

000 001 SCALABLE REAL-WORLD ROBOT DATA GENERATION 002 VIA COMPOSITIONAL WORLD SIMULATION 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Recent advancements in foundational models, such as large language models and
012 world models, have greatly enhanced the capabilities of robotics, enabling robots to
013 autonomously perform complex tasks. However, acquiring large-scale, high-quality
014 training data for robotics remains a challenge, as it often requires substantial manual
015 effort and is limited in its coverage of diverse real-world environments. To ad-
016 dress this, we propose a novel hybrid approach called **Compositional Simulation**,
017 which combines classical simulation and neural simulation to generate accurate
018 action-video pairs while maintaining real-world consistency. Our approach utilizes
019 a closed-loop real-sim-real data augmentation pipeline, leveraging a small amount
020 of real-world data to generate diverse, large-scale training datasets that cover a
021 broader spectrum of real-world scenarios. We train a neural simulator to transform
022 classical simulation videos into real-world representations, improving the accuracy
023 of policy models trained in real-world environments. Through extensive experi-
024 ments, we demonstrate that our method significantly reduces the sim2real domain
025 gap, resulting in higher success rates in real-world policy model training. Our
026 approach offers a scalable solution for generating robust training data and bridging
027 the gap between simulated and real-world robotics.

028 1 INTRODUCTION 029

030 With the rapid advancements in foundational models, such as large language models OpenAI (2025);
031 Touvron et al. (2023); Team et al. (2023) and world models OpenAI (2024); Bruce et al. (2024);
032 NVIDIA (2025), there has been significant progress in the field of robotics Du et al. (2023); Yang et al.
033 (2023). These innovations have enabled robots to autonomously perform increasingly complex tasks,
034 opening the door to more capable and adaptable robotic systems. Data-driven paradigms have led to
035 impressive results in various domains, yet robotics presents unique challenges compared to fields
036 like language and video modeling. In particular, the need for manually collected video-action pairs
037 poses a significant barrier. Unlike self-supervised learning techniques in other domains, acquiring
038 large-scale data for robotics requires substantial human effort, which is both costly and insufficient
039 for capturing the vast diversity of real-world environments.

040 While some researchers have addressed this issue by relying on large-scale human data collection,
041 this approach remains expensive and limited in covering the full spectrum of real-world distributions.
042 An alternative method is to leverage simulation to scale data collection Nasiriany et al. (2024); Mu
043 et al. (2024); Qin et al. (2025), thus reducing the costs associated with real-world data acquisition.
044 Classical simulators, such as MuJoCo Todorov et al. (2012) and Isaac Makovychuk et al. (2021),
045 offer the advantage of generating precise action-video pair data. These simulators use omniscient
046 views, making it easy to generate vast amounts of data with diverse distributions. However, the
047 performance gap between simulated and real-world environments often leads to poor joint training
048 performance when directly transferring simulated data for real-world applications.

049 To bridge this gap, neural simulators Bruce et al. (2024); Yu et al. (2025); NVIDIA (2025) based
050 on video generation models Blattmann et al. (2023); Wan et al. (2025); Zheng et al. (2024) have
051 recently been proposed as a solution. These simulators generate corresponding video data from
052 input trajectories or action signals, producing action-video pairs for training. Although the generated
053 videos appear visually consistent with the real world, issues like hallucination—where videos lack
physical consistency and lead to poor action control—undermine the quality of the generated data.

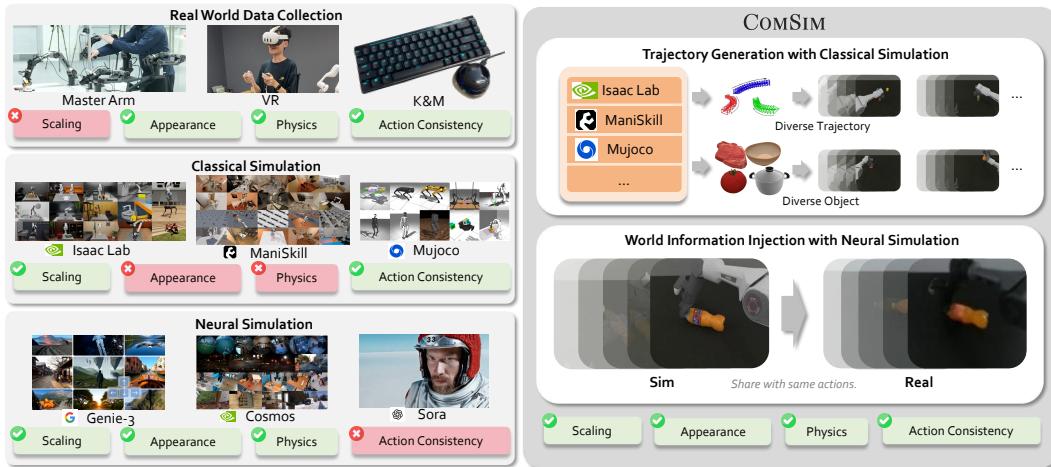


Figure 1: There are three main sources of real-world robotic data: (1) direct human collection, which yields high-quality samples but cannot scale; (2) classical simulators, which generate large datasets but suffer from appearance and physics gaps to reality; and (3) neural simulators trained on real data, which reduce these gaps but struggle with action-conditioned video generation, leading to weak action–video consistency. We introduce the concept of *Compositional Simulation*, a flexible and scalable approach that bridges the gap between classical simulation and real-world dynamics via compositional simulation.

In this work, we introduce the concept of **Compositional Simulation** shown in Fig 1, advocating for a hybrid approach that combines the strengths of classical simulation and neural simulation. This approach aims to generate accurate action-video pairs while ensuring that the videos are consistent with real-world dynamics. We propose a closed-loop real-sim-real data augmentation pipeline that utilizes a small amount of real-world data to create training datasets for policy models. These datasets are designed to cover a broader distribution of real-world scenarios.

The real-sim-real pipeline consists of two key steps. First, we collect a small set of real-world trajectory data and obtain the corresponding videos. In a classical simulation environment, we then replicate the same scenario, replaying the real-world trajectories to generate simulated videos. A video-to-video neural simulator is subsequently trained to transform the classical simulation videos into real-world videos, ensuring that the actions remain consistent. The second part of our approach involves generating a large and diverse set of action-video pairs through action primitives scheduling within the classical simulator. These pairs are then transformed into real-world representations using the trained video-to-video neural simulator, facilitating large-scale data augmentation for real-world applications. Our main contributions are as follows:

- *Concept & Paradigm.* We introduce the concept of *Compositional Simulation*, a flexible and scalable approach that bridges the gap between classical simulation and real-world dynamics via compositional simulation.
- *Data Pipeline & Model.* We propose a real-sim-real data augmentation pipeline that builds a neural simulator ensuring accurate and consistent action–video alignment while simultaneously mitigating the sim2real domain gap.
- *Experimental Results.* Extensive experiments demonstrate that *Compositional Simulation* substantially enhances the policy models by simultaneously increasing task success rates and achieving strong generalization across both spatial layouts and object variations.

2 RELATED WORK

2.1 ROBOTIC SIMULATION

Robotics simulation frameworks such as Isaac Lab Makoviychuk et al. (2021) and MuJoCo Todorov et al. (2012) are open-source, general-purpose simulators with GPU-parallel capabilities. Isaac

108 Lab and Brax Freeman et al. (2021) are closest to ManiSkill3: they ship ready-to-use environments
 109 for RL/IL and provide APIs for custom environment design. In contrast, frameworks like
 110 RoboCasa Nasiriany et al. (2024), Habitat Szot et al. (2021), AI2-THOR Kolve et al. (2017), Omni-
 111 Gibson Li et al. (2022), and RoboFactory Qin et al. (2025) emphasize predefined, logically structured
 112 APIs that standardize action interfaces, enable systematic domain randomization, and facilitate large-
 113 scale, programmatic dataset generation with correctness checks—allowing researchers to scale data
 114 and experiments reliably across tasks and scenes. ManiSkill3 uses the open-source SAPIEN Xiang
 115 et al. (2020) for GPU-parallel simulation. Despite these strengths—especially their clean action
 116 semantics and deterministic stepping that enforce logical action consistency—current simulators still
 117 fall short of real-world fidelity, with persistent gaps in appearance statistics, sensor characteristics,
 118 and contact/transfer physics (e.g., compliance and long-horizon object dynamics). This misalignment
 119 often yields policies that do not transfer robustly to real data and real dynamics.

