
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PARAMETER-EFFICIENT FINE-TUNING OF STATE SPACE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep State Space Models (SSMs), such as Mamba (Gu & Dao, 2024), have
emerged as powerful tools for language modeling, offering high performance with
efficient inference and linear scaling in sequence length. However, the application
of parameter-efficient fine-tuning (PEFT) methods to SSM-based models remains
largely unexplored. This paper aims to systematically study two key questions:
(i) How do existing PEFT methods perform on SSM-based models? (ii) Which
modules are most effective for fine-tuning? We conduct an empirical benchmark of
four basic PEFT methods on SSM-based models. Our findings reveal that prompt-
based methods (e.g., prefix-tuning) are no longer effective, an empirical result
further supported by theoretical analysis. In contrast, LoRA remains effective for
SSM-based models. We further investigate the optimal application of LoRA within
these models, demonstrating both theoretically and experimentally that applying
LoRA to linear projection matrices without modifying SSM modules yields the
best results, as LoRA is not effective at tuning SSM modules. To further improve
performance, we introduce LoRA with Selective Dimension tuning (SDLoRA),
which selectively updates certain channels and states on SSM modules while
applying LoRA to linear projection matrices. Extensive experimental results show
that this approach outperforms standard LoRA.

1 INTRODUCTION

Over the past two years, Large Language Models (LLMs) such as ChatGPT (Achiam et al., 2023;
Brown et al., 2020) have achieved groundbreaking performance and are now widely used in daily life.
Many models use the Transformer architecture (Vaswani et al., 2017), with its attention mechanism
essential in predicting subsequent tokens based on context. Each token computes attention scores with
every preceding one, selectively focusing only on the most relevant during processing. This, however,
creates quadratic time complexity, posing challenges when dealing with long sequences. In response,
various alternative architectures like Linear Attention (Katharopoulos et al., 2020), RWKV (Peng
et al., 2023), RetNet (Sun et al., 2023), and Mamba (Gu & Dao, 2024) have been developed to operate
with subquadratic time complexity.

As the most popular subquadratic-time architecture currently serving as an alternative to Transformers,
SSMs (Gu et al., 2021; 2022b;a; Gu & Dao, 2024) achieve efficient training and inference. SSMs
are closely related to linear RNNs, which maintain a hidden state to encapsulate the information of
previous tokens. When a new input token is introduced, the prediction of the next token involves only
operations on this hidden state and the new token, which enhances inference efficiency. To overcome
the limitation of RNNs, which cannot be trained in parallel, S4 (Gu et al., 2022b;a) leverages its
linearity, enabling it to adopt a convolutional form during training, facilitating parallel computation.
Consequently, SSMs are highly efficient and have demonstrated success in numerous long-sequence
tasks (Gu et al., 2022b;a). Recently, a new series of SSM models, Mamba (Mamba-I (Gu & Dao,
2024) and Mamba-II (Dao & Gu, 2024)), have achieved Transformer-level performance in language
modeling. In the main paper, we primarily focus on the deep S4 model and Mamba-I, while deferring
experiments involving Mamba-II and the hybrid model, Jamba (Lieber et al., 2024), to the appendix.
Unless otherwise specified, “Mamba” refers to Mamba-I for simplicity of notation. The deep S4
model, serving as the foundational architecture, readily extends its properties to other variants, while
Mamba has emerged as one of the most popular SSM-based models.

Consequently, we expect fine-tuning these pretrained SSMs for downstream tasks will become a
crucial problem in the near future. While fine-tuning the entire model is expensive and inefficient,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

numerous Parameter-Efficient Fine-Tuning (PEFT) methods (Houlsby et al., 2019; Hu et al., 2021; He
et al., 2021; Li & Liang, 2021; Lester et al., 2021; Zaken et al., 2022; Liu et al., 2021; 2022) have been
developed for efficient adaptation under resource constraints. Notably, most popular PEFT methods
fall into two categories: (i) prompt-based tuning, which involves modifying the input sequence (Lester
et al., 2021) or tuning the sequence at each layer (Li & Liang, 2021); and (ii) parameter-based tuning,
which directly updates the model parameters, such as LoRA (Hu et al., 2021), which modifies the
weight matrices, and BitFit (Zaken et al., 2022), which updates only the bias terms.

Despite the success that existing PEFT methods have achieved in adapting Transformer-based models,
their efficacy in adapting SSM-based models remains largely unexplored, leaving many interesting
questions open. For instance, are existing popular PEFT methods still effective for SSM-based
models? If they are applicable, what is the optimal way to apply these methods to SSM-based models,
and which parameters should be updated? If not, can we develop variants specifically tailored for
SSMs that perform better? To answer these questions, to the best of our knowledge, we conduct the
first comprehensive study of PEFT on SSM-based models, both theoretically and empirically.

To the best of our knowledge, we are the first to benchmark existing PEFT methods on SSM-based
models. Through extensive experiments, we demonstrate that (Finding 1) prompt-based PEFT
methods are no longer effective for SSM-based models, and (Finding 2) LoRA remains effective
on SSM-based models. Meanwhile, the two major components of SSM-based models are the SSM
module, which functions analogously to attention in Transformers, and linear projection matrices,
which are similar to feed-forward layers. We next investigate which part of the model is more effective
for applying PEFT. We empirically find that (Finding 3) applying LoRA to linear projection matrices
without modifying the SSM module is already effective, while the most effective linear projection
matrices differ depending on the dataset. Notably, Findings 1 and 3 are supported by our theoretical
analysis. While LoRA is not effective for tuning SSM modules, theoretically, tuning additional SSM
modules increases expressivity. Finally, we analyze the architecture of SSM-based models using the
theoretical framework of Giannou et al. (2023) and Zeng & Lee (2024). We show that, in addition to
applying LoRA to linear projection matrices, Selectively updating the channel and state Dimensions
of SSM modules further enhances performance. We dub this method as SDLoRA, the first PEFT
method tailored for SSM-based models. Through extensive experiments, we observe that (Finding 4)
SDLoRA outperforms LoRA alone in fine-tuning SSM-based models.

2 RELATED WORKS

State Space Models (SSMs). Linear State-Space Layers (LSSL) represent one of the earliest
SSM layers utilized in deep learning, functioning as continuous-time, recurrent, and convolutional
models (Gu et al., 2021). LSSL employs HiPPO theory (Gu et al., 2020) to initialize the state
matrix A, enabling the capture of long dependencies. However, LSSL is computationally expensive,
limiting its practical application. Gu et al. (2022b) introduced Structured State Space Models (S4),
which optimize computation efficiency by employing a structured state matrix A. Gupta et al.
(2022) proposed DSS, which simplifies the model by using a diagonal matrix for A and empirically
demonstrated that it suffices to achieve performance comparable to S4. Further, Gu et al. (2022a)
provided a theoretical explanation for the effectiveness of the diagonal state matrix A in DSS and
introduced S4D, which offers various initialization methods for A. Subsequently, the diagonal
structure of the state matrix A has been adopted in follow-up methods (Gu & Dao, 2024). Despite
differences in optimization algorithms, we refer to S4 and its close variants, including DSS and S4D,
collectively as S4. This terminology encompasses models that maintain the standard discrete-time
SSM form with a diagonal state matrix.

Despite of the remarkable performance of SSMs on certain tasks of sequence modeling, SSMs still
showed worse performance than Transformers on language modeling. Fu et al. (2022) transitioned
from synthetic language modeling tasks to real language modeling tasks with SSMs. They proposed
H3, which is inspired by Linear Attention (Katharopoulos et al., 2020), introducing both diagonal
SSM and shift SSM. Recently, Mamba (Gu & Dao, 2024; Dao & Gu, 2024) escaped from linear time
invariance (LTI) modeling by introducing input-dependent terms and achieved better performance
than Transformer on language modeling. Furthermore, several hybrid models (Lieber et al., 2024;
Park et al., 2024) tried to exploit the advantages of both SSMs and Transformers.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Parameter-Efficient Fine-Tuning (PEFT). Due to the increase in model size, PEFT methods have
gained increasing popularity as they achieve good performance while being much more efficient
compared to full model updating (Houlsby et al., 2019; Hu et al., 2021; He et al., 2021; Li & Liang,
2021; Lester et al., 2021; Zaken et al., 2022; Liu et al., 2021; 2022). Most of the existing popular PEFT
methods fall into two categories: (i) prompt-based methods (Li & Liang, 2021; Lester et al., 2021;
Liu et al., 2021; 2022), and (ii) parameter tuning methods (Donahue et al., 2014; Yosinski et al., 2014;
Hu et al., 2021; Zaken et al., 2022). Common prompt-based methods include prompt tuning (Lester
et al., 2021), and prefix-tuning (Li & Liang, 2021). Prompt tuning prepends a sequence of learnable
virtual tokens, which are continuous vectors. Prefix-tuning further expands on Prompt tuning by
prepending tokens across the model’s depth, making it more powerful. Therefore, our analysis of
prompt-based methods’ limitations will focus on prefix-tuning, with the findings also applicable to
the other prompt-based methods. Conversely, parameter tuning methods, which originated from
traditional transfer learning practices, typically involve freezing the initial layers and only tuning
the last few layers (Donahue et al., 2014; Yosinski et al., 2014). In recent years, more effective and
innovative parameter tuning approaches have emerged (Hu et al., 2021; Zaken et al., 2022). The
widely used Low-Rank Adaptation (LoRA) updates a subset of parameters (e.g., attention layers of a
Transformer) in a low-rank manner. BitFit (Zaken et al., 2022), focuses on tuning only the bias terms
of a pretrained model. In Sec. A, we provide a more detailed description of these baseline methods.

Numerous efforts have been made to theoretically understand existing PEFT methods. For prompt-
based methods, Wang et al. (2023b), Petrov et al. (2024), and Oymak et al. (2023) have theoretically
analyzed the effectiveness and limitations of prompt tuning and prefix-tuning for Transformer-based
models. For LoRA, Zeng & Lee (2024) explored its expressive power by demonstrating that even a
randomly initialized model can be adapted to match any smaller target model using LoRA. Some
of our theoretical analysis draws upon the framework established by Zeng & Lee (2024). Jang et al.
(2024) conducted a theoretical exploration of LoRA within the neural tangent kernel (NTK) regime.

3 PRELIMINARIES OF STATE SPACE MODELS

Scalar-input Scalar-output SSM. The initial SSM is derived from a specific continuous system
that maps a one-dimensional function or signal x(t) ∈ R to y(t) ∈ R via an H-dimensional latent
state h(t) ∈ RH , as described in (1). In (1), input transition vector B ∈ RH×1 indicates the input’s
impact on the state of the system, state matrix A ∈ RH×H characterizes the system’s internal
state dynamics, and the output mapping vector C ∈ R1×H relates the state to the output y(t).1

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t)
(1)

ht = Aht−1 +Bxt,

yt = Cht

(2)
K = (CB,CAB, . . . ,CA

t−1
B),

(y1, . . . , yt) = (x1, . . . , xt) ∗K
(3)

To adapt SSMs for deep learning, the continuous parameters (A,B) are transformed into discrete
counterparts (A,B) using a learnable step size ∆ ∈ R. An example of a discretization rule is the
zero-order hold, which defines A = exp(∆A),B = (∆A)−1(exp(∆A)− I) ·∆B.

The discrete-time SSM is formulated as (2). For efficient and parallelizable training, the output y of a
length-N input x in the discrete-time SSM can be computed with a long convolution, as detailed in
(3). This convolution operation can be efficiently computed in the frequency domain with FFT.

Vector-input Vector-output SSM. Many deep learning tasks, such as language modeling, often
use multi-channel inputs. When the input and output are vectors, denoted as x,y ∈ RD, separate
SSMs are used for each of the D input channels. As such, a superscript (d) is introduced to indicate
parameters specific to each channel when necessary. This notation may be omitted for simplicity.

Structured State Space Sequence Model (S4). S4 introduced by Gu et al. (2022b) represents one
of the earliest applications of SSMs in deep learning. It features a diagonal structure for the state
matrix A, a design theoretically validated by Gu et al. (2022b) and practically implemented through
its subsequent variants, DSS (Gupta et al., 2022) and S4D (Gu et al., 2022a).

1Note that B,C are vectors. We use bold capital letters to remain consistent with existing works (Gu et al.,
2022b; Gu & Dao, 2024).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Deep S4 Layer. Since S4 lacks non-linearity and operates with independent channels, a position-
wise linear layer and a non-linear activation function are integrated into the deep S4 layer, facilitating
information mixing across channels and introducing non-linearity. Furthermore, a residual connection
from the input to the output of S4 is introduced. Let ⊗ represent the element-wise product, and S4(·)
denote the S4 mechanism, where the output of each channel is computed according to (3) using its
own convolutional kernel K

(d)
. While the subtle details such as the activation functions may vary

slightly from the previous studies (Gu et al., 2022b;a), for the theoretical analysis in this paper, we
define the deep S4 layer as below. The output of a deep S4 layer is then formulated as:

yt = ReLU(W · S4t(x1, . . . ,xt) + β + u⊗ xt), (4)

where W ∈ RD×D and β ∈ RD represent the linear projection matrix and bias, respectively, and u ∈
RD is the coefficient of the residual connection. Note that in a deep S4 layer, the trainable parameters
are SSM parameters (A(d),B(d),C(d),∆(d)) across D channels with A(d) being diagonal and the
parameters (W ,β) for the linear layer and u for the residual connection.

Selective State Space Models (S6). A key property of all SSMs mentioned above is linear time
invariance (LTI), where model dynamics remain constant over time. However, LTI models face
significant limitations: their constant dynamics fail to selectively extract relevant information from
the context or influence the hidden state in an input-dependent manner. The S6 model, proposed by
Gu & Dao (2024), addresses these limitations by making its parameters input-dependent.

In particular, at each time step t, given the input xt ∈ RD, they introduce input-dependency to step
size ∆t = (∆

(1)
t , . . . ,∆

(D)
t)⊤ ∈ RD, input transition vectors Bt ∈ RH×1 and the output mapping

vectors Ct ∈ R1×H via linear projection:

∆t = softplus(W∆xt + β∆), Bt = WBxt, Ct = WCxt,

whereas the diagonal state matrices A(1), . . . ,A(D) remain input-independent. Note that W∆ ∈
RD×D is implemented via a rank-r low-rank parameterization, denoted by W∆ = W∆,↑W∆,↓,
where W∆,↑ ∈ RD×r and W∆,↓ ∈ Rr×D, which is a common method for reducing compute
overheads (Wang et al., 2021; 2023a). To summarize, the trainable parameters in S6 include state
matrices A(d) across D channels, parameters W∆,↑,W∆,↓ and β∆ for computing ∆t, and weight
matrices WB,WC ∈ RH×D for computing Bt,Ct. The state matrices and the input transition
vectors of S6 are then discretized according to A

(d)

t = exp(∆
(d)
t A(d)),B

(d)

t = ∆
(d)
t Bt. In contrast

to S4, where B
(d)

varies independently across channels, the differences in B
(d)

in S6 are solely due
to the scalar ∆(d)

t . Additionally, S6 uses the same Ct for all channels at each time step t, unlike S4,
which has unique C(d) for each channel.

