
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALABLE REAL-WORLD ROBOT DATA GENERATION
VIA COMPOSITIONAL WORLD SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in foundational models, such as large language models and
world models, have greatly enhanced the capabilities of robotics, enabling robots to
autonomously perform complex tasks. However, acquiring large-scale, high-quality
training data for robotics remains a challenge, as it often requires substantial manual
effort and is limited in its coverage of diverse real-world environments. To ad-
dress this, we propose a novel hybrid approach called Compositional Simulation ,
which combines classical simulation and neural simulation to generate accurate
action-video pairs while maintaining real-world consistency. Our approach utilizes
a closed-loop real-sim-real data augmentation pipeline, leveraging a small amount
of real-world data to generate diverse, large-scale training datasets that cover a
broader spectrum of real-world scenarios. We train a neural simulator to transform
classical simulation videos into real-world representations, improving the accuracy
of policy models trained in real-world environments. Through extensive experi-
ments, we demonstrate that our method significantly reduces the sim2real domain
gap, resulting in higher success rates in real-world policy model training. Our
approach offers a scalable solution for generating robust training data and bridging
the gap between simulated and real-world robotics.

1 INTRODUCTION

With the rapid advancements in foundational models, such as large language models OpenAI (2025);
Touvron et al. (2023); Team et al. (2023) and world models OpenAI (2024); Bruce et al. (2024);
NVIDIA (2025), there has been significant progress in the field of robotics Du et al. (2023); Yang et al.
(2023). These innovations have enabled robots to autonomously perform increasingly complex tasks,
opening the door to more capable and adaptable robotic systems. Data-driven paradigms have led to
impressive results in various domains, yet robotics presents unique challenges compared to fields
like language and video modeling. In particular, the need for manually collected video-action pairs
poses a significant barrier. Unlike self-supervised learning techniques in other domains, acquiring
large-scale data for robotics requires substantial human effort, which is both costly and insufficient
for capturing the vast diversity of real-world environments.

While some researchers have addressed this issue by relying on large-scale human data collection,
this approach remains expensive and limited in covering the full spectrum of real-world distributions.
An alternative method is to leverage simulation to scale data collection Nasiriany et al. (2024); Mu
et al. (2024); Qin et al. (2025), thus reducing the costs associated with real-world data acquisition.
Classical simulators, such as MuJoCo Todorov et al. (2012) and Isaac Makoviychuk et al. (2021),
offer the advantage of generating precise action-video pair data. These simulators use omniscient
views, making it easy to generate vast amounts of data with diverse distributions. However, the
performance gap between simulated and real-world environments often leads to poor joint training
performance when directly transferring simulated data for real-world applications.

To bridge this gap, neural simulators Bruce et al. (2024); Yu et al. (2025); NVIDIA (2025) based
on video generation models Blattmann et al. (2023); Wan et al. (2025); Zheng et al. (2024) have
recently been proposed as a solution. These simulators generate corresponding video data from
input trajectories or action signals, producing action-video pairs for training. Although the generated
videos appear visually consistent with the real world, issues like hallucination—where videos lack
physical consistency and lead to poor action control—undermine the quality of the generated data.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Action ConsistencyPhysicsAppearanceScaling

Mujoco Isaac Lab ManiSkill

Master Arm VR K&M
Action ConsistencyPhysicsAppearanceScaling

Genie-3 Cosmos Sora

Action ConsistencyPhysicsAppearanceScaling
Action ConsistencyPhysicsAppearanceScaling

Mujoco

...

 Isaac Lab

ManiSkill

Trajectory Generation with Classical Simulation

World Information Injection with Neural Simulation

Sim RealShare with same actions.

Real World Data Collection

Classical Simulation

Neural Simulation

...

...

Diverse Trajectory

Diverse Object

Figure 1: There are three main sources of real-world robotic data: (1) direct human collection, which
yields high-quality samples but cannot scale; (2) classical simulators, which generate large datasets
but suffer from appearance and physics gaps to reality; and (3) neural simulators trained on real
data, which reduce these gaps but struggle with action-conditioned video generation, leading to weak
action–video consistency. We introduce the concept of Compositional Simulation, a flexible and
scalable approach that bridges the gap between classical simulation and real-world dynamics via
compositional simulation.

In this work, we introduce the concept of Compositional Simulation shown in Fig 1, advocating for
a hybrid approach that combines the strengths of classical simulation and neural simulation. This
approach aims to generate accurate action-video pairs while ensuring that the videos are consistent
with real-world dynamics. We propose a closed-loop real-sim-real data augmentation pipeline that
utilizes a small amount of real-world data to create training datasets for policy models. These datasets
are designed to cover a broader distribution of real-world scenarios.

The real-sim-real pipeline consists of two key steps. First, we collect a small set of real-world
trajectory data and obtain the corresponding videos. In a classical simulation environment, we then
replicate the same scenario, replaying the real-world trajectories to generate simulated videos. A
video-to-video neural simulator is subsequently trained to transform the classical simulation videos
into real-world videos, ensuring that the actions remain consistent. The second part of our approach
involves generating a large and diverse set of action-video pairs through action primitives scheduling
within the classical simulator. These pairs are then transformed into real-world representations using
the trained video-to-video neural simulator, facilitating large-scale data augmentation for real-world
applications. Our main contributions are as follows:

• Concept & Paradigm. We introduce the concept of Compositional Simulation , a flexible and
scalable approach that bridges the gap between classical simulation and real-world dynamics
via compositional simulation.

• Data Pipeline & Model. We propose a real–sim–real data augmentation pipeline that
builds a neural simulator ensuring accurate and consistent action–video alignment while
simultaneously mitigating the sim2real domain gap.

• Experimental Results. Extensive experiments demonstrate that Compositional Simulation
substantially enhances the policy models by simultaneously increasing task success rates
and achieving strong generalization across both spatial layouts and object variations.

2 RELATED WORK

2.1 ROBOTIC SIMULATION

Robotics simulation frameworks such as Isaac Lab Makoviychuk et al. (2021) and MuJoCo Todorov
et al. (2012) are open-source, general-purpose simulators with GPU-parallel capabilities. Isaac

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Lab and Brax Freeman et al. (2021) are closest to ManiSkill3: they ship ready-to-use environ-
ments for RL/IL and provide APIs for custom environment design. In contrast, frameworks like
RoboCasa Nasiriany et al. (2024), Habitat Szot et al. (2021), AI2-THOR Kolve et al. (2017), Omni-
Gibson Li et al. (2022), and RoboFactory Qin et al. (2025) emphasize predefined, logically structured
APIs that standardize action interfaces, enable systematic domain randomization, and facilitate large-
scale, programmatic dataset generation with correctness checks—allowing researchers to scale data
and experiments reliably across tasks and scenes. ManiSkill3 uses the open-source SAPIEN Xiang
et al. (2020) for GPU-parallel simulation. Despite these strengths—especially their clean action
semantics and deterministic stepping that enforce logical action consistency—current simulators still
fall short of real-world fidelity, with persistent gaps in appearance statistics, sensor characteristics,
and contact/transfer physics (e.g., compliance and long-horizon object dynamics). This misalignment
often yields policies that do not transfer robustly to real data and real dynamics.

