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ABSTRACT

Recent advancements in foundational models, such as large language models and
world models, have greatly enhanced the capabilities of robotics, enabling robots to
autonomously perform complex tasks. However, acquiring large-scale, high-quality
training data for robotics remains a challenge, as it often requires substantial manual
effort and is limited in its coverage of diverse real-world environments. To ad-
dress this, we propose a novel hybrid approach called Compositional Simulation ,
which combines classical simulation and neural simulation to generate accurate
action-video pairs while maintaining real-world consistency. Our approach utilizes
a closed-loop real-sim-real data augmentation pipeline, leveraging a small amount
of real-world data to generate diverse, large-scale training datasets that cover a
broader spectrum of real-world scenarios. We train a neural simulator to transform
classical simulation videos into real-world representations, improving the accuracy
of policy models trained in real-world environments. Through extensive experi-
ments, we demonstrate that our method significantly reduces the sim2real domain
gap, resulting in higher success rates in real-world policy model training. Our
approach offers a scalable solution for generating robust training data and bridging
the gap between simulated and real-world robotics.

1 INTRODUCTION

With the rapid advancements in foundational models, such as large language models OpenAI (2025);
Touvron et al. (2023); Team et al. (2023) and world models OpenAI (2024); Bruce et al. (2024);
NVIDIA (2025), there has been significant progress in the field of robotics Du et al. (2023); Yang et al.
(2023). These innovations have enabled robots to autonomously perform increasingly complex tasks,
opening the door to more capable and adaptable robotic systems. Data-driven paradigms have led to
impressive results in various domains, yet robotics presents unique challenges compared to fields
like language and video modeling. In particular, the need for manually collected video-action pairs
poses a significant barrier. Unlike self-supervised learning techniques in other domains, acquiring
large-scale data for robotics requires substantial human effort, which is both costly and insufficient
for capturing the vast diversity of real-world environments.

While some researchers have addressed this issue by relying on large-scale human data collection,
this approach remains expensive and limited in covering the full spectrum of real-world distributions.
An alternative method is to leverage simulation to scale data collection Nasiriany et al. (2024); Mu
et al. (2024); Qin et al. (2025), thus reducing the costs associated with real-world data acquisition.
Classical simulators, such as MuJoCo Todorov et al. (2012) and Isaac Makoviychuk et al. (2021),
offer the advantage of generating precise action-video pair data. These simulators use omniscient
views, making it easy to generate vast amounts of data with diverse distributions. However, the
performance gap between simulated and real-world environments often leads to poor joint training
performance when directly transferring simulated data for real-world applications.

To bridge this gap, neural simulators Bruce et al. (2024); Yu et al. (2025); NVIDIA (2025) based
on video generation models Blattmann et al. (2023); Wan et al. (2025); Zheng et al. (2024) have
recently been proposed as a solution. These simulators generate corresponding video data from
input trajectories or action signals, producing action-video pairs for training. Although the generated
videos appear visually consistent with the real world, issues like hallucination—where videos lack
physical consistency and lead to poor action control—undermine the quality of the generated data.
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Figure 1: There are three main sources of real-world robotic data: (1) direct human collection, which
yields high-quality samples but cannot scale; (2) classical simulators, which generate large datasets
but suffer from appearance and physics gaps to reality; and (3) neural simulators trained on real
data, which reduce these gaps but struggle with action-conditioned video generation, leading to weak
action–video consistency. We introduce the concept of Compositional Simulation, a flexible and
scalable approach that bridges the gap between classical simulation and real-world dynamics via
compositional simulation.

In this work, we introduce the concept of Compositional Simulation shown in Fig 1, advocating for
a hybrid approach that combines the strengths of classical simulation and neural simulation. This
approach aims to generate accurate action-video pairs while ensuring that the videos are consistent
with real-world dynamics. We propose a closed-loop real-sim-real data augmentation pipeline that
utilizes a small amount of real-world data to create training datasets for policy models. These datasets
are designed to cover a broader distribution of real-world scenarios.

The real-sim-real pipeline consists of two key steps. First, we collect a small set of real-world
trajectory data and obtain the corresponding videos. In a classical simulation environment, we then
replicate the same scenario, replaying the real-world trajectories to generate simulated videos. A
video-to-video neural simulator is subsequently trained to transform the classical simulation videos
into real-world videos, ensuring that the actions remain consistent. The second part of our approach
involves generating a large and diverse set of action-video pairs through action primitives scheduling
within the classical simulator. These pairs are then transformed into real-world representations using
the trained video-to-video neural simulator, facilitating large-scale data augmentation for real-world
applications. Our main contributions are as follows:

• Concept & Paradigm. We introduce the concept of Compositional Simulation , a flexible and
scalable approach that bridges the gap between classical simulation and real-world dynamics
via compositional simulation.

• Data Pipeline & Model. We propose a real–sim–real data augmentation pipeline that
builds a neural simulator ensuring accurate and consistent action–video alignment while
simultaneously mitigating the sim2real domain gap.

• Experimental Results. Extensive experiments demonstrate that Compositional Simulation
substantially enhances the policy models by simultaneously increasing task success rates
and achieving strong generalization across both spatial layouts and object variations.

2 RELATED WORK

2.1 ROBOTIC SIMULATION

Robotics simulation frameworks such as Isaac Lab Makoviychuk et al. (2021) and MuJoCo Todorov
et al. (2012) are open-source, general-purpose simulators with GPU-parallel capabilities. Isaac
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Lab and Brax Freeman et al. (2021) are closest to ManiSkill3: they ship ready-to-use environ-
ments for RL/IL and provide APIs for custom environment design. In contrast, frameworks like
RoboCasa Nasiriany et al. (2024), Habitat Szot et al. (2021), AI2-THOR Kolve et al. (2017), Omni-
Gibson Li et al. (2022), and RoboFactory Qin et al. (2025) emphasize predefined, logically structured
APIs that standardize action interfaces, enable systematic domain randomization, and facilitate large-
scale, programmatic dataset generation with correctness checks—allowing researchers to scale data
and experiments reliably across tasks and scenes. ManiSkill3 uses the open-source SAPIEN Xiang
et al. (2020) for GPU-parallel simulation. Despite these strengths—especially their clean action
semantics and deterministic stepping that enforce logical action consistency—current simulators still
fall short of real-world fidelity, with persistent gaps in appearance statistics, sensor characteristics,
and contact/transfer physics (e.g., compliance and long-horizon object dynamics). This misalignment
often yields policies that do not transfer robustly to real data and real dynamics.