Mamba. Similar to the Transformer block, which consists of attention and linear layers, the Mamba
block proposed by Gu & Dao (2024) features an S6 module, a point-wise 1D causal convolution layer
(Conv1d) for token mixing, linear layers — including input (Win) and output (Wout) projection
layers and a gated MLP. Mamba, primarily allocating its parameters in Win and Wout, is inspired by
H3 (Fu et al., 2022).

4 BENCHMARKING PEFT METHODS ON SSM-BASED MODELS

In this section, we examine the effectiveness of popular PEFT methods when applied naively to
SSM-based models, specifically Mamba-I (130M and 1.4B). Further evaluation on other models,
including Mamba-II (Dao & Gu, 2024) and Jamba (Lieber et al., 2024), is deferred to Sec. C.5.

Experiment Setup. We consider two main categories of PEFT methods: parameter-based and
prompt-based. From each category, we evaluate two representative methods. For parameter-based
methods, we select BitFit (Zaken et al., 2022) and LoRA (Hu et al., 2021). For prompt-based
methods, we choose prefix-tuning (Li & Liang, 2021) and prompt tuning (Lester et al., 2021). For
BitFit, fine-tuning is performed on all bias terms present in the Mamba architecture, specifically
the biases of the Conv1d and the linear projection layer of step size ∆. For prefix-tuning, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

adopted the huggingface implementation (Mangrulkar et al., 2022) to construct a MLP, employing
the overparameterization technique to ensure stable optimization.

We consider five datasets spanning diverse domains: the GLUE natural language understanding
benchmark (Wang et al., 2019), the DART RDF-to-text generation benchmark (Nan et al., 2021),
the Spider text-to-SQL generation benchmark (Yu et al., 2018), and CIFAR-10 for computer vision
tasks (Krizhevsky et al., 2009). A more detailed introduction of the datasets considered in this paper
is provided in Sec. B. Notably, prefix-tuning requires substantially more parameters than other PEFT
methods, as it employs a multilayer perceptron at each layer to project a fixed sequence into soft
tokens for training stability. For all other PEFT methods, we constrain the trainable parameters
to fewer than 0.5% for language tasks and 1% for vision tasks, ensuring a fair comparison. The
higher allowance for vision tasks accommodates the need for extensive fine-tuning for new modalities.
Consequently, LoRA adapters are applied exclusively to linear projection matrices, leaving the SSM
modules unchanged to comply with these parameter constraints.

Additional experiments on models like Jamba Lieber et al. (2024) and Mamba-II Dao & Gu (2024),
and advanced PEFT methods yang Liu et al. (2024) are covered in Secs. C.5 and C.6.

Results. Table 1 presents our results. Parameter-based PEFT methods generally outperform prompt-
based methods significantly, despite using the same number of trainable parameters—except for
prefix-tuning, which underperforms despite using more parameters. LoRA consistently achieves the
best performance across all tasks and metrics, occasionally surpassing full fine-tuning while tuning
less than 1% of parameters. Detailed results for GLUE and Spider are available in Sec. C.2.

These findings above raise two critical questions: (i) Why do existing prompt-based PEFT methods
lose effectiveness when applied to SSM-based models? (ii) Can LoRA achieve better performance
when applying on both linear projection matrices and SSM modules? To address these questions, we
conduct both theoretical analysis and further empirical studies on prompt-based PEFT methods and
LoRA in the context of SSMs.

Dataset GLUE DART SAMSum Spider CIFAR-10
Metric (↑) Avg. Score METEOR BLEU R1 R2 RL Acc. Acc.

Prompt Tuning 63.8 66.2 39.8 50.1 25.6 41.6 43.6 30.4
Prefix-Tuning 68.6 66.6 42.5 50.6 26.5 42.1 39.7 41.0

BitFit 76.8 67.0 43.7 50.3 25.7 41.9 48.4 44.4
LoRA (Linear Projection Matrices) 80.5 70.4 49.1 50.9 27.0 42.3 57.5 61.1
Full Fine-Tuning 80.5 71.0 51.8 51.2 27.3 42.9 66.2 60.0

Table 1: Benchmarking popular Parameter-Efficient Fine-Tuning (PEFT) methods on five
real-world datasets. R1/R2/RL stand for ROUGE-1/2/L. For all PEFT methods except prefix-tuning,
we report the best results for cases where fewer than 0.5% of parameters are tunable for language
tasks and fewer than 1% for vision tasks (i.e., CIFAR-10) after comprehensive hyperparameter search.
Prefix-tuning is an exception, as it requires training a multilayer perceptron at each layer to project a
fixed sequence into soft tokens for training stability, consuming more trainable parameters than our
threshold. Bold numbers indicate outperformance over all PEFT methods, while underlined numbers
indicate outperformance over full fine-tuning.

4.1 LIMITATIONS OF APPLYING EXISTING PROMPT-BASED METHODS ON SSMS

This part addresses our first question arised in this section: Why do existing prompt-based PEFT
methods lose effectiveness when applied to SSM-based models? We approach this by establishing an
upper bound on the performance of existing prompt-based PEFT methods.

A key feature of SSMs is their next-token prediction mechanism, which relies solely on the current
token and hidden states, without considering previous tokens directly. The hidden states encapsulate
all information from preceding tokens. Consequently, prepending tokens to an SSM is functionally
equivalent to tuning the initial state, as demonstrated by the following proposition. The formal version
and proof of Proposition 1 are presented in Sec. C.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proposition 1 (Informal: Expressivity of Prefix-Tuning on SSMs). The maximum expressiveness
achievable via prefix-tuning on SSMs is equivalent to the expressiveness of solely tuning the initial
hidden state h0.

To evaluate the performance of initial state tuning, we conducted experiments on the GLUE bench-
mark, comparing prompt-tuning, prefix-tuning, initial state tuning, and LoRA across seven GLUE
tasks. Table 2 presents our findings. The results demonstrate that initial state tuning generally
outperforms prefix-tuning, corroborating our analysis. However, LoRA significantly surpasses initial
state tuning in performance. These observations lead us to conclude that the limitations of initial state
tuning inherently constrain the potential of existing prompt-based methods, preventing them from
outperforming LoRA in the context of SSM-based models. While the reason for the underperfor-
mance of initial state tuning is unclear, we identify explaining it as an interesting direction for future
research. Nevertheless, we propose a plausible explanation. We hypothesize that SSM’s exclusive
reliance on hidden states, without direct access to previous tokens or states, severely restricts the
impact of initial state tuning, particularly for long sequences. This aligns with the findings of Fu et al.
(2022), which demonstrate SSM’s limitations in recalling older tokens.

Task RTE MRPC CoLA SST-2 QNLI QQP MNLI Avg. Score
Prompt Tuning 56.0 71.6 12.0 89.4 76.8 79.6 61.5 63.8
Prefix-Tuning 69.5 75.7 43.4 91.5 83.4 83.1 35.6 68.6
Initial State Tuning 66.8 75.1 52.4 92.4 86.4 86.1 78.5 76.8

LoRA (Linear Projection Matrices) 70.4 82.8 60.6 92.4 88.4 87.7 81.5 80.5

Table 2: Comparison of prompt-tuning, prefix-tuning, initial state tuning, and LoRA on seven
tasks from the GLUE benchmark. We report the Matthews correlation (↑) for CoLA, overall
(matched and mismatched) accuracy (↑) for MNLI, and accuracy for other tasks. Initial State Tuning
and LoRA are constrained to use less than 0.5% trainable parameters. Bold numbers indicate
the best performance across all three methods, while underlined numbers show the highest score
among prompt-based methods (prefix-tuning and initial state tuning). Initial state tuning outperforms
prefix-tuning and prompt-tuning on five out of seven tasks, while LoRA consistently outperforms all
prompt-based methods.

4.2 OPTIMAL APPLICATION OF LORA IN SSM-BASED MODELS

In our previous experiments, we applied LoRA exclusively to linear projection matrices. However,
SSM-based models typically comprise various modules, including S4 (convolution layer), S6, and
multiple distinct linear projection matrices. To investigate the impact of applying LoRA to different
components, we conduct a comprehensive study across five datasets.

Model Mamba-130M Mamba-1.4B
Dataset Params. (%) GLUE DART CIFAR-10 Params. (%) SAMSum Spider
Metric (↑) Avg. Score METEOR BLEU Acc. R1 R2 RL Acc.

SSM Modules .92 79.3 69.9 50.8 44.0 .46 50.5 26.4 42.2 56.3
Linear Projection Matrices 1.02 80.5 71.2 49.2 62.8 .51 50.8 26.9 42.8 54.7
Both 1.92 80.2 71.0 49.5 60.4 .97 50.8 26.6 42.7 56.4

Table 3: For LoRA, targeting only the linear projection matrices yields better performance than
applying it to all modules in Mamba. Consistent rank is maintained across all three methods.

We examine LoRA’s performance when applied to SSM modules and linear projection matrices
separately, as well as in combination. For linear projections, we test LoRA on all possible matrices.
For SSM modules, we apply LoRA to all weight matrices (e.g., weight matrices of input-dependent
step size ∆) in SSM modules. For the state transition matrices A, given their diagonal structure for
each channel, we treat them as vectors, concatenate the channels into a matrix, and apply LoRA. The
results are presented in Table 3. We observe that applying LoRA to linear projection matrices achieves
superior performance on six out of eight metrics. Interestingly, additional tuning of SSM modules
lead to decreased performance in some cases. This suggests that LoRA might not be well-suited for
tuning SSM modules, while being highly effective for linear projection matrices. This conclusion
also extends to other models, including Mamba-II, Jamba, and an advanced variant of LoRA known
as DoRA (yang Liu et al., 2024), with corresponding results available in Sec. C.5 and Sec. C.6.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To further elucidate this concept, we present the following lemma, which examines a simplified model
architecture consisting of S6 with a linear input projection matrix at each layer. We demonstrate that
fine-tuning the projection matrix Win encompasses the expressivity of fine-tuning the parameters
WB , WC , and W∆,↑.

Lemma 2 (Expressivity of Fine-Tuning Projection Matrices). Consider an S6 with an ad-
ditional linear input projection matrix Win. Denote the input-dependent SSM parameters
{{A(d)

n }Dd=1,Bn,Cn}Nn=1 as θ(·; {A(d)}Dd=1,WB,WC ,W∆,↑,W∆,↓,Win). For any given WB ,
WC , and W∆,↑, there exists a Ŵin such that for any input sequences X ∈ RD×N ,

θ(X; {A(d)}Dd=1,WB,WC ,W∆,↑,W∆,↓) = θ(X; {A(d)}Dd=1,WB,WC ,W∆,↑,W∆,↓, Ŵin).

We expand upon this section in Sec. C.4, where we provide more detailed statements of the above
assertion and its corresponding proofs. Additionally, we empirically examine applying LoRA to
different weight matrices of Mamba, which incorporates multiple linear projection matrices in each
layer, including output projection matrices Wout after the S6 module and input projection matrices
Win before the gating and convolutional layer. Our experiment results, however, reveal that applying
LoRA to different matrices achieves similar performance, as detailed in Sec. C.4.

5 DIMENSION SELECTION FOR TUNING STATE-SPACE MODELS

In Sec. 4.2, we demonstrate the efficacy of LoRA in fine-tuning linear projection matrices. Theoreti-
cally, fine-tuning all components should offer greater expressive power. However, Table 3 indicates
that applying LoRA to SSM modules might paradoxically decrease performance. Therefore, we aim
to develop an algorithm specifically tailored for tuning SSM modules. To achieve this, we first seek
to understand the relative importance of different parameters within SSM modules.

5.1 UNDERSTANDING THE ROLES OF STATE MATRIX A, INPUT TRANSITION VECTOR B, AND
OUTPUT MAPPING VECTOR C FOR A SINGLE CHANNEL IN S4 MODULES

Problem Setting. Inspired by Zeng & Lee (2024)’s theoretical analysis of LoRA’s expressive
power, we adopt a similar framework to explore the expressive potential of various parameters in
the S4 model. Specifically, we assume a target model that performs well on the intended task and
a frozen model, which may be either pretrained or randomly initialized. Our goal is to identify a
parameter-efficient method to update the frozen model so that it becomes functionally equivalent to
the target model. In alignment with Zeng & Lee (2024), we assume that the frozen model’s capacity
is equal to or exceeds that of the target model. This assumption is based on two main considerations:
(i) analytical tractability, which necessitates that the frozen model must have the potential to match
the functionality of the target model, and (ii) a practical rationale, given that the models typically used
in practice are often overparameterized. Assume that both the target model and the frozen model are
S4, with the target model having a hidden state dimension H⋆ and the frozen model having a hidden
state dimension H ≥ H⋆. Meanwhile, suppose that all the hidden dimensions of both models are
valid, meaning that none of the parameter elements are zero. The target model, frozen model, and the
updated model after tuning the parameters on the frozen model can be formulated using discretized
parameters A,B,C as follows:

(Target model) f⋆(x)n =
∑n

m=1
C⋆A

m−n

⋆ B⋆xm, where diag(A⋆),B⋆,C⋆ ∈ RH⋆ ,

(Frozen model) f0(x)n =
∑n

m=1
CA

m−n
Bxm, where diag(A),B,C ∈ RH ,

(Updated model) f̂(x)n =
∑n

m=1
ĈÂ

m−n

B̂xm, where diag(Â), B̂, Ĉ ∈ RH .

Parameter Efficiency Analysis on S4. Let PH denote the set of all H ×H permutation matrices.
Given this formulation, we present our first analysis of parameter efficiency for the S4 model in the
following lemma. This analysis is based on the parameters after necessary discretization (A,B,C).

Lemma 3 (Essential Discretized Parameter Set for S4). Consider the parameters after discretization,
i.e., A,B,C. To achieve functional equivalence between the updated model and the target model,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

i.e., f̂ ≡ f⋆, it is sufficient to tune the following number of parameters:

minP∈PH

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[P⊤(diag(A)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0
+

aligning used dimensions with target model︷ ︸︸ ︷∥∥∥[P⊤AP
]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0︸ ︷︷ ︸

aligning the state matrix

+
∥∥∥[P⊤(B ⊗C⊤)

]
1:H⋆

−B⋆ ⊗C⊤
⋆

∥∥∥
0︸ ︷︷ ︸

aligning input-output interactions

.

This lemma highlights the significance of identifying essential hidden state dimensions. The term∥∥∥[P⊤(diag(A)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0

underscores the importance of excluding redundant di-
mensions. This can be achieved by either directly removing these dimensions from the state matrix
A, or by updating B or C to ensure that only the selected hidden state dimensions are utilized during
the input transition or output mapping phases. Once redundant dimensions are filtered out, tuning
only the essential dimensions is sufficient to align the updated model with the target model. Proofs
and further details are provided in Sec. D.1.

