 
whimsical scene captures the spirit of exploration and the unexpected - a Tabby cat embarking on a mission to the moon, representing the SANA's meme brand in this cosmic setting.

3. A whimsical illustration of the Smirking Cat (the mischievous meme cat) sitting atop a retro-style red and white rocket with text 'TO THE MOON'. The cat appears with its iconic sly grin and playful expression, giving a knowing smirk that perfectly matches the optimistic message. The rocket design is 
reminiscent of 1950s space age artwork, featuring stylized flame trails in orange and yellow. The entire image has a sticker-like quality with white borders and a minimalist color palette. The composition captures the cat's cheeky, self-satisfied expression, creating a perfect blend of humor and crypto-
culture optimism.

4. anime style digital art, mystical light beam piercing through sky, Studio Ghibli inspired landscape, serene meadow with wild grass and rocks, fluffy cumulus clouds, starry twilight sky, pink and purple ethereal light pillar, detailed grass field, soft natural lighting, peaceful countryside scene, vibrant color 
palette, dreamy atmosphere, fantasy elements, detailed vegetation, cinematic composition

5. surreal art of landscape morphing into a cat's head silhouette, intricate nature elements forming feline features, mountains create pointed ears, rolling hills shape the face curves, forests and meadows texture the fur pattern, rivers flow as whiskers, lakes form the eyes with sunset reflection, clouds define 
soft fur edges, minimal white background highlighting the cat head shape, dreamlike composition, delicate details, organic flowing lines, nature meets feline anatomy, soft muted color palette, ethereal atmosphere, conceptual illustration style, fine art quality 

1. ultra-detailed 3D render of premium semiconductor chip, prominent glowing 'AI' text embossed in center, cyberpunk blue illuminated letters against dark metallic surface, futuristic circuit board patterns radiating from text, floating holographic AI letters with light scatter effect, premium macro 
photography, clean white wave background, depth of field blur, advanced technological aesthetics with precise circuit traces, volumetric lighting around text, ray-traced reflections

2. ace of spades playing card engulfed in dramatic flames, black card with glowing golden symbols, intense fire effects surrounding card edges, burning ember particles, dark background, realistic fire texture, cinematic lighting, high contrast photography, floating sparks and ash, mystical atmosphere, 
detailed flame tendrils, casino noir aesthetic, high-end 3D render quality, dramatic composition 

3. hyperrealistic 3D render of a stylized cartoon chicken in basketball uniform, dynamic slam dunk pose, jumping high with basketball, urban street court background, dramatic action shot, motion blur effects, neon lights at dusk, streetball atmosphere, detailed feather texture, glowing court lines, floating 
movement, cinematic sports photography style, vibrant complementary colors

4. A highly detailed and realistic scene of human-like robots exploring the surface of Mars. The robots have advanced humanoid designs with metallic bodies, glowing sensors, and flexible joints. They are examining the Martian landscape with futuristic equipment, such as scanning devices and 
holographic displays. The Martian environment includes red rocky terrain, towering cliffs, and a hazy orange sky, with Earth visible faintly in the background. The image captures a sense of discovery and technological advancement, emphasizing the robots' human-like features. Designed in a 
cinematic, futuristic style

5. ultra-detailed glass bottle terrarium featuring a miniature 3-story traditional Japanese villa, architectural photography style, precise architectural details with wooden beams and tiled roofs, delicate moss and tiny plants growing organically on the structure, ambient interior lighting casting warm glows 
through miniature shoji screens, the entire scene captured inside a clean cylindrical glass vessel, soft living room lighting enhancing glass reflections, tilt-shift photography effect emphasizing the miniature scale, photorealistic rendering with attention to glass refraction and natural materials

6. Mermaid caught by fishing boat in the early morning, vintage photo from the late 20th century. Men on board are looking at a mermaid-like woman with long hair and a fish tail emerging from the water. She is standing up. Raw, vintage photograph

1. A 3D rendering of a red and gold "2025" number with dragon head decoraMon, adorned with Chinese New Year elements, with a pure white background, studio lighMng, soQ lighMng, and bright colors. This high-resoluMon photography style adopts minimalist design, with simple lines and details
2. A smirking Shiba Inu (doge meme) wearing nerdy tech glasses, standing on its hind legs and holding a glowing holographic sign that reads "NVDA 1000". The doge has that characteristic knowing grin and raised eyebrows. The scene is set against a background of floating stock charts and red/green candles. 

The doge wears a simple tech company t-shirt, giving a thumbs up with its free paw. The composition has a meme-like quality with clean, vibrant colors and slight depth of field blur in the background. The holographic sign emits a subtle green glow, matching NVIDIA's brand color.
3. surreal digital art of giant croissant as hot air balloon, person in blue winter jacket riding in woven wicker basket, majestic snow-capped mountain peaks background, soft morning light, crisp pastry details with golden-brown flaky layers, whimsical transportation concept, dreamy winter landscape, 

ethereal atmosphere, cinematic composition, photorealistic pastry texture, adventure mood, clean blue sky with wispy clouds, high-end food photography meets landscape, magical realism style
4. Magical realism styleproduct photography of Nike sneaker constructed entirely from building blocks, vibrant color blocks in blue, yellow, red and black, floating above scattered toy bricks, intricate brick texture details, modern sneaker silhouette, precise brick construction, macro photography style, 

shallow depth of field, soft studio lighting, floating brick pieces in background, crisp focus on shoe details, playful toy aesthetic meets product design, dynamic floating composition 

Figure 18. High-resolution image generation examples from SANA 1.5, showcasing its capabilities in the accurate prompt following,
spatial reasoning, text rendering, and aesthetics across different styles and aspect ratios.
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Rewrite (Right): A pastoral scene captured in vivid photographic detail. Two woolly ovine graze peacefully in a lush, verdant 
meadow, their fleecy coats gleaming in the golden afternoon sunlight. The sheep stand side by side, one with a slight tilt of its 
head as if pausing to regard the camera with mild curiosity. Their large, soulful eyes convey a sense of gentle tranquility, a timeless 
serenity found in the simple rhythms of nature. The grassy knoll upon which they stand is a patchwork of emerald and sage hues, 
interspersed with delicate wildflowers in shades of lavender and buttercup yellow. In the distance, the silhouettes of rolling 
hillsides recede into a hazy azure horizon, creating a bucolic, pastoral tableau. This photographic portrait captures the inherent 
dignity and peaceful grace of these woolly companions.

Original (Left): a photo of two sheep.

Rewrite (Right): A tranquil garden vignette framed by a rustic wooden bench weathered by the elements. The bench's sturdy 
slats stretch in gently curving lines, their surface worn smooth by the passage of countless visitors seeking respite. Verdant vines 
and lush flowering plants spill over the edges, softening the bench's rigid form with trailing tendrils and bursts of pastel petals. 
Dappled sunlight filters through the canopy overhead, casting a warm glow and creating a serene, inviting atmosphere for quiet 
contemplation. The simple, elegant design of the bench serves as an understated yet essential focal point, beckoning the viewer 
to pause, sit, and immerse themselves in the calming natural ambiance.

Original (Left): a bench.

Figure 19. Visual comparison of image generation results before and after prompt enhancement. For each example, the left shows
the result from the original simple prompt, while the right demonstrates the output with enhanced prompt, showing improved visual
quality and richer details.
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