120 2.2 ROBOT LEARNING IN MANIPULATION

121 Specialized policy architectures Chi et al. (2023); Ke et al. (2024); Liang et al. (2023; 2024; 2025);
 122 Wang et al. (2024); Wen et al. (2025); Ze et al. (2024) often excel on narrowly defined tasks yet
 123 struggle to carry over to new robot embodiments. In contrast, foundation models trained on million-
 124 scale, multi-robot corpora exhibit strong zero-shot transfer: RT-1 Brohan et al. (2022b) unifies vision,
 125 language, and action in a single transformer for real-time kitchen manipulation; RT-2 Brohan et al.
 126 (2023) jointly finetunes large vision–language models on web and robot data to support semantic
 127 planning and object reasoning; diffusion-based RDT-1B Liu et al. (2024) and π Black et al. (2024)
 128 learn diverse bimanual dynamics from over a million episodes. Vision–language–action systems
 129 such as OpenVLA Kim et al. and CogACT Li et al. (2024), together with adaptations like Octo Octo
 130 Model Team et al. (2024), LAPA Ye et al., and OpenVLA-OFT Kim et al. (2025), further demonstrate
 131 efficient finetuning across robots and sensing modalities. Collectively, these results point to a data-
 132 driven bottleneck: robust cross-task and cross-embodiment generalization hinges on large, diverse,
 133 and high-fidelity datasets that faithfully capture real-world appearance, sensing, and physics.

134 2.3 WORLD SIMULATOR FOR ROBOTIC MANIPULATION

135 Scalable robot learning Bjorck et al. (2025); Brohan et al. (2022a); Zitkovich et al. (2023); Cheang
 136 et al. (2024); Lynch et al. (2023) depends on abundant, realistic data, yet collecting real-world
 137 trajectories via human demonstrations is slow and labor-intensive, limiting broad access. Generative
 138 video models Agarwal et al. (2025); Wu et al. (2023) offer a cost-effective way to synthesize policy
 139 training data. UniPi Du et al. (2023) and AVDC Ko et al. (2023) cast robot planning as text-to-video
 140 generation (AVDC further estimates inverse dynamics with a pretrained flow network); UniSim Yang
 141 et al. (2023) learns a unified real-world simulator across text and control inputs; RoboDreamer Zhou
 142 et al. (2024) targets compositional generalization via text parsing; and IRASim Zhu et al. (2024)
 143 performs trajectory-conditioned video generation but focuses on arm motion only. In this work, our
 144 world simulator turns action-consistent simulation trajectories into high-fidelity, real-style data.

145 3 COMPOSITIONAL WORLD SIMULATION

146 3.1 PROBLEM FORMULATION

147 In the context of robotic manipulation, collecting real-world data is often a challenging and resource-
 148 intensive task. Traditional methods leverage classical simulators Todorov et al. (2012); Makovychuk
 149 et al. (2021); Gu et al. (2023) to train online reinforcement learning policies Schulman et al. (2017).
 150 These simulators generate large amounts of trajectory data by simulating various robot behaviors.
 151 Another approach Mu et al. (2024); Qin et al. (2025) utilizes pre-designed primitive functions, called
 152 via large language models (LLMs), to generate extensive trajectory data, thereby aiming to cover
 153 as much of the decision space as possible. These trajectories are commonly used for pre-training or
 154 joint training with real-world data.

155 Despite the large volume of video-action pairs generated, the disparity between the distributions of
 156 simulated and real-world data creates significant challenges. Let $\mathcal{D}_{\text{sim}} = \{(v_i, a_i)\}_{i=1}^N$ represent the
 157 dataset of video-action pairs collected from a classical simulator, where v_i denotes the video frame

162 and a_i the corresponding action. Similarly, let $\mathcal{D}_{\text{real}} = \{(v'_j, a'_j)\}_{j=1}^M$ represent the real-world dataset,
 163 where v'_j and a'_j are the video and action pairs from the real world. Directly training policies on the
 164 combined simulated and real data often fails to improve performance or generalization, as the domain
 165 gap between simulation and reality exacerbates this issue, leading to degraded policy performance in
 166 real-world settings. This gap is particularly evident in appearance and physics, where simulated data
 167 cannot fully capture the complexities of the real world.

168 An alternative method involves using video generation models as neural world simulators. These
 169 models generate data that is intended to be as close as possible to real-world distributions. However,
 170 video generation models suffer from inherent issues, such as hallucinations, 3D scene consistency,
 171 and inaccurate action control. As a result, the generated actions and corresponding videos do not
 172 align perfectly, making this data unsuitable for policy training.

173 To address these issues, we propose a compositional simulation approach. In this approach, we
 174 first collect a large number of trajectories in a classical simulator, \mathcal{D}_{sim} . These trajectories are then
 175 transformed into video representations using a pre-trained neural simulator \mathcal{N} , which maps the
 176 simulated data into the real-world distribution. Crucially, this process ensures that the generated
 177 data maintains action alignment with the original simulated trajectories. Formally, we aim to build a
 178 neural simulation function $\mathcal{N}(\cdot)$, such that:

$$\mathcal{N}(\mathcal{D}_{\text{sim}}) \approx \mathcal{D}_{\text{real}} \quad (1)$$

180 This neural simulation function $\mathcal{N}(\cdot)$ maps the simulated video-action pairs to a distribution that is as
 181 close as possible to the real-world data, ensuring that the generated action a_i aligns with the original
 182 action a'_j , where $a_i \approx a'_j$. Additionally, the consistency of the 3D scene and the video quality must be
 183 maintained, addressing the inherent challenges in video generation models. Thus, we transform the
 184 simulated data \mathcal{D}_{sim} to approximate the real-world distribution $\mathcal{D}_{\text{real}}$, while ensuring that the generated
 185 actions and videos are consistent with real-world expectations. By applying this compositional
 186 simulation approach, we can effectively utilize the large-scale data generated in simulators and adapt
 187 it to real-world environments, thereby mitigating the challenges posed by domain gaps in robotic
 188 manipulation tasks.

192 3.2 SIM2REAL NEURAL SIMULATION

194 To train the Sim2Real neural simulation that maps videos
 195 to real-world distributions while maintaining the correct
 196 actions, we need to construct a dataset composed of tuples
 197 $(\mathcal{V}_{\text{sim}}, \mathcal{V}_{\text{real}}, \mathcal{A})$, where \mathcal{V}_{sim} and $\mathcal{V}_{\text{real}}$ represent the results
 198 of executing the same action in the classical simulator and
 199 the real world, respectively. In other words, \mathcal{V}_{sim} and $\mathcal{V}_{\text{real}}$
 200 share the same action sequence.

201 To build such a dataset, we need to create a simulation data
 202 collection platform that aligns strictly with the real-world
 203 data collection platform. As shown in Fig. 2, to establish
 204 this digital twin simulation environment, we performed
 205 alignment at three levels:

206 **Background and Object Alignment:** We first aligned the
 207 background and objects in the simulation, including their
 208 colors and sizes. The desktop and background colors in
 209 the classical simulator were aligned with those of the real-
 210 world data collection platform. Additionally, we applied a
 211 digital twin approach to assets to ensure visual consistency
 212 and set the size to match the real-world scale.

213 **Camera Calibration and Alignment:** We then calibrated
 214 and aligned the cameras to ensure that the camera para-
 215 meters and poses in the real world were consistent with those
 216 in the classical simulation.

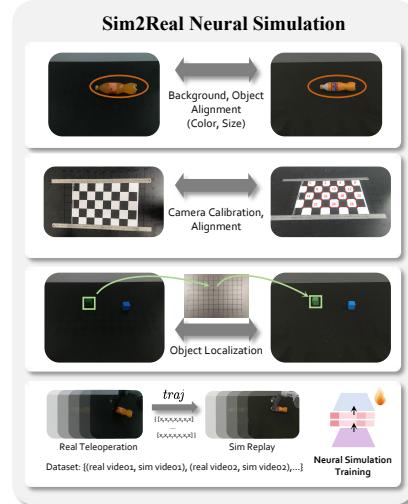


Figure 2: Alignment between real-world and simulation: trajectories collected in the real world are replayed in simulation to generate paired video data for training the sim-to-real neural simulator.

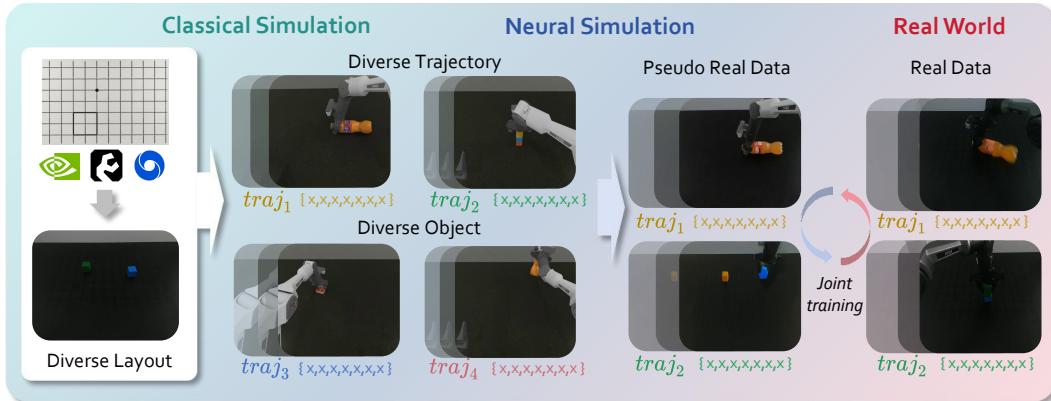


Figure 3: **Real World Deployment with Compositional Simulation.** Large volumes of $(\mathcal{V}_{\text{sim}}, \mathcal{A})$ pairs are collected from the classical simulator and transformed into corresponding $(\mathcal{V}_{\text{real}}, \mathcal{A})$ pairs, referred to as *Pseudo Real Data*. These data, together with a small amount of real-world data, are used to train policies with improved success rates and generalization.