5.2 SSM DIMENSION SELECTION ALGORITHM

Inspired by Lemma 3, we introduce the Dimension Selection algorithm to construct adapters on SSMs
for fine-tuning. This algorithm first selects unimportant dimensions and sets them to zero, filtering
out irrelevant information based on Lemma 3. For enhanced parameter efficiency, we then update
only the most important channels and state dimensions within these selected subsets. Regardless of
other selections, we consistently tune the coefficients of residual connections and biases in linear
projections, as these components contain a negligible number of parameters. However, we will later
demonstrate that in practice, tuning residual connections and biases is unnecessary. The detailed
pseudo-code is presented in Alg. 1. Given that tuning C alone is as effective as tuning both B
and C for S4 (Gupta et al., 2022), subsequent discussions on S4 will focus solely on C, excluding
{B(d)}Dd=1 for simplicity, without loss of generality.

Algorithm 1: Dimension Selection Algorithm for S4
Input: Dataset D, warmup epochs E0, train epochs E, number of layers L, total channels D,

total states H , initial state sparsity β0, initial channel sparsity α0, state update fraction β,
channel update fraction α

Output: Model adapter

/* Warmup Epochs */
1 Update SSM modules using D for E0 epochs;
/* Setup Adapters */

2 for l = 1 to L do
/* Set dimensions as zero */

3 Sort channels based on magnitude of A
(d)

at each channel;
4 Set final (1− β0)D as zero by letting C(d) = 0, denote non-zero channels as set D;
5 for d ∈ D do
6 Sort states based on magnitude of Ā(d)

h at each state dimension;
7 Set final (1− α0)H as zero by letting corresponding C

(d)
h = 0, denote non-zero states as

set H;
/* Unfreeze dimensions */

8 Sort non-zero channels D based on magnitude of parameter changes at each channel;
9 Denote first β|D| as D′;

10 for d ∈ D′ do
11 Sort non-zero state dimensions based on magnitude of parameter changes;
12 Construct adapter to update first α|H| states at d-th channel;

/* Include Residual Connections and Bias */
13 Construct adapter for all residual connections and bias;

We refer to our method as SDLoRA. This approach extends beyond applying LoRA to linear
projection matrices by Selectively updating certain subset of channels and states Dimensions, which
are chosen by Alg. 1. In Sec. D.9, we analyze the overhead of SDLoRA and demonstrate that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the additional dimension selection algorithm introduces only a marginal increase in computational
overhead. Overall, SDLoRA is not only faster but also more memory-efficient compared to LoRA.

Our analysis considers cases where each input token xt ∈ X , with X ∈ RD bounded, and the input
sequence length is finite. The following theorem elucidates the expressive capacity of SDLoRA on
deep S4 models. For proof and additional details, refer to Sec. D.2.

Theorem 4 (Expressive Power of SDLoRA on Deep S4 Models). Consider a D-dimensional input
sequence. Assume that the linear layers in the model have linear activation functions. Using SDLoRA,
any deep S4 model with H hidden states per channel and L layers can be updated to accurately
present any target deep S4 model without residual connections, having a reduced hidden state
dimension H⋆ < H , and fewer layers L⋆ < L. This can be achieved by selectively fine-tuning at
most ⌈DL⋆/L⌉ channels, H⋆ hidden states on SSM modules, applying rank-⌈ L

L⋆ ⌉ updates on linear
projection matrices and updating residual connections and biases at each layer, while additionally
fully fine-tuning the linear projection matrix of the last layer only.

This theorem demonstrates that a larger pretrained model requires selecting fewer channels and
hidden states at each layer. Furthermore, if the target task is less complex — evidenced by a smaller
target model with fewer layers L⋆ and hidden states H⋆ — the number of channels and hidden
states needed is also reduced. This finding aligns with the theoretical analysis of LoRA presented in
Zeng & Lee (2024), which shows that larger pretrained models require fewer learnable parameters
(referred to as “lower rank” in their context) during fine-tuning, especially for simpler tasks. Although
this theorem is constrained by the assumptions of linear activations and the absence of residual
connections in the target model, while also requiring fully fine-tuning the linear project matrix of last
layer, our findings have broader implications. Our following experimental results suggest that these
findings generalize beyond these restrictions.

5.3 EMPIRICAL EVALUATION ON DEEP S4 MODELS

In this experiment, we seek to validate the theoretical guarantees for SDLoRA under more general
conditions, including residual connections in the target model and ReLU activations in both frozen
model and target model, without full fine-tuning the linear projection matrix of the last layer. Ad-
ditionally, we assess SDLoRA’s empirical performance on both synthetic and real datasets. More
experiment setup details are provided in Sec. D.3.

0 25 50 75 100
1

2

3

M
SE

Frozen
LoRA (Proj)
LoRA (S4+Proj)
SDLoRA
Full Fine-Tuning

Trainable Parameters (%)
Figure 1: Approximation error of PEFT methods
on deep S4 models for synthetic experiments.

Method # Params (%) Accuracy
Frozen 0.00 73.9

LoRA (Proj) 16.00 77.6
LoRA (S4+Proj) 15.52 77.6
SDLoRA 11.17 78.0
Full Fine-Tuning 100.00 77.6

Table 4: Accuracy comparison between SD-
LoRA and LoRA on deep S4 models for CIFAR-
10 (Krizhevsky et al., 2009).

Synthetic Dataset. For the synthetic dataset, we employ a regression setting to validate our
theoretical results. (Experiment Setting) We randomly initialize two models: a one-layer deep S4
model as the target and a four-layer deep S4 model as the frozen model. The task is to update the
frozen model to match the functionality of the target model. We generate an input sequence X of
length 200 and dimension 64, with values uniformly drawn from integers between 0 and 9. This input
is then processed through the target model to obtain the corresponding outputs. These input-output
pairs are used to train the frozen model over 500 iterations using the Mean Squared Error (MSE) loss.

(Results) Figure 1 displays the MSE, averaged across all tokens, plotted against the trainable pa-
rameters of different methods. We observe that by using only ≈ 28% of the total parameters of the
frozen S4 model, SDLoRA closely approximates the performance of the target S4 model, achieving
results comparable to full fine-tuning, thereby substantiating our theorem. Meanwhile, we observe
that SDLoRA outperforms both the approach of applying LoRA solely to linear projection matrices
and the approach of applying LoRA to both the S4 module and linear projection matrices. In this

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

latter approach, the diagonal vectors of state matrices A(d), input transition vectors B(d) and output
mapping vectors C(d) are naively concatenated across D channels into three D ×H matrices before
low-rank updates are applied. In Sec. D.3, we also evaluate an extension of SDLoRA that performs
sparse tuning on the linear projection matrices by updating only the columns corresponding to the
channels selected by Alg.1, instead of applying LoRA. This extension shows promising results.

CIFAR-10. Previous work (Dinh et al., 2022) demonstrates that large language models can be fine-
tuned for image classification tasks. Here, we consider the this challenging task of adapting SSMs for
computer vision. In this experiment, we conduct experiments on the CIFAR-10 dataset (Krizhevsky
et al., 2009). We employ an eight-layer deep S4 model with a hidden state dimension of 16 and a
model dimension of 64. Since pretrained deep S4 models are not available, we simulate a pretrained
scenario by fully updating the model for 50 epochs first, then subsequently evaluating the PEFT
methods over an additional 5 epochs. The results, as reported in Table 4, indicate that SDLoRA
outperforms LoRA with fewer trainable parameters.

5.4 EMPIRICAL EVALUATION ON MAMBA

Lastly, we conduct experiments on pretrained Mamba models. We consider four datasets, using
Mamba-130M for GLUE and DART, and Mamba-1.4B for SAMSum and Spider. We evaluate three
configurations each for LoRA and SDLoRA, applying LoRA to distinct parameter subsets and varying
SDLoRA’s state freeze ratios while maintaining a 99% channel freeze ratio. In this experiment, we
allow channels and states to learn directly from the datasets without manually setting any to zero. We
then select a LoRA-rank such that all configurations have a similar number of trainable parameters
for a fair comparison. Residual connections and biases are frozen in this experiment. All reported
values represent averages across three simulations, with learning rates independently selected for each
simulation. For more details, please see Sec. D.4. The experimental results are reported in Table 5.
The results demonstrate that SDLoRA outperforms LoRA for fine-tuning the SSM even when 99%
of the channels are frozen. This result underscores the efficacy of SDLoRA. The same conclusions
are further supported by additional models, including Jamba and Mamba-II, as well as more datasets,
such as CelebA (Liu et al., 2015), and other LoRA variants, including DoRA and LoRA+ (Hayou
et al., 2024). The corresponding results are presented in Secs. D.5 to D.8, respectively.

Model Mamba-130M Mamba-1.4B

Method Params
(%)

GLUE DART Params
(%)

SAMSum Spider
Avg. Score (↑) BLEU (↑) METEOR (↑) R1 (↑) R2 (↑) RL (↑) Acc. (↑)

Val Test Val Test Val Test Val Test Val Test Val Test Val Test

LoRA
.3178 80.71 78.74 50.44 41.27 70.00 65.84 .1594 51.59 50.56 27.66 26.49 42.87 42.22 82.08 61.19
.3600 80.79 79.39 51.03 42.02 70.16 66.18 .1810 51.61 51.03 28.15 26.81 43.18 42.36 83.52 62.64
.3883 80.39 79.49 50.70 41.55 69.83 65.98 .1947 51.48 50.90 27.90 26.63 43.26 42.41 82.98 59.25

SDLoRA
.3492 80.93 79.75 51.45 42.37 70.45 66.60 .1760 51.63 50.90 27.97 26.86 43.32 42.52 84.36 62.57
.3498 81.05 79.16 51.47 43.85 70.46 66.38 .1761 51.61 50.76 28.02 26.65 43.38 42.29 84.48 59.96
.3509 80.67 78.73 51.54 42.56 70.45 66.45 .1764 51.74 50.86 28.08 26.54 43.39 42.19 84.19 61.25

Table 5: Performance comparison between SDLoRA and LoRA on pretrained Mamba models.
Bold numbers indicate the best performance for each task. Underlined numbers indicate that the
model outperforms all models fine-tuned via the alternative method for the same task (e.g., SDLoRA
outperforms all LoRA methods, or vice versa). On Mamba-130M, we compare the performance of
SDLoRA and LoRA on GLUE (Wang et al., 2019) and DART (Nan et al., 2021) benchmarks. On
Mamba-1.4B, we compare performance of SDLoRA and LoRA on SAMSum (Gliwa et al., 2019)
and Spider (Yu et al., 2018) benchmarks. R1/R2/RL stand for ROUGE-1/2/L.

6 CONCLUSION

In this paper, we present the first study on the performance of PEFT methods applied to SSM-based
models. Our evaluation of existing PEFT methods provides valuable insights and guidelines for future
researchers to parameter-efficiently fine-tune SSM-based models to other domains. Moreover, we take
a first step in establishing a theoretical framework for studying PEFT methods on SSM-based models.
Furthermore, we introduce SDLoRA, the first PEFT method specifically tailored for SSM-based
models, which outperforms existing methods. While our work offers numerous valuable insights, we
discuss limitations and further works in Sec. E.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide our complete
implementation at https://anonymous.4open.science/r/ssm-peft-8F6F/. This
repository contains instructions needed to reproduce the results reported in our work. We also
include detailed documentation and example commands for running the experiments, along with
requirements for dependencies to facilitate a smooth setup.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877–1901, 2020.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. In International Conference on Machine Learning, 2024.

Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy yong
Sohn, Dimitris Papailiopoulos, and Kangwook Lee. LIFT: Language-interfaced fine-tuning for
non-language machine learning tasks. In Advances in Neural Information Processing Systems,
2022.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In
International Conference on Machine Learning, pp. 647–655, 2014.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
Hungry hungry hippos: Towards language modeling with state space models. In International
Conference on Learning Representations, 2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800GB
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Angeliki Giannou, Shashank Rajput, and Dimitris Papailiopoulos. The expressive power of tuning
only the normalization layers. In The Thirty Sixth Annual Conference on Learning Theory, pp.
4130–4131, 2023.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summarization. EMNLP-IJCNLP 2019, pp. 70, 2019.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. In Advances in Neural Information Processing Systems,
volume 33, pp. 1474–1487, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers. In
Advances in Neural Information Processing Systems, volume 34, pp. 572–585, 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. In Advances in Neural Information Processing Systems, volume 35,
pp. 35971–35983, 2022a.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022b.

11

https://anonymous.4open.science/r/ssm-peft-8F6F/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning, pp. 2790–2799, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of
large language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5254–5276, 2023.

Uijeong Jang, Jason D Lee, and Ernest K Ryu. LoRA training in the ntk regime has no spurious local
minima. In International Conference on Machine Learning, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive transformers with linear attention. In International Conference on
Machine Learning, pp. 5156–5165, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, 2021.

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv preprint arXiv:2403.19887, 2024.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. GPT
Understands, Too. arXiv:2103.10385, 2021.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-Tuning:
Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and Tasks. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pp. 61–68, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. PEFT: State-of-the-art Parameter-Efficient Fine-Tuning Methods. https://github.
com/huggingface/peft, 2022.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh,
Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al. DART: Open-Domain Structured
Data Record to Text Generation. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
432–447, 2021.

12

https://github.com/huggingface/peft
https://github.com/huggingface/peft

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role of
attention in prompt-tuning. In International Conference on Machine Learning, pp. 26724–26768,
2023.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can Mamba learn how to learn? a comparative study on
in-context learning tasks. In International Conference on Machine Learning, pp. 39793–39812,
2024.

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, et al. RWKV: Reinventing
RNNs for the transformer era. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. When do prompting and prefix-tuning work? a
theory of capabilities and limitations. In International Conference on Learning Representations,
2024.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing incrementally for con-
strained auto-regressive decoding from language models. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 9895–9901, 2021.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019.

Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient
models at no extra cost. In Proceedings of Machine Learning and Systems, volume 3, pp. 365–386,
2021.

Hongyi Wang, Saurabh Agarwal, Yoshiki Tanaka, Eric Xing, Dimitris Papailiopoulos, et al. Cuttlefish:
Low-rank model training without all the tuning. Proceedings of Machine Learning and Systems, 5,
2023a.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt
tuning. In Advances in Neural Information Processing Systems, 2023b.

Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in Neural Information Processing Systems, volume 27, 2014.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 3911–3921, 2018.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, 2022.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In International
Conference on Learning Representations, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix
A In-depth Introduction of Baselines 15

B Details of Datasets 15

C Details of Sec. 4: Benchmarking PEFT Methods on SSM-based Models 17

C.1 Experiment Setup . 17

C.2 Extended Results on Benchmarking Existing PEFT Methods 17

C.3 Limitations of Applying Prompt-based Methods on SSMs 20

C.4 Optimal Application of LoRA in SSM-based Models 22

C.5 Benchmarking LoRA on Jamba and Mamba-II . 23

C.6 Benchmarking DoRA on Mamba . 24

D Details of Sec. 5: SDLoRA 25

D.1 Understanding the Roles of State Matrix A, Input Transition Vector B, and Output
Mapping Vector C for a Single Channel in S4 Modules 25

D.2 Extension to Deep S4 Models . 28

D.3 Experiments on Deep S4 Models . 30

D.4 Experiments on Pretrained Mamba . 30

D.5 SDLoRA Results on Additional Dataset . 31

D.6 Experiments on Jamba and Mamba-II . 31

D.7 DoRA and SDDoRA Results . 32

D.8 LoRA+ and SDLoRA+ Results . 33

D.9 Memory Usage and Runtime Analysis of SDLoRA 33

E Limitations & Future Works 35

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A IN-DEPTH INTRODUCTION OF BASELINES

In this section, we provide a more detailed description of the baseline methods.

LoRA (Hu et al., 2021). LoRA (Low-Rank Adaptation) focuses on fine-tuning large models by
freezing most of the pretrained parameters and injecting trainable low-rank matrices into each layer
of the Transformer’s architecture. The intuition behind using low-rank matrices comes from linear
algebra, where a large matrix can be closely approximated by the product of two smaller matrices.
The number of trainable parameters can be controlled with the rank of the low-rank matrices. LoRA
also uses a scaling parameter (LoRA alpha) for the weight matrices to control the balance of the
original model weights and LoRA weights during training. After fine-tuning, LoRA weights can be
merged with the original model weights, introducing no additional inference overhead.

Prompt Tuning (Lester et al., 2021). Prompt tuning freezes all model weights and prepends a
trainable soft prompt to the input prompt. The soft prompt consists of trainable virtual tokens, which
are continuous. At inference time, prompt tuning introduces an inference overhead based on the
number of virtual tokens used.

Prefix-Tuning (Li & Liang, 2021). Prefix-tuning also prepends trainable tokens to the input like
prompt tuning but injects separate prefixes in every layer. For each Transformer layer, prefix-tuning
prepends trainable embeddings to the attention’s K and V matrix. The authors have found that
directly training these prefixes can lead to unstable training, so they propose to over-parameterize
them with a large MLP to increase training stability. After training, the MLP can be dropped. Like
prompt tuning, prefix-tuning introduces an inference overhead, scaling linearly with the number of
trainable embeddings.

BitFit (Zaken et al., 2022). BitFit is a simple but effective PEFT method that freezes all model
weights except the bias terms, consequently greatly reducing the number of trainable parameters. As
no additional parameters are added, no inference overhead occurs.

B DETAILS OF DATASETS

In this paper, we consider five datasets across three domains: (i) Natural Language Understanding
(NLU), represented by GLUE (Wang et al., 2019); (ii) Natural Language Generation (NLG), including
SAMSum (Gliwa et al., 2019), Spider (Yu et al., 2018) and DART (Nan et al., 2021); and (iii)
Computer Vision (CV), represented by CIFAR-10 (Krizhevsky et al., 2009).

GLUE (Wang et al., 2019). The GLUE (General Language Understanding Evaluation) benchmark
is a collection of datasets used for training, evaluating, and analyzing natural language understanding
models across a range of diverse tasks. The benchmark includes nine sentence- or sentence-pair
language understanding tasks that require various features of understanding, such as sentiment
analysis, linguistic acceptability, semantic textual similarity, and question answering. We use seven
datasets from the GLUE benchmark (RTE, MRPC, CoLA, SST-2, QNLI, QQP, MNLI) where the
model has to choose between two or three (for MNLI) different choices for the respective task. Except
for CoLA, we evaluate all used datasets with the accuracy metric. For CoLA, Matthews correlation is
employed.

SAMSum (Gliwa et al., 2019). SAMSum is a dataset for dialogue summarization research, com-
prising approximately 16,000 synthetic text conversations with accompanying summaries. Created by
English-fluent linguists, these exchanges simulate real-world digital communications across various
topics and styles. The conversations range from informal to formal, incorporating elements like slang
and emoticons to reflect authentic messaging patterns. Each dialogue is paired with a concise, third-
person summary, capturing its essential content. This structure makes SAMSum particularly useful
for developing and evaluating automated summarization systems capable of processing conversational
text.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Data Size (Train) Size (Val) Size (Test) Max. seq. len. #Epochs Mamba Size Metrics

GLUE

RTE 1992 498 277 291 10 130M Accuracy

MRPC 2934 734 408 105 10 130M Accuracy

CoLA 6840 1711 1043 47 10 130M Matthews corr.

SST-2 53879 13470 872 68 10 130M Accuracy

QNLI 83794 20949 5463 602 10 130M Accuracy

QQP 291076 72770 40430 316 3 130M Accuracy

MNLI 314161 78541 19647 425 3 130M Accuracy

Spider 5543 1375 1034 1412 10 1.4B, 2.8B Accuracy

SAMSum 14732 818 819 1174 10 1.4B ROUGE

DART 62659 2768 5097 491 10 130M METEOR, BLEU

CIFAR-10 40000 10000 10000 1730 5 130M Accuracy

Table 6: Datasets and models for our experiments. For each dataset, we report the number of
training, validation, and test samples, maximum sequence length, training epochs, model size, and
evaluation metric used.

Spider (Yu et al., 2018). Spider is a large-scale, complex, and cross-domain semantic parsing
and text-to-SQL dataset. It contains about 10,000 annotated SQL queries, distributed across 200+
databases, each with multiple tables. We follow Scholak et al. (2021) and use about 7,000 examples
for training and about 1,000 examples for validation, where we ignore sequences longer than 1536
tokens. The dataset consists of English question and SQL query pairs, which cover a wide range of
SQL operations including SELECT, WHERE, COUNT, GROUP BY, ORDER BY, JOIN, and more.
Given an English question and an SQL database scheme, the task for the model is to translate the
English question into an appropriate SQL statement. Evaluation is performed via accuracy where the
output is considered as correct if the model’s predicted SQL query and the included GT SQL query
give the same result when executed on the database. The dataset additionally categorizes each query
into easy (25%), medium (40%), hard (20%), and extra hard (15%) based on the complexity of the
required SQL statement. For evaluation, we report the execution accuracy of all categories.

DART (Nan et al., 2021). The DART (DAta Record to Text) benchmark is a large-scale, struc-
tured dataset designed for RDF-to-text (Resource Description Framework-to-text) generation with
80,000+ instances. The DART benchmark is composed of a collection of structured data triples and
corresponding text summaries which are organized into different categories. The task of the DART
benchmark is to generate natural language summaries that correctly represent the given structured
data inputs. DART is typically evaluated with METEOR and BLEU.

CIFAR-10 (Krizhevsky et al., 2009). The CIFAR-10 (Canadian Institute For Advanced Research)
dataset is a collection of images that are commonly used to train machine learning and computer
vision algorithms. It is one of the most widely used datasets for image classification. The CIFAR-10
dataset contains 60,000 (50,000 for training, 10,000 for validation) 32×32 color images in 10 different
classes. The 10 different classes are: airplane, car, bird, cat, deer, dog, frog, horse, ship, and truck.
There are 6,000 images of each class. For training, we center crop each image to 24×24 pixels and
flatten each image to a string, with a total of 24×24×3 words, where each word is a number between
0-255 representing the respective pixel value. Although CIFAR-10 is a dataset for computer vision,
previous work (Dinh et al., 2022) showed that Transformers can be adapted to the vision domain
from the language domain, and we tested this ability on the state-space model.

The dataset characteristics, including our train, validation and test set sizes, sequence lengths, and
number of epochs, are summarized in Table 6.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C DETAILS OF SEC. 4: BENCHMARKING PEFT METHODS ON SSM-BASED
MODELS

In this section, we provide a comprehensive experimental setup, proofs and further discussion of
theoretical results, and more detailed experimental outcomes.

C.1 EXPERIMENT SETUP

For each dataset, we choose the model size of Mamba depending on how challenging the dataset is
and perform a small grid search for one epoch on a subset of the data (1k-2k instances) with learning
rates {4× 10−1, 2× 10−1, 1× 10−1, ..., 1× 10−5} to find the optimal learning rate of each PEFT
method. Afterward, we train the best setting for each PEFT method on the full data for several epochs
(Table 6) using an NVIDIA RTX 3090 GPU for the 130M model and an NVIDIA A100 for the larger
1.4B and 2.8B models in mixed precision (BF16). We only report the validation metric of the best
epoch during training (early stopping) in our results. We fine-tune the Mamba models (Gu & Dao,
2024) pretrained from Pile (Gao et al., 2020) with AdamW with a linear learning rate decay schedule.
For LoRA we set rank to 8, alpha to 8, and dropout to 0.1 for all experiments. For evaluating NLG
tasks, we employ beam search with five beams and a maximum beam length of 1024.

C.2 EXTENDED RESULTS ON BENCHMARKING EXISTING PEFT METHODS

We present comprehensive fine-tuning results for the GLUE benchmark (Wang et al., 2019), DART
dataset (Nan et al., 2021), SAMSum dataset (Gliwa et al., 2019) and Spider dataset (Yu et al., 2018)
in Table 7, Table 8, Table 9 and Table 10, respectively. These experimental results encompass various
LoRA implementations (on different weight matrices and modules) and provide more fine-grained
results across all subtasks.

Layer Method # Params (%) RTE MRPC CoLA SST-2 QNLI QQP MNLI Avg.
Pretrained 0.00 46.9 67.9 0.0 52.4 50.5 36.8 32.3 41.0

All All Full 100.00 71.1 80.6 63.2 92.2 87.4 87.9 80.8 80.5
LoRA 1.92 69.9 80.9 61.4 91.9 88.4 87.6 81.1 80.2

Prompt
Prompt Tuning 16 tokens 0.01 56.0 71.6 12.0 89.4 76.8 79.6 61.5 63.8

Prefix-Tuning 1 token (no MLP) 0.03 67.5 75.7 43.4 91.5 83.4 83.1 35.6 68.6

Bias β∆,Conv1d BitFit 0.06 69.5 80.4 54.7 92.0 86.2 85.3 77.2 77.9

Linear Projection Matrices

All LoRA 1.02 70.0 82.4 57.7 93.3 88.7 88.7 82.5 80.5

Win,x LoRA 0.34 70.4 82.1 57.4 91.7 88.3 87.7 81.2 79.8

Win,z LoRA 0.34 70.0 82.4 58.1 92.4 87.3 87.3 80.4 79.7

Win,x,Win,z LoRA 0.68 70.4 84.3 62.4 92.5 88.6 88.3 81.7 81.2

Wout LoRA 0.34 70.4 82.8 60.6 92.4 88.4 87.7 81.5 80.5

S6

All Full 4.31 69.7 78.9 59.1 91.5 88.1 87.5 80.5 79.3
LoRA 0.92 66.1 78.7 57.8 90.8 87.8 86.9 79.8 78.3

A Full 0.46 68.2 82.1 54.2 90.9 86.4 87.9 79.4 78.4

WB,WC ,W∆,↓
Full 2.28 69.7 77.0 55.8 91.4 85.4 85.0 76.8 77.3
LoRA 0.69 67.9 78.9 48.8 91.4 86.9 85.8 78.6 76.9

W∆,↑
Full 1.40 66.1 75.2 56.7 91.1 86.2 87.1 78.5 77.3
LoRA 0.23 67.1 79.9 55.1 90.9 52.7 86.6 78.7 73.0

Conv1d Full 0.14 68.2 78.4 57.9 91.1 86.0 86.0 78.0 77.9

Others D,LayerNorm Full 0.04 65.3 79.2 40.3 91.1 83.9 86.0 67.0 73.3

Table 7: Full experimental results on the GLUE (Wang et al., 2019) benchmark. We report
accuracy (↑) for RTE, MRPC, SST-2, QNLI, QQP, and MNLI tasks. CoLA performance is measured
using Matthews Correlation Coefficient (↑). Mamba-130M is employed in this experiment. In each
Mamba block, Win,x and Win,z are input projections that preprocess the input for SSM modules
and the gating branch, respectively. Wout denotes the output projection after the gating mechanism.
WB and WC are weight matrices for computing input-dependent Bn and Cn. W∆,↓ and W∆,↑
represent down and up projections of low-rank weight matrices in the linear layer computing input-
dependent step size ∆n. β∆ represents the bias in this linear layer. D denotes the weight of residual
connections.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Layer Method # Params (%) METEOR BLEU

All All Full 100.00 71.0 51.8
LoRA 1.92 71.0 49.5

Prompt
Prompt Tuning 64 tokens 0.04 66.2 39.8

Prefix-Tuning 64 tokens 22.69 66.6 42.5

Bias β∆,Conv1d BitFit 0.06 67.0 43.7

Linear Projection Matrices

All LoRA 1.02 71.2 49.2

Win,x LoRA 0.34 70.3 48.9

Win,z LoRA 0.34 70.4 49.1

Win,x,Win,z LoRA 0.68 70.9 49.5

Wout LoRA 0.34 70.7 47.0

S6

All Full 4.31 70.3 48.7
LoRA 0.92 69.9 50.8

A Full 0.46 69.3 48.1

WB,WC ,W∆,↓
Full 2.28 70.1 50.0
LoRA 0.69 68.8 48.0

W∆,↑
Full 1.40 69.6 47.2
LoRA 0.23 68.9 47.0

Conv1d Full 0.14 68.6 47.9

Others D,LayerNorm Full 0.04 67.0 44.2

Table 8: Full experimental results on the DART (Nan et al., 2021) benchmark. We report
METEOR (↑) and BLEU (↑) scores. Mamba-130M is utilized in this experiment. In each Mamba
block, Win,x and Win,z are input projections that preprocess the input for SSM modules and the gating
branch, respectively. Wout denotes the output projection after the gating mechanism. WB and WC

are weight matrices for computing input-dependent Bn and Cn. W∆,↓ and W∆,↑ represent down
and up projections of low-rank weight matrices in the linear layer computing input-dependent step
size ∆n. β∆ represents the bias in this linear layer. D denotes the weight of residual connections.