2.2 ROBOT LEARNING IN MANIPULATION

Specialized policy architectures Chi et al. (2023); Ke et al. (2024); Liang et al. (2023; 2024; 2025);
Wang et al. (2024); Wen et al. (2025); Ze et al. (2024) often excel on narrowly defined tasks yet
struggle to carry over to new robot embodiments. In contrast, foundation models trained on million-
scale, multi-robot corpora exhibit strong zero-shot transfer: RT-1 Brohan et al. (2022b) unifies vision,
language, and action in a single transformer for real-time kitchen manipulation; RT-2 Brohan et al.
(2023) jointly finetunes large vision–language models on web and robot data to support semantic
planning and object reasoning; diffusion-based RDT-1B Liu et al. (2024) and πBlack et al. (2024)
learn diverse bimanual dynamics from over a million episodes. Vision–language–action systems
such as OpenVLAKim et al. and CogACT Li et al. (2024), together with adaptations like Octo Octo
Model Team et al. (2024), LAPA Ye et al., and OpenVLA-OFT Kim et al. (2025), further demonstrate
efficient finetuning across robots and sensing modalities. Collectively, these results point to a data-
driven bottleneck: robust cross-task and cross-embodiment generalization hinges on large, diverse,
and high-fidelity datasets that faithfully capture real-world appearance, sensing, and physics.

2.3 WORLD SIMULATOR FOR ROBOTIC MANIPULATION

Scalable robot learning Bjorck et al. (2025); Brohan et al. (2022a); Zitkovich et al. (2023); Cheang
et al. (2024); Lynch et al. (2023) depends on abundant, realistic data, yet collecting real-world
trajectories via human demonstrations is slow and labor-intensive, limiting broad access. Generative
video models Agarwal et al. (2025); Wu et al. (2023) offer a cost-effective way to synthesize policy
training data. UniPi Du et al. (2023) and AVDC Ko et al. (2023) cast robot planning as text-to-video
generation (AVDC further estimates inverse dynamics with a pretrained flow network); UniSim Yang
et al. (2023) learns a unified real-world simulator across text and control inputs; RoboDreamer Zhou
et al. (2024) targets compositional generalization via text parsing; and IRASim Zhu et al. (2024)
performs trajectory-conditioned video generation but focuses on arm motion only. In this work, our
world simulator turns action-consistent simulation trajectories into high-fidelity, real-style data.

3 COMPOSITIONAL WORLD SIMULATION

3.1 PROBLEM FORMULATION

In the context of robotic manipulation, collecting real-world data is often a challenging and resource-
intensive task. Traditional methods leverage classical simulators Todorov et al. (2012); Makoviychuk
et al. (2021); Gu et al. (2023) to train online reinforcement learning policies Schulman et al. (2017).
These simulators generate large amounts of trajectory data by simulating various robot behaviors.
Another approach Mu et al. (2024); Qin et al. (2025) utilizes pre-designed primitive functions, called
via large language models (LLMs), to generate extensive trajectory data, thereby aiming to cover
as much of the decision space as possible. These trajectories are commonly used for pre-training or
joint training with real-world data.

Despite the large volume of video-action pairs generated, the disparity between the distributions of
simulated and real-world data creates significant challenges. Let Dsim = {(vi, ai)}Ni=1 represent the
dataset of video-action pairs collected from a classical simulator, where vi denotes the video frame

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and ai the corresponding action. Similarly, let Dreal = {(v′j , a′j)}Mj=1 represent the real-world dataset,
where v′j and a′j are the video and action pairs from the real world. Directly training policies on the
combined simulated and real data often fails to improve performance or generalization, as the domain
gap between simulation and reality exacerbates this issue, leading to degraded policy performance in
real-world settings. This gap is particularly evident in appearance and physics, where simulated data
cannot fully capture the complexities of the real world.

An alternative method involves using video generation models as neural world simulators. These
models generate data that is intended to be as close as possible to real-world distributions. However,
video generation models suffer from inherent issues, such as hallucinations, 3D scene consistency,
and inaccurate action control. As a result, the generated actions and corresponding videos do not
align perfectly, making this data unsuitable for policy training.

To address these issues, we propose a compositional simulation approach. In this approach, we
first collect a large number of trajectories in a classical simulator, Dsim. These trajectories are then
transformed into video representations using a pre-trained neural simulator N , which maps the
simulated data into the real-world distribution. Crucially, this process ensures that the generated
data maintains action alignment with the original simulated trajectories. Formally, we aim to build a
neural simulation function N (·), such that:

N (Dsim) ≈ Dreal (1)

This neural simulation functionN (·) maps the simulated video-action pairs to a distribution that is as
close as possible to the real-world data, ensuring that the generated action ai aligns with the original
action a′j , where ai ≈ a′j . Additionally, the consistency of the 3D scene and the video quality must be
maintained, addressing the inherent challenges in video generation models. Thus, we transform the
simulated dataDsim to approximate the real-world distributionDreal, while ensuring that the generated
actions and videos are consistent with real-world expectations. By applying this compositional
simulation approach, we can effectively utilize the large-scale data generated in simulators and adapt
it to real-world environments, thereby mitigating the challenges posed by domain gaps in robotic
manipulation tasks.

3.2 SIM2REAL NEURAL SIMULATION

Background, Object
Alignment

(Color, Size)

Camera Calibration,
Alignment

Object Localization

Real Teleoperation Sim Replay

 { [x,x,x,x,x,x,x]
 ...
 [x,x,x,x,x,x,x] }

Dataset: {(real video1, sim video1), (real video2, sim video2),...}
Neural Simulation

Training

Sim2Real Neural Simulation

Figure 2: Alignment between real-world
and simulation: trajectories collected in
the real world are replayed in simulation
to generate paired video data for training
the sim-to-real neural simulator.

To train the Sim2Real neural simulation that maps videos
to real-world distributions while maintaining the correct
actions, we need to construct a dataset composed of tuples
(Vsim,Vreal,A), where Vsim and Vreal represent the results
of executing the same action in the classical simulator and
the real world, respectively. In other words, Vsim and Vreal
share the same action sequence.

To build such a dataset, we need to create a simulation data
collection platform that aligns strictly with the real-world
data collection platform. As shown in Fig. 2, to establish
this digital twin simulation environment, we performed
alignment at three levels:

Background and Object Alignment: We first aligned the
background and objects in the simulation, including their
colors and sizes. The desktop and background colors in
the classical simulator were aligned with those of the real-
world data collection platform. Additionally, we applied a
digital twin approach to assets to ensure visual consistency
and set the size to match the real-world scale.