Object Position Alignment: During task initialization, we localized the objects in the real-world scene and strictly transferred their position information into the classical simulator.

After performing the above alignments, we can collect data from the real-world simulation platform to obtain the pair $(\mathcal{V}_{\text{real}}, \mathcal{A})$. These action data are then replayed in the corresponding classical simulation environment to generate the tuple $(\mathcal{V}_{\text{sim}}, \mathcal{V}_{\text{real}}, \mathcal{A})$. We collected data for 10 tasks, resulting in 200 data pairs for training. To optimize the neural simulator for Sim2Real data generation, we aim to minimize the discrepancy between the simulated and real-world videos, while maintaining the correct action alignment. Since the actions in both \mathcal{V}_{sim} and $\mathcal{V}_{\text{real}}$ are already aligned, we focus solely on optimizing the video consistency. The optimization objective is formulated as:

$$\mathcal{L}_{\text{sim2real}} = \mathcal{L}_{\text{video}}(f_{\mathcal{N}}(\mathcal{V}_{\text{sim}}, \theta), \mathcal{V}_{\text{real}}) \quad (2)$$

Where $\mathcal{L}_{\text{video}}$ measures the difference between the generated simulated video and the real-world video, and θ represents the neural simulator’s parameters. By minimizing this loss, the neural simulator learns to generate videos that closely match the real-world distribution, while preserving the correct action alignment.

3.3 DATA GENERATION WITH RULE-BASED SIMULATION

To further scale up the data collection pipeline, we employ RoboTwin Chen et al. (2025), a SAPIEN-based Xiang et al. (2020) dual-arm manipulation simulation environment. It provides a rich library of digital assets and supports diverse trajectory distributions, making it well-suited for synthesizing large-scale visuomotor datasets. By systematically varying environmental conditions, object initialization states, and agent actions, we generate an extensive set of trajectories and corresponding videos that cover a broad spectrum of real-world task scenarios.

Specifically, we define a comprehensive set of interaction rules, referred to as action primitives, governing how agents and objects interact within the simulation. These primitives serve as the atomic building blocks of complex behaviors, capturing low-level manipulations (e.g., grasp, push, align) as well as higher-order skills (e.g., stack blocks). We curate a suite of RoboTwin tasks and adapt them to support richer interaction patterns and object configurations, enabling a broader spectrum of physical reasoning scenarios. To automate the generation of complex behaviors, we employ GPT-5 OpenAI (2025) to synthesize executable code composed of these action primitives, while integrating compositional constraints Qin et al. (2025) to ensure semantic correctness and physical feasibility. The action primitives encompass a variety of object types and interaction modalities, enabling diverse scenario generation. For each task, we construct a rich collection of trajectories τ_s spanning the action space, and carefully tune the primitive-based generation process to achieve comprehensive coverage. This allows us to traverse the global distribution of agent behaviors in the simulation, including different object initializations and heterogeneous object categories.

270 The resulting dataset comprises temporally synchronized camera observations, corresponding action
 271 and state sequences. These elements are strictly aligned at the behavioral level, ensuring that every
 272 visual frame is paired with its underlying control command. Although the trajectories and interactions
 273 in simulation are faithful to their intended semantics, the rendered appearance of the videos still
 274 differs from real-world imagery due to discrepancies in lighting, textures, and sensor noise. To bridge
 275 this domain gap, we pass the simulated observation streams v_s through a neural simulator \mathcal{N} , which
 276 refines their visual characteristics while preserving the original dynamics and action consistency.
 277

278 3.4 REAL WORLD DEPLOY WITH COMPOSITIONAL SIMULATION

280 As shown in Fig. 3, after training the neural simulator, we proceeded with the process outlined in
 281 Sec. 3.3 to collect a large number of $(\mathcal{V}_{\text{sim}}, \mathcal{A})$ pairs from the classical simulation. These data are
 282 then fed into the neural simulator, which transforms them into corresponding $(\mathcal{V}_{\text{real}}, \mathcal{A})$ pairs. We
 283 refer to these transformed data as *Pseudo Real Data*. Compared to the data produced by classical
 284 simulators, these Pseudo Real Data exhibit representations that are much closer to real-world data,
 285 with a reduced domain gap.

286 By using these Pseudo Real Data, which cover a broader distribution of scenarios, in conjunction
 287 with a small amount of real-world data collected from the actual environment, we can jointly train a
 288 robot policy. This approach significantly improves the performance and generalization capability of
 289 the policy. The specific experimental results are presented in the Sec. 4.2.

290 **Algorithm 1** Real World Deployment with Compositional Simulation

```

291 1: Input:
292 2:   Classical simulation data  $(\mathcal{V}_{\text{sim}}, \mathcal{A})$ , Real-world data  $(\mathcal{V}_{\text{real}}, \mathcal{A})$ 
293 3: Functions:
294 4:   Neural Simulator  $\mathcal{N}$ , Video Transformation Function  $f_{\mathcal{N}}$ 
295 5: Hyperparameters:
296 6:   Real-World Data Ratio  $\alpha$ 
297 7: Initialize  $D_{\text{sim}} \leftarrow \{\mathcal{V}_{\text{sim}}, \mathcal{A}\}$ ,  $D_{\text{real}} \leftarrow \{\mathcal{V}_{\text{real}}, \mathcal{A}\}$             $\triangleright$  Initialize datasets
298 8:  $P_{\text{pseudo}} \leftarrow \{\}$                                           $\triangleright$  Initialize Pseudo Real Data set
299 9: for each  $(\mathcal{V}_{\text{sim}}, \mathcal{A}) \in D_{\text{sim}}$  do
300 10:    $P_{\text{pseudo}} \leftarrow P_{\text{pseudo}} \cup f_{\mathcal{N}}(\mathcal{V}_{\text{sim}}, \mathcal{A})$             $\triangleright$  Transform simulation data to Pseudo Real Data
301 11: end for
302 12:  $D_{\text{combined}} \leftarrow \alpha \cdot D_{\text{real}} + (1 - \alpha) \cdot P_{\text{pseudo}}$             $\triangleright$  Combine Pseudo Real Data with Real Data
303 13: Train policy  $\pi_{\text{robot}}$  using  $D_{\text{combined}}$             $\triangleright$  Train robot policy using combined data
304 14: Return: Trained robot policy  $\pi_{\text{robot}}$ 

```

305 4 EXPERIMENTS

306 4.1 SIM2REAL TRANSFER VIA NEURAL SIMULATION

307 **Baselines.** To validate the effectiveness of our proposed Neural Simulation in recovering real-world
 308 data distributions from simulation, we consider three variants: 1) Classical Simulation, denoting the
 309 raw simulation videos without neural refinement; 2) Zero-Shot, referring to the base model applied
 310 without any sim-to-real fine-tuning; and 3) Ours, the proposed Neural Simulation method capable of
 311 generating pseudo-realistic content. By contrasting these baselines, we perform an ablation study
 312 to empirically evaluate the ability of our method to bridge the discrepancy between simulation and
 313 reality. Specifically, we provide each model with a simulation video together with a sim-to-real
 314 instruction, and expect the model to generate a corresponding pseudo-real video. Our framework
 315 is built upon Stable Diffusion 1.5 Rombach et al. (2022) as the base model, augmented with a
 316 post-processing strategy Yang et al. (2024) to alleviate temporal discontinuities across frames.
 317

318 **Quantitative Results.** For quantitative evaluation, we employ a set of widely used perceptual and
 319 structural similarity metrics (PSNR, SSIM, CLIP Score Hessel et al. (2021), LPIPS Zhang et al.
 320 (2018)), alongside distributional measures (FID Heusel et al. (2017), FVD Unterthiner et al. (2018)),
 321 to assess both the visual fidelity of the generated videos with respect to real-world videos and their
 322 temporal coherence throughout the frame sequence. Tab. 1 reports the quantitative results, where
 323

Table 1: Comparison of the realism quality of generated videos across different methods.

	PSNR \uparrow	SSIM \uparrow	CLIP Score \uparrow	LPIPS \downarrow	FID \downarrow	FVD \downarrow
Sim	18.973	0.7870	0.7699	0.3781	172.71	624.74
Zero-Shot	13.093	0.5487	0.7308	0.4756	219.74	1163.83
Ours	19.240	0.8114	0.8011	0.2644	145.70	488.82

“Sim” indicates the original simulation data from the classical simulator, “Zero-Shot” denotes the outputs generated by the untuned base model, and “Ours” corresponds to the pseudo-real videos synthesized by our proposed neural simulator. We observe that the base model, when used without any sim-to-real adaptation, is not only ineffective but also hinders the realism of generated videos. In contrast, our method achieves the best performance across all evaluation metrics, consistently yielding videos with high perceptual realism and thereby demonstrating its effectiveness in bridging the gap between simulation and reality.