2.2 ROBOT LEARNING IN MANIPULATION

Specialized policy architectures Chi et al. (2023); Ke et al. (2024); Liang et al. (2023; 2024; 2025);
Wang et al. (2024); Wen et al. (2025); Ze et al. (2024) often excel on narrowly defined tasks yet
struggle to carry over to new robot embodiments. In contrast, foundation models trained on million-
scale, multi-robot corpora exhibit strong zero-shot transfer: RT-1 Brohan et al. (2022b) unifies vision,
language, and action in a single transformer for real-time kitchen manipulation; RT-2 Brohan et al.
(2023) jointly finetunes large vision–language models on web and robot data to support semantic
planning and object reasoning; diffusion-based RDT-1B Liu et al. (2024) and πBlack et al. (2024)
learn diverse bimanual dynamics from over a million episodes. Vision–language–action systems
such as OpenVLAKim et al. and CogACT Li et al. (2024), together with adaptations like Octo Octo
Model Team et al. (2024), LAPA Ye et al., and OpenVLA-OFT Kim et al. (2025), further demonstrate
efficient finetuning across robots and sensing modalities. Collectively, these results point to a data-
driven bottleneck: robust cross-task and cross-embodiment generalization hinges on large, diverse,
and high-fidelity datasets that faithfully capture real-world appearance, sensing, and physics.

2.3 WORLD SIMULATOR FOR ROBOTIC MANIPULATION

Scalable robot learning Bjorck et al. (2025); Brohan et al. (2022a); Zitkovich et al. (2023); Cheang
et al. (2024); Lynch et al. (2023) depends on abundant, realistic data, yet collecting real-world
trajectories via human demonstrations is slow and labor-intensive, limiting broad access. Generative
video models Agarwal et al. (2025); Wu et al. (2023) offer a cost-effective way to synthesize policy
training data. UniPi Du et al. (2023) and AVDC Ko et al. (2023) cast robot planning as text-to-video
generation (AVDC further estimates inverse dynamics with a pretrained flow network); UniSim Yang
et al. (2023) learns a unified real-world simulator across text and control inputs; RoboDreamer Zhou
et al. (2024) targets compositional generalization via text parsing; and IRASim Zhu et al. (2024)
performs trajectory-conditioned video generation but focuses on arm motion only. In this work, our
world simulator turns action-consistent simulation trajectories into high-fidelity, real-style data.

3 COMPOSITIONAL WORLD SIMULATION

3.1 PROBLEM FORMULATION

In the context of robotic manipulation, collecting real-world data is often a challenging and resource-
intensive task. Traditional methods leverage classical simulators Todorov et al. (2012); Makoviychuk
et al. (2021); Gu et al. (2023) to train online reinforcement learning policies Schulman et al. (2017).
These simulators generate large amounts of trajectory data by simulating various robot behaviors.
Another approach Mu et al. (2024); Qin et al. (2025) utilizes pre-designed primitive functions, called
via large language models (LLMs), to generate extensive trajectory data, thereby aiming to cover
as much of the decision space as possible. These trajectories are commonly used for pre-training or
joint training with real-world data.

Despite the large volume of video-action pairs generated, the disparity between the distributions of
simulated and real-world data creates significant challenges. Let Dsim = {(vi, ai)}Ni=1 represent the
dataset of video-action pairs collected from a classical simulator, where vi denotes the video frame
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and ai the corresponding action. Similarly, let Dreal = {(v′j , a′j)}Mj=1 represent the real-world dataset,
where v′j and a′j are the video and action pairs from the real world. Directly training policies on the
combined simulated and real data often fails to improve performance or generalization, as the domain
gap between simulation and reality exacerbates this issue, leading to degraded policy performance in
real-world settings. This gap is particularly evident in appearance and physics, where simulated data
cannot fully capture the complexities of the real world.

An alternative method involves using video generation models as neural world simulators. These
models generate data that is intended to be as close as possible to real-world distributions. However,
video generation models suffer from inherent issues, such as hallucinations, 3D scene consistency,
and inaccurate action control. As a result, the generated actions and corresponding videos do not
align perfectly, making this data unsuitable for policy training.

To address these issues, we propose a compositional simulation approach. In this approach, we
first collect a large number of trajectories in a classical simulator, Dsim. These trajectories are then
transformed into video representations using a pre-trained neural simulator N , which maps the
simulated data into the real-world distribution. Crucially, this process ensures that the generated
data maintains action alignment with the original simulated trajectories. Formally, we aim to build a
neural simulation function N (·), such that:

N (Dsim) ≈ Dreal (1)

This neural simulation functionN (·) maps the simulated video-action pairs to a distribution that is as
close as possible to the real-world data, ensuring that the generated action ai aligns with the original
action a′j , where ai ≈ a′j . Additionally, the consistency of the 3D scene and the video quality must be
maintained, addressing the inherent challenges in video generation models. Thus, we transform the
simulated dataDsim to approximate the real-world distributionDreal, while ensuring that the generated
actions and videos are consistent with real-world expectations. By applying this compositional
simulation approach, we can effectively utilize the large-scale data generated in simulators and adapt
it to real-world environments, thereby mitigating the challenges posed by domain gaps in robotic
manipulation tasks.