Camera Calibration and Alignment: We then calibrated
and aligned the cameras to ensure that the camera parame-
ters and poses in the real world were consistent with those
in the classical simulation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Diverse Trajectory

Diverse Object

Diverse Layout

{ x,x,x,x,x,x,x } { x,x,x,x,x,x,x }

{ x,x,x,x,x,x,x } { x,x,x,x,x,x,x }

Classical Simulation Neural Simulation

{ x,x,x,x,x,x,x }

{ x,x,x,x,x,x,x }

Pseudo Real Data

Real World

{ x,x,x,x,x,x,x }

{ x,x,x,x,x,x,x }

Real Data

Joint
training

...

...

Figure 3: Real World Deployment with Compositional Simulation . Large volumes of (Vsim,A)
pairs are collected from the classical simulator and transformed into corresponding (Vreal,A) pairs,
referred to as Pseudo Real Data. These data, together with a small amount of real-world data, are
used to train policies with improved success rates and generalization.

Object Position Alignment: During task initialization, we localized the objects in the real-world
scene and strictly transferred their position information into the classical simulator.

After performing the above alignments, we can collect data from the real-world simulation platform
to obtain the pair (Vreal,A). These action data are then replayed in the corresponding classical
simulation environment to generate the tuple (Vsim,Vreal,A). We collected data for 10 tasks, resulting
in 200 data pairs for training. To optimize the neural simulator for Sim2Real data generation, we
aim to minimize the discrepancy between the simulated and real-world videos, while maintaining the
correct action alignment. Since the actions in both Vsim and Vreal are already aligned, we focus solely
on optimizing the video consistency. The optimization objective is formulated as:

Lsim2real = Lvideo(fN (Vsim, θ),Vreal) (2)

Where Lvideo measures the difference between the generated simulated video and the real-world video,
and θ represents the neural simulator’s parameters. By minimizing this loss, the neural simulator
learns to generate videos that closely match the real-world distribution, while preserving the correct
action alignment.

3.3 DATA GENERATION WITH RULE-BASED SIMULATION

To further scale up the data collection pipeline, we employ RoboTwin Chen et al. (2025), a SAPIEN-
based Xiang et al. (2020) dual-arm manipulation simulation environment. It provides a rich library of
digital assets and supports diverse trajectory distributions, making it well-suited for synthesizing large-
scale visuomotor datasets. By systematically varying environmental conditions, object initialization
states, and agent actions, we generate an extensive set of trajectories and corresponding videos that
cover a broad spectrum of real-world task scenarios.

Specifically, we define a comprehensive set of interaction rules, referred to as action primitives,
governing how agents and objects interact within the simulation. These primitives serve as the atomic
building blocks of complex behaviors, capturing low-level manipulations (e.g., grasp, push, align)
as well as higher-order skills (e.g., stack blocks). We curate a suite of RoboTwin tasks and adapt
them to support richer interaction patterns and object configurations, enabling a broader spectrum
of physical reasoning scenarios. To automate the generation of complex behaviors, we employ
GPT-5 OpenAI (2025) to synthesize executable code composed of these action primitives, while
integrating compositional constraints Qin et al. (2025) to ensure semantic correctness and physical
feasibility. The action primitives encompass a variety of object types and interaction modalities,
enabling diverse scenario generation. For each task, we construct a rich collection of trajectories
τs spanning the action space, and carefully tune the primitive-based generation process to achieve
comprehensive coverage. This allows us to traverse the global distribution of agent behaviors in the
simulation, including different object initializations and heterogeneous object categories.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The resulting dataset comprises temporally synchronized camera observations, corresponding action
and state sequences. These elements are strictly aligned at the behavioral level, ensuring that every
visual frame is paired with its underlying control command. Although the trajectories and interactions
in simulation are faithful to their intended semantics, the rendered appearance of the videos still
differs from real-world imagery due to discrepancies in lighting, textures, and sensor noise. To bridge
this domain gap, we pass the simulated observation streams vs through a neural simulator N , which
refines their visual characteristics while preserving the original dynamics and action consistency.

3.4 REAL WORLD DEPLOY WITH COMPOSITIONAL SIMULATION

As shown in Fig. 3, after training the neural simulator, we proceeded with the process outlined in
Sec. 3.3 to collect a large number of (Vsim,A) pairs from the classical simulation. These data are
then fed into the neural simulator, which transforms them into corresponding (Vreal,A) pairs. We
refer to these transformed data as Pseudo Real Data. Compared to the data produced by classical
simulators, these Pseudo Real Data exhibit representations that are much closer to real-world data,
with a reduced domain gap.

By using these Pseudo Real Data, which cover a broader distribution of scenarios, in conjunction
with a small amount of real-world data collected from the actual environment, we can jointly train a
robot policy. This approach significantly improves the performance and generalization capability of
the policy. The specific experimental results are presented in the Sec. 4.2.

Algorithm 1 Real World Deployment with Compositional Simulation

1: Input:
2: Classical simulation data (Vsim,A), Real-world data (Vreal,A)
3: Functions:
4: Neural Simulator N , Video Transformation Function fN
5: Hyperparameters:
6: Real-World Data Ratio α
7: Initialize Dsim ← {Vsim,A}, Dreal ← {Vreal,A} ▷ Initialize datasets
8: Ppseudo ← {} ▷ Initialize Pseudo Real Data set
9: for each (Vsim,A) ∈ Dsim do

10: Ppseudo ← Ppseudo ∪ fN (Vsim,A) ▷ Transform simulation data to Pseudo Real Data
11: end for
12: Dcombined ← α ·Dreal + (1− α) · Ppseudo ▷ Combine Pseudo Real Data with Real Data
13: Train policy πrobot using Dcombined ▷ Train robot policy using combined data
14: Return: Trained robot policy πrobot

4 EXPERIMENTS

4.1 SIM2REAL TRANSFER VIA NEURAL SIMULATION

Baselines. To validate the effectiveness of our proposed Neural Simulation in recovering real-world
data distributions from simulation, we consider three variants: 1) Classical Simulation, denoting the
raw simulation videos without neural refinement; 2) Zero-Shot, referring to the base model applied
without any sim-to-real fine-tuning; and 3) Ours, the proposed Neural Simulation method capable of
generating pseudo-realistic content. By contrasting these baselines, we perform an ablation study
to empirically evaluate the ability of our method to bridge the discrepancy between simulation and
reality. Specifically, we provide each model with a simulation video together with a sim-to-real
instruction, and expect the model to generate a corresponding pseudo-real video. Our framework
is built upon Stable Diffusion 1.5 Rombach et al. (2022) as the base model, augmented with a
post-processing strategy Yang et al. (2024) to alleviate temporal discontinuities across frames.

Quantitative Results. For quantitative evaluation, we employ a set of widely used perceptual and
structural similarity metrics (PSNR, SSIM, CLIP Score Hessel et al. (2021), LPIPS Zhang et al.
(2018)), alongside distributional measures (FID Heusel et al. (2017), FVD Unterthiner et al. (2018)),
to assess both the visual fidelity of the generated videos with respect to real-world videos and their
temporal coherence throughout the frame sequence. Tab. 1 reports the quantitative results, where

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the realism quality of generated videos across different methods.