Qualitative Results. We conduct a visual comparison across four representative tasks, as shown in Fig. 4. From left to right, the tasks are *Move Playing-Card Away*, *Ranking Blocks RGB*, *Adjust Bottle*, and *Shake Bottle*. Note that the simulated objects differ from their real-world counterparts in appearance. For instance, the robotic gripper is black in reality rather than gray in the simulator, the dominant color of the playing card’s surface pattern is white instead of blue, and the Coca-Cola bottle cap is yellow rather than red. As shown in the figure, the zero-shot model fails to capture the essence of sim-to-real transfer, it creates a superficial “realism” by exaggerating color saturation or smoothing surface textures—likely a side effect of training data dominated by human face images—leading to severe hallucination artifacts. In contrast, our method targets the critical discrepancies between simulation and reality. It faithfully reproduces surface attributes such as color and material (e.g., the reflective plastic of the Fanta bottle) as well as internal dynamics (e.g., visible liquid motion when shaking the Coca-Cola bottle), producing results much closer to real-world observations and thereby validating the effectiveness of our approach for sim-to-real data generation.

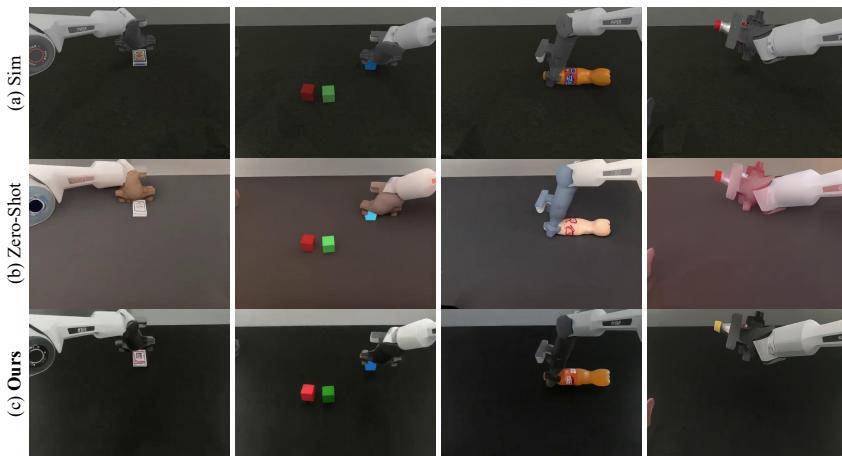


Figure 4: Visual comparison of generated results across four different tasks. Rows correspond to: (a) **Sim**: classical simulation results without neural refinement, (b) **Zero-Shot**: outputs from the untuned base model, and (c) **Ours**: pseudo-realistic videos produced by our neural simulation method.

4.2 REAL WORLD EXECUTION WITH COMPOSITIONAL WORLD SIMULATION

Baselines. To rigorously quantify the benefit of our proposed compositional world simulation pipeline under an extremely limited real-world demonstration budget, we trained six instances of Diffusion Policy (DP) Chi et al. (2023) according to the following data-mixture regimes: 1) 10 Real: learning solely from 10 real-world demonstrations. 2) 20 Real: doubling the real-world budget to 20 demonstrations to isolate the gain of additional real-world data. 3) 200 Sim Pretrain + 10 Real: pre-training on 200 RoboTwin-simulated demonstrations followed by fine-tuning on the same 10 real-world demonstrations used in Regime 1. 4) 10 Real + 200 Sim: jointly training on the 200 RoboTwin-simulated and 10 real-world demonstrations from scratch. All demonstrations used here are same as Regime 3. 5) 10 Real + 200 Pseudo-Real: jointly training on the 200 pseudo-real demonstrations, which were generated by our compositional world simulation pipeline previously,

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2

Table 3: Quantitative evaluation of DP new-object generalization across six data mixtures.

Real World Task	10 Real	20 Real	200 Sim Pretrain + 10 Real
<i>Shake Bottle</i>	0/30	0/30	0/30
<i>Move Playing-Card Away</i>	1/30	2/30	1/30
Real World Task	10 Real + 200 Sim	10 Real + 200 Pseudo Real	200 Pseudo Real (Zero Shot)
<i>Shake Bottle</i>	0/30	15/30	9/30
<i>Move Playing-Card Away</i>	0/30	21/30	11/30

4.3 GENERALIZATION

To further validate the fidelity of our pipeline in reproducing real-world scenarios, we conducted an ablation study on the ability of DP to generalize to new spatial layouts and new objects. All DP evaluated here are identical to those introduced in Sec. 4.2.

Generalization to Novel Spatial Distributions. It is necessary to note the initialized position of every object in the collected real-world demonstrations was confined to a predefined limited region (see Sup. C.2.1). At inference, we relocated the same objects to previously unseen regions and recorded the success rates of all DPs. Tab. 2 and Fig. 5 shows that DPs trained solely on real data exhibit almost zero generalization to the new regions; the spatial diversity present in traditional RoboTwin simulations is likewise rendered ineffective by the sim-to-real gap, yielding no measurable improvement. In contrast, the pseudo-real demonstrations generated by our compositional world simulation pipeline consistently lift performance across the relocated configurations, confirming that the synthesized scenes faithfully reproduce the spatial statistics of the real-world environments.

Generalization to New Objects. We evaluate shape- and color-level generalization by substituting new objects at inference time. Concretely, in the real-world demonstrations we employ a Fanta bottle and a blue playing card, and at inference time these are replaced by other bottles (i.e. Coca-Cola, Sprite and Nongfu Spring Oriental Leaf Tea) and a red playing card, respectively. As shown in Table 3 and Fig. 6, simulated demonstrations collected from RoboTwin bring no improvement in the generalization to new objects, whereas the Pseudo-Real demonstrations generated by our compositional world simulation pipeline yield a clear boost in success rate. This demonstrates that our method preserves real-world properties and supports transfer to unseen objects.

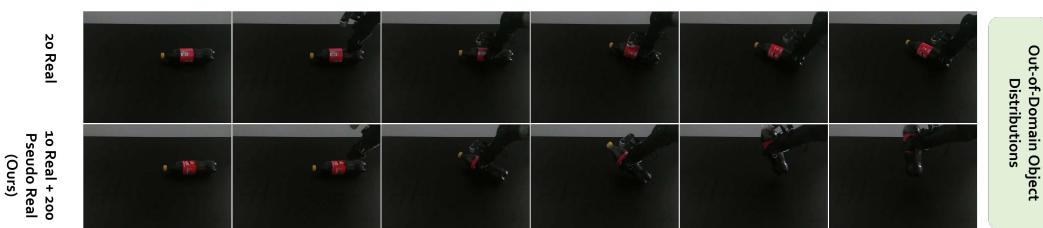


Figure 6: Generalization visualization of DP on *Shake Bottle* under out-of-domain object distributions. Top: policy trained with 20 Real. Bottom: policy trained with 10 Real + 200 Pseudo Real.

5 CONCLUSION

We presented *Compositional Simulation*, a hybrid framework that integrates classical and neural simulation through a real-sim-real pipeline to generate accurate and consistent action-video pairs. Our approach leverages limited real-world data to create large-scale, diverse training datasets, substantially narrowing the sim2real domain gap. Experiments show that *Compositional Simulation* improves real-world policy success rates and enables stronger generalization across tasks, spaces, and objects. This work offers a scalable path toward robust data generation for embodied intelligence and opens avenues for extending to richer modalities and broader robotic embodiments.

Limitation and Future Work. Our experiments focus on tabletop manipulation, though the framework could be extended to more complex embodiments such as mobile manipulation with wheeled robot. And no specialized design was introduced for the neural simulator. Future work may investigate stronger action conditioning for improved action-video consistency and the use of unpaired data to enhance capability and generalization, which would further advance compositional simulation.

486 ETHICS STATEMENT
487488 The research reported in this paper involves only standard robotic manipulation of everyday objects
489 (such as beverage bottles, playing-cards, blocks) in a laboratory setting. No human or animal subjects,
490 personal data, sensitive information, or hazardous materials were involved. All experiments were
491 conducted in compliance with the safety regulations of the host institution and the relevant technical
492 guidelines for robotic systems.494 REPRODUCIBILITY STATEMENT
495496 To facilitate full reproducibility, we provide:
497498 1. Complete source code for data collection, compositional world simulation, model training,
499 and evaluation at [github](https://github.com).
500 2. Detailed hyper-parameters and network architectures in Appendix C.
501 502 3. Comprehensive documentation of the real-world platform and evaluation protocol in Ap-
503 pendix D.
504 4. Video recordings of every real-world trial, together with the corresponding RGB-D sensor
505 streams, which will be made publicly available upon acceptance.
506507 All experiments were conducted on the open-source RoboTwin simulator and our standardized robotic
508 platform; containerized environments and exact dependency versions are released to guarantee bitwise
509 reproducibility.511 REFERENCES
512513 Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chat-
514 topadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform
515 for physical ai. *arXiv preprint arXiv:2501.03575*, 2025.516 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
517 Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00tn1: An open foundation model for generalist
518 humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.520 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai,
521 Lachy Groom, Karol Hausman, Brian Ichter, et al. *pi_0*: A vision-language-action flow model for
522 general robot control. *arXiv preprint arXiv:2410.24164*, 2024.523 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
524 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
525 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.527 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
528 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
529 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022a.531 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
532 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
533 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022b.534 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
535 Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
536 models transfer web knowledge to robotic control. *arXiv preprint arXiv:2307.15818*, 2023.538 Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
539 Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
interactive environments. 2024.