Layer Method # Params (%) R1 R2 RL

All All Full 100.00 51.2 27.3 42.9
LoRA 0.97 50.8 26.6 42.7

Prompt
Prompt Tuning 64 tokens 0.01 50.1 25.6 41.6

Prefix-Tuning 64 tokens 12.81 50.6 26.5 42.1

Bias β∆,Conv1d BitFit 0.03 50.3 25.7 41.9

Linear Projection Matrices

All LoRA 0.51 50.8 26.9 42.8

Win,x LoRA 0.17 49.8 25.4 41.2

Win,z LoRA 0.17 50.0 26.1 41.7

Win,x,Win,z LoRA 0.34 50.9 27.0 42.3

Wout LoRA 0.17 49.9 25.4 41.5

S6

All Full 4.46 51.1 26.9 42.2
LoRA 0.46 50.5 26.4 42.2

A Full 0.23 50.1 25.9 41.7

WB,WC ,W∆,↓
Full 2.29 50.5 26.0 41.8
LoRA 0.35 50.4 26.0 41.8

W∆,↑
Full 1.85 50.3 25.7 41.6
LoRA 0.12 50.2 25.4 41.3

Conv1d Full 0.07 50.1 25.7 41.9

Others D,LayerNorm Full 0.02 49.6 24.8 41.1

Table 9: Full experimental results on the SAMSum (Gliwa et al., 2019) benchmark. R1, R2, and
RL represent ROUGE-1 (↑), ROUGE-2 (↑), and ROUGE-L (↑), respectively. Mamba-1.4B is utilized
in this experiment. In each Mamba block, Win,x and Win,z are input projections that preprocess the
input for SSM modules and the gating branch, respectively. Wout denotes the output projection after
the gating mechanism. WB and WC are weight matrices for computing input-dependent Bn and
Cn. W∆,↓ and W∆,↑ represent down and up projections of low-rank weight matrices in the linear
layer computing input-dependent step size ∆n. β∆ represents the bias in this linear layer. D denotes
the weight of residual connections.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Layer Method # Params (%) All Easy Medium Hard Extra

All All Full 100.00 66.2 84.3 69.5 53.4 43.4
LoRA 0.97 56.4 76.2 57.0 47.7 34.3

Prompt
Prompt Tuning 64 tokens 0.01 43.6 65.3 42.4 33.3 25.3

Prefix-Tuning 64 tokens 12.81 39.7 65.7 38.6 31.0 15.1

Bias β∆,Conv1d BitFit 0.03 51.3 74.2 50.9 43.1 26.5

Linear Projection Matrices

All LoRA 0.51 54.7 75.0 55.6 46.0 31.3

Win,x LoRA 0.17 60.8 76.6 63.5 52.9 38.6

Win,z LoRA 0.17 46.3 68.5 45.7 36.8 24.7

Win,x,Win,z LoRA 0.34 57.5 77.4 58.7 45.4 37.3

Wout LoRA 0.17 61.8 81.9 65.2 45.4 39.8

S6

All Full 4.46 56.7 76.6 57.8 46.0 34.9
LoRA 0.46 56.3 75.0 56.5 50.6 33.7

A Full 0.23 51.1 71.4 52.5 42.5 25.9

WB,WC ,W∆,↓
Full 2.29 47.2 72.2 46.9 35.6 22.9
LoRA 0.35 55.0 73.8 56.7 44.3 33.7

W∆,↑
Full 1.85 56.8 77.0 59.4 43.7 33.1
LoRA 0.12 58.0 78.6 59.4 48.9 33.1

Conv1d Full 0.07 53.2 74.6 52.9 43.7 31.9

Others D,LayerNorm Full 0.02 49.6 70.6 50.4 40.2 25.9

(a) Comprehensive experimental results on Spider using Mamba-1.4B.
Layer Method # Params (%) All Easy Medium Hard Extra

All All Full 100.00 71.8 87.5 73.5 63.8 51.8
LoRA 0.80 70.9 90.7 74.0 58.6 45.8

Prompt
Prompt Tuning 64 tokens 0.01 50.7 75.4 53.8 37.4 19.3

Prefix-Tuning 1 token 10.82 45.1 75.0 45.1 32.2 13.9

Bias β∆,Conv1d BitFit 0.02 59.9 82.3 60.8 52.9 31.3

Linear Projection Matrices

All LoRA 0.42 58.2 74.6 58.3 51.7 40.4

Win,x LoRA 0.14 66.7 87.9 67.7 56.9 42.8

Win,z LoRA 0.14 65.4 86.7 68.8 54.6 35.5

Win,x,Win,z LoRA 0.28 65.2 89.1 67.3 51.7 38.0

Wout LoRA 0.14 67.0 87.1 69.1 52.9 46.4

S6

All Full 4.44 65.7 81.9 68.8 58.0 41.0
LoRA 0.38 63.9 86.3 68.2 49.4 34.3

A Full 0.19 56.6 77.0 58.1 46.0 33.1

WB,WC ,W∆,↓
Full 2.27 58.8 79.0 61.0 50.6 31.3
LoRA 0.29 60.3 82.7 63.0 46.6 33.7

W∆,↑
Full 1.91 62.2 82.3 65.7 51.7 33.7
LoRA 0.10 62.2 80.2 66.6 49.4 36.7

Conv1d Full 0.06 62.5 81.9 66.1 51.1 35.5

Others D,LayerNorm Full 0.02 51.0 71.0 51.1 42.5 29.5

(b) Comprehensive experimental results on Spider using Mamba-2.8B.

Table 10: Full experimental results on Spider (Yu et al., 2018) dataset. We report the accuracy
(↑) for Spider and its subsets. We consider two models in our experiments: Mamba-1.4B and
Mamba-2.8B. In each Mamba block, Win,x and Win,z are input projections that preprocess the input
for SSM modules and the gating branch, respectively. Wout denotes the output projection after the
gating mechanism. WB and WC are weight matrices for computing input-dependent Bn and Cn.
W∆,↓ and W∆,↑ represent down and up projections of low-rank weight matrices in the linear layer
computing input-dependent step size ∆n. β∆ represents the bias in this linear layer. D denotes the
weight of residual connections.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Layer Method # Params (%) Accuracy
Pretrained 0.00 0.08

All All Full 100.00 59.96
LoRA 1.92 60.35

Bias β∆,Conv1d BitFit 0.06 44.40

Linear Projection Matrices

All LoRA 1.02 62.79

Win,x LoRA 0.34 53.49

Win,z LoRA 0.34 58.15

Win,x,Win,z LoRA 0.68 61.04

Wout LoRA 0.34 52.04

S6

All Full 4.31 55.51
LoRA 0.92 43.96

A Full 0.46 61.21

WB,WC ,W∆,↓
Full 2.28 49.51
LoRA 0.69 52.27

W∆,↑
Full 1.40 34.54
LoRA 0.23 56.49

Conv1d Full 0.14 55.65

Others D,LayerNorm Full 0.04 58.09

Table 11: Full experimenal results on the CIFAR-10 (Krizhevsky et al., 2009) dataset. We report
accuracy (↑). Mama-130M is utilized in this experiment. In each Mamba block, Win,x and Win,z
are input projections that preprocess the input for SSM modules and the gating branch, respectively.
Wout denotes the output projection after the gating mechanism. WB and WC are weight matrices
for computing input-dependent Bn and Cn. W∆,↓ and W∆,↑ represent down and up projections of
low-rank weight matrices in the linear layer computing input-dependent step size ∆n. β∆ represents
the bias in this linear layer. D denotes the weight of residual connections.

C.3 LIMITATIONS OF APPLYING PROMPT-BASED METHODS ON SSMS

We provide the formal version of Proposition 1 and its corresponding proof here. We start by
introducing the necessary notations. Denote the space of S4 mechanisms with D channels as
FS4,D. Let H0 = (h

(1)
0 ,h

(2)
0 , . . . ,h

(D)
0) ∈ RH×D represent the initial hidden state, and X =

(x1,x2, . . . ,xN) ∈ RD×N denote the input sequence. The output of the S4 mechanism is represented

as f(X;H0). Furthermore, for d-th channel, let state transition matrix A
(d)

= diag (a
(d)
1 , · · · , a(d)H)

and input transition vector B
(d)

= (b1, · · · , bH)⊤, where d = 1, . . . , D. For any vector v ∈ Rn, we
use vi:j ∈ Rj−i to denote the subvector of v containing elements from i ∈ N+ to j ∈ N+, where
i < j. Similarly, for any matrix M ∈ Rm×n, we use Mi1:j1,i2:j2 to denote the submatrix containing
rows i1 ∈ N+ to j1 ∈ N+ and columns i2 ∈ N+ to j2 ∈ N+, where i1 < j1, i2 < j2.

Proposition 5 (Formal Version of Proposition 1). Let f ∈ FS4,D be an S4 mechanism. Consider
prefix-tuning that prepends a sequence P = (p1, . . . ,pM) ∈ RD×M to the input sequence X =
(x1,x2, . . . ,xN) ∈ RD×N . For any prefix P ∈ RD×M , there exists an initial hidden state H⋆

0 ∈
RH×D such that the output of S4 after prefix-tuning and that after initial state tuning are identical,
i.e., f(X;H⋆

0) ≡ f([P ,X];H0)1:D,M+1:M+N for all X ∈ RD×N .

Furthermore, assume that
∏

0≤i<j≤H(a
(d)
j − a

(d)
i) ̸= 0 and

∏H
k=1 b

(d)
k ̸= 0 for all channels d =

1, . . . , D. Then the converse (i.e., for any H0 ∈ RH×D, there exists a P ⋆ ∈ RD×M such that
f([P ⋆,X];H0)1:D,M+1:M+N ≡ f(X;H⋆

0) for all X ∈ RD×N) holds if and only if M ≥ H .

Proof of Proposition 5. Given that operations in S4 are independent across all channels, we can,
without loss of generality, consider the case where the number of channels D = 1. Consequently,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

we can simplify our notation: the initial hidden states H0 ∈ RH×D become h0 ∈ RH , the input
sequence X ∈ RD×N becomes x ∈ RN , and the prefix P ∈ RD×M becomes p ∈ RM . We omit
the superscript (d) denoting the channel index. To differentiate between the hidden states and output
of prefix-tuned S4 (i.e., f([P ,X];H0)1:D,M+1:M+N) and initial state tuned S4 (i.e., f(X;H⋆

0)),
we introduce superscripts “PT” and “IST” respectively. The “PT” superscript denotes hidden states
and output of S4 after prefix-tuning, while “IST” indicates those after initial state tuning.

We divide the proposition into two statements:

1. For any prefix p ∈ RM , there exists an initial hidden state h⋆
0 ∈ RH such that the out-

put of S4 after prefix-tuning and that after initial state tuning are identical, i.e., f(x;h⋆
0) ≡

f([p,x];h0)M+1:N+M for all x ∈ RN .

2. Furthermore, assume that
∏

0≤i<j≤H(aj − ai) ̸= 0 and
∏H

k=1 bk ̸= 0. Then the converse (i.e.,
for any h0 ∈ RH , there exists a p⋆ ∈ RM such that f([p⋆,x];h0)M+1:N+M ≡ f(x;h⋆

0) for all
x ∈ RN) holds if and only if M ≥ H .

We will first prove the first statement and then proceed to prove the second statement.

Statement 1. The recurrent computation formulation of S4 in (2) implies that for each position i,
the output yi depends solely on the previous hidden state hi−1 and the current input xi. Thus, to
demonstrate that f(x;h⋆

0) ≡ f([p,x];h0)M+1:N+M for all x ∈ RN , it suffices to show that the
hidden state for predicting output yIST

1 equals that for predicting output yPT
M+1, where yIST

1 and yPT
M+1

are outputs corresponding to the input x1 for initial state tuning and prefix-tuning, respectively. In
other words, it is sufficient to show that the initial state of initial-state-tuned model hIST

0 = h⋆
0 is

equal to the (M + 1)-th hidden state of prefix-tuned model hPT
M+1 =

∑M
m=1 A

M−m
Bpm. When

this equality holds, the subsequent hidden states and outputs for both versions of S4 will be identical,
as the input sequence from that point onward is the same. Therefore, We prove the first statement by
letting

h⋆
0 =

M∑
m=1

A
M−m

Bpm.

Statement 2. We aim to investigate the conditions under which there exists a h⋆
0 ∈ RH such that

for any p ∈ RM , f([p⋆,x];h0)M+1:N+M ̸= f(x;h⋆
0). This is equivalent to demonstrating the

existence of h⋆
0 ∈ RH such that

h⋆
0 ̸=

M∑
m=1

A
M−m

Bpm, for all p ∈ RM .

This condition can be further reformulated as

RH \ span(A
M
B,A

M−1
B, . . . ,B) ̸= ∅,

which is equivalent to
span(A

M
B,A

M−1
B, . . . ,B) ⊊ RH . (5)

To determine when this condition holds, we analyze three distinct cases: (i) M < H , (ii) M = H ,
and (iii) M > H .

(Case 1: When M < H). In this scenario, it is obvious that (5) holds. The existence of such a h⋆
0

is guaranteed because the dimension of the span is at most M , which is strictly less than H . This
choice of h⋆

0 ensures that it cannot be represented as a linear combination of the vectors in the span,
thereby establishing the inequality.

(Case 2: When M = H). In this scenario, span(A
M
B,A

M−1
B, . . . ,B) = RH if and only if

(A
M
B,A

M−1
B, . . . ,B) are linearly independent. Note that

det(A
M
B,A

M−1
B, . . . ,B) = det(A

M
,A

M−1
, . . . ,1)

H∏
k=1

bk, (6)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where

det(A
M
,A

M−1
, . . . ,1) = det

aH−1
1 · · · a21 a1 1

aH−1
2 · · · a22 a2 1

...
. . .

...
...

...
aH−1
H · · · a2H aH 1

 (Expand)

= (−1)
H(H−1)

2

H∏
0≤i<j≤H

(aj − ai). (Vandermonde matrix) (7)

Combining (6) and (7) yields

det(A
M
B,A

M−1
B, . . . ,B) = (−1)

H(H−1)
2

H∏
0≤i<j≤H

(aj − ai)

H∏
k=1

bk.

Therefore, if and only if
∏

1≤i<j≤H(aj − ai) ̸= 0 and
∏H

k=1 bk ̸= 0, we have

det(A
M
B,A

M−1
B, . . . ,B) ̸= 0,

which is both necessary and sufficient for the linear independence of (A
M
B,A

M−1
B, . . . ,B), and

consequently, for the condition in (5) to be satisfied.

(Case 3: When M > H). The analysis presented in case 2 extends naturally to this scenario.

The combination of the three cases above completes the proof of statement 2.

C.4 OPTIMAL APPLICATION OF LORA IN SSM-BASED MODELS

Several studies (Hu et al., 2023; He et al., 2021) present findings on Transformers, indicating that
applying LoRA to linear projection matrices yields performance comparable to or marginally superior
to that of attention layers. In contrast, our experimental results on SSMs reveal that applying LoRA
to linear projection matrices is more effective than applying it to S6 (see Table 3). To elucidate this
phenomenon, we examine the influence of updating linear projection matrices on the model’s output.

Notations. For the feasibility of the analysis, we consider a simplified SSM-based architecture
which only consists of the input projection matrix Win ∈ RD×D and the S6 module parameterized by
diagonal state transition matrices {A(d)}Dd=1 with A(d) ∈ RH×H , the weight matrices WB,WC ∈
RH×D for computing input-dependent input transition vectors Bn ∈ RH and output mapping
vectors Cn ∈ RH , the down and up projection matrices W∆,↓ ∈ RD×R,W∆,↑ ∈ RR×D (where
R is the rank) for low-rank weight matrices for computing the input-depdenent step size ∆n =

(∆
(1)
n , . . . ,∆

(D)
n) ∈ RD, for n = 1, . . . , N . Define WS6 = [W⊤

B ,W⊤
C ,W⊤

∆,↑]
⊤ ∈ R(2H+R)×D.