PSNR ↑ SSIM ↑ CLIP Score ↑ LPIPS ↓ FID ↓ FVD ↓
Sim 18.973 0.7870 0.7699 0.3781 172.71 624.74

Zero-Shot 13.093 0.5487 0.7308 0.4756 219.74 1163.83
Ours 19.240 0.8114 0.8011 0.2644 145.70 488.82

“Sim” indicates the original simulation data from the classical simulator, “Zero-Shot” denotes the
outputs generated by the untuned base model, and “Ours” corresponds to the pseudo-real videos
synthesized by our proposed neural simulator. We observe that the base model, when used without
any sim-to-real adaptation, is not only ineffective but also hinders the realism of generated videos.
In contrast, our method achieves the best performance across all evaluation metrics, consistently
yielding videos with high perceptual realism and thereby demonstrating its effectiveness in bridging
the gap between simulation and reality.

Qualitative Results. We conduct a visual comparison across four representative tasks, as shown
in Fig. 4. From left to right, the tasks are Move Playing-Card Away, Ranking Blocks RGB, Adjust
Bottle, and Shake Bottle. Note that the simulated objects differ from their real-world counterparts in
appearance. For instance, the robotic gripper is black in reality rather than gray in the simulator, the
dominant color of the playing card’s surface pattern is white instead of blue, and the Coca-Cola bottle
cap is yellow rather than red. As shown in the figure, the zero-shot model fails to capture the essence
of sim-to-real transfer, it creates a superficial “realism” by exaggerating color saturation or smoothing
surface textures—likely a side effect of training data dominated by human face images—leading
to severe hallucination artifacts. In contrast, our method targets the critical discrepancies between
simulation and reality. It faithfully reproduces surface attributes such as color and material (e.g., the
reflective plastic of the Fanta bottle) as well as internal dynamics (e.g., visible liquid motion when
shaking the Coca-Cola bottle), producing results much closer to real-world observations and thereby
validating the effectiveness of our approach for sim-to-real data generation.

(a
) S

im
(b

) Z
er

o-
Sh

ot
(c

) O
ur

s

Figure 4: Visual comparison of generated results across four different tasks. Rows correspond to: (a)
Sim: classical simulation results without neural refinement, (b) Zero-Shot: outputs from the untuned
base model, and (c) Ours: pseudo-realistic videos produced by our neural simulation method.

4.2 REAL WORLD EXECUTION WITH COMPOSITIONAL WORLD SIMULATION

Baselines. To rigorously quantify the benefit of our proposed compositional world simulation
pipeline under an extremely limited real-world demonstration budget, we trained six instances of
Diffusion Policy (DP) Chi et al. (2023) according to the following data-mixture regimes: 1) 10 Real:
learning solely from 10 real-world demonstrations. 2) 20 Real: doubling the real-world budget to
20 demonstrations to isolate the gain of additional real-world data. 3) 200 Sim Pretrain + 10 Real:
pre-training on 200 RoboTwin-simulated demonstrations followed by fine-tuning on the same 10
real-world demonstrations used in Regime 1. 4) 10 Real + 200 Sim: jointly training on the 200
RoboTwin-simulated and 10 real-world demonstrations from scratch. All demonstrations used here
are same as Regime 3. 5) 10 Real + 200 Pseudo-Real: jointly training on the 200 pseudo-real
demonstrations, which were generated by our compositional world simulation pipeline previously,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Real-world evaluation on Shake Bottle, Move Playing-Card Away, and Stack Blocks Two.
The compared methods include DP trained under six data-mixture regimes: 10 Real, 20 Real, 200 Sim
Pretrain + 10 Real, 10 Real + 200 Sim, 10 Real + 200 Pseudo Real, and 200 Pseudo Real. “OOD”
abbreviates out-of-distribution.

Real World
Task

Spatial
Distribution 10 Real 20 Real 200 Sim Pretrain

+ 10 Real

Shake Bottle In Domain 10/30 25/30 12/30
OOD 0/30 1/30 0/30

Move Playing-Card AwayIn Domain 12/30 24/30 15/30
OOD 0/30 0/30 2/30

Stack Blocks Two In Domain 5/30 13/30 8/30
OOD 0/30 0/30 0/30

Real World
Task

Spatial
Distribution

10 Real
+ 200 Sim

10 Real + 200
Pseudo Real

200 Pseudo Real
(Zero Shot)

Shake Bottle In Domain 8/30 28/30 10/30
OOD 0/30 12/30 5/30

Move Playing-Card AwayIn Domain 10/30 29/30 12/30
OOD 1/30 17/30 9/30

Stack Blocks Two In Domain 2/30 15/30 7/30
OOD 0/30 6/30 3/30

Figure 5: Visualization of DP performance on Move Playing-Card Away. Top two rows: objects
lie initially within the region predefined in collected real-world demonstrations (in-domain spatial
distribution). Bottom two rows: initial positions are outside the region (out-of-domain spatial
distribution). Policies shown are trained under 20 Real and 10 Real + 200 Pseudo Real, respectively.

and 10 real demonstrations used in Regime 1 from scratch. 6) 200 Pseudo-Real (Zero-Shot): zero-
shot training exclusively on the 200 pseudo-real demonstrations used in Regime 5, establishing an
upper-bound on the performance achievable by DP without any real-world supervision.

Quantitative Results. As shown in Tab. 2, DP performs poorly when only 10 real-world demonstra-
tions are available (cf. 10 Real), and its success rate improves steadily as more real-world data are
provided (cf. 20 Real), underscoring the importance of sufficient real-world experience. Simulated
data from the traditional simulator (such as RoboTwin) also helps, yet the benefit is capped by the
visual–physical gap between real-world and simulated environments (cf. 200 Sim Pretrain + 10 Real
and 10 Real + 200 Sim). In contrast, the Pseudo-Real demonstrations generated by our compositional
world simulation pipeline narrow this gap and yield a substantial increase in task success rate (cf. 10
Real + 200 Pseudo Real), and even delivering non-trivial performance in the complete absence of
real data (200 Pseudo Real).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Quantitative evaluation of DP new-object generalization across six data mixtures.

Real World Task 10 Real 20 Real 200 Sim Pretrain
+ 10 Real

Shake Bottle 0/30 0/30 0/30
Move Playing-Card Away 1/30 2/30 1/30

Real World Task 10 Real
+ 200 Sim

10 Real + 200
Pseudo Real

200 Pseudo Real
(Zero Shot)

Shake Bottle 0/30 15/30 9/30
Move Playing-Card Away 0/30 21/30 11/30

4.3 GENERALIZATION

To further validate the fidelity of our pipeline in reproducing real-world scenarios, we conducted
an ablation study on the ability of DP to generalize to new spatial layouts and new objects. All DP
evaluated here are identical to those introduced in Sec. 4.2.