540 Chi-Lam Cheang, Guangzeng Chen, Ya Jing, Tao Kong, Hang Li, Yifeng Li, Yuxiao Liu, Hongtao
 541 Wu, Jiafeng Xu, Yichu Yang, et al. Gr-2: A generative video-language-action model with web-scale
 542 knowledge for robot manipulation. *arXiv preprint arXiv:2410.06158*, 2024.

543 Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Qiwei Liang, Zixuan Li, Xianliang
 544 Lin, Yiheng Ge, Zhenyu Gu, et al. Robotwin 2.0: A scalable data generator and benchmark
 545 with strong domain randomization for robust bimanual robotic manipulation. *arXiv preprint*
 546 *arXiv:2506.18088*, 2025.

547 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
 548 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The*
 549 *International Journal of Robotics Research*, pp. 02783649241273668, 2023.

550 Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
 551 Pieter Abbeel. Learning universal policies via text-guided video generation. *Advances in neural*
 552 *information processing systems*, 36:9156–9172, 2023.

553 C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
 554 Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL <http://github.com/google/brax>.

555 Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao,
 556 Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manipulation
 557 skills. In *The Eleventh International Conference on Learning Representations*, 2023.

558 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
 559 free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

560 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 561 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural*
 562 *information processing systems*, 30, 2017.

563 Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
 564 with 3d scene representations. *arXiv preprint arXiv:2402.10885*, 2024.

565 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 566 Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
 567 vision-language-action model. In *8th Annual Conference on Robot Learning*.

568 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
 569 speed and success. *arXiv preprint arXiv:2502.19645*, 2025.

570 Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B Tenenbaum. Learning to act from
 571 actionless videos through dense correspondences. *arXiv preprint arXiv:2310.08576*, 2023.

572 Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
 573 Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
 574 for Visual AI. *arXiv*, 2017.

575 Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
 576 Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, Mona Anvari, Minjune
 577 Hwang, Manasi Sharma, Arman Aydin, Dhruba Bansal, Samuel Hunter, Kyu-Young Kim, Alan
 578 Lou, Caleb R Matthews, Ivan Villa-Renteria, Jerry Huayang Tang, Claire Tang, Fei Xia, Silvio
 579 Savarese, Hyowon Gweon, Karen Liu, Jiajun Wu, and Li Fei-Fei. BEHAVIOR-1k: A benchmark
 580 for embodied AI with 1,000 everyday activities and realistic simulation. In *6th Annual Conference*
 581 *on Robot Learning*, 2022. URL https://openreview.net/forum?id=_8DoIe8G3t.

582 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
 583 Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
 584 synergizing cognition and action in robotic manipulation. *arXiv preprint arXiv:2411.19650*, 2024.

585 Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
 586 Diffusion models as adaptive self-evolving planners. In *International Conference on Machine*
 587 *Learning*, pp. 20725–20745. PMLR, 2023.

594 Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldif-
 595 fuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execution.
 596 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 597 16467–16476, 2024.

598
 599 Zhixuan Liang, Yao Mu, Yixiao Wang, Tianxing Chen, Wenqi Shao, Wei Zhan, Masayoshi Tomizuka,
 600 Ping Luo, and Mingyu Ding. Dexhanddiff: Interaction-aware diffusion planning for adaptive dex-
 601 terous manipulation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 602 pp. 1745–1755, 2025.

603 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
 604 Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. *arXiv preprint*
 605 *arXiv:2410.07864*, 2024.

606
 607 Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
 608 Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. *IEEE Robotics*
 609 and *Automation Letters*, 2023.

610 Viktor Makovychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
 611 David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High
 612 performance GPU based physics simulation for robot learning. In Joaquin Vanschoren and Sai-Kit
 613 Yeung (eds.), *Proceedings of the Neural Information Processing Systems Track on Datasets and*
 614 *Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual*, 2021. URL
 615 [https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
 616 hash/28dd2c7955ce926456240b2ff0100bde-Abstract-round2.html](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/28dd2c7955ce926456240b2ff0100bde-Abstract-round2.html).

617
 618 Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang Xie,
 619 and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early version).
 620 *arXiv preprint arXiv:2409.02920*, 2024.

621 Soroush Nasirany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
 622 Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
 623 robots. In *Robotics: Science and Systems (RSS)*, 2024.

624
 625 NVIDIA. Cosmos world foundation model platform for physical ai. *arXiv preprint arXiv:2501.03575*,
 626 2025.

627
 628 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 629 Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
 630 Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
 631 Octo: An open-source generalist robot policy. In *Proceedings of Robotics: Science and Systems*,
 632 Delft, Netherlands, 2024.

633
 634 OpenAI. Creating video from text. <https://openai.com/index/sora/>, 2024.

635
 636 OpenAI. Gpt-5 system card (updated august 13, 2025). [https://cdn.openai.com/pdf/
 637 8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf](https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf), Aug 2025.

638
 639 Yiran Qin, Li Kang, Xiufeng Song, Zhenfei Yin, Xiaohong Liu, Xihui Liu, Ruimao Zhang, and Lei
 640 Bai. Robofactory: Exploring embodied agent collaboration with compositional constraints. *arXiv*
 641 *preprint arXiv:2503.16408*, 2025.

642
 643 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 644 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 645 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

646
 647 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 648 optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL [http://arxiv.org/abs/
 649 1707.06347](http://arxiv.org/abs/1707.06347).

648 Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
 649 Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Vondrus,
 650 Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun,
 651 Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants to rearrange
 652 their habitat. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.

653
 654 Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
 655 Soricu, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
 656 multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

657 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 658 In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp. 5026–5033.
 659 IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

660
 661 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 662 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 663 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

664 Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and
 665 Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. *arXiv
 666 preprint arXiv:1812.01717*, 2018.

667
 668 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 669 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models.
 670 *arXiv preprint arXiv:2503.20314*, 2025.

671
 672 Chenxi Wang, Hongjie Fang, Hao-Shu Fang, and Cewu Lu. Rise: 3d perception makes real-world
 673 robot imitation simple and effective. In *2024 IEEE/RSJ International Conference on Intelligent
 674 Robots and Systems (IROS)*, pp. 2870–2877. IEEE, 2024.

675
 676 Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
 677 Vision-language model with plug-in diffusion expert for general robot control. *arXiv preprint
 678 arXiv:2502.05855*, 2025.

679
 680 Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu,
 681 Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot
 682 manipulation. *arXiv preprint arXiv:2312.13139*, 2023.

683
 684 Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
 685 Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN: A
 686 simulated part-based interactive environment. In *The IEEE Conference on Computer Vision and
 687 Pattern Recognition (CVPR)*, June 2020.

688
 689 Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
 690 Abbeel. Learning interactive real-world simulators. *arXiv preprint arXiv:2310.06114*, 2023.

691
 692 Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change Loy. Fresco: Spatial-temporal correspondence
 693 for zero-shot video translation. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 694 and Pattern Recognition*, pp. 8703–8712, 2024.

695
 696 Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Se June Joo, Jianwei Yang, Baolin Peng, Ajay Mandlekar,
 697 Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos. In *CoRL
 698 2024 Workshop on Whole-body Control and Bimanual Manipulation: Applications in Humanoids
 699 and Beyond*.

700
 701 Jiwen Yu, Yiran Qin, Xintao Wang, Pengfei Wan, Di Zhang, and Xihui Liu. Gamefactory: Creating
 702 new games with generative interactive videos, 2025.

703
 704 Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
 705 policy: Generalizable visuomotor policy learning via simple 3d representations. In *Proceedings of
 706 Robotics: Science and Systems (RSS)*, 2024.

702 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
703 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
704 *computer vision and pattern recognition*, pp. 586–595, 2018.

705

706 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
707 Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all, March
708 2024. URL <https://github.com/hpcatech/Open-Sora>.

709

710 Siyuan Zhou, Yilun Du, JiaBen Chen, Yandong Li, Dit-Yan Yeung, and Chuang Gan. Robodreamer:
711 Learning compositional world models for robot imagination. *arXiv preprint arXiv:2404.12377*,
712 2024.

713

714 Fangqi Zhu, Hongtao Wu, Song Guo, Yuxiao Liu, Chilam Cheang, and Tao Kong. Irasim: Learning
715 interactive real-robot action simulators. *arXiv preprint arXiv:2406.14540*, 2024.

716

717 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
718 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
719 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A USE OF LLMs

This paper was written by the authors without any generative contribution from large language models (LLMs). LLMs were employed solely for language polishing and grammatical refinement; no scientific content, technical claims, or novel interpretations were produced or altered by these tools.