In the Mamba implementation, WS6 is implemented as the weight matrix of a single linear layer,
referred to as x_proj in the codebase. Therefore, the parameters of the S6 can be formulated as

θ(·; {A}Dd=1,WS6,W∆,↓,Win) = {An,Bn,Cn}Nn=1.

Consider input sequence X = (x1, . . . ,xN) ∈ RD×N . Let Z = (z1, . . . ,zN) ∈ RD×N denote the
intermediate output after the input projection. The intermediate output at position n ∈ {1, . . . , N} is

zn = Winxn. (8)
Note that

Bn = WBzn, Cn = WCzn, ∆n = softplus(W∆,↑W∆,↓zn + β∆), (9)
and after discretization, we have

A
(d)

n = exp(∆(d)
n A(d)), Bn = ∆(d)

n Bn = ∆(d)
n WBzn. (10)

Combining (8), (9) and (10) yields

θ(X; {A}Dd=1,WS6,W∆,↓,Win) = {An,Bn,Cn}Nn=1, where (11)

A
(d)

n = exp(∆(d)
n A(d)), Bn = ∆(d)

n WBWinxn, Cn = WCWinxn,

∆n = softplus(W∆,↓W∆,↑Winxn + β∆).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Theoretical Analysis. In the following theorem, we demonstrate that applying LoRA exclusively
to Win is equivalent to applying it to WS6.
Lemma 6 (Detailed Version of Lemma 2). Consider a model consists of an S6 module augmented
with a linear input projection Win ∈ RD×D. For any fine-tuned model where only WS6 is updated to
W S6, there exists Ŵin such that updating only Win to Ŵin yields:

θ(X; {A(d)}Dd=1,W S6,W∆,↓,Win) = θ(X; {A(d)}Dd=1,WS6,W∆,↓, Ŵin) (12)

Proof of Lemma 6. In this proof, we use · to denote the corresponding notations for the model with
only WS6 updated, and use ·̂ to denote the corresponding notations for the model with only Win
updated.

To demonstrate (12), it is sufficient, according to (11), to find Ŵin that satisfies the following
equations:

WCWin = WCŴin (13)

W∆,↑Win = W∆,↑Ŵin

WBWin = WBŴin.

Since WS6 =

[
WB

WC

W∆,↑

]
, the three conditions (13) can be written as

W S6Win = WS6Ŵin. (14)

By applying Singular Value Decomposition (SVD) to WS6 and
(
WS6 −W S6

)
Win, we obtain:

WS6 = U
[
Σ O(2H+R)×(D−2H−R)

]
V ⊤, (15)(

WS6 −W S6
)
Win = U ′ [Σ′ O(2H+R)×(D−2H−R)

]
V ′⊤,

where U ,U ′ ∈ R(2H+R)×(2H+R), Σ,Σ′ ∈ R(2H+R)×(2H+R), and V ,V ′ ∈ RD×D. The diagonal
elements of Σ and Σ′ are in decreasing order.

We let

Ŵin = V

[
Σ−1U⊤W S6Win

Q

]
, (16)

where Q ∈ R(D−2H−R)×D is an arbitrary matrix to be determined later. Plugging (15) and(16) back
to WS6Ŵin and simplifying results in

WS6Ŵin

= U
[
Σ O(2H+R)×(D−2H−R)

]
V ⊤V

[
Σ−1U⊤W S6Win

Q

]
((15) & (16))

= W S6Win, (Simplifying)

which demonstrates that (14) is satisfied and completes the proof.

C.5 BENCHMARKING LORA ON JAMBA AND MAMBA-II

In this section, we expand our analysis beyond the deep S4 model and Mamba. Specifically, we
incorporate the Transformer-SSM hybrid model Jamba (Lieber et al., 2024) (Jamba-Tiny-319M) and
Mamba-II (Dao & Gu, 2024) (Mamba-II-130M and Mamba-II-1.3B).

Benchmarking LoRA Across Different Layers of Jamba. Table 12 presents the benchmark
results of LoRA and full fine-tuning across different layers of Jamba. Our findings demonstrate that,
on Jamba, LoRA is more effective on linear projection layers than on SSM modules, which aligns
with our conclusion on Mamba.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Layer Method # Params (%) METEOR BLEU
All All Full 100.00 70.8 45.0

Attention All LoRA 0.02 63.5 19.7

MLP All LoRA 1.37 70.9 46.2

Linear Projection Matrices + S6 All LoRA 0.31 70.2 40.0

Linear Projection Matrices
Win LoRA 0.11 68.9 37.8

Wout LoRA 0.05 67.7 31.9

S6 All Full 0.54 69.2 35.5
WB,WC ,W∆,↓ LoRA 0.15 66.6 24.2

Table 12: Benchmark results of LoRA on DART (Nan et al., 2021) dataset using Jamba-Tiny-
319M (Lieber et al., 2024).

Benchmarking LoRA Across Different Layers of Mamba-II. Tables 13 to 15 present the bench-
mark results of LoRA and full fine-tuning across different layers of Mamba-II. We follow the same
experimental setup used for Mamba-I and demonstrate that, on Mamba-II, our conclusion holds:
LoRA is more effective on linear projection layers than on SSM modules.

Model Mamba-II-130M Mamba-II-1.3B

Target Layers Dataset Params (%) DART Spider
Metric (↑) METEOR BLEU Acc.

SSM Modules LoRA < 1.0 64.2 40.1 54.1

Linear Layers LoRA 67.1 43.0 57.9

Both LoRA < 3.0 66.9 45.4 64.5

Table 13: Summary of benchmark results of LoRA on Mamba-II.

Layer Method # Params (%) METEOR BLEU

All All Full 100.00 66.6 34.9
LoRA 1.39 66.9 45.4

Linear Projection Matrices

Win,Wout LoRA 1.02 67.1 44.7

Win LoRA 0.68 67.1 43.0

Wout LoRA 0.34 66.8 42.3

S6
All Full 4.17 65.7 39.7

LoRA 0.38 64.2 40.1

WB,WC ,W∆
Full 4.00 66.0 36.2
LoRA 0.38 64.8 39.5

Table 14: Full benchmark results of LoRA on DART (Nan et al., 2021) dataset using Mamba-II
130M (Dao & Gu, 2024).

C.6 BENCHMARKING DORA ON MAMBA

To provide a more comprehensive analysis, we included evaluations of DoRA (yang Liu et al.,
2024), an advanced variant of LoRA. We evaluate the performance of DoRA on the DART dataset
using Mamba-130M and on the Spider dataset using Mamba-1.4B. The results are summarized in
Tables 16 to 18. Our findings are consistent with observations seen in LoRA: applying DoRA to
linear projection matrices proves more effective than its application to SSM modules. Interestingly,
applying DoRA to SSM modules not only offers limited benefits but, in some cases, even degrades
performance. This is particularly evident on the Spider dataset, when comparing the configurations
of applying DoRA to both linear projection matrices and SSM modules versus solely targeting linear

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Layer Method # Params (%) All Easy Medium Hard Extra

All All Full 100.00 64.8 85.9 65.7 54.0 42.2
LoRA 0.71 64.5 81.0 66.4 56.9 42.8

Linear Projection Matrices

Win,Wout LoRA 0.52 50.4 68.5 52.0 44.8 24.7

Win LoRA 0.35 57.5 76.2 59.4 48.9 33.7

Wout LoRA 0.18 57.9 81.0 56.7 51.7 33.1

S6

All Full 2.42 55.1 76.2 56.1 42.5 34.3
LoRA 0.18 54.1 74.2 58.1 46.0 21.7

Alog Full 0.00 21.5 46.0 18.8 11.5 2.4

WB,WC ,W∆
Full 2.34 50.3 73.0 52.2 39.7 22.3
LoRA 0.18 55.5 77.4 55.2 46.6 33.1

Table 15: Full benchmark results of LoRA on Spider (Yu et al., 2018) dataset using Mamba-II
1.3B (Dao & Gu, 2024).

projection matrices. Furthermore, we observe slightly better results on the smaller Mamba-130M
with DoRA, while for Mamba-1.4B, LoRA performs better.

Model Mamba-130M Mamba-1.4B

Target Layers Dataset Params (%) DART Spider
Metric (↑) METEOR BLEU Acc.

SSM Modules LoRA < 0.4 68.86 47.05 58.03
DoRA 68.79 47.07 55.32

Linear Layers LoRA < 0.4 70.25 48.86 61.80
DoRA 70.81 49.93 61.32

Both LoRA < 3.0 70.97 49.52 56.38
DoRA 70.94 51.36 55.71

Table 16: Summary of benchmark results of DoRA on Mamba.

Layer Method # Params (%) All Easy Medium Hard Extra
All All DoRA 1.02 55.7 77.0 57.0 47.1 29.5

Linear Projection Matrices

All DoRA 0.55 57.2 79.4 58.7 46.0 31.3

Win,x DoRA 0.19 58.4 80.2 60.1 49.4 30.7

Win,z DoRA 0.19 59.8 83.9 60.1 50.6 32.5

Win DoRA 0.37 60.7 78.6 62.1 52.9 38.6

Wout DoRA 0.18 61.3 79.4 63.9 50.0 39.2

S6

WB,WC ,W∆,↓ DoRA 0.48 58.9 77.4 62.1 47.1 34.9

A DoRA 0.13 50.5 72.6 51.1 44.3 22.3

WB,WC DoRA 0.35 55.3 78.2 57.8 41.4 28.9

W∆,↑ DoRA 0.13 55.3 76.2 59.2 42.5 27.1

Table 17: Full benchmark results of DoRA on DART (Nan et al., 2021) dataset using Mamba-130M.

D DETAILS OF SEC. 5: SDLORA

D.1 UNDERSTANDING THE ROLES OF STATE MATRIX A, INPUT TRANSITION VECTOR B, AND
OUTPUT MAPPING VECTOR C FOR A SINGLE CHANNEL IN S4 MODULES

Problem Setting. Inspired by Zeng & Lee (2024)’s theoretical analysis of LoRA’s expressive
power, we adopt a similar framework to explore the expressive potential of various parameters in
the S4 model. Specifically, we assume a target model that performs well on the intended task and
a frozen model, which may be either pretrained or randomly initialized. Our goal is to identify a

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Layer Method # Params (%) METEOR BLEU
All All DoRA 2.02 70.9 51.4

Linear Projection Matrices

All DoRA 1.09 71.2 50.8

Win,x DoRA 0.37 70.8 49.9

Win,z DoRA 0.37 70.2 48.3

Win DoRA 0.74 70.7 51.6

Wout DoRA 0.36 70.7 46.0

S6

WB,WC ,W∆,↓ DoRA 0.95 70.2 50.0

A DoRA 0.26 68.8 47.1

WB,WC DoRA 0.69 68.3 47.3

W∆,↑ DoRA 0.26 68.4 46.3

Table 18: Full benchmark results of DoRA on Spider (Yu et al., 2018) dataset using Mamba-1.4B.

parameter-efficient method to update the frozen model so that it becomes functionally equivalent to
the target model. In alignment with Zeng & Lee (2024), we assume that the frozen model’s capacity
is equal to or exceeds that of the target model. This assumption is based on two main considerations:
(i) analytical tractability, which necessitates that the frozen model must have the potential to match
the functionality of the target model, and (ii) a practical rationale, given that the models typically used
in practice are often overparameterized. Assume that both the target model and the frozen model are
S4, with the target model having a hidden state dimension H⋆ and the frozen model having a hidden
state dimension H ≥ H⋆. Meanwhile, suppose that all the hidden dimensions of both models are
valid, meaning that none of the parameter elements are zero. The target model, frozen model, and the
updated model after tuning the parameters on the frozen model can be formulated using discretized
parameters A,B,C as follows:

(Target model) f⋆(x)n =

n∑
m=1

C⋆A
m−n

⋆ B⋆xm, where diag(A⋆),B⋆,C⋆ ∈ RH⋆ ,

(Frozen model) f0(x)n =

n∑
m=1

CA
m−n

Bxm, where diag(A),B,C ∈ RH ,

(Updated model) f̂(x)n =

n∑
m=1

ĈÂ
m−n

B̂xm, where diag(Â), B̂, Ĉ ∈ RH .

Parameter Efficiency Analysis on S4. Let PH denote the set of all H ×H permutation matrices.
Given this formulation, we present our first analysis of parameter efficiency for the S4 model in the
following lemma. This analysis is based on the parameters after necessary discretization (A,B,C).

Lemma 3 (Essential Discretized Parameter Set for S4). Consider the parameters after discretization,
i.e., A,B,C. To achieve functional equivalence between the updated model and the target model,
i.e., f̂ ≡ f⋆, it is sufficient to tune the following number of parameters:

minP∈PH

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[P⊤(diag(A)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0
+

aligning used dimensions with target model︷ ︸︸ ︷∥∥∥[P⊤AP
]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0︸ ︷︷ ︸

aligning the state matrix

+
∥∥∥[P⊤(B ⊗C⊤)

]
1:H⋆

−B⋆ ⊗C⊤
⋆

∥∥∥
0︸ ︷︷ ︸

aligning input-output interactions

.

Proof of Lemma 3. The key idea of this proof is straightforward. To facilitate the analysis and update
the frozen model to be equivalent to the target model, we first equalize the number of hidden state
dimensions between the two models. This is achieved by expanding the target model’s A⋆, B⋆, and
C⋆ to match the H hidden state dimensions of the frozen model, padding the additional H −H⋆

dimensions with zeros.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Define ⊗ as the element-wise product. We can express the target model as:

f⋆(x)n =

n∑
m=1

[
C⋆ 0⊤] [A⋆ O

O O

]n−m [
B⋆

0

]
xm

=

n∑
m=1

diag

([
A⋆ O
O O

])n−m ([
C⊤

⋆
0

]
⊗
[
B⋆

0

])
xm

Consider any permutation matrix P ∈ PH . Applying P to permute the frozen model leaves the
model functionally unchanged:

f0(x)n =

n∑
m=1

CA
n−m

Bxm =

n∑
m=1

CP
(
P⊤AP

)n−m
P⊤Bxm

=

n∑
m=1

diag
(
P⊤AP

)n−m (
(P⊤C⊤)⊗ (P⊤B)

)
xm

Therefore, to make the updated model equivalent to the target model, we need to update P⊤AP

to align with
[
A⋆ O
O O

]
, and (P⊤C⊤)⊗ (P⊤B) to align with

[
C⊤

⋆
0

]
⊗

[
B⋆

0

]
. If they are already

matching or partially matched for certain entries, no updates are required for those entries; only the
unmatched entries need to be updated. Then, the required trainable parameters for this permutation
matrix P are:∥∥∥[P⊤(diag(A)⊗B ⊗C⊤)

]
(H⋆+1):H

∥∥∥
0
+
∥∥∥[P⊤AP

]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0
+

∥∥∥[P⊤(B ⊗C⊤)
]
1:H⋆

−B⋆ ⊗C⊤
⋆

∥∥∥
0
.

Optimizing the permutation matrix P ∈ PH yields the desired results.