Generalization to Novel Spatial Distributions. It is necessary to note the initialized position of
every object in the collected real-world demonstrations was confined to a predefined limited region
(see Sup. C.2.1). At inference, we relocated the same objects to previously unseen regions and
recorded the success rates of all DPs. Tab. 2 and Fig. 5 shows that DPs trained solely on real data
exhibit almost zero generalization to the new regions; the spatial diversity present in traditional
RoboTwin simulations is likewise rendered ineffective by the sim-to-real gap, yielding no measurable
improvement. In contrast, the pseudo-real demonstrations generated by our compositional world
simulation pipeline consistently lift performance across the relocated configurations, confirming that
the synthesized scenes faithfully reproduce the spatial statistics of the real-world environments.

Generalization to New Objects. We evaluate shape- and color-level generalization by substituting
new objects at inference time. Concretely, in the real-world demonstrations we employ a Fanta
bottle and a blue playing card, and at inference time these are replaced by other bottles (i.e. Coca-
Cola, Sprite and Nongfu Spring Oriental Leaf Tea) and a red playing card, respectively. As shown
in Table 3 and Fig. 6, simulated demonstrations collected from RoboTwin bring no improvement
in the generalization to new objects, whereas the Pseudo-Real demonstrations generated by our
compositional world simulation pipeline yield a clear boost in success rate. This demonstrates that
our method preserves real-world properties and supports transfer to unseen objects.

Figure 6: Generalization visualization of DP on Shake Bottle under out-of-domain object distributions.
Top: policy trained with 20 Real. Bottom: policy trained with 10 Real + 200 Pseudo Real.

5 CONCLUSION

We presented Compositional Simulation, a hybrid framework that integrates classical and neural
simulation through a real–sim–real pipeline to generate accurate and consistent action–video pairs.
Our approach leverages limited real-world data to create large-scale, diverse training datasets, sub-
stantially narrowing the sim2real domain gap. Experiments show that Compositional Simulation
improves real-world policy success rates and enables stronger generalization across tasks, spaces,
and objects. This work offers a scalable path toward robust data generation for embodied intelligence
and opens avenues for extending to richer modalities and broader robotic embodiments.

Limitation and Future Work. Our experiments focus on tabletop manipulation, though the frame-
work could be extended to more complex embodiments such as mobile manipulation with wheeled
robot. And no specialized design was introduced for the neural simulator. Future work may investi-
gate stronger action conditioning for improved action–video consistency and the use of unpaired data
to enhance capability and generalization, which would further advance compositional simulation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The research reported in this paper involves only standard robotic manipulation of everyday objects
(such as beverage bottles, playing-cards, blocks) in a laboratory setting. No human or animal subjects,
personal data, sensitive information, or hazardous materials were involved. All experiments were
conducted in compliance with the safety regulations of the host institution and the relevant technical
guidelines for robotic systems.

REPRODUCIBILITY STATEMENT

To facilitate full reproducibility, we provide:

1. Complete source code for data collection, compositional world simulation, model training,
and evaluation at github.

2. Detailed hyper-parameters and network architectures in Appendix C.

3. Comprehensive documentation of the real-world platform and evaluation protocol in Ap-
pendix D.

4. Video recordings of every real-world trial, together with the corresponding RGB-D sensor
streams, which will be made publicly available upon acceptance.

All experiments were conducted on the open-source RoboTwin simulator and our standardized robotic
platform; containerized environments and exact dependency versions are released to guarantee bitwise
reproducibility.

REFERENCES

Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chat-
topadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform
for physical ai. arXiv preprint arXiv:2501.03575, 2025.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model for generalist
humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, et al. pi 0: A vision-language-action flow model for
general robot control. arXiv preprint arXiv:2410.24164, 2024.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022a.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022b.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
interactive environments. 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chi-Lam Cheang, Guangzeng Chen, Ya Jing, Tao Kong, Hang Li, Yifeng Li, Yuxiao Liu, Hongtao
Wu, Jiafeng Xu, Yichu Yang, et al. Gr-2: A generative video-language-action model with web-scale
knowledge for robot manipulation. arXiv preprint arXiv:2410.06158, 2024.

Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Qiwei Liang, Zixuan Li, Xianliang
Lin, Yiheng Ge, Zhenyu Gu, et al. Robotwin 2.0: A scalable data generator and benchmark
with strong domain randomization for robust bimanual robotic manipulation. arXiv preprint
arXiv:2506.18088, 2025.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning universal policies via text-guided video generation. Advances in neural
information processing systems, 36:9156–9172, 2023.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao,
Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manipulation
skills. In The Eleventh International Conference on Learning Representations, 2023.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
with 3d scene representations. arXiv preprint arXiv:2402.10885, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
vision-language-action model. In 8th Annual Conference on Robot Learning.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
speed and success. arXiv preprint arXiv:2502.19645, 2025.

Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B Tenenbaum. Learning to act from
actionless videos through dense correspondences. arXiv preprint arXiv:2310.08576, 2023.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv, 2017.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martı́n-
Martı́n, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, Mona Anvari, Minjune
Hwang, Manasi Sharma, Arman Aydin, Dhruva Bansal, Samuel Hunter, Kyu-Young Kim, Alan
Lou, Caleb R Matthews, Ivan Villa-Renteria, Jerry Huayang Tang, Claire Tang, Fei Xia, Silvio
Savarese, Hyowon Gweon, Karen Liu, Jiajun Wu, and Li Fei-Fei. BEHAVIOR-1k: A benchmark
for embodied AI with 1,000 everyday activities and realistic simulation. In 6th Annual Conference
on Robot Learning, 2022. URL https://openreview.net/forum?id=_8DoIe8G3t.

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
synergizing cognition and action in robotic manipulation. arXiv preprint arXiv:2411.19650, 2024.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. In International Conference on Machine
Learning, pp. 20725–20745. PMLR, 2023.

11

http://github.com/google/brax
http://github.com/google/brax
https://openreview.net/forum?id=_8DoIe8G3t

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldif-
fuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execution.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16467–16476, 2024.

Zhixuan Liang, Yao Mu, Yixiao Wang, Tianxing Chen, Wenqi Shao, Wei Zhan, Masayoshi Tomizuka,
Ping Luo, and Mingyu Ding. Dexhanddiff: Interaction-aware diffusion planning for adaptive dex-
terous manipulation. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 1745–1755, 2025.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv preprint
arXiv:2410.07864, 2024.

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. IEEE Robotics
and Automation Letters, 2023.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High
performance GPU based physics simulation for robot learning. In Joaquin Vanschoren and Sai-Kit
Yeung (eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/28dd2c7955ce926456240b2ff0100bde-Abstract-round2.html.

Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang Xie,
and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early version).
arXiv preprint arXiv:2409.02920, 2024.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
robots. In Robotics: Science and Systems (RSS), 2024.

NVIDIA. Cosmos world foundation model platform for physical ai. arXiv preprint arXiv:2501.03575,
2025.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

OpenAI. Creating video from text. https://openai.com/index/sora/, 2024.

OpenAI. Gpt-5 system card (updated august 13, 2025). https://cdn.openai.com/pdf/
8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf,
Aug 2025.