3.2 SIM2REAL NEURAL SIMULATION

Background, Object 
Alignment

(Color, Size)

Camera Calibration, 
Alignment

Object Localization

Real Teleoperation Sim Replay

        { [x,x,x,x,x,x,x]
                    ...
          [x,x,x,x,x,x,x] } 

Dataset: {(real video1, sim video1), (real video2, sim video2),...}
Neural Simulation

Training

Sim2Real Neural Simulation

Figure 2: Alignment between real-world
and simulation: trajectories collected in
the real world are replayed in simulation
to generate paired video data for training
the sim-to-real neural simulator.

To train the Sim2Real neural simulation that maps videos
to real-world distributions while maintaining the correct
actions, we need to construct a dataset composed of tuples
(Vsim,Vreal,A), where Vsim and Vreal represent the results
of executing the same action in the classical simulator and
the real world, respectively. In other words, Vsim and Vreal
share the same action sequence.

To build such a dataset, we need to create a simulation data
collection platform that aligns strictly with the real-world
data collection platform. As shown in Fig. 2, to establish
this digital twin simulation environment, we performed
alignment at three levels:

Background and Object Alignment: We first aligned the
background and objects in the simulation, including their
colors and sizes. The desktop and background colors in
the classical simulator were aligned with those of the real-
world data collection platform. Additionally, we applied a
digital twin approach to assets to ensure visual consistency
and set the size to match the real-world scale.

Camera Calibration and Alignment: We then calibrated
and aligned the cameras to ensure that the camera parame-
ters and poses in the real world were consistent with those
in the classical simulation.
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Figure 3: Real World Deployment with Compositional Simulation . Large volumes of (Vsim,A)
pairs are collected from the classical simulator and transformed into corresponding (Vreal,A) pairs,
referred to as Pseudo Real Data. These data, together with a small amount of real-world data, are
used to train policies with improved success rates and generalization.

Object Position Alignment: During task initialization, we localized the objects in the real-world
scene and strictly transferred their position information into the classical simulator.

After performing the above alignments, we can collect data from the real-world simulation platform
to obtain the pair (Vreal,A). These action data are then replayed in the corresponding classical
simulation environment to generate the tuple (Vsim,Vreal,A). We collected data for 10 tasks, resulting
in 200 data pairs for training. To optimize the neural simulator for Sim2Real data generation, we
aim to minimize the discrepancy between the simulated and real-world videos, while maintaining the
correct action alignment. Since the actions in both Vsim and Vreal are already aligned, we focus solely
on optimizing the video consistency. The optimization objective is formulated as:

Lsim2real = Lvideo(fN (Vsim, θ),Vreal) (2)

Where Lvideo measures the difference between the generated simulated video and the real-world video,
and θ represents the neural simulator’s parameters. By minimizing this loss, the neural simulator
learns to generate videos that closely match the real-world distribution, while preserving the correct
action alignment.

3.3 DATA GENERATION WITH RULE-BASED SIMULATION

To further scale up the data collection pipeline, we employ RoboTwin Chen et al. (2025), a SAPIEN-
based Xiang et al. (2020) dual-arm manipulation simulation environment. It provides a rich library of
digital assets and supports diverse trajectory distributions, making it well-suited for synthesizing large-
scale visuomotor datasets. By systematically varying environmental conditions, object initialization
states, and agent actions, we generate an extensive set of trajectories and corresponding videos that
cover a broad spectrum of real-world task scenarios.

Specifically, we define a comprehensive set of interaction rules, referred to as action primitives,
governing how agents and objects interact within the simulation. These primitives serve as the atomic
building blocks of complex behaviors, capturing low-level manipulations (e.g., grasp, push, align)
as well as higher-order skills (e.g., stack blocks). We curate a suite of RoboTwin tasks and adapt
them to support richer interaction patterns and object configurations, enabling a broader spectrum
of physical reasoning scenarios. To automate the generation of complex behaviors, we employ
GPT-5 OpenAI (2025) to synthesize executable code composed of these action primitives, while
integrating compositional constraints Qin et al. (2025) to ensure semantic correctness and physical
feasibility. The action primitives encompass a variety of object types and interaction modalities,
enabling diverse scenario generation. For each task, we construct a rich collection of trajectories
τs spanning the action space, and carefully tune the primitive-based generation process to achieve
comprehensive coverage. This allows us to traverse the global distribution of agent behaviors in the
simulation, including different object initializations and heterogeneous object categories.
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The resulting dataset comprises temporally synchronized camera observations, corresponding action
and state sequences. These elements are strictly aligned at the behavioral level, ensuring that every
visual frame is paired with its underlying control command. Although the trajectories and interactions
in simulation are faithful to their intended semantics, the rendered appearance of the videos still
differs from real-world imagery due to discrepancies in lighting, textures, and sensor noise. To bridge
this domain gap, we pass the simulated observation streams vs through a neural simulator N , which
refines their visual characteristics while preserving the original dynamics and action consistency.

3.4 REAL WORLD DEPLOY WITH COMPOSITIONAL SIMULATION

As shown in Fig. 3, after training the neural simulator, we proceeded with the process outlined in
Sec. 3.3 to collect a large number of (Vsim,A) pairs from the classical simulation. These data are
then fed into the neural simulator, which transforms them into corresponding (Vreal,A) pairs. We
refer to these transformed data as Pseudo Real Data. Compared to the data produced by classical
simulators, these Pseudo Real Data exhibit representations that are much closer to real-world data,
with a reduced domain gap.

By using these Pseudo Real Data, which cover a broader distribution of scenarios, in conjunction
with a small amount of real-world data collected from the actual environment, we can jointly train a
robot policy. This approach significantly improves the performance and generalization capability of
the policy. The specific experimental results are presented in the Sec. 4.2.