B TASK DETAILS

To facilitate assets alignment between the real-world and simulated settings, we select three representative tasks in RoboTwin Chen et al. (2025)—*Shake Bottle*, *Move Playing Card Away*, and *Stack Blocks Two*—to evaluate our compositional world simulation framework. Their respective success criteria are defined as follows.

- *Shake Bottle* involves four beverages—Fanta, Coca-Cola, Sprite, and Nongfu Spring Oriental Leaf Tea. Among these beverages, Fanta is employed to collect real-world demonstrations, while the remaining three serve as new objects for an ablation study on model generalization. The task is deemed successful if the robot grasps the bottle from the desktop, lifts it to a predefined height, and performs a shaking motion.
- *Move Playing-Card Away* employs two types of playing cards that differ in color—blue and red. Following the same protocol as *Shake Bottle*, the blue playing card is used to construct the real-world training dataset, whereas the red playing card serves as an unseen object for evaluating model generalization. The task is considered successful once the robot grasps the designated card and transports it completely away from the central region of the desktop.
- *Stack Blocks Two* utilizes two colored blocks—green and yellow. This task is designed primarily to assess the model’s ability to generalize to novel spatial configurations. Success is achieved when the robot first places the green block at the designated position and subsequently stacks the yellow block precisely on top of it.

C TRAINING DETAILS

C.1 NEURAL SIMULATOR TRAINING DETAILS

As mentioned in Sec. 4.1, our Neural Simulator builds upon Stable Diffusion 1.5 Rombach et al. (2022), a state-of-the-art latent text-to-image diffusion model capable of generating high-fidelity visual content from textual prompts. We provide a fixed sim-to-real instruction as its text input, namely: “*Change the image style from the image style of the simulated environment to the image style captured by a DSLR camera.*”. Next, we pair the initial simulation data produced by our Classical Simulator with corresponding real-world data to form simulation–real data pairs. The base model is then fine-tuned on these pairs by minimizing the diffusion model’s denoising loss. Finally, an online inference strategy FRESCO Yang et al. (2024) is applied to the fine-tuned model to generate the final high-quality pseudo-realistic videos.

All experiments are conducted on one NVIDIA H200 GPU. During fine-tuning, the video data is first converted into image sequences at 10 FPS and organized into a training set, with 1/5 of the data randomly sampled as a validation set. The model is trained for 30 epochs with a batch size of 8 and a gradient accumulation step of 4, taking approximately 10 hours. We employ the `torch.optim.AdamW` optimizer with a learning rate of 5.0×10^{-5} and a linear warm-up ratio of 0.01. For the loss function, the diffusion model’s denoising loss is empirically weighted by 1.0, the perceptual loss (measuring feature-level differences between generated and real images) is weighted by 0.2, and the pixel-wise loss (computing the RGB mean squared error between generated and real images) is weighted by 0.1. During inference, we follow the default parameter settings of FRESCO, except that the minimum key-frame sampling interval is set to 3, to ensure smoother video generation.

Figure 7: Definition of in-domain and out-of-domain spatial distributions in different tasks. Both terms refer exclusively to the initial position of objects before being manipulated. Positions are labeled in-domain if and only if they appear in the collected real-world demonstrations; all others are deemed out-of-domain.

C.2 DP TRAINING DETAILS

C.2.1 DEMONSTRATIONS

Real-World Demonstrations were meticulously collected via human teleoperation using a pair of PiPER Teach Pendants (see Sup. D.1). For each task, we recorded only 20 trajectories, all confined to the in-domain spatial and object distribution. Concretely, demonstrations for *Shake Bottle* and *Move Playing-Card Away* were acquired exclusively with the Fanta bottle and the blue playing card starting within the in-domain region illustrated as Fig. 7(a), respectively. And for *Stack Blocks Two*, the green and yellow blocks were always placed in the left and right in-domain zones at the beginning of demonstration collection (Fig. 7(b)). Finally, we randomly selected 10 out of these 20 demonstrations to construct the data-mixture regime *10 Real*, and used all 20 to construct the regime *20 Real*.

Simulated Demonstrations were generated in the traditional simulator RoboTwin, and we collected 200 trajectories for each task. In contrast to the real-world ones, these simulated demonstrations deliberately incorporated out-of-domain spatial arrangements and objects. Specifically, for *Shake Bottle* we used not only the Fanta bottle but also Coca-Cola, Sprite and Nongfu Spring Oriental Leaf Tea, while for *Move Playing-Card Away* we included the red playing card in addition to the blue one. Besides, all objects might be placed in out-of-domain regions when data collection started. All 200 simulated demonstrations were employed to construct the data-mixture regimes *10 Real + 200 Sim* and *200 Sim Pre-train + 10 Real*.

Pseudo-Real Demonstrations were produced by our compositional world-simulation framework under the same out-of-domain spatial and object settings employed for Simulated Demonstrations. The full set of 200 pseudo-real trajectories was used to establish the data-mixture regimes *10 Real + 200 Pseudo-Real* and *200 Pseudo-Real*.

C.2.2 TRAINING SETTINGS

We use Diffusion Policy (DP) Chi et al. (2023), a generative method based on imitation learning. We employ a CNN-based Diffusion Policy as the backbone of our visuomotor model. The prediction horizon is set to 8, with 3 observation steps and 6 action steps. For data loading, we use a batch size of 256. The optimizer is `torch.optim.AdamW` with a learning rate of 1.0×10^{-4} , betas in $[0.95, 0.999]$, and $\epsilon = 1.0 \times 10^{-8}$. A learning-rate warmup is applied for the first 500 steps, followed by 300 training epochs for all benchmark tasks.

Each policy is trained independently on a single NVIDIA H200 GPU for 300 epochs. As a reference, using a dataset of roughly 200 demonstration episodes (average length ≈ 300), training a single policy for 300 epochs takes about 20 hours.

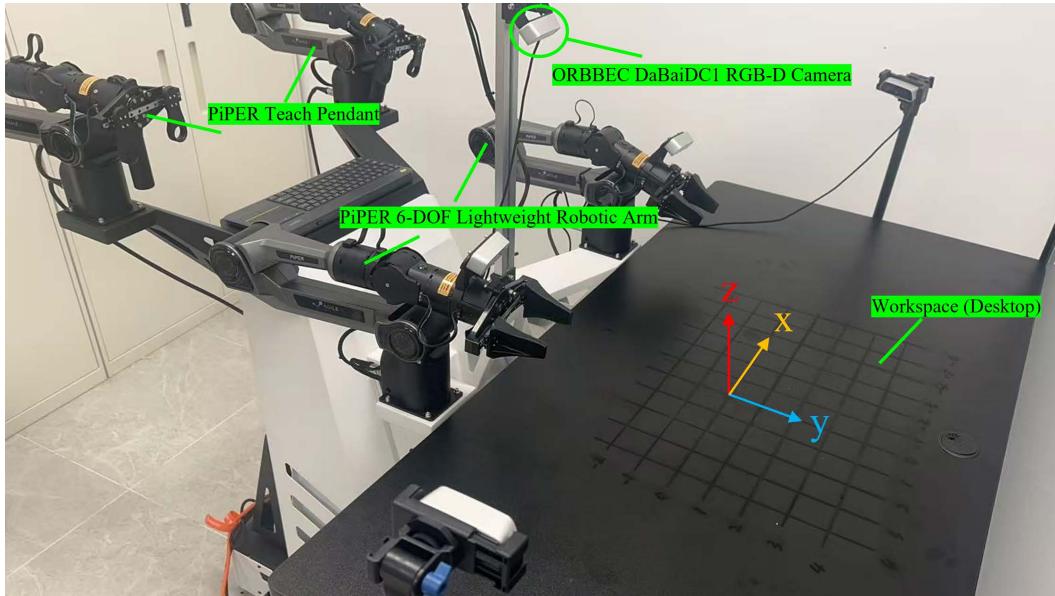


Figure 8: Real-world evaluation platform.

D EVALUATION DETAILS

D.1 PLATFORM

As depicted in Fig. 8, the real-world evaluation were performed with two ORBBEC PiPER 6-DOF Lightweight Robotic Arms, each equipped with a two-finger gripper (maximum opening 70 mm, gripping force 40 N). A fixed, top-down ORBBEC DaBaiDC1 RGB-D camera provided a global RGB view of the workspace, defined as the central area of a black tabletop. In addition, a pair of PiPER Teach Pendants enabled teleoperation of the arms, allowing efficient collection of real-world demonstrations. All hardware units were connected to a workstation housing an NVIDIA GeForce RTX 4090 GPU, which stored the captured observations, performed model inference, issued control commands, and drove the robotic arms in real time.

D.2 EVALUATION SETTINGS

For each ablation dimension—in-domain spatial/object configurations, out-of-domain spatial layouts, and out-of-domain objects—we independently constructed a fixed set of 30 diverse real-world trials. Every policy trained under a different data-mixture regime was evaluated on the corresponding 30-trial split, guaranteeing that all comparisons within a distribution are performed on an identical test bed. Task-success criteria are provided in Sup. B.