Yiran Qin, Li Kang, Xiufeng Song, Zhenfei Yin, Xiaohong Liu, Xihui Liu, Ruimao Zhang, and Lei
Bai. Robofactory: Exploring embodied agent collaboration with compositional constraints. arXiv
preprint arXiv:2503.16408, 2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

12

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/28dd2c7955ce926456240b2ff0100bde-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/28dd2c7955ce926456240b2ff0100bde-Abstract-round2.html
https://openai.com/index/sora/
https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf
https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Vondrus,
Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun,
Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants to rearrange
their habitat. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and
Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. arXiv
preprint arXiv:1812.01717, 2018.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Chenxi Wang, Hongjie Fang, Hao-Shu Fang, and Cewu Lu. Rise: 3d perception makes real-world
robot imitation simple and effective. In 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2870–2877. IEEE, 2024.

Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
Vision-language model with plug-in diffusion expert for general robot control. arXiv preprint
arXiv:2502.05855, 2025.

Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu,
Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot
manipulation. arXiv preprint arXiv:2312.13139, 2023.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN: A
simulated part-based interactive environment. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
Abbeel. Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114, 2023.

Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change Loy. Fresco: Spatial-temporal correspondence
for zero-shot video translation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8703–8712, 2024.

Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Se June Joo, Jianwei Yang, Baolin Peng, Ajay Mandlekar,
Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos. In CoRL
2024 Workshop on Whole-body Control and Bimanual Manipulation: Applications in Humanoids
and Beyond.

Jiwen Yu, Yiran Qin, Xintao Wang, Pengfei Wan, Di Zhang, and Xihui Liu. Gamefactory: Creating
new games with generative interactive videos, 2025.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. In Proceedings of
Robotics: Science and Systems (RSS), 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all, March
2024. URL https://github.com/hpcaitech/Open-Sora.

Siyuan Zhou, Yilun Du, Jiaben Chen, Yandong Li, Dit-Yan Yeung, and Chuang Gan. Robodreamer:
Learning compositional world models for robot imagination. arXiv preprint arXiv:2404.12377,
2024.

Fangqi Zhu, Hongtao Wu, Song Guo, Yuxiao Liu, Chilam Cheang, and Tao Kong. Irasim: Learning
interactive real-robot action simulators. arXiv preprint arXiv:2406.14540, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

14

https://github.com/hpcaitech/Open-Sora

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LLMS

This paper was written by the authors without any generative contribution from large language
models (LLMs). LLMs were employed solely for language polishing and grammatical refinement; no
scientific content, technical claims, or novel interpretations were produced or altered by these tools.

B TASK DETAILS

To facilitate assets alignment between the real-world and simulated settings, we select three repre-
sentative tasks in RoboTwin Chen et al. (2025)—Shake Bottle, Move Playing Card Away, and Stack
Blocks Two—to evaluate our compositional world simulation framework. Their respective success
criteria are defined as follows.

• Shake Bottle involves four beverages—Fanta, Coca-Cola, Sprite, and Nongfu Spring Oriental
Leaf Tea. Among these beverages, Fanta is employed to collect real-world demonstrations,
while the remaining three serve as new objects for an ablation study on model generalization.
The task is deemed successful if the robot grasps the bottle from the desktop, lifts it to a
predefined height, and performs a shaking motion.

• Move Playing-Card Away employs two types of playing cards that differ in color—blue and
red. Following the same protocol as Shake Bottle, the blue playing card is used to construct
the real-world training dataset, whereas the red playing card serves as an unseen object for
evaluating model generalization. The task is considered successful once the robot grasps the
designated card and transports it completely away from the central region of the desktop.

• Stack Blocks Two utilizes two colored blocks—green and yellow. This task is designed
primarily to assess the model’s ability to generalize to novel spatial configurations. Success
is achieved when the robot first places the green block at the designated position and
subsequently stacks the yellow block precisely on top of it.

C TRAINING DETAILS

C.1 NEURAL SIMULATOR TRAINING DETAILS

As mentioned in Sec. 4.1, our Neural Simulator builds upon Stable Diffusion 1.5 Rombach et al.
(2022), a state-of-the-art latent text-to-image diffusion model capable of generating high-fidelity
visual content from textual prompts. We provide a fixed sim-to-real instruction as its text input,
namely: “Change the image style from the image style of the simulated environment to the image style
captured by a DSLR camera.”. Next, we pair the initial simulation data produced by our Classical
Simulator with corresponding real-world data to form simulation–real data pairs. The base model is
then fine-tuned on these pairs by minimizing the diffusion model’s denoising loss. Finally, an online
inference strategy FRESCO Yang et al. (2024) is applied to the fine-tuned model to generate the final
high-quality pseudo-realistic videos.

All experiments are conducted on one NVIDIA H200 GPU. During fine-tuning, the video data
is first converted into image sequences at 10 FPS and organized into a training set, with 1/5 of
the data randomly sampled as a validation set. The model is trained for 30 epochs with a batch
size of 8 and a gradient accumulation step of 4, taking approximately 10 hours. We employ the
torch.optim.AdamW optimizer with a learning rate of 5.0× 10−5 and a linear warm-up ratio of
0.01. For the loss function, the diffusion model’s denoising loss is empirically weighted by 1.0, the
perceptual loss (measuring feature-level differences between generated and real images) is weighted
by 0.2, and the pixel-wise loss (computing the RGB mean squared error between generated and real
images) is weighted by 0.1. During inference, we follow the default parameter settings of FRESCO,
except that the minimum key-frame sampling interval is set to 3, to ensure smoother video generation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: Definition of in-domain and out-of-domain spatial distributions in different tasks. Both
terms refer exclusively to the initial position of objects before being manipulated. Positions are
labeled in-domain if and only if they appear in the collected real-world demonstrations; all others are
deemed out-of-domain.

C.2 DP TRAINING DETAILS

C.2.1 DEMONSTRATIONS

Real-World Demonstrations were meticulously collected via human teleoperation using a pair of
PiPER Teach Pendants (see Sup. D.1). For each task, we recorded only 20 trajectories, all confined to
the in-domain spatial and object distribution. Concretely, demonstrations for Shake Bottle and Move
Playing-Card Away were acquired exclusively with the Fanta bottle and the blue playing card starting
within the in-domain region illustrated as Fig. 7(a), respectively. And for Stack Blocks Two, the
green and yellow blocks were always placed in the left and right in-domain zones at the beginning of
demonstration collection (Fig. 7(b)). Finally, we randomly selected 10 out of these 20 demonstrations
to construct the data-mixture regime 10 Real, and used all 20 to construct the regime 20 Real.

Simulated Demonstrations were generated in the traditional simulator RoboTwin, and we collected
200 trajectories for each task. In contrast to the real-world ones, these simulated demonstrations
deliberately incorporated out-of-domain spatial arrangements and objects. Specifically, for Shake
Bottle we used not only the Fanta bottle but also Coca-Cola, Sprite and Nongfu Spring Oriental Leaf
Tea, while for Move Playing-Card Away we included the red playing card in addition to the blue one.
Besides, all objects might be placed in out-of-domain regions when data collection started. All 200
simulated demonstrations were employed to construct the data-mixture regimes 10 Real + 200 Sim
and 200 Sim Pre-train + 10 Real.