Algorithm 1 Real World Deployment with Compositional Simulation

1: Input:
2: Classical simulation data (Vsim,A), Real-world data (Vreal,A)
3: Functions:
4: Neural Simulator N , Video Transformation Function fN
5: Hyperparameters:
6: Real-World Data Ratio α
7: Initialize Dsim ← {Vsim,A}, Dreal ← {Vreal,A} ▷ Initialize datasets
8: Ppseudo ← {} ▷ Initialize Pseudo Real Data set
9: for each (Vsim,A) ∈ Dsim do

10: Ppseudo ← Ppseudo ∪ fN (Vsim,A) ▷ Transform simulation data to Pseudo Real Data
11: end for
12: Dcombined ← α ·Dreal + (1− α) · Ppseudo ▷ Combine Pseudo Real Data with Real Data
13: Train policy πrobot using Dcombined ▷ Train robot policy using combined data
14: Return: Trained robot policy πrobot

4 EXPERIMENTS

4.1 SIM2REAL TRANSFER VIA NEURAL SIMULATION

Baselines. To validate the effectiveness of our proposed Neural Simulation in recovering real-world
data distributions from simulation, we consider three variants: 1) Classical Simulation, denoting the
raw simulation videos without neural refinement; 2) Zero-Shot, referring to the base model applied
without any sim-to-real fine-tuning; and 3) Ours, the proposed Neural Simulation method capable of
generating pseudo-realistic content. By contrasting these baselines, we perform an ablation study
to empirically evaluate the ability of our method to bridge the discrepancy between simulation and
reality. Specifically, we provide each model with a simulation video together with a sim-to-real
instruction, and expect the model to generate a corresponding pseudo-real video. Our framework
is built upon Stable Diffusion 1.5 Rombach et al. (2022) as the base model, augmented with a
post-processing strategy Yang et al. (2024) to alleviate temporal discontinuities across frames.

Quantitative Results. For quantitative evaluation, we employ a set of widely used perceptual and
structural similarity metrics (PSNR, SSIM, CLIP Score Hessel et al. (2021), LPIPS Zhang et al.
(2018)), alongside distributional measures (FID Heusel et al. (2017), FVD Unterthiner et al. (2018)),
to assess both the visual fidelity of the generated videos with respect to real-world videos and their
temporal coherence throughout the frame sequence. Tab. 1 reports the quantitative results, where
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Table 1: Comparison of the realism quality of generated videos across different methods.

PSNR ↑ SSIM ↑ CLIP Score ↑ LPIPS ↓ FID ↓ FVD ↓
Sim 18.973 0.7870 0.7699 0.3781 172.71 624.74

Zero-Shot 13.093 0.5487 0.7308 0.4756 219.74 1163.83
Ours 19.240 0.8114 0.8011 0.2644 145.70 488.82

“Sim” indicates the original simulation data from the classical simulator, “Zero-Shot” denotes the
outputs generated by the untuned base model, and “Ours” corresponds to the pseudo-real videos
synthesized by our proposed neural simulator. We observe that the base model, when used without
any sim-to-real adaptation, is not only ineffective but also hinders the realism of generated videos.
In contrast, our method achieves the best performance across all evaluation metrics, consistently
yielding videos with high perceptual realism and thereby demonstrating its effectiveness in bridging
the gap between simulation and reality.

Qualitative Results. We conduct a visual comparison across four representative tasks, as shown
in Fig. 4. From left to right, the tasks are Move Playing-Card Away, Ranking Blocks RGB, Adjust
Bottle, and Shake Bottle. Note that the simulated objects differ from their real-world counterparts in
appearance. For instance, the robotic gripper is black in reality rather than gray in the simulator, the
dominant color of the playing card’s surface pattern is white instead of blue, and the Coca-Cola bottle
cap is yellow rather than red. As shown in the figure, the zero-shot model fails to capture the essence
of sim-to-real transfer, it creates a superficial “realism” by exaggerating color saturation or smoothing
surface textures—likely a side effect of training data dominated by human face images—leading
to severe hallucination artifacts. In contrast, our method targets the critical discrepancies between
simulation and reality. It faithfully reproduces surface attributes such as color and material (e.g., the
reflective plastic of the Fanta bottle) as well as internal dynamics (e.g., visible liquid motion when
shaking the Coca-Cola bottle), producing results much closer to real-world observations and thereby
validating the effectiveness of our approach for sim-to-real data generation.

(a
) S

im
(b

) Z
er

o-
Sh

ot
(c

) O
ur

s

Figure 4: Visual comparison of generated results across four different tasks. Rows correspond to: (a)
Sim: classical simulation results without neural refinement, (b) Zero-Shot: outputs from the untuned
base model, and (c) Ours: pseudo-realistic videos produced by our neural simulation method.

4.2 REAL WORLD EXECUTION WITH COMPOSITIONAL WORLD SIMULATION

Baselines. To rigorously quantify the benefit of our proposed compositional world simulation
pipeline under an extremely limited real-world demonstration budget, we trained six instances of
Diffusion Policy (DP) Chi et al. (2023) according to the following data-mixture regimes: 1) 10 Real:
learning solely from 10 real-world demonstrations. 2) 20 Real: doubling the real-world budget to
20 demonstrations to isolate the gain of additional real-world data. 3) 200 Sim Pretrain + 10 Real:
pre-training on 200 RoboTwin-simulated demonstrations followed by fine-tuning on the same 10
real-world demonstrations used in Regime 1. 4) 10 Real + 200 Sim: jointly training on the 200
RoboTwin-simulated and 10 real-world demonstrations from scratch. All demonstrations used here
are same as Regime 3. 5) 10 Real + 200 Pseudo-Real: jointly training on the 200 pseudo-real
demonstrations, which were generated by our compositional world simulation pipeline previously,
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Table 2: Real-world evaluation on Shake Bottle, Move Playing-Card Away, and Stack Blocks Two.
The compared methods include DP trained under six data-mixture regimes: 10 Real, 20 Real, 200 Sim
Pretrain + 10 Real, 10 Real + 200 Sim, 10 Real + 200 Pseudo Real, and 200 Pseudo Real. “OOD”
abbreviates out-of-distribution.