E SIM2REAL NEURAL SIMULATION DETAILS

As stated in Sec. 3.2, we enforce strict alignment between the real-world and simulated environments—encompassing background and object appearance, camera intrinsics/extrinsics, and object positions—to enable effective Sim2Real neural simulation. To prevent any learning-induced errors from propagating into the subsequent training of the neural simulator, we adopt a purely rule-based alignment pipeline rather than a data-driven one. Concretely, we first parameterize the relevant attributes of the real-world scene and then transfer the estimated parameters to configure the simulated environment accordingly.

918
919

E.1 BACKGROUND AND OBJECT ALIGNMENT

920
921
922
923

Background Alignment mainly parameterizes both the visual appearance of the desktop and the laboratory walls. Using the fixed RGB-D camera described in Sec. D.1, we first capture images of the table surface and the wall regions. A digital color-picker is then applied to the acquired images to extract representative RGB values.

924
925
926
927
928
929

Regular-Object Alignment covers primitives such as blocks, spheres, and cylinders whose geometry can be described by a small set of metric dimensions. For these instances, we first measure their principal axes (length, width, height, diameter, etc.) with calipers. Their Appearance are parameterized by acquiring an orthographic RGB patch of the object’s most representative face and extracting the median albedo via a color-picker tool—no additional texture map is required, yielding a compact, error-tolerant representation.

930
931
932
933
934
935
936
937

Special-Object Alignment. Owing to RoboTwin’s one-to-one digital twins of real-world assets—including Finda, Fanta, Coca-Cola, Sprite, Nongfu Spring Oriental Leaf Tea bottles and the playing cards—we can directly pair every physical item with its pre-modeled, dimension- and texture-matched counterpart. This eliminates the need for on-the-fly scanning or manual modeling: each real-world bottle or card is simply mapped to its pre-registered URDF/FBX model, guaranteeing sub-millimetre geometric agreement and pixel-level texture consistency between reality and simulation.

938

E.2 CAMERA CALIBRATION AND ALIGNMENT

939
940
941
942

Camera parameterization focuses on retrieving its intrinsic and extrinsic. The intrinsics can be known directly from its technical documentation; hence, the following section details only the extrinsic-calibration pipeline employed in our setup.

943
944
945
946
947

To ensure consistency with RoboTwin, we establish a real-world coordinate system as illustrated in Fig. 8. Within this coordinate system, we first place a calibration checkerboard and obtain the 3D coordinates of its corner points. Subsequently, we capture images using the mounted camera and extract the 2D pixel coordinates of those checkerboard corners via corner detection. The code implementing this procedure is listed below.

```

1 import cv2
2 import numpy as np
3
4 # -----
5 PATTERN_SIZE = (7, 4)      # Number of checkerboard corners along rows and columns
6 IMG_PATH      = 'chess.jpg'  # Path of the captured image
7 # -----
8
9 img = cv2.imread(IMG_PATH)
10 if img is None:
11     raise FileNotFoundError(IMG_PATH)
12 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
13
14 # 1. Checkerboard Detection
15 ret, corners = cv2.findChessboardCorners(
16     gray, PATTERN_SIZE,
17     cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE)
18 if not ret:
19     raise RuntimeError('Checkerboard_detection_failed!')
20
21 corners = cv2.cornerSubPix(
22     gray, corners, (11, 11), (-1, -1),
23     criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001))
24 pts2d = corners.reshape(-1, 2).tolist()
25
26 # 2. Mouse Callback
27 def on_mouse(event, x, y, flags, param):
28     global pts2d, img_show
29     if event == cv2.EVENT_LBUTTONDOWN:
30         idx = min(range(len(pts2d)), key=lambda i: (pts2d[i][0] - x) ** 2 + (pts2d[i][1] - y) ** 2)
31         if (pts2d[idx][0] - x) ** 2 + (pts2d[idx][1] - y) ** 2 < 400:
32             del pts2d[idx]
33             redraw()
34
35 def redraw():
36     global img_show
37

```

```

972     img_show = img.copy()
973     for idx, (u, v) in enumerate(pts2d):
974         u, v = int(u), int(v)
975         cv2.circle(img_show, (u, v), 5, (0, 0, 255), -1)
976         cv2.putText(img_show, str(idx), (u + 10, v - 10),
977                     cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
978         cv2.imshow('interactive', img_show)
979
980     # 3. Main Loop
981     cv2.namedWindow('interactive', cv2.WINDOW_NORMAL)
982     cv2.setMouseCallback('interactive', on_mouse)
983     redraw()
984
985     while True:
986         if cv2.getWindowProperty('interactive', cv2.WND_PROP_VISIBLE) < 1:
987             break
988
989         key = cv2.waitKey(30) & 0xFF # 30 ms timeout to prevent freezing
990         if key == ord('q'):
991             np.savetxt('pts2d.txt', np.array(pts2d), fmt='%.6f')
992             print('Saved pts2d.txt with', len(pts2d), 'points.')
993             break
994         elif key == ord('r'):
995             pts2d = corners.reshape(-1, 2).tolist()
996             redraw()
997
998     cv2.destroyAllWindows()
999

```

With the obtained 3D-to-2D correspondences, the camera's extrinsic parameters—position and orientation—can be recovered by solving a Perspective-n-Point (PnP) problem. The implementation is given below.

```

999
1000    import numpy as np
1001    import cv2
1002
1003    # 1. Given Known Intrinsic
1004    K = np.array([
1005        [488.8112487792969, 0.0, 317.05938720703125],
1006        [0.0, 488.8112487792969, 217.4825439453125],
1007        [0.0, 0.0, 1.0]
1008    ], dtype=np.float64)
1009
1010    dist = np.zeros((4, 1)) # Distortion Coefficients; set to zero if no distortion.
1011
1012    # 2. Input
1013    pts3d = np.loadtxt('pts3d.txt') # Nx3, World Coordinates
1014    pts2d = np.loadtxt('pts2d.txt') # Nx2, Pixel Coordinates
1015
1016    assert pts3d.shape[0] == pts2d.shape[0], 'Mismatch in point count!'
1017
1018    # 3. Estimating Extrinsic
1019    ok, rvec, tvec = cv2.solvePnP(
1020        pts3d.astype(np.float64),
1021        pts2d.astype(np.float64),
1022        K, dist, flags=cv2.SOLVEPNP_ITERATIVE
1023    )
1024
1025    if not ok:
1026        raise RuntimeError('SolvePnP failed! Please verify that the point correspondences are correct.')
1027
1028    # Rotation Vector -> Rotation Matrix
1029    R, _ = cv2.Rodrigues(rvec)
1030
1031    R_w2c = R
1032    t_w2c = tvec.ravel()
1033    R_c2w = R_w2c.T
1034    t_c2w = -R_c2w @ t_w2c # 3x1
1035
1036    position = t_c2w.tolist()
1037
1038    forward = R_c2w[:, 2]
1039    left = -R_c2w[:, 0]
1040    up = -R_c2w[:, 1]

```

```

1026
1027 41 print("static_camera_list:")
1028 42 print("  name: head_camera")
1029 43 print("  type: D435")
1030 44 print(f"  position: [{position[0]:.3f},{position[1]:.3f},{position[2]:.3f}]")
1031 45 print(f"  forward: [{forward[0]:.3f},{forward[1]:.3f},{forward[2]:.3f}]")
1032 46 print(f"  left: [{left[0]:.3f},{left[1]:.3f},{left[2]:.3f}]")
1033
1034

```

E.3 OBJECT POSITION ALIGNMENT

We emphasize that the real-world frame depicted in Fig. 8 coincides exactly with the world frame employed in RoboTwin. Under this frame, the desktop surface is tessellated into a uniform 5 cm \times 5 cm lattice. Object placement is thereby reduced to aligning the object’s center of mass with a lattice node; orientation is selected from a prescribed, rule-based catalogue—namely, axis-aligned poses or rotations of 30°, 45°, and 60° about the x- or y-axis. While this discrete parameterization is admittedly naive, it routinely delivers positional errors below one centimetre and angular errors below one degree. A data-driven, continuous 6-DoF alignment module will be investigated in future work to supersede this manual gridding scheme.

F MORE RESULT VISUALIZATION

F.1 VISUALIZATION OF GENERALIZATION ON NEW OBJECTS

To highlight the enhanced generalization of DP enabled by our compositional world simulation pipeline, we provide trajectory visualizations of the *Move Playing-Card Away* task in Fig. 6, with additional examples in Fig. 9.

F.2 VISUALIZATION OF REAL2SIM ALIGNMENT

As detailed in Sup. E, we performed exhaustive Real2Sim alignment. Here we illustrate the final alignment quality for the tasks *Move Playing-Card Away*, *Ranking Blocks RGB*, *Stack Blocks Three* and *Stack Blocks Two* in Fig. 10 and Fig. 11.