This lemma highlights the significance of identifying essential hidden state dimensions. The term∥∥∥[P⊤(diag(A)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0

underscores the importance of excluding redundant di-
mensions. This can be achieved by either directly removing these dimensions from the state matrix
A, or by updating B or C to ensure that only the selected hidden state dimensions are utilized during
the input transition or output mapping phases. Once redundant dimensions are filtered out, tuning
only the essential dimensions is sufficient to align the updated model with the target model.

Furthermore, based on the lemma, the roles of the input transition vector B and C⊤ are nearly
identical, as they consistently appear together as the combined term B⊗C⊤, which is also discussed
in Gupta et al. (2022). Consequently, one could opt to tune either B or C exclusively or alternatively,
split the indices into two groups, tuning B for the first group and C for the second. Both vectors
indicate how information from different hidden state dimensions is integrated, whereas A plays a
distinct role, determining how the hidden states are stored.

In practice, instead of directly using the discretized parameters A,B,C, S4 is implemented using the
continuous parameters A,B,C with step size ∆. To provide further practical guidance on parameter
tuning, the following two lemmas analyze the parameter efficiency of continuous parameters under
different discretization methods: Two exemplary methods of discretization are bilinear and zero-order
hold (ZOH):

(Bilinear)
{
A = (I −∆/2A)−1(I +∆/2A)

B = (I −∆/2A)−1 ·∆B,
(ZOH)

{
A = exp(∆A)

B = (∆A)−1(exp(∆A)− I) ·∆B.
(17)

Lemma 7 (Essential Continuous Parameter Set for S4 with Bilinear Discritization). Consider the
parameters before discretization, i.e., A,B,C, and they are discretized via bilinear discretization.
To achieve functional equivalence between the updated model and the target model, i.e., f̂ ≡ f⋆, it is
sufficient to tune the following number of parameters:

minP∈PH

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[∆P⊤(diag(I +∆/2A)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0
+

aligning used dimensions with target model︷ ︸︸ ︷∥∥∥[P⊤AP
]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0︸ ︷︷ ︸

aligning the state matrix

+
∥∥∥[P⊤(B ⊗C⊤)

]
1:H⋆

−B⋆ ⊗C⊤
⋆

∥∥∥
0︸ ︷︷ ︸

aligning input-output interactions

.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Proof of Lemma 7. Combining Lemma 3 and the Bilinear discretization method in (17) yields the
desired results.

Lemma 8 (Essential Continuous Parameter Set for S4 with ZOH Discritization). Consider the
parameters before discretization, i.e., A,B,C, and they are discretized via ZOH discretization. To
achieve functional equivalence between the updated model and the target model, i.e., f̂ ≡ f⋆, it is
sufficient to tune the following number of parameters:

minP∈PH

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[∆P⊤(diag(exp(∆A)− I)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0
+

aligning used dimensions with target model︷ ︸︸ ︷∥∥∥[P⊤AP
]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0︸ ︷︷ ︸

aligning the state matrix

+
∥∥∥[P⊤(B ⊗C⊤)

]
1:H⋆

−B⋆ ⊗C⊤
⋆

∥∥∥
0︸ ︷︷ ︸

aligning input-output interactions

.

Proof of Lemma 8. Combining Lemma 3 and the ZOH discretization method in (17) yields the
desired results.

The insights provided by Lemma 7 and Lemma 8 are the same as those provided by Lemma 3. The
analysis here supports the second step of SDLoRA presented in Sec. 5.

D.2 EXTENSION TO DEEP S4 MODELS

Our previous analysis focused on single-channel S4 models. We now expand our investigation to more
complex scenarios involving deep S4 models for both target and frozen architectures, incorporating
D channels and varying layer depths. In this section, we consider two PEFT methods: (i) Selective
Dimension Tuning (SDT) and (ii) SDLoRA. The key distinction between SDT and SDLoRA lies in
their treatment of linear projection matrices. SDT exclusively updates the columns of weight matrices
corresponding to the updatable channels identified through Alg. 1. In contrast, SDLoRA employs
LoRA to modify these matrices. It is worth noting that the linear projection matrix updates in SDT
are inherently low-rank, making it a specialized case of SDLoRA. Our analysis starts with SDT, and
it automatically applies to SDLoRA.

In this analysis, we assume that each input token xt belongs to X , a bounded subset of RD, and that
the length of the input sequence is finite. Let the frozen model have L layers, and the target model
have L⋆ layers, where L ≥ L⋆. Similar to the technique used in Zeng & Lee (2024) and Giannou
et al. (2023). The basic idea of updating the frozen model to match the functionality of the target
model is to utilize every ⌈L/L⋆⌉ layers of the frozen model to approximate every layer of the target
model. We start introducing this proof idea from the simplest case where L⋆ = 1, L = D. In this
scenario, we can simply choose one different channel to tune and maintain all other channels at
zero at every layer. The outputs from the various channels of the deep S4 layers are then combined
through a residual connection. This proof idea inspires us to perform channel selection and make use
of the residual connections, which is the first and third step of SDLoRA presented in Sec. 5. Building
on this idea, we present the following results for when the target model has only L⋆ = 1 layer, and
L = D = 2.

Lemma 9. Consider a D-dimensional input sequence. Assume that the linear layers in the model
have linear activation functions. Using SDT, any deep S4 model with H hidden states per channel
and L layers can be updated to accurately present any target one-layer deep S4 model without
residual connections, having a reduced hidden state dimension H⋆ < H . Then this can be achieved
by selectively fine-tuning at most ⌈D/L⌉ channels, H⋆ hidden states, and residual connections at
each layer, while additionally fully fine-tuning the linear projection matrix of the last layer only.

Proof of Lemma 9. In this proof, we start by considering the case where L = D. In this case, we
update a single distinct channel for each layer while setting the other channels to zero. Essentially,
we modify the frozen model so that each layer corresponds to and functions as an individual channel
in the target model. To be more specific, we fully update the first channel in the first layer to match
the first channel of the target model, second channel in the second layer to match the second channel
of the target model, so on and so forth.

For the l-th layer of the frozen model , we append subscript l to all parameters of the deep S4 layer as
introduced in (4). For the d-th channel, corresponding notations are denoted with a superscript (d).
We define the t-th intermediate output token of the l-th deep S4 layer as zl,t ∈ RD. Additionally, the

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

updated S4 module in layer l is denoted as Ŝ4l, with Ŝ4l,t referring specifically to the sub-function
that outputs the t-th token. Therefore, for the t-th intermediate output token of the l-th deep S4 layer
of the updated model can be written as

zl,t = Ŵl · Ŝ4l,t(zl−1,1, . . . ,zl−1,t) + β̂l + ûl ⊗ zl−1,t

= Ŵl ·

Ŝ4

(1)

l,t (z
(1)
l−1,1, . . . , z

(1)
l−1,t)

...

Ŝ4
(D)

l,t (z
(D)
l−1,1, . . . , z

(D)
l−1,t)

+ β̂l + ûl ⊗ zl−1,t,

where Ŵl ∈ RD×D, β̂l ∈ RD are the updated weight and biases of the l-th layer of the frozen model,
and ûl ∈ RD is the updated residual connection weight of the frozen model.

For layers l < L = D. We follow the steps provided in Sec. 5 to update the l-th layer of the frozen
model such that it functionally equivalent to the l-th channel of the target model. For the reader’s
convinence, we restate our strategies here:

• (Channel Selection) Select D′ ≤ D (D′ = 1 here) important channels for making predictions.
Any channel d that is not utilized will have their corresponding C(d) set to zero, eliminating
the need to update parameters for A(d) and the d-th column of W . To be more specific, we let
C(d) = 0 for all d ̸= l in this scenario.

• (Hidden State Selection) Within the selected channels, select H ′ ≤ H important hidden states.
For any hidden state that is not used within a selected channel d, the corresponding element in
C(d) will be set to zero, thus eliminating the need to tune the corresponding element in A(d). To

be more specific, we can achieve Ŝ4
(l)

l,t (·) = S4
(l)
⋆,t(·) by Lemma 3.

• (Residual and Bias Tuning) Regardless of other selections, SDLoRA consistently tunes the coeffi-
cients of residual connections and biases in linear projections, as these components contain a negli-
gible number of parameters. In this scenario, we let β̂l = 0, ûl = [1 · · · 1︸ ︷︷ ︸

l−1 elements

0 1 · · · 1︸ ︷︷ ︸
D−l elements

]
⊤
.

This construction yields

zl,t =
[
z
(1)
l−1,t . . . z

(l−1)
l−1,t S4

(l)
⋆,t(z

(l)
l,1, . . . , z

(l)
l,t) z

(l+1)
l−1,t . . . z

(D)
l−1,t

]⊤
.

Consequently, only the l-th channel is active in the l-th layer, while all other layers function as identity
mappings, propagating the output of the preceding layer without modification.

For layer l = L = D. Based on the setup of the first L− 1 layers, we have

zL−1,t =
[
S4

(1)
⋆,t (x

(1)) · · · S4
(L−1)
⋆,t (x(L−1)) x(L)

]⊤
.

For the last layer, we let

ŴL = W⋆, β̂L = β⋆, ûL = 0,

Ŝ4
(L)

L,t (·) = S4
(L)
⋆,t (·), which can be achieved by Lemma 3.

It is easy to verify that the output of the updated frozen model is identical to the output of the target
model, i.e.,

yt = zL,t = W⋆

[
S4

(1)
⋆,t (x

(1)) · · · S4
(L−1)
⋆,t (x(L−1)) S4

(L)
⋆,t (x

(L))
]⊤

+ β⋆.

Thus far, we have demonstrated that the statement holds when L = D. This analysis can be readily
extended to cases where L ̸= D by tuning ⌈D/L⌉ channels at each layer. For example, when
L = D/2, we can tune two channels per layer using a construction similar to the one described above.
This generalization completes the proof.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Theorem 10 (Expressive Power of SDLoRA on Deep S4 Models). Consider a D-dimensional input
sequence. Assume that the linear layers in the model have linear activation functions. Using SDT, any
deep S4 model with H hidden states per channel and L layers can be updated to accurately present
any target deep S4 model without residual connections, having a reduced hidden state dimension
H⋆ < H , and fewer layers L⋆ < L. This can be achieved by selectively fine-tuning at most ⌈DL⋆/L⌉
channels, H⋆ hidden states, and residual connections at each layer.

Proof of Theorem 10. We update every ⌈D/L⌉ layers of the frozen model to approximate each layer
of the target model. By applying Lemma 9 iteratively to each set of ⌈D/L⌉ layers, we obtain the
desired result.

For reader’s convience, we restate the following statement presented in the main body again here.
Theorem 4 (Expressive Power of SDLoRA on Deep S4 Models). Consider a D-dimensional input
sequence. Assume that the linear layers in the model have linear activation functions. Using SDLoRA,
any deep S4 model with H hidden states per channel and L layers can be updated to accurately
present any target deep S4 model without residual connections, having a reduced hidden state
dimension H⋆ < H , and fewer layers L⋆ < L. This can be achieved by selectively fine-tuning at
most ⌈DL⋆/L⌉ channels, H⋆ hidden states on SSM modules, applying rank-⌈ L

L⋆ ⌉ updates on linear
projection matrices and updating residual connections and biases at each layer, while additionally
fully fine-tuning the linear projection matrix of the last layer only.

Proof of Theorem 4. Since SDT is a special case of SDLoRA, Theorem 10 directly implies the
desired statement.

SDLoRA for Mamba. In the Mamba model, the output mapping vector C is input-dependent,
making it unsuitable for direction modification. Therefore, we focus our channel and hidden state
selection solely on A. For any channels or hidden states that are not selected, we set the corresponding
elements of A to minimal values, effectively setting the associated entries in A to zero. For channels
and states that are updatable, we update the corresponding entries for A. However, since B(d) and
C(d) cannot be directly updated, we modify the corresponding weight matrices that compute these
vectors. Specifically, for updatable channels, we update the corresponding columns in WB and WC ;
for updatable states, we adjust the corresponding rows in these weight matrices.

D.3 EXPERIMENTS ON DEEP S4 MODELS

Synthetic. For selecting channels and hidden states, we initiate with a warmup learning rate between
1e− 2 and 1e− 3 and conduct 20 warmup iterations. Learning rates are adjusted between 5e− 2,
1e− 2, 5e− 3, and 1e− 3. We apply LoRA with ranks of 2 and 4 to the SSM and with ranks of 4,
8, and 16 to the linear projection matrices. Non-zero states are selected from the sets {4, 8}, and
non-zero channels from {8, 16}.

We additionally consider SDT (Selective Dimension Tuning), which is introduced in Sec. D.2, and
the results are visualized in Fig. 2. We observe that SDT even outperforms SDLoRA in this synthetic
experiments, demonstrating highly promising performance. Unfortunetly, we fail to make it work on
pretraned Mamba, and identify it as one of the promising future directions.

CIFAR-10 (Krizhevsky et al., 2009). We adhere to the preprocessing steps for CIFAR-10 as
outlined by Gu et al. (2022a). The LoRA ranks for linear projection matrices are tuned among {1, 2,
4, 8, 16}, and for the S4 component, ranks are set from {1, 2, 4}. Non-zero states are chosen from {8,
12, 16}, and non-zero channels from {48, 64}. A warmup phase includes 1 epoch with a learning rate
of 1e− 2. For linear projection matrices, LoRA ranks are explored at {2, 4, 8, 16}, and for the SSM,
ranks at {2, 4, 8}. All state dimensions are updated, and channel dimensions considered for updates
are {4, 8, 16, 32}.

D.4 EXPERIMENTS ON PRETRAINED MAMBA

Here, we provide more experiment details. Unless otherwise stated, our experiment setting is identical
to Sec. C.1. For LoRA, we consider three different LoRA configurations at each layer, involving

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 25 50 75 100
0

1

2

3

M
SE

Frozen
LoRA (Proj)
LoRA (S4+Proj)
SDT
SDLoRA
Full Fine-Tuning

Trainable Parameters (%)
Figure 2: Performance comparison between various methods. SDT (Selective Dimension Tuning)
is compared to SDLoRA. Unlike SDLoRA, which applies LoRA to linear projection matrices, SDT
performs sparse tuning on linear projection matrices by updating only the columns corresponding to
channels selected via Alg. 1. Notably, SDT achieves superior performance, matching full fine-tuning
results while using only 25% of the parameters, and even surpassing full fine-tuning with more
parameters. Extending SDT to real datasets is considered a promising future direction for SDLoRA.

the following matrices which comprise most of the parameters: Wout (output linear projection),
WB,WC (weight matrices for computing input-dependent Bn,Cn), and W∆,↓,W∆,↑ (down and
up projection matrices of LoRA adapters for computing ∆). The three LoRA application methods are:
(i) Wout, WB,WC , and W∆,↓,W∆,↑; (ii) Wout,WB,WC and W∆,↓; and (iii) Wout and W∆,↑.
For SDLoRA, we set the channel freeze ratio at 99% across all scenarios. We select the state freeze
ratio α from the set 75%, 90%, 95% and apply LoRA exclusively to Wout to maintain a comparable
number of trainable parameters. Residual connections and bias are frozen in this experiment. For the
warmup, we employ 500 data batches to fully train the SSM modules prior to dimension selection,
except for the RTE task in GLUE, where we use 250 batches due to its limited dataset size. Note that
the parameters are reverted back after the warmup stage.