Real World
Task

Spatial
Distribution 10 Real 20 Real 200 Sim Pretrain

+ 10 Real

Shake Bottle In Domain 10/30 25/30 12/30
OOD 0/30 1/30 0/30

Move Playing-Card AwayIn Domain 12/30 24/30 15/30
OOD 0/30 0/30 2/30

Stack Blocks Two In Domain 5/30 13/30 8/30
OOD 0/30 0/30 0/30

Real World
Task

Spatial
Distribution

10 Real
+ 200 Sim

10 Real + 200
Pseudo Real

200 Pseudo Real
(Zero Shot)

Shake Bottle In Domain 8/30 28/30 10/30
OOD 0/30 12/30 5/30

Move Playing-Card AwayIn Domain 10/30 29/30 12/30
OOD 1/30 17/30 9/30

Stack Blocks Two In Domain 2/30 15/30 7/30
OOD 0/30 6/30 3/30

Figure 5: Visualization of DP performance on Move Playing-Card Away. Top two rows: objects
lie initially within the region predefined in collected real-world demonstrations (in-domain spatial
distribution). Bottom two rows: initial positions are outside the region (out-of-domain spatial
distribution). Policies shown are trained under 20 Real and 10 Real + 200 Pseudo Real, respectively.

and 10 real demonstrations used in Regime 1 from scratch. 6) 200 Pseudo-Real (Zero-Shot): zero-
shot training exclusively on the 200 pseudo-real demonstrations used in Regime 5, establishing an
upper-bound on the performance achievable by DP without any real-world supervision.

Quantitative Results. As shown in Tab. 2, DP performs poorly when only 10 real-world demonstra-
tions are available (cf. 10 Real), and its success rate improves steadily as more real-world data are
provided (cf. 20 Real), underscoring the importance of sufficient real-world experience. Simulated
data from the traditional simulator (such as RoboTwin) also helps, yet the benefit is capped by the
visual–physical gap between real-world and simulated environments (cf. 200 Sim Pretrain + 10 Real
and 10 Real + 200 Sim). In contrast, the Pseudo-Real demonstrations generated by our compositional
world simulation pipeline narrow this gap and yield a substantial increase in task success rate (cf. 10
Real + 200 Pseudo Real), and even delivering non-trivial performance in the complete absence of
real data (200 Pseudo Real).
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Table 3: Quantitative evaluation of DP new-object generalization across six data mixtures.

Real World Task 10 Real 20 Real 200 Sim Pretrain
+ 10 Real

Shake Bottle 0/30 0/30 0/30
Move Playing-Card Away 1/30 2/30 1/30

Real World Task 10 Real
+ 200 Sim

10 Real + 200
Pseudo Real

200 Pseudo Real
(Zero Shot)

Shake Bottle 0/30 15/30 9/30
Move Playing-Card Away 0/30 21/30 11/30

4.3 GENERALIZATION

To further validate the fidelity of our pipeline in reproducing real-world scenarios, we conducted
an ablation study on the ability of DP to generalize to new spatial layouts and new objects. All DP
evaluated here are identical to those introduced in Sec. 4.2.

Generalization to Novel Spatial Distributions. It is necessary to note the initialized position of
every object in the collected real-world demonstrations was confined to a predefined limited region
(see Sup. C.2.1). At inference, we relocated the same objects to previously unseen regions and
recorded the success rates of all DPs. Tab. 2 and Fig. 5 shows that DPs trained solely on real data
exhibit almost zero generalization to the new regions; the spatial diversity present in traditional
RoboTwin simulations is likewise rendered ineffective by the sim-to-real gap, yielding no measurable
improvement. In contrast, the pseudo-real demonstrations generated by our compositional world
simulation pipeline consistently lift performance across the relocated configurations, confirming that
the synthesized scenes faithfully reproduce the spatial statistics of the real-world environments.

Generalization to New Objects. We evaluate shape- and color-level generalization by substituting
new objects at inference time. Concretely, in the real-world demonstrations we employ a Fanta
bottle and a blue playing card, and at inference time these are replaced by other bottles (i.e. Coca-
Cola, Sprite and Nongfu Spring Oriental Leaf Tea) and a red playing card, respectively. As shown
in Table 3 and Fig. 6, simulated demonstrations collected from RoboTwin bring no improvement
in the generalization to new objects, whereas the Pseudo-Real demonstrations generated by our
compositional world simulation pipeline yield a clear boost in success rate. This demonstrates that
our method preserves real-world properties and supports transfer to unseen objects.

Figure 6: Generalization visualization of DP on Shake Bottle under out-of-domain object distributions.
Top: policy trained with 20 Real. Bottom: policy trained with 10 Real + 200 Pseudo Real.

5 CONCLUSION

We presented Compositional Simulation, a hybrid framework that integrates classical and neural
simulation through a real–sim–real pipeline to generate accurate and consistent action–video pairs.
Our approach leverages limited real-world data to create large-scale, diverse training datasets, sub-
stantially narrowing the sim2real domain gap. Experiments show that Compositional Simulation
improves real-world policy success rates and enables stronger generalization across tasks, spaces,
and objects. This work offers a scalable path toward robust data generation for embodied intelligence
and opens avenues for extending to richer modalities and broader robotic embodiments.

Limitation and Future Work. Our experiments focus on tabletop manipulation, though the frame-
work could be extended to more complex embodiments such as mobile manipulation with wheeled
robot. And no specialized design was introduced for the neural simulator. Future work may investi-
gate stronger action conditioning for improved action–video consistency and the use of unpaired data
to enhance capability and generalization, which would further advance compositional simulation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The research reported in this paper involves only standard robotic manipulation of everyday objects
(such as beverage bottles, playing-cards, blocks) in a laboratory setting. No human or animal subjects,
personal data, sensitive information, or hazardous materials were involved. All experiments were
conducted in compliance with the safety regulations of the host institution and the relevant technical
guidelines for robotic systems.

REPRODUCIBILITY STATEMENT

To facilitate full reproducibility, we provide:

1. Complete source code for data collection, compositional world simulation, model training,
and evaluation at github.

2. Detailed hyper-parameters and network architectures in Appendix C.

3. Comprehensive documentation of the real-world platform and evaluation protocol in Ap-
pendix D.

4. Video recordings of every real-world trial, together with the corresponding RGB-D sensor
streams, which will be made publicly available upon acceptance.