F.3 VISUALIZATION OF SIM2REAL NEURAL SIMULATION

To dynamically demonstrate the effectiveness of our approach in sim-to-real transfer, we further present a visual comparison between the pseudo-realistic videos generated by our Neural Simulator and the initial simulation videos, as shown in Fig. 12. In addition to the tasks included in the main text—*Adjust Bottle*, *Moving PlayingCard Away*, and *Ranking Blocks RGB*—we also consider the *Stack Blocks Three* task. The results indicate that our method consistently maintains strong temporal coherence and perceptual realism throughout the video sequences.

```

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

```

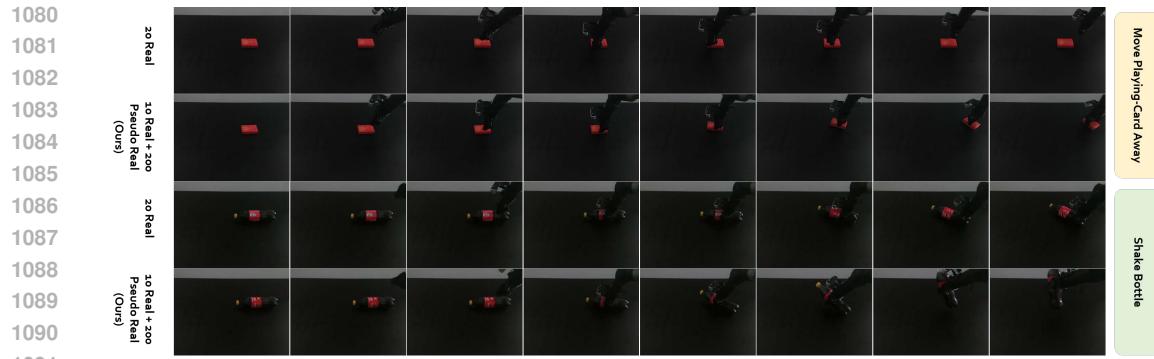


Figure 9: Generalization visualization of DP on new objects. The top two rows are corresponds to *Move Playing-Card Away*, and the bottom two rows are corresponds to *Shake Bottle*. respectively.

Figure 10: Real2Sim alignment on *Move Playing-Card Away*. From top to bottom: Nongfu Spring Oriental Leaf Tea, Coca-Cola, Sprite, and Fanta.

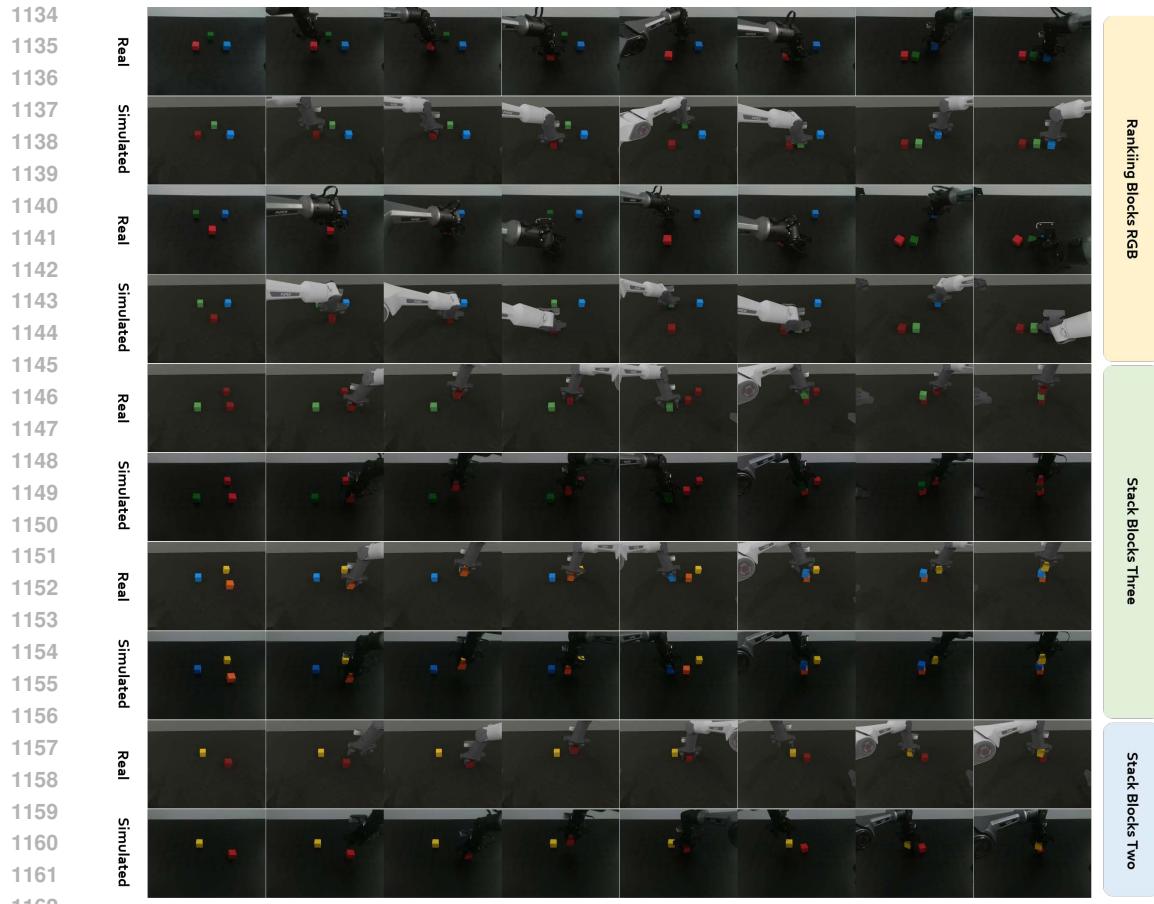


Figure 11: Real2Sim alignment on additional tasks. From top to bottom: *Ranking Blocks RGB*, *Stack Blocks Three* and *Stack Blocks Two*.

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

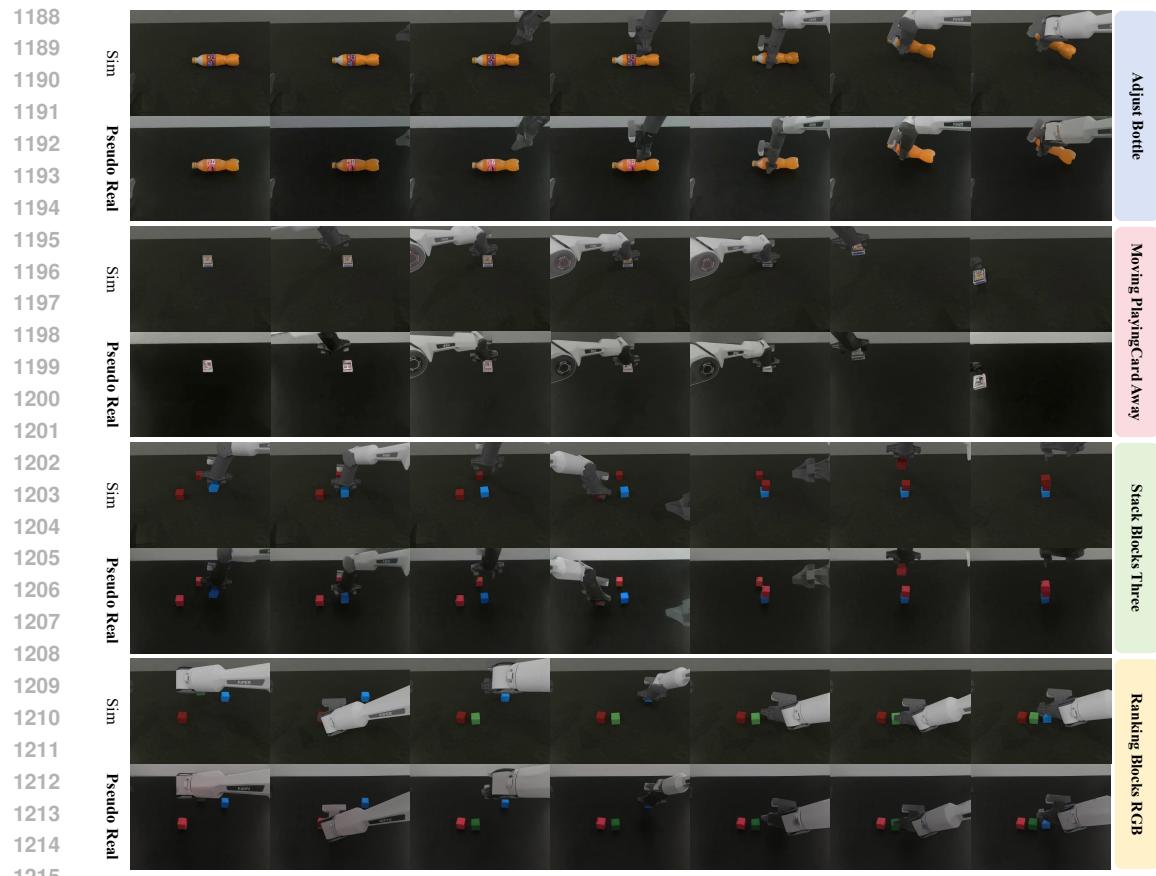


Figure 12: Sim2Real visualization on various tasks. From top to bottom: *Adjust Bottle*, *Moving PlayingCard Away*, *Stack Blocks Three* and *Ranking Blocks RGB*.

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241