D.5 SDLORA RESULTS ON ADDITIONAL DATASET

CelebA (Liu et al., 2015) comprises 202,599 face images (178 × 218 pixels), which is significantly
larger than CIFAR-10, and contains 40 classification tasks (e.g., predicting attributes like gender, hair
color, and glasses). We report four metrics: (i) average accuracy and overall accuracy for (ii) easy,
(iii) medium, and (iv) hard tasks. Here, overall accuracy refers to the accuracy of correctly predicting
all target labels within a specific subset of tasks. Tasks are categorized as easy (13 tasks), medium
(14 tasks), or hard (13 tasks) by clustering based on average performance. To ensure computational
feasibility, we reduced the resolution by cropping images to retain only the face and then resizing
them to 32 × 32 pixels. This preprocessing helps maintain a manageable sequence length for efficient
runtime.

Results We conducted experiments on Mamba-130M, and the results are summarized in Table 19.
The table demonstrates that SDLoRA consistently outperforms LoRA across tasks of varying difficulty
levels.

D.6 EXPERIMENTS ON JAMBA AND MAMBA-II

In this section, we expand our analysis beyond the deep S4 model and Mamba. Specifically, we
incorporate the Transformer-SSM hybrid model Jamba (Lieber et al., 2024) (Jamba-Tiny-319M and
Jamba-Mini-52B) and Mamba-II (Dao & Gu, 2024) (Mamba-II-130M and Mamba-II-1.3B).

Experiment Results on Jamba We froze the Transformer layers, tuning only the Mamba layers,
while adhering to the same experimental settings used for Mamba. To accommodate the Jamba-Tiny

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Model Mamba-130M
Dataset Params (%) CelebA
Metric (↑) Acc. (All) Acc. (Easy) Acc. (Medium) Acc. (Hard)

LoRA
0.3178 87.79 58.53 24.19 4.18
0.3600 88.58 60.10 26.21 5.19
0.3883 87.67 58.32 24.01 4.08

SDLoRA
0.3492 88.61 60.50 26.27 5.40
0.3498 88.40 59.75 25.69 5.01
0.3509 88.50 60.52 26.30 4.96

Table 19: Performance comparison between SDLoRA and LoRA on CelebA (Liu et al., 2015) using
Mamba-130M. Bold numbers indicate the best performance for each task.

52B model on a single 80GB GPU, we quantized all non-Mamba layers to 4-bit precision, following
an approach similar to QLoRA, and reduced the batch size.

The performance comparison between LoRA and SDLoRA is shown in Table 20. SDLoRA out-
performs LoRA on nine out of eleven tasks, demonstrating that SDLoRA’s strong performance on
Mamba effectively transfers to hybrid models as well.

Model Jamba-Tiny-319M Jamba-Mini-52B
Dataset Params (%) DART SAMSum Spider Params (%) DART SAMSum
Metric (↑) METEOR BLEU R1 R2 RL Acc. METEOR BLEU R1 R2 RL

LoRA
0.05030 65.03 27.17 37.13 16.43 30.90 35.49 0.004951 73.00 52.86 55.31 31.71 46.47
0.05690 67.90 39.02 40.80 18.54 33.87 44.07 0.005629 72.81 52.65 55.12 31.63 46.64
0.06153 65.05 23.18 39.15 17.70 32.79 37.67 0.006051 72.94 52.63 56.36 33.48 47.91

SDLoRA
0.05536 67.18 31.49 41.11 18.48 33.84 48.58 0.005484 72.87 52.46 56.08 32.79 47.61
0.05540 67.86 31.43 41.69 19.17 34.47 50.40 0.005488 73.07 52.79 56.53 33.50 47.96
0.05549 67.80 33.03 42.18 19.19 34.95 49.60 0.005497 72.95 53.11 56.14 33.08 47.56

Table 20: Performance comparison between SDLoRA and LoRA on Jamba-Tiny-319M and Jamba-
Mini-52B. Bold numbers indicate the best performance for each task.

Experiment Results on Mamba-II For Mamba-II, however, applying SDLoRA is not straight-
forward because Mamba-II further constrains A such that all (non-zero) entries must have the same
value. Therefore, our original dimension selection approach cannot be directly applied here. We
consider a naive extension of SDLoRA by selecting dimensions in the projection matrices for input
mapping vector B and the projection matrices for output mapping vector C using their respective
magnitude, and fine-tune the selected dimensions and all elements of state transition matrix A.

Tables 21 and 22 compare the performance of LoRA and SDLoRA on Mamba-II. The results
demonstrate that SDLoRA consistently outperforms LoRA on Mamba-II models.

Model Mamba-II-130M Mamba-II-1.3B
Dataset Params (%) DART Params (%) SAMSum Spider
Metric (↑) METEOR BLEU R1 R2 RL Acc.

LoRA 0.3354 68.71 48.09 0.1614 49.73 26.14 41.53 72.36
SDLoRA 0.3393 70.60 48.93 0.1767 50.72 27.21 42.54 84.15

Table 21: Performance comparison between SDLoRA and LoRA on Mamba-II-130M and Mamba-II-
1.3B. Bold numbers indicate the best performance for each task.

D.7 DORA AND SDDORA RESULTS

We have included evaluations of DoRA (an advanced LoRA variant) alongside SDDoRA to provide
a more comprehensive analysis. We extended our investigation to include SDDoRA and evaluated
its performance against DoRA alone using the DART benchmark on the Mamba-130M model. The
results, presented in Table 23, show that integrating selective dimension tuning with DoRA enhances
its effectiveness and achieves superior performance compared to using DoRA alone.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Model Mamba-II-130M
Dataset Params (%) GLUE
Accuracy (↑) RTE MRPC COLA SST2 QNLI QQP MNLI

LoRA 0.3354 63.4 80.9 - 89.1 85.3 87.1 78.6

SDLoRA 0.3393 64.3 82.3 - 94.1 87.0 88.3 81.1

Table 22: Performance comparison between SDLoRA and LoRA on GLUE (Wang et al., 2019)
dataset using Mamba-II-130M. Bold numbers indicate the best performance for each task (- indicates
experiments still under investigation due to identified issues).

Model Mamba-130M Mamba-1.4B
Dataset Params (%) DART Params (%) SAMSum
Metric (↑) METEOR BLEU R1 R2 RL

DoRA
0.3618 70.01 49.86 0.1813 51.42 27.78 42.89
0.4025 70.40 51.22 0.2024 51.78 27.70 43.23
0.4040 69.94 50.53 0.2024 51.75 28.04 43.44

SDDoRA
0.3630 70.33 51.32 0.1831 52.11 28.28 43.65
0.3633 70.80 51.55 0.1832 51.86 28.28 43.48
0.3639 70.50 50.80 0.1835 51.70 28.02 43.39

Table 23: Performance comparison between SDDoRA and DoRA on Mamba-130M and Mamba-1.4B.
Bold numbers indicate the best performance for each task.

D.8 LORA+ AND SDLORA+ RESULTS

We have included evaluations of LoRA+ (Hayou et al., 2024) (an advanced LoRA variant) alongside
SDLoRA+ to provide a more comprehensive analysis. We extended our investigation to include
SDLoRA+ and evaluated its performance against LoRA+ across various datasets on both Mamba-I
and Mamba-II. The results, presented in Table 24, show that integrating selective dimension tuning
with LoRA+ enhances its effectiveness and achieves superior performance compared to using LoRA+
alone.

Model Mamba-I-130M Mamba-II-130M Mamba-II-1.3B
Dataset DART DART SAMSum Spider
Metric (↑) METEOR BLEU METEOR BLEU R1 R2 RL Acc.

LoRA+ 70.06 50.91 69.78 49.14 49.83 26.09 41.66 73.75

SDLoRA+ 70.58 51.93 70.48 49.99 50.81 27.19 42.4 84.22

Table 24: Performance comparison between SDLoRA+ and LoRA+ on Mamba-I and Mamba-II.
Bold numbers indicate the best performance for each task. We test all experiments under various
parameter settings (<0.4%) for both LoRA+ and SDLoRA+, and report the best values.

D.9 MEMORY USAGE AND RUNTIME ANALYSIS OF SDLORA

To assess the memory usage and runtime of SDLoRA and LoRA, we conducted experiments on
four different models, including both SSM and hybrid architectures. Unless specified otherwise,
for each model and method, dataset were generated with 2,500 batches of data samples, each batch
comprising a random sequence of 1,500 tokens. The simulation was repeated four times, including
dataset generation. All experiments were carried out on a single H100 GPU, and the reported metrics
represent averages across the four simulations. Consistent with our previous experiments, we used
the original hyperparameter settings, ensuring that SDLoRA included more trainable parameters than
LoRA.

Memory Usage Analysis The memory usage of LoRA and SDLoRA is presented in Table 25.
Our observations indicate that SDLoRA requires less memory than LoRA. This difference can be

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

attributed to the design of the LoRA adapters, which involve matrix multiplication of two low-rank
matrices. In contrast, tuning SSM with the same number of parameters does not require any matrix
multiplication, resulting in lower memory usage.

Memory Usage (GB) Mamba-130M Mamba-1.4B Jamba-Tiny-319M Jamba-Mini-52B

LoRA 7.753 37.167 7.207 71.986
SDLoRA 5.738 26.491 6.605 67.193

Table 25: Memory usage comparison between SDLoRA and LoRA on various models. Bold numbers
indicate the lowest memory usage for each model.

Runtime Analysis Fine-tuning with SDLoRA consists of two stages: (1) dimension selection and
(2) standard training. In this study, we first compare the runtime of SDLoRA and LoRA during
stage 2 (training) and then evaluate the additional runtime introduced by SDLoRA during stage
1 (dimension selection). Our results show that the dimension selection stage adds only marginal
runtime overhead, and SDLoRA is more efficient than LoRA in standard training.

Training: When the channels and states have been selected, the training of SDLoRA is faster than
LoRA when the same number of trainable parameters are considered.

The runtimes are reported in Table 26. We observe that, despite having more trainable parameters,
SDLoRA is faster than LoRA. We attribute this to the fact that LoRA introduces additional FLOPs due
to the extra matrix multiplication operations required for each update (specifically, the multiplication
of two low-rank matrices).

Avg. Runtime (Seconds) Mamba-130M Mamba-1.4B Jamba-Tiny-319M Jamba-Mini-52B

LoRA 410.0 ± 80.0 2060.0 ± 135.0 352.5 ± 107.5 3427.5 ± 185.0
SDLoRA 330.0 ± 77.5 1697.5 ± 87.5 257.5 ± 72.5 3065.0 ± 232.5

Table 26: Runtime comparison of SDLoRA and LoRA during stage 2 (training).

Dimension Selection: For dimension selection, our method first performs an Initial Subset Training,
and then selects the dimensions based on the magnitude of parameter changes across different
dimensions.

1. Initial Subset Training: We update the model by going through only a subset of the dataset (e.g.,
3% of batches in DART experiments), which is sufficient in practice.

2. Magnitude-Based Dimension Selection: After the subset training, we select dimensions based on
the magnitude of parameter changes observed.

In this experiment, we simulate a real scenario using datasets with 2,500 batches, considering a small
subset containing 125 batches (5% of the full dataset). We repeat the experiments 80 times, and the
reported numbers are averaged across these simulations. The following table presents the runtime
analysis of the dimension selection stage in SDLoRA.

Table 27 demonstrates that the dimension selection stage adds only negligible runtime.

Avg. Runtime (Seconds) Mamba-130M Mamba-1.4B Jamba-Tiny-319M Jamba-Mini-52B

Initial Subset Training 16.250 ± 3.880 85.250 ± 5.130 15.750 ± 1.000 163.630 ± 10.120
Magnitude-Based Dimension Selection 0.280 ± 0.000 0.520 ± 0.120 0.090 ± 0.000 0.240 ± 0.040

Total Time 16.530 ± 3.880 85.770 ± 5.250 15.840 ± 1.000 163.870 ± 10.160

Proportion of Training 1 Epoch 0.050× 0.051× 0.062× 0.053×
Proportion of Training 5 Epoch 0.010× 0.010× 0.012× 0.011×

Table 27: Runtime comparison of SDLoRA and LoRA during stage 1 (dimension selection).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

E LIMITATIONS & FUTURE WORKS

While our work offers numerous valuable insights, some limitations exist. Theoretically, our guar-
antees for SDLoRA are limited to linear activations and require full fine-tuning of the last layer.
However, our experiments demonstrate that SDLoRA does not suffer from these limitations in prac-
tice. Removing such restrictions for SDLoRA in theory or developing new PEFT methods under more
general theoretical cases is an interesting future direction. Additionally, our theory only demonstrates
that updating a subset of channels and states is sufficient, without providing guidance on optimal
selection. Our channel and state selection, based on a warmup stage and parameter magnitude, may
not be optimal. Further investigation into the impact of channel/state selection and development of
improved dimension selection algorithms presents an interesting avenue for future work. Lastly, our
work primarily focuses on SSM-based models. Studying PEFT methods on SSM-Transformer hybrid
models (Lieber et al., 2024; Park et al., 2024), is an interesting future direction.

35

	Introduction
	Related Works
	Preliminaries of State Space Models
	Benchmarking PEFT Methods on SSM-based Models
	Limitations of Applying Existing Prompt-based Methods on SSMs
	Optimal Application of LoRA in SSM-based Models

	Dimension Selection for Tuning State-Space Models
	Understanding the Roles of State Matrix A, Input Transition Vector B, and Output Mapping Vector C for a Single Channel in S4 Modules
	SSM Dimension Selection Algorithm
	Empirical Evaluation on Deep S4 Models
	Empirical Evaluation on Mamba

	Conclusion
	In-depth Introduction of Baselines
	Details of Datasets
	Details of Sec. 4: Benchmarking PEFT Methods on SSM-based Models
	Experiment Setup
	Extended Results on Benchmarking Existing PEFT Methods
	Limitations of Applying Prompt-based Methods on SSMs
	Optimal Application of LoRA in SSM-based Models
	Benchmarking LoRA on Jamba and Mamba-II
	Benchmarking DoRA on Mamba

	Details of Sec. 5: SDLoRA
	Understanding the Roles of State Matrix A, Input Transition Vector B, and Output Mapping Vector C for a Single Channel in S4 Modules
	Extension to Deep S4 Models
	Experiments on Deep S4 Models
	Experiments on Pretrained Mamba
	SDLoRA Results on Additional Dataset
	Experiments on Jamba and Mamba-II
	DoRA and SDDoRA Results
	LoRA+ and SDLoRA+ Results
	Memory Usage and Runtime Analysis of SDLoRA

	Limitations & Future Works