All experiments were conducted on the open-source RoboTwin simulator and our standardized robotic
platform; containerized environments and exact dependency versions are released to guarantee bitwise
reproducibility.
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APPENDIX

A USE OF LLMS

This paper was written by the authors without any generative contribution from large language
models (LLMs). LLMs were employed solely for language polishing and grammatical refinement; no
scientific content, technical claims, or novel interpretations were produced or altered by these tools.

B TASK DETAILS

To facilitate assets alignment between the real-world and simulated settings, we select three repre-
sentative tasks in RoboTwin Chen et al. (2025)—Shake Bottle, Move Playing Card Away, and Stack
Blocks Two—to evaluate our compositional world simulation framework. Their respective success
criteria are defined as follows.

• Shake Bottle involves four beverages—Fanta, Coca-Cola, Sprite, and Nongfu Spring Oriental
Leaf Tea. Among these beverages, Fanta is employed to collect real-world demonstrations,
while the remaining three serve as new objects for an ablation study on model generalization.
The task is deemed successful if the robot grasps the bottle from the desktop, lifts it to a
predefined height, and performs a shaking motion.

• Move Playing-Card Away employs two types of playing cards that differ in color—blue and
red. Following the same protocol as Shake Bottle, the blue playing card is used to construct
the real-world training dataset, whereas the red playing card serves as an unseen object for
evaluating model generalization. The task is considered successful once the robot grasps the
designated card and transports it completely away from the central region of the desktop.

• Stack Blocks Two utilizes two colored blocks—green and yellow. This task is designed
primarily to assess the model’s ability to generalize to novel spatial configurations. Success
is achieved when the robot first places the green block at the designated position and
subsequently stacks the yellow block precisely on top of it.

C TRAINING DETAILS

C.1 NEURAL SIMULATOR TRAINING DETAILS

As mentioned in Sec. 4.1, our Neural Simulator builds upon Stable Diffusion 1.5 Rombach et al.
(2022), a state-of-the-art latent text-to-image diffusion model capable of generating high-fidelity
visual content from textual prompts. We provide a fixed sim-to-real instruction as its text input,
namely: “Change the image style from the image style of the simulated environment to the image style
captured by a DSLR camera.”. Next, we pair the initial simulation data produced by our Classical
Simulator with corresponding real-world data to form simulation–real data pairs. The base model is
then fine-tuned on these pairs by minimizing the diffusion model’s denoising loss. Finally, an online
inference strategy FRESCO Yang et al. (2024) is applied to the fine-tuned model to generate the final
high-quality pseudo-realistic videos.

All experiments are conducted on one NVIDIA H200 GPU. During fine-tuning, the video data
is first converted into image sequences at 10 FPS and organized into a training set, with 1/5 of
the data randomly sampled as a validation set. The model is trained for 30 epochs with a batch
size of 8 and a gradient accumulation step of 4, taking approximately 10 hours. We employ the
torch.optim.AdamW optimizer with a learning rate of 5.0× 10−5 and a linear warm-up ratio of
0.01. For the loss function, the diffusion model’s denoising loss is empirically weighted by 1.0, the
perceptual loss (measuring feature-level differences between generated and real images) is weighted
by 0.2, and the pixel-wise loss (computing the RGB mean squared error between generated and real
images) is weighted by 0.1. During inference, we follow the default parameter settings of FRESCO,
except that the minimum key-frame sampling interval is set to 3, to ensure smoother video generation.
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Figure 7: Definition of in-domain and out-of-domain spatial distributions in different tasks. Both
terms refer exclusively to the initial position of objects before being manipulated. Positions are
labeled in-domain if and only if they appear in the collected real-world demonstrations; all others are
deemed out-of-domain.

C.2 DP TRAINING DETAILS

C.2.1 DEMONSTRATIONS

Real-World Demonstrations were meticulously collected via human teleoperation using a pair of
PiPER Teach Pendants (see Sup. D.1). For each task, we recorded only 20 trajectories, all confined to
the in-domain spatial and object distribution. Concretely, demonstrations for Shake Bottle and Move
Playing-Card Away were acquired exclusively with the Fanta bottle and the blue playing card starting
within the in-domain region illustrated as Fig. 7(a), respectively. And for Stack Blocks Two, the
green and yellow blocks were always placed in the left and right in-domain zones at the beginning of
demonstration collection (Fig. 7(b)). Finally, we randomly selected 10 out of these 20 demonstrations
to construct the data-mixture regime 10 Real, and used all 20 to construct the regime 20 Real.

Simulated Demonstrations were generated in the traditional simulator RoboTwin, and we collected
200 trajectories for each task. In contrast to the real-world ones, these simulated demonstrations
deliberately incorporated out-of-domain spatial arrangements and objects. Specifically, for Shake
Bottle we used not only the Fanta bottle but also Coca-Cola, Sprite and Nongfu Spring Oriental Leaf
Tea, while for Move Playing-Card Away we included the red playing card in addition to the blue one.
Besides, all objects might be placed in out-of-domain regions when data collection started. All 200
simulated demonstrations were employed to construct the data-mixture regimes 10 Real + 200 Sim
and 200 Sim Pre-train + 10 Real.

Pseudo-Real Demonstrations were produced by our compositional world-simulation framework
under the same out-of-domain spatial and object settings employed for Simulated Demonstrations.
The full set of 200 pseudo-real trajectories was used to establish the data-mixture regimes 10 Real +
200 Pseudo-Real and 200 Pseudo-Real.

C.2.2 TRAINING SETTINGS

We use Diffusion Policy (DP) Chi et al. (2023), a generative method based on imitation learning. We
employ a CNN-based Diffusion Policy as the backbone of our visuomotor model. The prediction
horizon is set to 8, with 3 observation steps and 6 action steps. For data loading, we use a batch
size of 256. The optimizer is torch.optim.AdamW with a learning rate of 1.0× 10−4, betas in
[0.95, 0.999], and ϵ = 1.0× 10−8. A learning-rate warmup is applied for the first 500 steps, followed
by 300 training epochs for all benchmark tasks.