Pseudo-Real Demonstrations were produced by our compositional world-simulation framework
under the same out-of-domain spatial and object settings employed for Simulated Demonstrations.
The full set of 200 pseudo-real trajectories was used to establish the data-mixture regimes 10 Real +
200 Pseudo-Real and 200 Pseudo-Real.

C.2.2 TRAINING SETTINGS

We use Diffusion Policy (DP) Chi et al. (2023), a generative method based on imitation learning. We
employ a CNN-based Diffusion Policy as the backbone of our visuomotor model. The prediction
horizon is set to 8, with 3 observation steps and 6 action steps. For data loading, we use a batch
size of 256. The optimizer is torch.optim.AdamW with a learning rate of 1.0× 10−4, betas in
[0.95, 0.999], and ϵ = 1.0× 10−8. A learning-rate warmup is applied for the first 500 steps, followed
by 300 training epochs for all benchmark tasks.

Each policy is trained independently on a single NVIDIA H200 GPU for 300 epochs. As a reference,
using a dataset of roughly 200 demonstration episodes (average length ≈ 300), training a single
policy for 300 epochs takes about 20 hours.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: Real-world evaluation platform.

D EVALUATION DETAILS

D.1 PLATFORM

As depicted in Fig. 8, the real-world evaluation were performed with two ORBBEC PiPER 6-DOF
Lightweight Robotic Arms, each equipped with a two-finger gripper (maximum opening 70 mm,
gripping force 40 N). A fixed, top-down ORBBEC DaBaiDC1 RGB-D camera provided a global
RGB view of the workspace, defined as the central area of a black tabletop. In addition, a pair of
PiPER Teach Pendants enabled teleoperation of the arms, allowing efficient collection of real-world
demonstrations. All hardware units were connected to a workstation housing an NVIDIA GeForce
RTX 4090 GPU, which stored the captured observations, performed model inference, issued control
commands, and drove the robotic arms in real time.

D.2 EVALUATION SETTINGS

For each ablation dimension—in-domain spatial/object configurations, out-of-domain spatial layouts,
and out-of-domain objects—we independently constructed a fixed set of 30 diverse real-world trials.
Every policy trained under a different data-mixture regime was evaluated on the corresponding
30-trial split, guaranteeing that all comparisons within a distribution are performed on an identical
test bed. Task-success criteria are provided in Sup. B.

E SIM2REAL NEURAL SIMULATION DETAILS

As stated in Sec. 3.2, we enforce strict alignment between the real-world and simulated environ-
ments—encompassing background and object appearance, camera intrinsics/extrinsics, and object
positions—to enable effective Sim2Real neural simulation. To prevent any learning-induced errors
from propagating into the subsequent training of the neural simulator, we adopt a purely rule-based
alignment pipeline rather than a data-driven one. Concretely, we first parameterize the relevant at-
tributes of the real-world scene and then transfer the estimated parameters to configure the simulated
environment accordingly.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.1 BACKGROUND AND OBJECT ALIGNMENT

Background Alignment mainly parameterizes both the visual appearance of the desktop and the
laboratory walls. Using the fixed RGB-D camera described in Sec. D.1, we first capture images of
the table surface and the wall regions. A digital color-picker is then applied to the acquired images to
extract representative RGB values.

Regular-Object Alignment covers primitives such as blocks, spheres, and cylinders whose geometry
can be described by a small set of metric dimensions. For these instances, we first measure their prin-
cipal axes (length, width, height, diameter, etc.) with calipers. Their Appearance are parameterized
by acquiring an orthographic RGB patch of the object’s most representative face and extracting the
median albedo via a color-picker tool—no additional texture map is required, yielding a compact,
error-tolerant representation.

Special-Object Alignment. Owing to RoboTwin’s one-to-one digital twins of real-world as-
sets—including Finda, Fanta, Coca-Cola, Sprite, Nongfu Spring Oriental Leaf Tea bottles and
the playing cards—we can directly pair every physical item with its pre-modeled, dimension- and
texture-matched counterpart. This eliminates the need for on-the-fly scanning or manual modeling:
each real-world bottle or card is simply mapped to its pre-registered URDF/FBX model, guaran-
teeing sub-millimetre geometric agreement and pixel-level texture consistency between reality and
simulation.

E.2 CAMERA CALIBRATION AND ALIGNMENT

Camera parameterization focuses on retrieving its intrinsic and extrinsic. The intrinsics can be
known directly from its technical documentation; hence, the following section details only the
extrinsic-calibration pipeline employed in our setup.

To ensure consistency with RoboTwin, we establish a real-world coordinate system as illustrated
in Fig. 8. Within this coordinate system, we first place a calibration checkerboard and obtain the
3D coordinates of its corner points. Subsequently, we capture images using the mounted camera
and extract the 2D pixel coordinates of those checkerboard corners via corner detection. The code
implementing this procedure is listed below.

1 import cv2
2 import numpy as np
3
4 # --------------------------
5 PATTERN_SIZE = (7, 4) # Number of checkerboard corners along rows and columns
6 IMG_PATH = ’chess.jpg’ # Path of the captured image
7 # --------------------------
8
9 img = cv2.imread(IMG_PATH)

10 if img is None:
11 raise FileNotFoundError(IMG_PATH)
12 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
13
14 # 1. Checkerboard Detection
15 ret, corners = cv2.findChessboardCorners(
16 gray, PATTERN_SIZE,
17 cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE)
18 if not ret:
19 raise RuntimeError(’Checkerboard detection failed!’)
20
21 corners = cv2.cornerSubPix(
22 gray, corners, (11, 11), (-1, -1),
23 criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001))
24 pts2d = corners.reshape(-1, 2).tolist()
25
26 # 2. Mouse Callback
27 def on_mouse(event, x, y, flags, param):
28 global pts2d, img_show
29 if event == cv2.EVENT_LBUTTONDOWN:
30 idx = min(range(len(pts2d)),
31 key=lambda i: (pts2d[i][0] - x) ** 2 + (pts2d[i][1] - y) ** 2)
32 if (pts2d[idx][0] - x) ** 2 + (pts2d[idx][1] - y) ** 2 < 400:
33 del pts2d[idx]
34 redraw()
35
36 def redraw():
37 global img_show