Each policy is trained independently on a single NVIDIA H200 GPU for 300 epochs. As a reference,
using a dataset of roughly 200 demonstration episodes (average length ≈ 300), training a single
policy for 300 epochs takes about 20 hours.
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Figure 8: Real-world evaluation platform.

D EVALUATION DETAILS

D.1 PLATFORM

As depicted in Fig. 8, the real-world evaluation were performed with two ORBBEC PiPER 6-DOF
Lightweight Robotic Arms, each equipped with a two-finger gripper (maximum opening 70 mm,
gripping force 40 N). A fixed, top-down ORBBEC DaBaiDC1 RGB-D camera provided a global
RGB view of the workspace, defined as the central area of a black tabletop. In addition, a pair of
PiPER Teach Pendants enabled teleoperation of the arms, allowing efficient collection of real-world
demonstrations. All hardware units were connected to a workstation housing an NVIDIA GeForce
RTX 4090 GPU, which stored the captured observations, performed model inference, issued control
commands, and drove the robotic arms in real time.

D.2 EVALUATION SETTINGS

For each ablation dimension—in-domain spatial/object configurations, out-of-domain spatial layouts,
and out-of-domain objects—we independently constructed a fixed set of 30 diverse real-world trials.
Every policy trained under a different data-mixture regime was evaluated on the corresponding
30-trial split, guaranteeing that all comparisons within a distribution are performed on an identical
test bed. Task-success criteria are provided in Sup. B.

E SIM2REAL NEURAL SIMULATION DETAILS

As stated in Sec. 3.2, we enforce strict alignment between the real-world and simulated environ-
ments—encompassing background and object appearance, camera intrinsics/extrinsics, and object
positions—to enable effective Sim2Real neural simulation. To prevent any learning-induced errors
from propagating into the subsequent training of the neural simulator, we adopt a purely rule-based
alignment pipeline rather than a data-driven one. Concretely, we first parameterize the relevant at-
tributes of the real-world scene and then transfer the estimated parameters to configure the simulated
environment accordingly.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.1 BACKGROUND AND OBJECT ALIGNMENT

Background Alignment mainly parameterizes both the visual appearance of the desktop and the
laboratory walls. Using the fixed RGB-D camera described in Sec. D.1, we first capture images of
the table surface and the wall regions. A digital color-picker is then applied to the acquired images to
extract representative RGB values.

Regular-Object Alignment covers primitives such as blocks, spheres, and cylinders whose geometry
can be described by a small set of metric dimensions. For these instances, we first measure their prin-
cipal axes (length, width, height, diameter, etc.) with calipers. Their Appearance are parameterized
by acquiring an orthographic RGB patch of the object’s most representative face and extracting the
median albedo via a color-picker tool—no additional texture map is required, yielding a compact,
error-tolerant representation.

Special-Object Alignment. Owing to RoboTwin’s one-to-one digital twins of real-world as-
sets—including Finda, Fanta, Coca-Cola, Sprite, Nongfu Spring Oriental Leaf Tea bottles and
the playing cards—we can directly pair every physical item with its pre-modeled, dimension- and
texture-matched counterpart. This eliminates the need for on-the-fly scanning or manual modeling:
each real-world bottle or card is simply mapped to its pre-registered URDF/FBX model, guaran-
teeing sub-millimetre geometric agreement and pixel-level texture consistency between reality and
simulation.

E.2 CAMERA CALIBRATION AND ALIGNMENT

Camera parameterization focuses on retrieving its intrinsic and extrinsic. The intrinsics can be
known directly from its technical documentation; hence, the following section details only the
extrinsic-calibration pipeline employed in our setup.

To ensure consistency with RoboTwin, we establish a real-world coordinate system as illustrated
in Fig. 8. Within this coordinate system, we first place a calibration checkerboard and obtain the
3D coordinates of its corner points. Subsequently, we capture images using the mounted camera
and extract the 2D pixel coordinates of those checkerboard corners via corner detection. The code
implementing this procedure is listed below.

1 import cv2
2 import numpy as np
3
4 # --------------------------
5 PATTERN_SIZE = (7, 4) # Number of checkerboard corners along rows and columns
6 IMG_PATH = ’chess.jpg’ # Path of the captured image
7 # --------------------------
8
9 img = cv2.imread(IMG_PATH)

10 if img is None:
11 raise FileNotFoundError(IMG_PATH)
12 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
13
14 # 1. Checkerboard Detection
15 ret, corners = cv2.findChessboardCorners(
16 gray, PATTERN_SIZE,
17 cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE)
18 if not ret:
19 raise RuntimeError(’Checkerboard detection failed!’)
20
21 corners = cv2.cornerSubPix(
22 gray, corners, (11, 11), (-1, -1),
23 criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001))
24 pts2d = corners.reshape(-1, 2).tolist()
25
26 # 2. Mouse Callback
27 def on_mouse(event, x, y, flags, param):
28 global pts2d, img_show
29 if event == cv2.EVENT_LBUTTONDOWN:
30 idx = min(range(len(pts2d)),
31 key=lambda i: (pts2d[i][0] - x) ** 2 + (pts2d[i][1] - y) ** 2)
32 if (pts2d[idx][0] - x) ** 2 + (pts2d[idx][1] - y) ** 2 < 400:
33 del pts2d[idx]
34 redraw()
35
36 def redraw():
37 global img_show
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38 img_show = img.copy()
39 for idx, (u, v) in enumerate(pts2d):
40 u, v = int(u), int(v)
41 cv2.circle(img_show, (u, v), 5, (0, 0, 255), -1)
42 cv2.putText(img_show, str(idx), (u + 10, v - 10),
43 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
44 cv2.imshow(’interactive’, img_show)
45
46 # 3. Main Loop
47 cv2.namedWindow(’interactive’, cv2.WINDOW_NORMAL)
48 cv2.setMouseCallback(’interactive’, on_mouse)
49 redraw()
50
51 print(’Usage:’)
52 print(’ Left-click on a corner -> toggle delete/undelete’)
53 print(’ Press q -> save current pts2d.txt and exit’)
54 print(’ Press r -> restore all originally detected corners’)
55 print(’ Close the window (x) to quit without saving’)
56
57 while True:
58 if cv2.getWindowProperty(’interactive’, cv2.WND_PROP_VISIBLE) < 1:
59 break
60
61 key = cv2.waitKey(30) & 0xFF # 30 ms timeout to prevent freezing
62 if key == ord(’q’):
63 np.savetxt(’pts2d.txt’, np.array(pts2d), fmt=’%.6f’)
64 print(’Saved pts2d.txt with’, len(pts2d), ’points.’)
65 break
66 elif key == ord(’r’):
67 pts2d = corners.reshape(-1, 2).tolist()
68 redraw()
69
70 cv2.destroyAllWindows()

With the obtained 3D-to-2D correspondences, the camera’s extrinsic parameters—position and
orientation—can be recovered by solving a Perspective-n-Point (PnP) problem. The implementation
is given below.

1 import numpy as np
2 import cv2
3
4 # 1. Given Known Intrinsics
5 K = np.array([
6 [488.8112487792969, 0.0, 317.05938720703125],
7 [0.0, 488.8112487792969, 217.4825439453125],
8 [0.0, 0.0, 1.0]
9 ], dtype=np.float64)

10
11 dist = np.zeros((4, 1)) # Distortion Coefficients; set to zero if no distortion.
12
13 # 2. Input
14 pts3d = np.loadtxt(’pts3d.txt’) # N×3, World Coordinates
15 pts2d = np.loadtxt(’pts2d.txt’) # N×2, Pixel Coordinates
16
17 assert pts3d.shape[0] == pts2d.shape[0], ’Mismatch in point count!’
18
19 # 3. Estimating Extrinsic
20 ok, rvec, tvec = cv2.solvePnP(
21 pts3d.astype(np.float64),
22 pts2d.astype(np.float64),
23 K, dist, flags=cv2.SOLVEPNP_ITERATIVE
24 )
25 if not ok:
26 raise RuntimeError(’Solve PnP failed! Please verify that the point correspondences are

correct.’)
27
28 # Rotation Vector -> Rotation Matrix
29 R, _ = cv2.Rodrigues(rvec)
30
31 R_w2c = R
32 t_w2c = tvec.ravel()
33 R_c2w = R_w2c.T
34 t_c2w = -R_c2w @ t_w2c # 3×1
35
36 position = t_c2w.tolist()
37
38 forward = R_c2w[:, 2]
39 left = -R_c2w[:, 0]
40 up = -R_c2w[:, 1]
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41
42 print("static_camera_list:")
43 print(" - name: head_camera")
44 print(" type: D435")
45 print(f" position: [{position[0]:.3f}, {position[1]:.3f}, {position[2]:.3f}]")
46 print(f" forward: [{forward[0]:.3f}, {forward[1]:.3f}, {forward[2]:.3f}]")
47 print(f" left: [{left[0]:.3f}, {left[1]:.3f}, {left[2]:.3f}]")

E.3 OBJECT POSITION ALIGNMENT

We emphasize that the real-world frame depicted in Fig. 8 coincides exactly with the world frame
employed in RoboTwin. Under this frame, the desktop surface is tessellated into a uniform 5 cm
× 5 cm lattice. Object placement is thereby reduced to aligning the object’s center of mass with a
lattice node; orientation is selected from a prescribed, rule-based catalogue—namely, axis-aligned
poses or rotations of 30°, 45°, and 60° about the x- or y-axis. While this discrete parameterization
is admittedly naive, it routinely delivers positional errors below one centimetre and angular errors
below one degree. A data-driven, continuous 6-DoF alignment module will be investigated in future
work to supersede this manual gridding scheme.

F MORE RESULT VISUALIZATION

F.1 VISUALIZATION OF GENERALIZATION ON NEW OBJECTS

To highlight the enhanced generalization of DP enabled by our compositional world simulation
pipeline, we provide trajectory visualizations of the Move Playing-Card Away task in Fig. 6, with
additional examples in Fig. 9.

F.2 VISUALIZATION OF REAL2SIM ALIGNMENT

As detailed in Sup. E, we performed exhaustive Real2Sim alignment. Here we illustrate the final
alignment quality for the tasks Move Playing-Card Away, Ranking Blocks RGB, Stack Blocks Three
and Stack Blocks Two in Fig. 10 and Fig. 11.

F.3 VISUALIZATION OF SIM2REAL NEURAL SIMULATION

To dynamically demonstrate the effectiveness of our approach in sim-to-real transfer, we further
present a visual comparison between the pseudo-realistic videos generated by our Neural Simulator
and the initial simulation videos, as shown in Fig. 12. In addition to the tasks included in the main
text—Adjust Bottle, Moving PlayingCard Away, and Ranking Blocks RGB—we also consider the
Stack Blocks Three task. The results indicate that our method consistently maintains strong temporal
coherence and perceptual realism throughout the video sequences.
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Figure 9: Generalization visualization of DP on new objects. The top two rows are corresponds to
Move Playing-Card Away, and the bottom two rows are corresponds to Shake Bottle. respectively.

Figure 10: Real2Sim alignment on Move Playing-Card Away. From top to bottom: Nongfu Spring
Oriental Leaf Tea, Coca-Cola, Sprite, and Fanta.
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Figure 11: Real2Sim alignment on additional tasks. From top to bottom: Ranking Blocks RGB, Stack
Blocks Three and Stack Blocks Two.
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Figure 12: Sim2Real visualization on various tasks. From top to bottom: Adjust Bottle, Moving
PlayingCard Away, Stack Blocks Three and Ranking Blocks RGB.
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