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

38 img_show = img.copy()
39 for idx, (u, v) in enumerate(pts2d):
40 u, v = int(u), int(v)
41 cv2.circle(img_show, (u, v), 5, (0, 0, 255), -1)
42 cv2.putText(img_show, str(idx), (u + 10, v - 10),
43 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
44 cv2.imshow(’interactive’, img_show)
45
46 # 3. Main Loop
47 cv2.namedWindow(’interactive’, cv2.WINDOW_NORMAL)
48 cv2.setMouseCallback(’interactive’, on_mouse)
49 redraw()
50
51 print(’Usage:’)
52 print(’ Left-click on a corner -> toggle delete/undelete’)
53 print(’ Press q -> save current pts2d.txt and exit’)
54 print(’ Press r -> restore all originally detected corners’)
55 print(’ Close the window (x) to quit without saving’)
56
57 while True:
58 if cv2.getWindowProperty(’interactive’, cv2.WND_PROP_VISIBLE) < 1:
59 break
60
61 key = cv2.waitKey(30) & 0xFF # 30 ms timeout to prevent freezing
62 if key == ord(’q’):
63 np.savetxt(’pts2d.txt’, np.array(pts2d), fmt=’%.6f’)
64 print(’Saved pts2d.txt with’, len(pts2d), ’points.’)
65 break
66 elif key == ord(’r’):
67 pts2d = corners.reshape(-1, 2).tolist()
68 redraw()
69
70 cv2.destroyAllWindows()

With the obtained 3D-to-2D correspondences, the camera’s extrinsic parameters—position and
orientation—can be recovered by solving a Perspective-n-Point (PnP) problem. The implementation
is given below.

1 import numpy as np
2 import cv2
3
4 # 1. Given Known Intrinsics
5 K = np.array([
6 [488.8112487792969, 0.0, 317.05938720703125],
7 [0.0, 488.8112487792969, 217.4825439453125],
8 [0.0, 0.0, 1.0]
9], dtype=np.float64)

10
11 dist = np.zeros((4, 1)) # Distortion Coefficients; set to zero if no distortion.
12
13 # 2. Input
14 pts3d = np.loadtxt(’pts3d.txt’) # N×3, World Coordinates
15 pts2d = np.loadtxt(’pts2d.txt’) # N×2, Pixel Coordinates
16
17 assert pts3d.shape[0] == pts2d.shape[0], ’Mismatch in point count!’
18
19 # 3. Estimating Extrinsic
20 ok, rvec, tvec = cv2.solvePnP(
21 pts3d.astype(np.float64),
22 pts2d.astype(np.float64),
23 K, dist, flags=cv2.SOLVEPNP_ITERATIVE
24)
25 if not ok:
26 raise RuntimeError(’Solve PnP failed! Please verify that the point correspondences are

correct.’)
27
28 # Rotation Vector -> Rotation Matrix
29 R, _ = cv2.Rodrigues(rvec)
30
31 R_w2c = R
32 t_w2c = tvec.ravel()
33 R_c2w = R_w2c.T
34 t_c2w = -R_c2w @ t_w2c # 3×1
35
36 position = t_c2w.tolist()
37
38 forward = R_c2w[:, 2]
39 left = -R_c2w[:, 0]
40 up = -R_c2w[:, 1]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

41
42 print("static_camera_list:")
43 print(" - name: head_camera")
44 print(" type: D435")
45 print(f" position: [{position[0]:.3f}, {position[1]:.3f}, {position[2]:.3f}]")
46 print(f" forward: [{forward[0]:.3f}, {forward[1]:.3f}, {forward[2]:.3f}]")
47 print(f" left: [{left[0]:.3f}, {left[1]:.3f}, {left[2]:.3f}]")

E.3 OBJECT POSITION ALIGNMENT

We emphasize that the real-world frame depicted in Fig. 8 coincides exactly with the world frame
employed in RoboTwin. Under this frame, the desktop surface is tessellated into a uniform 5 cm
× 5 cm lattice. Object placement is thereby reduced to aligning the object’s center of mass with a
lattice node; orientation is selected from a prescribed, rule-based catalogue—namely, axis-aligned
poses or rotations of 30°, 45°, and 60° about the x- or y-axis. While this discrete parameterization
is admittedly naive, it routinely delivers positional errors below one centimetre and angular errors
below one degree. A data-driven, continuous 6-DoF alignment module will be investigated in future
work to supersede this manual gridding scheme.

F MORE RESULT VISUALIZATION

F.1 VISUALIZATION OF GENERALIZATION ON NEW OBJECTS

To highlight the enhanced generalization of DP enabled by our compositional world simulation
pipeline, we provide trajectory visualizations of the Move Playing-Card Away task in Fig. 6, with
additional examples in Fig. 9.

F.2 VISUALIZATION OF REAL2SIM ALIGNMENT

As detailed in Sup. E, we performed exhaustive Real2Sim alignment. Here we illustrate the final
alignment quality for the tasks Move Playing-Card Away, Ranking Blocks RGB, Stack Blocks Three
and Stack Blocks Two in Fig. 10 and Fig. 11.

F.3 VISUALIZATION OF SIM2REAL NEURAL SIMULATION

To dynamically demonstrate the effectiveness of our approach in sim-to-real transfer, we further
present a visual comparison between the pseudo-realistic videos generated by our Neural Simulator
and the initial simulation videos, as shown in Fig. 12. In addition to the tasks included in the main
text—Adjust Bottle, Moving PlayingCard Away, and Ranking Blocks RGB—we also consider the
Stack Blocks Three task. The results indicate that our method consistently maintains strong temporal
coherence and perceptual realism throughout the video sequences.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: Generalization visualization of DP on new objects. The top two rows are corresponds to
Move Playing-Card Away, and the bottom two rows are corresponds to Shake Bottle. respectively.

Figure 10: Real2Sim alignment on Move Playing-Card Away. From top to bottom: Nongfu Spring
Oriental Leaf Tea, Coca-Cola, Sprite, and Fanta.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 11: Real2Sim alignment on additional tasks. From top to bottom: Ranking Blocks RGB, Stack
Blocks Three and Stack Blocks Two.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Sim
Pseudo R

eal
Sim

Pseudo R
eal

A
djust B

ottle
M

oving PlayingC
ard Aw

ay

Sim
Pseudo R

eal

Stack B
locks T

hree
R

anking B
locks R

G
B

Sim
Pseudo R

eal

Figure 12: Sim2Real visualization on various tasks. From top to bottom: Adjust Bottle, Moving
PlayingCard Away, Stack Blocks Three and Ranking Blocks RGB.

23

	Introduction
	Related Work
	Robotic Simulation
	Robot Learning in Manipulation
	World Simulator for Robotic Manipulation

	Compositional World Simulation
	Problem Formulation
	Sim2Real Neural Simulation
	Data Generation with Rule-Based Simulation
	Real World Deploy with Compositional Simulation

	Experiments
	Sim2Real Transfer via Neural Simulation
	Real world Execution with Compositional World Simulation
	Generalization

	Conclusion
	Use of LLMs
	Task Details
	Training Details
	Neural Simulator Training Details
	DP Training Details
	Demonstrations
	Training Settings

	Evaluation Details
	Platform
	Evaluation Settings

	Sim2Real Neural Simulation Details
	Background and Object Alignment
	Camera Calibration and Alignment
	Object Position Alignment

	More Result Visualization
	Visualization of Generalization on New Objects
	Visualization of Real2Sim Alignment
	Visualization of Sim2Real Neural Simulation

